2019-2020学年高中数学 第一章《算法初步复习与小结》教案 苏教版必修3.doc

合集下载

2019-2020学年高中数学第一章算法初步1.3.1第2课时条件语句学案苏教版必修.doc

2019-2020学年高中数学第一章算法初步1.3.1第2课时条件语句学案苏教版必修.doc

2019-2020学年高中数学第一章算法初步1.3.1第2课时条件语句学案苏
教版必修
理解并掌握条件语句的格式和作用,能写出一般的条件语句.
一、自学准备与知识导学
问题:某居民区的物管部门每月按以下方法收取卫生费:3人和3人以下的住户,每间收取5元;
超过3人的住户,每超出1人加收2.1元.试设计一个算法,根据输入的人数计算应收取的卫生费.
二、学习交流与问题探讨
例1
儿童乘坐火车时,若身高不超过1.1米,则无需购票;若身高超过1.1米但不超过4.1米,可买半票;若超过4.1米,应买全票,试设计一个购票的算法,写出伪代码,并画出流程图.
【解】算法:伪代码:流程图:
已知函数⎪⎩⎪⎨⎧< -= > =0
10001x x x y ,,,,试用伪代码写出根据输入x 的的值计算y 值的一个算法,并画
出流程图.
【解】伪代码: 流程图:
三、练习检测与拓展延伸
1.用条件语句表示:输入两个数,输出较大的数.
2.已知函数⎩⎨
⎧<-≥ =0
0x x x x y ,,,试用伪代码写出根据输入的x 的值计算y 值的一个算法.
例2
3.到银行办理个人异地汇款(不超过100万)时,银行要收取一定的手续费,汇款额不超过100元,
1收取;超过5000元,一律收取50收取1元手续费;超过100元但不超过5000元,按汇款额的%
元手续费.试用条件语句描述汇款额为x(元)时,银行收取的手续费y(元)的算法过程,并画出流程图.
四、小结与提高。

