高中数学向量基础知识
高中数学向量知识点总结大全
![高中数学向量知识点总结大全](https://img.taocdn.com/s3/m/5860df92185f312b3169a45177232f60ddcce791.png)
一、向量的基本概念向量:既有大小又有方向的量叫做向量。
物理学中又叫做矢量,如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。
向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)。
向量的表示方法:几何表示法、字母表示法。
模的概念:向量的大小(长度)称为向量的模。
记作:|ab|。
零向量:长度(模)为0的向量叫做零向量,记作0。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量或共线向量。
若向量a,b平行,记作a∥b。
规定0与任一向量平行。
相等向量:长度相等且方向相同的向量叫做相等向量。
向量a,b相等记作a=b。
零向量都相等。
任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段起点、终点位置无关。
二、向量的运算向量的加法:两个向量相加的结果是以这两个向量为邻边的平行四边形的对角线(注意起点和方向)。
也可以先作出其中一个向量,然后将另一个向量的起点平移到第一个向量的终点上,最后以第一个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种加法称为三角形法则。
向量的减法:两个向量相减的结果是将第一个向量的起点平移到第二个向量的终点上,然后以第二个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种减法称为三角形法则的逆运算。
向量的数乘:实数与向量的乘积是一个新的向量,其模等于原向量的模乘以实数的绝对值,其方向与原向量的方向相同或相反(取决于实数的正负)。
向量的点乘:两个向量的点乘结果是一个实数,等于这两个向量的模的乘积再乘以它们之间的夹角的余弦值。
如果两个向量的夹角为90度,则它们的点乘结果为0;如果两个向量的夹角为0度或180度,则它们的点乘结果分别为它们模的乘积的正值和负值。
向量的叉乘:两个三维向量的叉乘结果是一个新的三维向量,其模等于这两个向量的模的乘积再乘以它们之间的夹角的正弦值,其方向垂直于这两个向量所构成的平面,符合右手定则。
2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法
![2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法](https://img.taocdn.com/s3/m/efd3c936cd7931b765ce0508763231126edb7783.png)
第七节 立体几何中的向量方法一、空间向量与平行关系【知识点11】直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个. (2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 注:直线的方向向量(平面的法向量)不唯一?【例1】如图3,已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.【反思】1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z). (2)选向量:在平面内选取两个不共线向量,. (3)列方程组:由列出方程组. (4)解方程组:(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0.[练习1]正方体ABCDA1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图322所示的空间直角坐标系中,求:图322(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.【知识点12】空间中平行关系的向量表示【类型一】用向量证明线线平行【例1】如图323所示,在正方体ABCDA1B1C1D1中,E,F分别为DD1和BB1的中点.求证:四边形AEC1F是平行四边形.图323111111112EB1,BF=2F A1.求证:EF∥AC1.【类型二】用向量证明线面平行【例2】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点.求证:MN∥平面A1BD.【练习2】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD =4,EF=3,AE=BE=2,G是BC的中点,求证:AB∥平面DEG.【类型三】利用向量证明面面平行【例3】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点,试证明平面A1BD∥平面CB1D1.【练习3】如图329,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q是CC1上的点,则当点Q在什么位置时,平面D1BQ∥平面P AO?图329二、空间向量与垂直关系【知识点13】空间中垂直关系的向量表示【类型一】用向量证明线面垂直【例1】如图所示,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.【练习1】如图3215,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.图3215【类型二】用向量法证明面面垂直【例2】如图3212所示,在直三棱柱ABCA1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E 为BB1的中点,证明:平面AEC1⊥平面AA1C1C.=2BD.求证:平面DEA⊥平面ECA.三、空间向量与空间角【知识点14】空间角的向量求解方法【类型一】求两条异面直线所成的角【例1】如图,在三棱柱OABO1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.θ=φθ=π-φ点,则AE,SD所成的角的余弦值为多少?【类型二】求直线与平面所成的角【例2】如图,四棱锥PABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【练习2】如图,在四棱锥P ABCD 中,平面P AD⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【类型三】求二面角【例3】如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A PB C 的余弦值.旋转轴旋转120°得到的,G 是DF ︵的中点.图3224(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E AG C 的大小.【练习4】如图,在三棱锥PABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角DGHE的余弦值.四、空间向量与距离【知识点15】利用空间向量求距离(※)【例1】已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.【练习1】如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,DG=13DD1,过E,F,G的平面交AA1于点H,求D1A1到平面EFGH的距离.点到平面的距离:先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面的法向量上的射影长.如图,设n=(a,b,c)是平面α的一个法向量,P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到平面α的距离:d=|PP0→·n||n|=|a(x0-x)+b(y0-y)+c(z0-z)|a2+b2+c2.注:线面距离、面面距离都可以转化为点到平面的距离.。
高中数学平面向量知识点总结
![高中数学平面向量知识点总结](https://img.taocdn.com/s3/m/a77b2d7c2af90242a895e5c2.png)
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。
高中数学(理)空间向量知识点归纳总结及综合练习
![高中数学(理)空间向量知识点归纳总结及综合练习](https://img.taocdn.com/s3/m/de150b80580216fc710afd4a.png)
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
》(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
6. 空间向量的直角坐标系: ~(1)空间直角坐标系中的坐标:(2)空间向量的直角坐标运算律:①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=。
高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)
![高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)](https://img.taocdn.com/s3/m/d294f71c58eef8c75fbfc77da26925c52cc591a9.png)
第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向; 当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a||b| cos θ叫做a 与b 的数量积(或内积),记作a·b ,即a·b =|a||b|cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b|cos θ叫做向量b 在向量a 的方向上的投影,|a|cos θ叫做向量a 在向量b 的方向上的投影.(2)a·b 的几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a·b =b·a.(2)数乘结合律:(λa)·b =λ(a·b)=a·(λb). (3)分配律:(a +b)·c =a·c +b·c.向量数量积的运算不满足乘法结合律,即(a·b)·c 不一定等于a·(b·c),这是由于(a·b)·c 表示一个与c 共线的向量,a·(b·c)表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a. (4)cos θ=a ·b|a ||b |.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a|=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式 (1)(a +b)·(a -b)=a 2-b 2; (2)(a±b)2=a 2±2a·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)(2018·新乡二模)若向量m =(2k -1,k )与向量n =(4,1)共线,则m·n =( ) A .0 B .4 C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172.(2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a·b =0, ∵|a|=2,|b|=1,∴AC ―→·CB ―→=(a +b)·(-b)=-a·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a·(b +a)=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a|=5, 由a·(b +a)=2,可得a·b +a 2=2, ∴a·b =-3,∴向量b 在a 方向上的投影为a·b |a|=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14. 答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a·b =-12,向量c 与a +b 共线,则|a +c|的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a|=3,∴a·(a +b)=a 2+a·b =|a||a +b|cos π4,∴|a +b|=32,将|a +b|=32两边平方可得,a 2+2a·b +b 2=18,解得|b|=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b)(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c)2=(t +1)2a 2+2t (t +1)·a·b +t 2b 2, ∵向量a ,b 为单位向量,且a·b =-12,∴(a +c)2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c|≥32,∴|a +c|的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a|=1,|b|=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b|2=|a|2+4|b|2+4a·b =1+1+4×1×12×cos π3=3,所以|a +2b|= 3.又(a +2b)·b =a·b +2|b|2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=a +2b ·b|a +2b||b|=343×12=32, 所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b|cos 〈a ,b 〉=-3,又|a|=12+32=2,所以a·b =|a||b|cos 〈a ,b 〉=-6,又a·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b|=32+-332=6,所以cos 〈a ,b 〉=a·b |a||b|=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a|=223|b|,且(a -b)⊥(3a +2b),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a|=223|b|,(a -b)⊥(3a +2b), 所以(a -b)·(3a +2b)=3|a|2-2|b|2-a·b =83|b|2-2|b|2-223|b|2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→ ·BC ―→=0,即AP ―→ ·BC ―→=(λAB ―→+AC ―→ )·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n)⊥(m -n),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b|=1,|2a -b|=1,则|a|=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b|=1,∴a·b =|a|×1×12=|a|2,∵|2a -b|=1,∴|2a -b|2=4a 2-4a·b +b 2=4|a|2-2|a|+1=1,∴4|a|2-2|a|=0,∴|a|=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a|=1,|b|=2,a +b =(1,3),记向量a ,b 的夹角为θ,则tan θ=________.解析:∵|a|=1,|b|=2,a +b =(1,3),∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =1+3,∴a·b =-12,∴cos θ=a·b |a|·|b|=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴tan θ=sin θcos θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a|=1,|b|=23,a 与b 的夹角的余弦值为sin 17π3,则b·(2a -b)等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32,∴a·b =-3,b·(2a -b)=2a·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b)·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a|=1,b =(2,1),且a·b =0,则|a -b|=( ) A.6 B.5 C .2D.3解析:选A 因为|a|=1,b =(2,1),且a·b =0,所以|a -b|2=a 2+b 2-2a·b =1+5-0=6,所以|a -b|= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c)∥b ,c ⊥(a +b),则c =( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c)∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12 D.⎝⎛⎭⎫-∞,12 解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b|=|a -b|=2|b|,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b|=|a -b|,∴|a +b|2=|a -b|2,∴a·b =0.又|a +b|=2|b |,∴|a +b|2=4|b|2,|a|2=3|b|2,∴|a|=3|b|,cos 〈a +b ,a 〉=a +b ·a |a +b||a|=a 2+a·b |a +b||a|=|a|22|b||a|=|a|2|b|=32,故a +b 与a 的夹角为π6.7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e|=1,a·e =1,b·e =-2,|a +b|=2,则a·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b|=1+m +n2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn=4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a·b =-2+mn ≤-54,综上可得a·b 的最大值为-54.9.已知平面向量a ,b 满足a·(a +b)=3,且|a|=2,|b|=1,则向量a 与b 的夹角的正弦值为________.解析:∵a·(a +b)=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-cos 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a|=1,|b|=2,若(λa +b)⊥(a -2b),则λ=________.解析:∵|a|=1,|b|=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b)⊥(a -2b),∴(λa +b)·(a -2b)=0,即(λa +b)·(a -2b)=λa 2-2b 2+(1-2λ)a·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a|=1,|b|=2,|a +b|=3,则a 在b 方向上的投影等于________.解析:∵|a|=1,|b|=2,|a +b|=3, ∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =3, ∴a·b =-1,∴a 在b 方向上的投影为a·b |b|=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→ ·(OB ―→-OA ―→ )=(OA ―→+AC ―→ )·AB ―→=OA ―→ ·AB ―→+AC ―→ ·AB ―→= 2 c os 3π4+24 ×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a|=|b|=1,且|2a -b|= 5. (1)求|2a -3b|的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b|2=4a 2-4a·b +b 2=4-4a·b +1=5,∴a·b =0, ∴|2a -3b|=4a 2-12a·b +9b 2=4+9=13.(2)cos θ=3a -b ·a -2b |3a -b||a -2b|=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22, ∵θ∈[0,π],∴θ=π4.。