(教师用书)高中数学 第一章 算法初步教案 苏教版必修3

(教师用书)高中数学 第一章 算法初步教案 苏教版必修3

第一章算法初步§1.1算法的含义(教师用书独具)●三维目标1.知识与技能:了解算法的含义,体会算法的思想;能够设计解决具体问题的算法;理解算法应满足的要求.2.过程与方法:让学生感悟人们认识事物的一般规律:由具体到抽象,再由抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力.3.情感态度与价值观:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力.●重点难点重点:初步理解算法的含义,体会算法思想,能够用自然语言描述算法.难点:用自然语言描述算法.引导学生一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础而化解难点.引导学生回顾解一般的二元一次方程组的步骤,分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解.目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,从而强化重点.(教师用书独具)●教学建议算法这部分的应用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣.建议教师通过多媒体辅助教学,采用“问题探究式”教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力.●教学流程创设问题情境,引出问题:宋丹丹的小品中要把大象关冰箱总共分几步?⇒引导学生结合所提出的问题归纳,分析,总结算法的含义.⇒通过引导学生回答所提问题理解算法的特点及能够解决的问题.⇒通过例1及其变式训练,使学生理解算法的含义及特征.⇒通过例2及其变式训练,使学生能设计算法(直接应用数学公式的算法).⇒通过例3及其变式训练,使学生明确解方程或方程组的算法并掌握其设计的方法和策略.⇒归纳整理,进行课堂小结,整体认识本节课所学知识并分层布置作业.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.宋丹丹的小品中有一个问题,把大象关进冰箱里需要几步.【提示】总共分三步:第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.对一类问题的机械的、统一的求解方法称为算法.(1)有限性:一个算法的步骤是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行,可以得到确定的结果,而不是模棱两可.(3)不惟一性:求解某一个问题的算法不一定是惟一的,可以有不同的算法,当然这些算法有繁简之分、优劣之别.(4)普遍性:很多具体的问题,都可以设计出合理的算法去解决.下列叙述能称为算法的个数是________.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100; ③3x >x +1;④求所有能被3整除的正数,即3,6,9,12…. 【思路探究】 根据算法的特征逐一作出判断.【自主解答】 ①②都是算法;③中没有给出一个确定的逻辑步骤来确定下一步做什么,不符合算法的确定性;④中的步骤是无限的,与算法的有限性矛盾.故应填2.【答案】 21.算法的定义是一个描述性定义,而算法的特征:明确性、有限性、可行性等揭示了算法的内涵,因此对于算法的了解,应从其特征入手.2.算法与普通数学问题的求解步骤是共性与个性的统一,但不能认为算法就是数学问题的求解步骤,它是解决一类问题的求解方法.下列语句中是算法的有________个.①从济南到巴黎,可以先乘火车到北京,再坐飞机抵达; ②利用公式S =12ah ,计算底为1、高为2的三角形的面积;③方程2x 2-x +1=0无实数根;④求M (1,2)与N (-3,-5)两点连线所在直线的方程,可先求直线MN 的斜率,再利用点斜式求得方程.【解析】 算法是解决某类问题而设计的一系列可操作或可计算的步骤,通过这些可有效地解决问题,显然四个语句中,①②④都是算法,③不是算法.【答案】 3设计一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.【思路探究】 由底边长可求底面积.由底面边长及侧棱长可求出正四棱锥的高,然后代入体积公式即可.【自主解答】S1 取a =42,l =5; S2 计算R =2·a2;S3 计算h =l 2-R 2; S4 计算S =a 2; S5 计算V =13Sh ;S6 输出运算结果.1.设计算法的步骤为:(1)认真分析问题,找出解决此问题的一般数学方法; (2)借助有关的变量或参数对算法加以表述; (3)将解决问题的过程划分为若干步骤;(4)用简练的语言将各个步骤表示出来,即为该具体问题的算法.2.设计算法要做到以下几点:(1)写出的算法必须能解决一类问题,并且能够重复使用;(2)要使算法尽量简单,步骤尽量少;(3)要保证算法正确,且计算机能够执行.(2013·潍坊高一检测)求两底面半径分别为2和4,高为4的圆台的表面积及体积,写出解决该问题的一个算法.【解】S1 取r 1=2,r 2=4,h =4; S2 计算l =r 2-r 12+h 2;S3 计算S =πr 21+πr 22+π(r 1+r 2)·l ; S4 计算V =13π(r 21+r 22+r 1r 2)·h ;S5 输出S 、V .写出解方程x 2-2x -3=0的一个算法.【思路探究】 解一元二次方程可用因式分解法和分式法,根据这两种方法写出算法. 【自主解答】 法一 S1 移项,得x 2-2x =3①; S2 将①两边同时加上1,并配方,得(x -1)2=4②; S3 将②两边开平方得x -1=±2③; S4 解③得x 1=3,x 2=-1.法二 S1 计算判别式Δ=(-2)2-4×1×(-3);S2 将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac 2a ,得x 1=3,x 2=-1.1.对于这类解方程(或方程组)的问题,设计其算法时,一般按照数学上解方程(或方程组)的方法进行设计.2.