高中数学向量知识点总结
![高中数学向量知识点总结](https://img.taocdn.com/s3/m/01002d5ca55177232f60ddccda38376baf1fe031.png)
高中数学向量知识点总结一、基础概念向量是由大小和方向两个方面表示的量,可以用有向线段表示。
向量的模(长度)是一个标量,用||a||表示,其中a为向量。
模为0的向量称为零向量。
向量的方向由其符号决定,同方向向量与相反方向向量称为“对向向量”。
二、向量的加法向量加法:向量加上另一个向量就是在另一个向量的末端从起点开始画一个同样大小的向量。
可加性:若a、b、c为向量,那么a+b=c,即a+b=c-b。
交换律:一个向量加上另一个向量等于另一个向量加上第一个向量。
结合律:(a+b)+c=a+(b+c)三、向量的减法向量减法:一个向量减上另一个向量等于另一个向量的相反数加上第一个向量。
四、向量的数量积向量的数量积:向量 a 与标量 k 的积乘积表示为ka 。
向量 a 与向量 b 的数量积表示为a·b 。
夹角公式:a·b=|a||b|cosθ。
五、向量的叉积向量的叉积可以得到一个新的向量,叉积符号为叉乘号-×。
向量的叉积表示为a×b,结果垂直于a和b所在的平面,方向通过右手定则判断。
六、平面向量平面向量:一个平面向量的模表示这个向量所代表的有向线段的长度,而朝向的方向则由向量的起点指向终点。
标准单位向量i、j 满足|i|=|j|=1,同时是相互垂直的。
平面向量加减的公式与三维向量相同。
七、空间向量空间向量:空间向量是三维向量,定义为一个向量的起点和终点可以在三维空间中的任意两个点之间往返移动。
空间向量加减的公式与平面向量相同。
空间向量的数量积:a·b=|a||b|cosθ。
八、向量的应用平移变换:平移是向量应用最广泛的变换之一,在2D空间或3D空间中使用相同的基础技巧。
投影:当我们需要在三维空间中绘制3D图像时,我们经常需要计算平行于某个坐标轴的投影。
高中数学的向量知识
![高中数学的向量知识](https://img.taocdn.com/s3/m/640fefd1b9f3f90f76c61b16.png)
高中数学的平面向量知识向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),向量可以用a,b,c,.......表示,也可以用表示向量的有向线段的起点和终点字母表示。
只有大小没有方向的量叫做数量(物理学中叫做标量)。
在自然界中,有许多量既有大小又有方向,如力、速度等。
我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。
这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。
向量的几何表示具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。
(AB是印刷体,也就是粗体字母,书写体是上面加个→)有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
相等向量、平行向量、共线向量、零向量、单位向量:长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量或共线向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)长度等于0的向量叫做零向量,记作0。
(注意粗体格式,实数“0”和向量“0”是有区别的)零向量的方向是任意的;且零向量与任何向量都平行,垂直。
模等于1个单位长度的向量叫做单位向量。
平面向量的坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j我们把(x,y)叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。
在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。
而点的坐标是绝对的。
若一向量的起点在原点,例如该向量为(1,2)那么该向量上的所有点都可以用(a,2a)表示。
高中数学中的空间向量应用重点知识点归纳
![高中数学中的空间向量应用重点知识点归纳](https://img.taocdn.com/s3/m/c094ae2c571252d380eb6294dd88d0d233d43c92.png)
高中数学中的空间向量应用重点知识点归纳在高中数学的学习中,空间向量是一个重要的概念,它在几何问题的解决中具有广泛的应用。
本文将对高中数学中的空间向量应用的重点知识点进行归纳,帮助同学们更好地理解和掌握相关内容。
一、基本概念1. 空间向量的定义:空间向量是指具有大小和方向的量,用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
2. 空间向量的表示:空间向量可以用坐标表示,也可以用位置矢量表示,其中位置矢量由起点和终点确定。
3. 零向量:零向量是长度为0,方向任意的特殊向量,用0表示。
4. 相等向量:具有相同大小和方向的向量称为相等向量,记作→AB = →CD。
二、向量的运算1. 向量的加法:向量的加法是指将两个向量相加得到一个新的向量,具有平行四边形法则和三角形法则两种运算法则。
2. 向量的减法:向量的减法是指将两个向量相减得到一个新的向量,可利用向量加法实现。
3. 向量的数乘:向量的数乘是指将向量的每个分量与一个实数相乘得到一个新的向量。
4. 点乘:点乘又称为数量积或内积,表示为A·B,结果是一个实数。
点乘有几何意义和代数意义,具有交换律和分配律等运算规则。
5. 叉乘:叉乘又称为向量积或外积,表示为A×B,结果是一个向量。
叉乘有几何意义和代数意义,具有反交换律和满足叉乘的运算规则。
三、空间向量的应用1. 直线的方程:通过两个不共线的点可以确定一条直线,可以利用向量求解直线的方程。
2. 平面的方程:通过三个不共线的点可以确定一个平面,可以利用向量求解平面的方程。
3. 点到直线的距离:点到直线的距离可以通过向量的投影求得,利用这一点可以解决点到直线的最短距离问题。
4. 点到平面的距离:点到平面的距离可以通过向量的投影求得,利用这一点可以解决点到平面的最短距离问题。
5. 直线的位置关系:通过向量的共线性可以判断直线的位置关系,包括相交、平行和重合等情况。
6. 平面的位置关系:通过向量的共面性可以判断平面的位置关系,包括相交、平行和重合等情况。
高中数学必修知识点空间向量知识点
![高中数学必修知识点空间向量知识点](https://img.taocdn.com/s3/m/d4c3ec013a3567ec102de2bd960590c69ec3d8b7.png)
高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。
接下来,就让我们一起深入了解一下空间向量的相关知识。
一、空间向量的基本概念空间向量是指具有大小和方向的量。
它与平面向量类似,但存在于三维空间中。
一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。
零向量:长度为\(0\)的向量,其方向任意。
单位向量:长度为\(1\)的向量。
二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。
若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。
高中数学平面向量知识点总结及常见题型
![高中数学平面向量知识点总结及常见题型](https://img.taocdn.com/s3/m/d33a998268dc5022aaea998fcc22bcd126ff42a3.png)
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
高中数学平面向量知识及注意事项
![高中数学平面向量知识及注意事项](https://img.taocdn.com/s3/m/5344b50e763231126edb1195.png)
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
高中数学平面向量知识点与典型例题总结(师)
![高中数学平面向量知识点与典型例题总结(师)](https://img.taocdn.com/s3/m/c736f5c50875f46527d3240c844769eae009a39c.png)
高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
高中数学共面向量基本定理
![高中数学共面向量基本定理](https://img.taocdn.com/s3/m/52bd0ce016fc700aba68fc6f.png)
OP OA tAB (1 t)OA tOB
3、空间共面向量定理
p xa yb MP xMA yMB OP OM xMA yMB
作业P162之友
B
PA
OP (1 t)OA tOB
P、A、B 三点共线
O
P B
A
O
OP xOA yOB
O、P、A、B 四点共面
②平面AC//平面EG。
证明:② EF OF OE kOB kOA O
k(OB OA) kAB 由①知 EG kAC
EG // AC EF // AB
由面面平行判定定理的推论得:
D
A
H
C
B
G
面EG // 面AC
E
F
四、课堂练习 1、如图,已知A、B、C三点不共线,就平面ABC外一点 O作出点P、Q、R、S使
例3 已知 ABCD ,从平面AC外一点O引向量
OE kOA, OF kOB, OG kOC, OH kOD
求证:①四点E、F、G、H共面;
②平面AC//平面EG。
证明:∵四边形ABCD为
O
① ∴ AC AB AD
(﹡)
EG OG OE kOC k面
OP 1 (OA OB) 2
(中点公式)
例1:若点P分线段AB成2:1,对空间任意一点O,
试用 OA,OB表示OP
B P A
O
练习: 已知点P分线段AB的比为m:n(mn>0),点O为空间任一点,则
A.
OP m OA n OB
mn mn
B.
OP n OA m OB
C A
B
O
1、如图,已知A、B、C三点不共线,就平面ABC外一点 O作出点P、Q、R、S使
高中数学人教B版必修4 向量的概念
![高中数学人教B版必修4 向量的概念](https://img.taocdn.com/s3/m/74bc1a2da300a6c30d229f00.png)
2.1.1向量的概念(1)向量是如何定义的?怎样表示向量?(2)向量的相关概念有哪些?[新知初探]1.向量的概念及表示印刷时,用黑体小写字母,手写时,小写字母要带箭头2.与向量有关的概念长度等于0的向量规定:零向量与任意向量都平行共线向量仅仅指向量的方向相同或相反;相等向量指大小和方向均相同.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)两个向量能比较大小.()(2)向量的模是一个正实数.( ) (3)向量AB 与向量BA 是相等向量.( ) 答案:(1)× (2)× (3)×2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速. 其中可以看成是向量的个数( ) A .1 B .2 C .3D .4答案:B3.下列结论中正确的是( ) ①由a =b 可知a ∥b 且|a |=|b |; ②由a =b 不能得到a ∥b 且|a |=|b |; ③a 与b 方向相同且|a |=|b |等价于a =b ; ④由a 与b 方向相反或|a |=|b |可知a =b . A .①③ B .②④ C .③④ D .①③④ 答案:A4.如图,四边形ABCD 和ABDE 都是平行四边形,则与ED 相等的向量有______.答案:AB ,DC[典例] 给出下列命题:①两个向量,当且仅当它们的起点相同,终点相同时才相等;②若平面上所有单位向量的起点移到同一个点,则其终点在同一个圆上; ③在菱形ABCD 中,一定有AB ―→=DC ―→; ④若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.[解析] 两个向量相等只要模相等且方向相同即可,而与起点和终点的位置无关,故①不正确.单位向量的长度为1,当所有单位向量的起点在同一点O 时,终点都在以O 为圆心,1为半径的圆上,故②正确.③④显然正确,故所有正确命题的序号为②③④.[答案]②③④有下列说法:①若向量a与向量b不平行,则a与b方向一定不相同;②若向量AB,CD满足|AB|>|CD|,且AB与CD同向,则AB>CD;③若|a|=|b|,则a,b的长度相等且方向相同或相反;④由于零向量方向不确定,故其不能与任何向量平行.其中正确说法的个数是()A.1 B.2C.3 D.4解析:选A对于①,由共线向量的定义,知两向量不平行,方向一定不相同,故①正确;对于②,因为向量不能比较大小,故②错误;对于③,由|a|=|b|,只能说明a,b的长度相等,确定不了它们的方向,故③错误;对于④,因为零向量与任一向量平行,故④错误.[典例]在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA,使|OA|=42,点A在点O北偏东45°;(2)AB,使|AB|=4,点B在点A正东;(3)BC,使|BC|=6,点C在点B北偏东30°.[解](1)由于点A在点O北偏东45°处,所以在坐标纸上点A距点O的横向小方格数与纵向小方格数相等.又|OA|=42,小方格边长为1,所以点A距点O的横向小方格数与纵向小方格数都为4,于是点A位置可以确定,画出向量OA如图所示.(2)由于点B在点A正东方向处,且|AB|=4,所以在坐标纸上点B距点A的横向小方格数为4,纵向小方格数为0,于是点B位置可以确定,画出向量AB如图所示.(3)由于点C在点B北偏东30°处,且|BC|=6,依据勾股定理可得:在坐标纸上点C距点B的横向小方格数为3,纵向小方格数为33≈5.2,于是点C位置可以确定,画出向量BC 如图所示.用有向线段表示向量的方法用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.必要时,需依据直角三角形知识求出向量的方向(即夹角)或长度(即模),选择合适的比例关系作出向量.[活学活用]一辆汽车从A点出发向西行驶了100千米到达B点,然后改变方向,向北偏西40°方向行驶了200千米到达C点,最后又改变方向,向东行驶了100千米到达D点.作出向量AB,BC,CD,AD.解:如图所示.共线向量或相等向量[典例]如图所示,O是正六边形ABCDEF的中心,且OA=a,OB=b,OC=c.(1)与a的长度相等、方向相反的向量有哪些?(2)与a共线的向量有哪些?(3)请一一列出与a,b,c相等的向量.[解](1)与a的长度相等、方向相反的向量有OD,BC,AO,FE.(2)与a共线的向量有EF,BC,OD,FE,CB,DO,AO,DA,AD.(3)与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,EA;与c 相等的向量有FO,ED,AB.[一题多变]1.[变设问]本例条件不变,试写出与向量BC相等的向量.解:与向量BC相等的向量有OD,AO,FE.2.[变条件,变设问]在本例中,若|a|=1,求正六边形的边长.解:由正六边形性质知,△FOA为等边三角形,所以边长AF=|a|=1.寻找共线向量或相等向量的方法(1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.(2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.层级一学业水平达标1.下列说法正确的是()A.向量AB∥CD就是AB所在的直线平行于CD所在的直线B.长度相等的向量叫做相等向量C.若a=b,b=c,则a=cD.共线向量是在一条直线上的向量解析:选C向量AB∥CD包含AB所在的直线与CD所在的直线平行和重合两种情况,故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;C显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D错.2.设O 为△ABC 的外心,则AO ―→,BO ―→,CO ―→是( ) A .相等向量 B .平行向量 C .模相等的向量D .起点相同的向量解析:选C ∵O 为△ABC 的外心,∴OA =OB =OC ,即|AO ―→|=|BO ―→|=|CO ―→|. 3.向量AB 与向量BC 共线,下列关于向量AC 的说法中,正确的为( ) A .向量AC 与向量AB 一定同向B .向量AC ,向量AB ,向量AC 一定共线 C .向量AC 与向量BC 一定相等D .以上说法都不正确解析:选B 根据共线向量定义,可知AB ,BC ,AC 这三个向量一定为共线向量,故选B.4.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE 平行的向量有( )A .1个B .2个C .3个D .4个解析:选C 根据向量的基本概念可知与AE 平行的向量有BE ,FD ,FC ,共3个. 5.已知向量a ,b 是两个非零向量,AO ,BO 分别是与a ,b 同方向的模为1的向量,则下列各式正确的是( )A .AO =BOB . AO =BO 或AO =-BOC .AO =1D .|AO |=|BO |解析:选D 由于a 与b 的方向不知,故AO 与BO 无法判断是否相等,故A 、B 选项均错.又AO 与BO 均为模为1的向量.∴|AO |=|BO |,故C 错D 对.6.已知|AB |=1,|AC |=2,若∠ABC =90°,则|BC |=________. 解析:由勾股定理可知,BC =AC 2-AB 2=3,所以|BC |= 3. 答案: 37.如图,四边形ABCD 是边长为3的正方形,把各边三等分后,共有16个交点,从中选取2个交点组成向量,则与AC 平行且长度为22的向量个数是______.解析:图形中共含4个边长为2的正方形,其对角线长度为22,在其中一个正方形中,与AC 平行且长度为22的向量有2个,所以共8个.答案:88.给出下列四个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0.其中能使a∥b成立的条件是________(填序号).解析:若a=b,则a与b大小相等且方向相同,所以a∥b;若|a|=|b|,则a与b的大小相等,而方向不确定,因此不一定有a∥b;方向相同或相反的向量都是平行向量,因此若a与b方向相反,则有a∥b;零向量与任意向量平行,所以若|a|=0或|b|=0,则a∥b.答案:①③④9.如图,O是正方形ABCD的中心.