设计时要注意全面考虑方程(或方程组)的解的情况,即先确定方程(或方程组)是否有解,有解时,还需确定几个解,然后按照求解的步骤设计.写出求方程组⎩⎨⎧3x -2y =14, ①x +y =-2, ②的解的算法.【解】 法一 S1 ②×2+①,得5x =14-4③; S2 解方程③,得x =2④; S3 将④代入②,得2+y =-2⑤; S4 解⑤得y =-4; S5 得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.法二 S1 由②式移项可得x =-2-y ③; S2 把③代入①,得y =-4④; S3 把④代入③,得x =2;S4 得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.忽视算法的确定性致错给出将1 573分解成奇因数的乘积的形式的一个算法.【错解】 算法步骤如下: S1 判断1 573是否为素数:否;S2 寻找1 573的最小奇因数;不是2,不是3…….【错因分析】 第二步的结果是不确定的,“不是2,不是3……,到底有多少不确定”. 【防范措施】 算法的每一步都要有明确具体的结果,设计算法时要明确每一个步骤,只能有一个确定的后续步骤并且得到确定的结果,不能模棱两可.【正解】 算法步骤如下: S1 判断1 573是否为素数:否;S2 确定1 573的最小奇因数:11,即1 573=11×143; S3 判断143是否为素数:否;S4 确定143的最小奇因数:11,即143=11×13; S5 判断13是否为素数:是; S6 1 573=11×11×13.算法的含义要明确以下两点:1.算法是建立在解法基础上的操作过程,算法不一定有结果,答案可以由计算机解决.2.算法没有固定的模式,但有以下几个要求.(1)符合运算规则,计算机能操作.(2)每一个步骤都有一个明确的计算任务.(3)对重复操作步骤返回处理.(4)步骤个数尽可能少.(5)每个步骤的语言描述要准确,简明.1.给出以下叙述:①过河要走桥或乘船;②老师提出的问题能回答正确;③做米饭需刷锅、淘米、添水、加热等几个步骤;④学习通常需要预习、听讲、质疑、练习、复习巩固等步骤.其中能称为算法的是________.【解析】①②具有不确定性,③④与实际相符,每一步都具有确定性和可执行性,都可称为一个算法.【答案】③④2.在教材中的“猜数”游戏中,主持人告诉竞猜者某商品的价格低于4 000元,而该商品的实际价格为1 500元,则竞猜者用二分搜索法猜数时第一次的报数为________,按照教材中的规则,此人需要________次即可猜中.【解析】每次报数都是取中间值,所以第一次报数应该取0与4 000的中间值2 000,第二次报数0与2 000的中间值1 000,第三次报1 000与2 000的中间值1 500.【答案】 2 000 33.下面给出了一个计算圆的面积的算法:S1 取R=5;S2 计算S=πR2;S3 输出S.则S=________.【解析】S=π×52=25π.【答案】25π4.已知直角三角形两直角边长a,b,设计求斜边长c的一个算法.【解】S1 输入直角三角形的两直角边长a、b的值;S2 计算c=a2+b2;S3 输出斜边长c的值.一、填空题1.看下面的三段话,其中不是解决问题的算法的是________.①解一元二次方程的步骤是去分母,去括号,移项,合并同类项,系数化为1.②方程x2=4有两个实根.③求1+2+3+4的值,先计算1+2=3,再计算3+3=6,最后计算6+4=10,最终结果为10.【解析】结合算法的含义知②不是解决问题的算法.【答案】②2.下列关于算法的描述正确的是________.①算法与求解一个问题的方法相同②算法只能解决一个问题,不能重复使用③算法过程要一步一步执行,每步执行的操作必须确切④设计算法要本着简单可行的原则【解析】根据算法的含义及特点,只有③④正确.【答案】③④3.下列所给问题中,其中不能设计一个算法求解的是________.①二分法解方程x 2-3=0(精确到0.01); ②解方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +3=0;③求半径为2的球的体积; ④证明y =x 2为偶函数.【解析】 根据算法特征知①②③都可以设计算法求解,而④不可以. 【答案】 ④4.用电水壶烧开水的一个算法过程如下: S1 打开电水壶的盖子,加水后盖上盖子; S2 接通电源;S3 在水开后,断开电源. 对于上述算法,有以下几种说法: ①顺序不能改变;②第一步与第二步可以互换; ③第二步是必须具有的步骤;④第三步可以变为“在水开后,倒出开水”. 其中说法正确的是________.【解析】 ①③正确,②④的说法不符合安全用电常识. 【答案】 ①③5.(2013·广州高一检测)完成不等式-2x -5>x +1的算法过程. S1 移项并合并同类项,得________.S2 在不等式的两边同时除以x 的系数,得________. 【解析】 依据解一元一次不等式的步骤进行. 【答案】 -3x >6 x <-26.已知一个学生的语文成绩是89,数学成绩是96,外语成绩是99,求他的总分和平均分的一个算法如下,请补充完整:S1 取A =89,B =96,C =99; S2 计算总分S =________; S3 计算平均分M =________; S4 输出S ,M .【解析】 总分S =89+96+99; 平均分M =89+96+993=S3.【答案】 89+96+99 S37.(2013·西宁高一检测)对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,设计解此方程组的算法时,第一步为________.【解析】 由于未知数的系数不确定,故该方程组不一定有解,当a 1b 2=a 2b 1时,该方程组无解,故第一步应为验证a 1b 2与a 2b 1是否相等.【答案】 验证a 1b 2=a 2b 1是否成立8.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是________.【解析】 最多是9粒,第一次是天平每边3粒,若平衡,则所求在剩余的3粒中,在这3粒中选出两粒,再放在天平的两边,若平衡,余下的一颗即为最轻的珠子,若不平衡,则天平高的一边即为最轻的珠子;若第一次天平不平衡,则在轻的一边选出两粒,再放在天平的两边,同样可以得到最轻的珠子.