(1)写出与向量AB相等的向量;(2)写出与OA的模相等的向量.解:(1)与向量AB相等的向量是DC.(2)与OA的模相等的向量有:OB,OC,OD,BO,CO,DO,AO.10.一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D地,然后从D地沿北偏东60°方向行驶6千米到达C地,从C地又向南偏西30°方向行驶2千米才到达B地.(1)在如图所示的坐标系中画出AD,DC,CB,AB.(2)求B地相对于A地的位移.解:(1)向量AD,DC,CB,AB如图所示.(2)由题意知AD=BC.所以AD綊BC,则四边形ABCD为平行四边形.所以AB=DC,则B地相对于A地的位移为“在北偏东60°的方向距A地6千米”.层级二应试能力达标1.如图所示,梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式成立的是()A.AD=BC B.AC=BDC.PE=PF D.EP=PE解析:选D根据相等向量的定义,分析可得:A中,AD与BC方向不同,故AD=BC错误;B中,AC与BD方向不同,故AC=BD错误;C中,PE与PF方向相反,故PE=PF错误;D中,EP与PF方向相同,且长度都等于线段EF长度的一半,故EP=PF正确.2.下列命题正确的是()A.若|a|<|b|,则a<bB.若a≠b,则|a|≠|b|C.若|a|=|b|,则a与b可能共线D.若|a|≠|b|,则a一定不与b共线解析:选C因为向量不能比较大小,因此A错误.两个向量不相等,但它们的模可以相等,故B错误.不论两个向量的模是否相等,这两个向量都可能共线,C正确,D错误.3.在△ABC中,点D,E分别为边AB,AC的中点,则如图所示的向量中相等向量有()A.一组B.二组C.三组D.四组解析:选A由向量相等的定义可知,只有一组向量相等,即CE=EA.4.如图,在菱形ABCD中,∠DAB=120°,则以下说法错误的是()A.与AB相等的向量只有一个(不含AB)B.与AB的模相等的向量有9个(不含AB)C.BD的模为DA模的3倍D.CB与DA不共线解析:选D A项,由相等向量的定义知,与AB相等的向量只有DC,故A正确;B 项,因为AB=BC=CD=DA=AC,所以与AB的模相等的向量除AB外有9个,正确;C项,在Rt△ADO中,∠DAO=60°,则DO=32DA,所以BD=3DA,故C项正确;D项,因为四边形ABCD是菱形,所以CB与DA共线,故D项错误,选D.5.四边形ABCD满足AD=BC,且|AC|=|BD|,则四边形ABCD是______(填四边形ABCD的形状).解析:∵AD=BC,∴AD∥BC且|AD|=|BC|,∴四边形ABCD是平行四边形.又|AC|=|BD|知该平行四边形对角线相等,故四边形ABCD是矩形.答案:矩形6.如图,O 是正三角形ABC 的中心,四边形AOCD 和AOBE 均为平行四边形,则与向量AD 相等的向量为________;与向量OA 共线的向量为__________;与向量OA 的模相等的向量为______.(填图中所画出的向量)解析:∵O 是正三角形ABC 的中心,∴OA =OB =OC ,易知四边形AOCD 和四边形AOBE 均为菱形,∴与AD 相等的向量为OC ;与OA 共线的向量为DC ,EB ;与OA 的模相等的向量为OB ,OC ,DC ,EB ,AD .答案:OC DC ,EB OB ,OC ,DC ,EB ,AD 7.如图,D ,E ,F 分别是正三角形ABC 各边的中点.(1)写出图中所示向量与向量DE 长度相等的向量. (2)写出图中所示向量与向量FD 相等的向量.(3)分别写出图中所示向量与向量DE ,FD 共线的向量. 解:(1)与DE 长度相等的向量是EF ,FD ,AF ,FC ,BD ,DA ,CE ,EB .(2)与FD 相等的向量是CE ,EB(3)与DE 共线的向量是AC ,AF ,FC ; 与FD 共线的向量是CE ,EB ,CB .8.如图,已知函数y =x 的图象l 与直线m 平行,A ⎝⎛⎭⎫0,-22,B (x ,y )是m 上的点.求(1)x ,y 为何值时,AB =0; (2)x ,y 为何值时,|AB |=1.解:(1)要使AB =0,当且仅当点A 与点B 重合,于是⎩⎪⎨⎪⎧x =0,y =-22.(2)如图,由已知,l ∥m 且点A 的坐标是⎝⎛⎭⎫0,-22,所以B 1点的坐标是⎝⎛⎭⎫22,0.在Rt △AOB 1中,有 |AB 1|2=|OA |2+|OB 1|2=⎝⎛⎭⎫222+⎝⎛⎭⎫222=1, 即|AB 1|=1.同理可得,当B 2的坐标是⎝⎛⎭⎫-22,-2时,|AB 2|=1. 综上有,当⎩⎪⎨⎪⎧ x =22,y =0或⎩⎪⎨⎪⎧ x =-22,y =-2时,|AB |=1.。
高中数学知识点总结大全空间向量与立体几何
![高中数学知识点总结大全空间向量与立体几何](https://img.taocdn.com/s3/m/c900eb00cd7931b765ce0508763231126edb77da.png)
高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。
(完整版)高中数学必修四向量知识点
![(完整版)高中数学必修四向量知识点](https://img.taocdn.com/s3/m/d9cb545e26fff705cd170a7d.png)
向量知识点总结一、向量的概念(1)向量:既有大小,又有方向的量; (2)数量:只有大小,没有方向的量;(3)有向线段的三要素:起点、方向、长度; (4)零向量:长度为0的向量;(5)单位向量:长度等于1个单位的向量; (6)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行; (7)相等向量:长度相等且方向相同的向量。
二、向量加法运算⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+r r rr r r .⑷运算性质:①交换律:a b b a +=+r rrr;②结合律:()()a b c a b c ++=++rrrr rr;③00a a a +=+=r r r r r 。
⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y +=++rr 。
三、向量减法运算⑴三角形法则的特点:共起点,连终点,方向指向被减向量;⑵坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y -=--rr ,设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--u u u r。
四、向量数乘运算⑴实数λ与向量a r 的积是一个向量的运算叫做向量的数乘,记作a λr; ①a a λλ=r r;②当0λ>时,a λr的方向与a r的方向相同;当0λ<时,a λr的方向与a r的方向相反;当0λ=时,0a λ=rr ;⑵运算律:①()()a a λμλμ=r r ;②()a a a λμλμ+=+r r r;③()a b a b λλλ+=+r r r r ;⑶坐标运算:设(),a x y =r ,则()(),,a x y x y λλλλ==r;b ra rC BAa b C C -=A -AB =B u u ur u u u r u u u r r r五、向量共线定理向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r ;设()11,a x y =r ,()22,b x y =r ,其中0b ≠r r ,则当且仅当12210x y x y -=时,向量a r 、()0b b ≠r r r共线;六、平面向量基本定理如果1e u r 、2e u u r 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r,有且只有一对实数1λ、2λ,使1122a e e λλ=+u r u u r r.(不共线的向量1e u r 、2e u u r 作为这一平面内所有向量的一组基底)七、分点坐标公式设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP u u u r u u u r时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭; 八、平面向量的数量积⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤o or r r r r r r r .零向量与任一向量的数量积为0;⑵性质:设a r 和b r 都是非零向量,则①0a b a b ⊥⇔⋅=r r r r .②当a r 与b r同向时,a b a b ⋅=r r r r ;当a r 与b r反向时,a b a b ⋅=-r r r r ;22a a a a ⋅==r r r r或a =r .③a b a b ⋅≤r r r r ; ⑶运算律:①a b b a ⋅=⋅r r r r ;②()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ;③()a b c a c b c +⋅=⋅+⋅r r r r r r r;⑷坐标运算:设两个非零向量()11,a x y =r ,()22,b x y =r ,则1212a b x x y y ⋅=+rr ,若(),a x y =r ,则222a x y =+r,或a =r设()11,a x y =r ,()22,b x y =r ,则12120a b x x y y ⊥⇔+=rr ;设a r、b r 都是非零向量,()11,a x y =r ,()22,b x y =r ,θ是a r 与b r 的夹角,则cos a ba b θ⋅==rr r r ;。
高中数学必修知识点空间向量知识点
![高中数学必修知识点空间向量知识点](https://img.taocdn.com/s3/m/92dc4ed8b8d528ea81c758f5f61fb7360b4c2ba2.png)
高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点在高中数学的学习中,空间向量是一个重要的知识板块。
它为我们解决空间几何问题提供了全新的思路和方法,使复杂的空间关系能够通过代数运算得以清晰展现。
接下来,让我们一起深入探索空间向量的奥秘。
一、空间向量的基本概念空间向量是指具有大小和方向的量。
与平面向量类似,空间向量也由起点和终点来确定。
但由于是在三维空间中,其表现形式更加丰富。
空间向量用有向线段来表示,有向线段的长度表示向量的模,也就是向量的大小。
而向量的方向则由有向线段的指向来确定。
在空间直角坐标系中,我们通常用坐标来表示空间向量。
若向量的起点坐标为$(x_1, y_1, z_1)$,终点坐标为$(x_2, y_2, z_2)$,则该向量的坐标为$(x_2 x_1, y_2 y_1, z_2 z_1)$。
二、空间向量的运算1、加法和减法空间向量的加法和减法遵循三角形法则或平行四边形法则。
两个向量相加或相减,其结果仍然是一个空间向量。
例如,若有向量$\overrightarrow{a}=(x_1, y_1, z_1)$,$\overrightarrow{b}=(x_2, y_2, z_2)$,则$\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)$,$\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1 z_2)$。
2、数乘运算实数$\lambda$与空间向量$\overrightarrow{a}=(x, y, z)$的乘积$\lambda\overrightarrow{a}=(\lambda x, \lambda y, \lambda z)$。
数乘运算改变向量的大小,但不改变向量的方向(当$\lambda >0$时)或使向量反向(当$\lambda < 0$时)。
高中数学平面向量知识点总结
![高中数学平面向量知识点总结](https://img.taocdn.com/s3/m/4195c6ead05abe23482fb4daa58da0116c171f16.png)
高中数学平面向量知识点总结XXXPart 1: Concepts of Vectors and ns of n。
n。
XXXI。
Concepts of Vectors1.Vector: A vector is a XXX.2.Methods of Representing Vectors:1) Geometric n: A directed line segment from a point with a certain n and length (note the starting and ending points).2) XXX: AB XXX.3.Concept of Magnitude: The magnitude of vector AB is its length。
denoted by |AB|。
Magnitudes can be compared.4.Two Special Vectors:1) Zero vector: A vector with a length of 0.denoted by 0.It can have any n.2) Unit vector: A vector with a length of 1 unit is called a unit vector.XXX1.Parallel Vectors: Non-zero vectors with the same or opposite ns are called parallel vectors。
Denoted as a∥b∥c。
Defined as parallel to any vector.2.Equal Vectors: Vectors with the same length and XXX as =。
Any two equal non-zero vectors can be represented by a directed line segment。
高中数学选择性必修一(知识归纳)
![高中数学选择性必修一(知识归纳)](https://img.taocdn.com/s3/m/573629ab162ded630b1c59eef8c75fbfc67d9463.png)
第一章空间向量与立体几何(知识归纳)一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠,a b 的充要条件是存在实数λ,使a b λ= .(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++ 三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a 都是共线的,即0a.两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<> ;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩ 赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=②cos |cos ,|u v θ=<>2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a n a n a n ⋅<>=;②sin |cos ,|a n θ=<>.3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(1)点到直线的距离已知直线l 的单位方向向量为u r,A 是直线l 上的定点,P 是直线l 外一点,点P 到直线l 的距离为()22AP AP u-⋅ .(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,可在其中一条直线l 上任取一点P ,则两条平行直线间的距离就等于P 到直线m 的距离.(3)求点面距①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离.(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d第二章直线与圆的方程(知识归纳)一、直线的倾斜角与斜率1.直线的倾斜角(1)倾斜角的定义①当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.②当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)直线的倾斜角α的取值范围为0°≤α<180°.2.直线的斜率(1)直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.(2)斜率与倾斜角的对应关系图示倾斜角(范围)α=0°0°<α<90°α=90°90°<α<180°斜率(范围)k =0k >0不存在k <0(3)过两点的直线的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.【注】(1)倾斜角和斜率都可以表示直线的倾斜程度,二者相互联系.(2)涉及直线与线段有交点问题,常根据数形结合思想,利用斜率公式求解.二、两条直线平行和垂直的判定1.两条直线(不重合)平行的判定类型斜率存在斜率不存在前提条件α1=α2≠90°α1=α2=90°对应关系l 1∥l 2⇔k 1=k 2l 1∥l 2⇔两直线的斜率都不存在图示2.两条直线垂直的判定图示对应关系l1⊥l2(两直线的斜率都存在)⇔k1k2=-1l1的斜率不存在,l2的斜率为0⇔l1⊥l2【注】判断两条直线是否垂直时:在这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x轴垂直,另一条直线与x轴平行或重合时,这两条直线也垂直.三、直线的方程1.直线的点斜式方程(1)直线的点斜式方程的定义:设直线l经过一点,斜率为k叫作直线l的点斜式方程.(2)点斜式方程的使用方法:①已知直线的斜率并且经过一个点时,可以直接使用该公式求直线方程.②当已知直线的倾斜角时,,则直线的斜率不存在,其方程不能用点斜式表示,但因为l上每一个点的横坐标都等于x1,所以直线方程为x=x1;若直线的倾斜角,则直线的斜率,直线的方程为.2.直线的斜截式方程(1)直线的斜截式方程的定义:设直线l的斜率为k,在y轴上的截距为b,则直线方程为y=kx+b,这个方程叫作直线l的斜截式方程.(2)斜截式方程的使用方法:已知直线的斜率以及直线在y轴上的截距时,可以直接使用该公式求直线方程.3.直线的两点式方程(1)直线的两点式方程的定义:设直线l经过两点(),则方程l的两点式方程.(2)两点式方程的使用方法:①已知直线上的两个点,且时,可以直接使用该公式求直线方程.②当时,直线方程为(或③当(或).4.直线的截距式方程(1)直线的截距式方程的定义:设直线l在x轴上的截距为a,在y轴上的截距为b,且a≠0,b≠0,则方程叫作直线l的截距式方程.(2)直线的截距式方程的适用范围:选用截距式方程的条件是a≠0,b≠0,即直线l在两条坐标轴上的截距非零,所以截距式方程不能表示过原点的直线,也不能表示与坐标轴平行(或重合)的直线.(3)截距式方程的使用方法:①已知直线在x轴上的截距、y轴上的截距,且都不为0时,可以直接使用该公式求直线方程.②已知直线在x轴上的截距、y轴上的截距,且都为0时,可设直线方程为y=kx,利用直线经过的点的坐标求解k,得到直线方程.5.直线的一般式方程(1)直线的一般式方程的定义:在平面直角坐标系中,任何一个关于x,y的二元一次方程都表示一条直线.我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫作直线的一般式方程.对于方程Ax+By+C=0(A,B不全为0):当B≠0时,方程Ax+By+C=0可以写成y=x,它表示斜率为在y轴上的截距为线.特别地,当A=0时,它表示垂直于y轴的直线.当B=0时,A≠0,方程Ax+By+C=0可以写成x=,它表示垂直于x轴的直线.(2)一般式方程的使用方法:直线的一般式方程是直线方程中最为一般的表达式,它适用于任何一条直线. 6.辨析直线方程的五种形式除了直线的点斜式、斜截式、两点式、截距式、一般式方程外,还有一种形式的直线方程与向量有紧密的联系,它由一个定点和这条直线的方向向量唯一确定,与直线的点斜式方程本质上是一致的.如图1,设直线l经过点,=(m,n)是它的一个方向向量,P(x,y)是直线l上的任意一点,则向量与共线.根据向量共线的充要条件,存在唯一的实数t,使=t,即)=t(m,n),所以①.在①中,实数t是对应点P的参变数,简称参数.由上可知,对于直线l上的任意一点P(x,y),存在唯一实数t使①成立;反之,对于参数t的每一个确定的值,由①可以确定直线l上的一个点P(x,y).我们把①称为直线的参数方程.四、求直线方程的方法1.求直线方程的一般方法(1)直接法直线方程形式的选择方法:①已知一点常选择点斜式;②已知斜率选择斜截式或点斜式;③已知在两坐标轴上的截距用截距式;④已知两点用两点式,应注意两点横、纵坐标相等的情况.(2)待定系数法先设出直线的方程,再根据已知条件求出未知系数,最后代入直线方程.利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程.若已知直线过定点,则可以利用直线的点斜式求方程,也可以利用斜截式、截距式等求解(利用点斜式或斜截式时要注意斜率不存在的情况).2.两条直线的位置关系斜截式一般式方程l1:y=k1x+b1 l2:y=k2x+b2相交k1≠k2(当时,记为)垂直k1·k2=-1(当时,记为)五、直线的交点与距离1.两条直线的交点坐标(1)两条直线的交点坐标一般地,将两条直线的方程联立,得方程组若方程组有唯一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无穷多解,则两条直线重合.(2)两条直线的位置关系与方程组的解的关系,直线.平面内两点.特别地,原点O到任意一点P(x,y)的距离为|OP|=2.点到直线的距离公式(1)定义:点P到直线l的距离,就是从点P到直线l的垂线段PQ的长度,其中Q是垂足.实质上,点到直线的距离是直线上的点与直线外该点的连线的最短距离.(2)公式:已知一个定点,一条直线为l:Ax+By+C=0,则定点P到直线l的距离为d=.3.两条平行直线间的距离公式(1)定义两条平行直线间的距离是指夹在两条平行直线间的公垂线段的长.(2)公式,,则它们之间的距离为d4.中点坐标公式公式:设平面上两点,线段的中点为,则.六、圆的方程1.圆的定义圆的定义:平面内到定点的距离等于定长的点的集合(轨迹)是圆(定点为圆心,定长为半径).圆心决定圆的位置,半径决定圆的大小.2.圆的标准方程(1)圆的标准方程:方程(r>0)叫作以点(a,b)为圆心,r为半径的圆的标准方程.(2)圆的标准方程的优点:根据圆的标准方程很容易确定圆心坐标和半径.(3)圆的标准方程的适用条件:从方程的形式可以知道,一个圆的标准方程中含有三个字母(待定),因此在一般条件下,只要已知三个独立的条件,就可以求解圆的标准方程.3.圆的一般方程(1)方程叫做圆的一般方程.(2)圆的一般方程的适用条件:从方程的形式可以知道,一个圆的一般方程中含有三个字母(待定),因此在一般条件下,只要已知三个独立的条件,就可以求解圆的一般方程.下列情况比较适用圆的一般方程:①已知圆上三点,将三点坐标代入圆的一般方程,求待定系数D,E,F;方程,求待定系数D,E,F.4.二元二次方程与圆的方程(1)二元二次方程与圆的方程的关系:二元二次方程我们可以看出圆的一般方程是一个二元二次方程,但一个二元二次方程不一定是圆的方程.(2)二元二次方程表示圆的条件:二元二次方程5.点与圆的位置关系(1)如图所示,点M与圆A有三种位置关系:点在圆上,点在圆内,点在圆外.(2)圆A的标准方程为,圆心为;圆A的一般方程为平面内一点.七、直线与圆的位置关系1.直线与圆的位置关系及判定方法(1)直线与圆的位置关系及方程组的情况如下:位置相交相切相离交点个数两个一个零个图形d与r的关系d<r d=r d>r方程组解的情况有两组不同的解仅有一组解无解(2)直线与圆的位置关系的判定方法①代数法:通过联立直线方程与圆的方程组成方程组,根据方程组解的个数来研究,若有两组不同的实数解,即>0,则直线与圆相交;若有两组相同的实数解,即=0,则直线与圆相切;若无实数解,即<0,则直线与圆相离.②几何法:由圆心到直线的距离d 与半径r 的大小来判断,当d <r 时,直线与圆相交;当d =r 时,直线与圆相切;当d >r 时,直线与圆相离.2.圆的切线及切线方程(1)自一点引圆的切线的条数:①若点在圆外,则过此点可以作圆的两条切线;②若点在圆上,则过此点只能作圆的一条切线,且此点是切点;③若点在圆内,则过此点不能作圆的切线.(2)求过圆上的一点的圆的切线方程:①求法:先求切点与圆心连线的斜率k (),则由垂直关系可知切线斜率为得切线方程.如果k =0或k 不存在,则由图形可直接得切线方程.②重要结论:a.经过圆上一点Pb.经过圆上一点P的切线方程为c.经过圆+Dx +Ey +F =0上一点P3.圆的弦长问题设直线l 的方程为y =kx +b ,圆C的方程为(1)几何法如图所示,半径r 、圆心到直线的距离d 、弦长l.(2)代数法将直线方程与圆的方程组成方程组,设交点坐标分别为B.①若交点坐标简单易求,则直接利用两点间的距离公式进行求解.②若交点坐标无法简单求出,则将方程组消元后得一元二次方程,由一元的关系式,通常把叫作弦长公式.九、圆与圆的位置关系1.圆与圆的位置关系及判断方法(1)圆与圆的位置关系圆与圆有五种位置关系:外离、外切、相交、内切、内含,其中外离和内含统称为相离,外切和内切统称为相切.(2)圆与圆的位置关系的判定方法①利用圆心距和两圆半径比较大小(几何法):设两圆与d,则d=,两圆的位置关系表示如下:位置关系关系式图示公切线条数外离d>r1+r2四条外切d=r1+r2三条|r1-r2|<d<r1+r两条相交2内切d=|r1-r2|一条内含0≤d<|r1-r2|无②代数法:联立两圆方程,根据方程组解的个数即可作出判断.当>0时,两圆有两个公共点,相交;当=0时,两圆只有一个公共点,包括内切与外切;当<0时,两圆无公共点,包括内含与外离.2.两圆的公切线(1)两圆公切线的定义两圆的公切线是指与两圆相切的直线,可分为外公切线和内公切线.(2)两圆的公切线位置的5种情况①外离时,有4条公切线,分别是2条外公切线,2条内公切线;②外切时,有3条公切线,分别是2条外公切线,1条内公切线;③相交时,有2条公切线,都是外公切线;④内切时,有1条公切线;⑤内含时,无公切线.判断两圆公切线的条数,实质就是判断两圆的位置关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学的平面向量知识向量的概念表c,.......(物理学中叫做矢量),向量可以用a,b,既有方向又有大小的量叫做向量(物示,也可以用表示向量的有向线段的起点和终点字母表示。
只有大小没有方向的量叫做数量)。
在自然界中,有许多量既有大小又有方向,如力、速度等。
我们为了研究理学中叫做标量这些量的这个共性,在它们的基础上提取出了向量这个概念。
这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。
向量的几何表示是印刷体,AB。
(AB有向线段,以A为起点,B为终点的有向线段记作具有方向的线段叫做也就是粗体字母,书写体是上面加个→) AB|。
AB的长度叫做向量的模,记作| 有向线段个因素:起点、方向、长度。
有向线段包含3 相等向量、平行向量、共线向量、零向量、单位向量:相等向量。
长度相等且方向相同的向量叫做共线向量,两个方向相同或相反的非零向量叫做平行向量或,,零向量与任意向量平行,即0//a、向量ab平行,记作a//b在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)”是有区别。
(注意粗体格式,实数“0”和向量“0零向量,记作 0长度等于0的向量叫做的)的方向是任意的;且零向量与任何向量都平行,垂直。
零向量。
1个单位长度的向量叫做单位向量模等于平面向量的坐标表示作为基底。
任作ji、x 在直角坐标系内,我们分别取与轴、y轴方向相同的两个单位向量,使得、y,由平面向量基本定理知,有且只有一对实数x一个向量a +yj a=xi 的(直角)坐标,记作)叫做向量,ya 我们把(x ),,y( a=x 向量的坐标表示。
在y轴上的坐标,上式叫做叫做在其中 x叫做ax轴上的坐标,ya 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。
而点的坐标是绝对),)那么该向量上的所有点都可以用(,的。
若一向量的起点在原点,例如该向量为(12a2a1 / 5表示。
即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标。
关系是的比例的一样向量的运算加法运算向量加法的定义已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a 与b的和,记做a+b,即a+b=AB+BC=ACAB+BC=AC,这种计算法则叫做向量加法的三角形法则。
(首尾相连,连接首尾,指向终点) 同样,作AB=a,且AD=BC,再作平行AD的BC=b,连接DC,因为AD∥BC,且AD=BC,所以四边形ABCD为平行四边形,AC叫做a与b的和,表示为:AC=a+b. 这种方法叫做向量加法的平行四边形法则。
(共起点,对角连)。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
2 / 5减法运算(共起点,连终点,方向指向被减向量)这种计算法则叫做向量减法的三角形法则。
AB-AC=CB, ,零向量的相反向量仍然是零向量。
a)=aa的相反向量,-(-与a 长度相等,方向相反的向量,叫做b)。
-b=a+(-a)=(-a)+a=0(2)a)(1a+(-数乘运算的方aλ> 0时,λa|=|λ||a|,当λ实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λ0。
= 的方向相反,当λ= 0时,λa向和a的方向相同,当λ< 0时,λa 的方向和a-=λ)a4)(-±b) = λa ±λb((= λ(μa)(2)(λ+ μ)a = λa + μa3)λ(aaλ设、μ是实数,那么:(1)(λμ) )。
a) = λ(-a(λ。
向量的加法运算、减法运算、数乘运算统称线性运算坐标运算,则x2,y2)x1,y1),b=(已知a=()i+y2ji+y1j)+(x2+ab=(x1 j =(x1+x2)i+(y1+y2)y1+y2)。
ba+=(x1+x2,即y1-y2)。
a-b=(x1-x2,同理可得两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
这就是说,由此可以得到:一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
根据上面的结论又可得=(λx,λy) λa若a=(x,y),则这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
向量的数量积向量数量积定义:叫,则角AOB=θ,向量OB=b点做向量a与向量b的夹角:已知两个非零向量,过OOA=a(1)向量的夹角。
a与b做向量夹的与b,θ是aa·aθ叫做与b的数量积或内积,记作bb,那么)已知两个非零向量(2a、b|a|||cos。
零向量与任意向量的数量积为0。
bb方向上(在a方向上)的投影a||角,a|cos θ(b|cos θ)叫做向量在的乘积。
|cos θ的方向上的投影与|b在a|ba的长度等于a·的几何意义a·b:数量积ba| b则ba两个向量的数量积等于它们对应坐标的乘积的和。
即:若=(x1,y1),=(x2,y2),a·=x1x2+y1y23 / 5向量的数量积的性质^2≥0 =∣a∣(1)a·a b=b·a(2)a·) a(k b ab(3)k()=(k a)b=b+a·c(4)a·(b+c)=a·=0<=>a⊥b(5)a·b<=>a//b(6)a=k b2|cosθ=cosθ2=|e1||e(7)e1·e向量的混合积,所得的数叫做c×b)·×b,再和向量c作数量积(a定义:给定空间三向量a、b、c,向量a、b的向量积a )·bc b,c)=(a×,c)或(abc),即(abc)=(a,三向量a、b、c的混合积,记作(a,b混合积具有下列性质:、V,并且当aa、b、c为棱的平行六面体的体积1、三个不共面向量a、b、c的混合积的绝对值等于以构成b、c abc)=εV(当a、构成右手系时混合积是正数;当b、ca、b、c构成左手系时,混合积是负数,即( -1)b、c构成左手系时ε=右手系时ε=1;当a、abc)=0 b、c共面的充要条件是(2、上性质的推论:三向量a、acb) )=-(bac)=-(cba)=-(3、(abc)=(bca)=(cab) ×ca·(b4、(a×b)·c=平面向量的基本定理,有且只有一ae2是同一平面内的两个不共线向量,那么对该平面内的任一向量如果e1 和。
μ*e2,使a= λ*e1+ 、对实数λμ相关练习a 错(当≠0.b ,有a ·b0=0,则对任一向量b ,有a ·b=0. 2.若a ≠,则对任一非零向量.若1a若.4·b=0)⊥b=0 错(当a和b都不为零,且ab时,a ,b⊥时,a ·b=0)3.若a≠0a · b =0,则b= a ·a≠0,·b=0成立)5.若a 0. a ·b=0,则a ·b中至少有一个为错(可以都不为0,当a⊥b时,且同时垂直0a 错(≠则b≠c,当且仅当a= 0 时成立.a 错(当,则a=c b=0时)6.若·b = a ·c , b ·c ∣∣aa*a=∣a∣* 有时也成立)于b,c 7.对任意向量 a向量与三角形有关的特殊规律是,则点O向量OC·向量OAOB·向量ABC内一点O,向量OA·向量OB=向量OC=三角形 1. 三角形的垂心。
ABCM是三角形向量OM,则OB+MABC若O是三角形的外心,点满足向量OA+向量向量OC=2.的垂心。
零向量,OB+向量向量OC=OA+ABCO3若和三角形共面,且满足向量ABCO则是三角形的重心。
4 / 5来源向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O 年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.5 / 5。