【答案】 9 二、解答题9.写出求一元二次方程ax 2+bx +c =0的根的一个算法. 【解】 算法如下:S1 计算Δ=b 2-4ac ; S2 若Δ<0,则方程无实根;S3 若Δ≥0,则x (1,2)=-b ±b 2-4ac2a.10.已知平面直角坐标系中点A (-2,0),B (3,1),写出求直线AB 的方程的一个算法. 【解】 法一 算法步骤如下. S1 求出直线AB 的斜率k =1-03--=15; S2 选定A (-2,0),用点斜式写出直线AB 的方程y -0=15[x -(-2)];S3 将第二步的运算结果化简,得到方程x -5y +2=0. 法二 算法步骤如下.S1 设直线AB 的方程为y =kx +b ;S2 将A (-2,0),B (3,1)代入第一步设出的方程,得到⎩⎪⎨⎪⎧-2k +b =0,3k +b =1;S3 解第二步所得的方程组,得到k =15,b =25;S4 把第三步得到的结果代入第一步所设的方程,得到y =15x +25;S5 将第四步所得的结果整理,得到方程x -5y +2=0.11.试写出一个判断圆(x -a )2+(y -b )2=r 2和直线Ax +By +C =0位置关系的算法. 【解】 S1 输入圆心的坐标(a ,b ),直线方程的系数A 、B 、C ; S2 计算Z 1=Ax 0+By 0+C ; S3 计算Z 2=A 2+B 2; S4 计算d =|Z 1|Z 2;S5 若d >r ,则相离;若d =r ,则相切,若d <r ,则相交.(教师用书独具)实际问题的算法设计有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.【思路探究】 本题实质上是考查交换两个变量值的算法.要交换两个变量的值,要先寻找第三个变量作为中间变量,再进行交换.【规范解答】 S1 找一个大小与蓝和黑两个墨水瓶相同的空瓶子A ; S2 将蓝墨水倒入空瓶子A 中;S3 将黑墨水倒入原来装蓝墨水的瓶子中; S4 将蓝墨水倒入原来装黑墨水的瓶子中.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳,他们如何渡河?请写出你设计的渡河的算法.【解】 S1 两个小孩同船渡过河去; S2 一个小孩划船回来;S3 一个大人独自划船渡过河去;S4 对岸的小孩划船回来;S5 两个小孩再同船渡过河去;S6 一个小孩划船回来;S7 余下的另一个大人独自划船渡过河去;S8 对岸的小孩划船回来;S9 两个小孩再同船渡过河去.§1.2流程图1.2.1 顺序结构(教师用书独具)●三维目标1.知识与技能:掌握顺序结构的特点,设计方法.2.过程与方法:学会用算法分析问题;能够使用顺序结构编写简单的程序解决具体问题.3.情感态度与价值观:体会用结构化方法解决数学问题的便捷性;明确结构化在程序设计中的重要作用;激励尝试使用多种方法解决问题;培养良好的编程习惯和态度.●重点难点重点:各种图框的功能,会用算法图框表示顺序结构.难点:对顺序结构的概念的理解;利用图框表示流程线顺序结构.(教师用书独具)●教学建议从知识结构上来说,学生在本章第一节已经了解了一些算法的基本思想,这是本节课的重要知识基础,从能力上来说,这个阶段的学生已经具有一定的分析问题、解决问题的能力,逻辑思维能力也初步形成,思维比较活跃但缺乏严谨性.因此,在设计教学中不仅要充分调动学生的学习积极性,更要注意培养学生严谨的数学思维和语言组织能力.由于学生首次接触算法图框,根据教学内容、教学目标和学生的认知水平,本节课主要采取问题导入式教学,即“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”,通过对问题的探究过程让学生掌握新知识,同时在解决问题的过程中掌握新知识的应用和解题过程,提高学生独立解题的能力.在老师的引导下,充分发挥学生的主观能动性,从问题入手,通过分析问题、交流方案、解决问题、运用问题的探索过程,让学生全程参与到问题的探索中而突破难点.通过学生对常见的图框及功能的理解和认识,结合典型例题及变式训练,使学生初步掌握顺序结构的流程图的设计而强化了重点.●教学流程创设问题情境,引出问题:如何形象直观的表示算法?⇒引导学生结合前面学习过的算法的含义理解常见的图框及功能,把握流程图的概念.⇒通过引导学生回答所提问题理解顺序结构的特点及能够解决的问题.⇒通过例1及其变式训练,使学生对流程图能够正确的认识和理解.⇒通过例2及其变式训练,使学生掌握较顺序结构流程图的画法.⇒通过例3及其变式训练,使学生明确顺序结构在实际生活中的应用并掌握求解策略.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.如何形象直观的表示算法?【提示】图形方法.2.用图形方法表示算法有何优点? 【提示】 简洁、直观.1.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及功能顺序结构有何特点?【提示】 任何一个算法都离不开顺序结构,顺序结构是最简单、最基本的结构.依次进行多个处理的结构称为顺序结构.如图1-2-1,虚线框内是一个顺序结构,其中A 和B 两个框是依次执行的.顺序结构是一种最简单、最基本的结构.图1-2-1关于流程图的图形符号的理解正确的是______.(填序号)①流程图是描述算法的图形语言.②输入框可以在起始框后,也可以在判断框后.③判断框是唯一一个具有超过一个出口的图形符号.【思路探究】根据流程图的规则和每个框图所表示的功能逐一判断.【自主解答】①正确,由流程图的定义知.②正确,输入框可以在任何需要输入、输出的地方出现.③正确,判断框是具有多个出口的唯一符号.【答案】①②③正确理解流程图的概念,对构成流程图的各种图形符号的功能要准确把握,具体应用时注意其特点.掌握流程图的画法规则,画流程图的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类:一类判断框是“Y”与“N”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.下列说法正确的是________.①任何一个流程图都必须有起止框;②流程线表示算法步骤执行的顺序,用来连结图框;③一个自然语言描述的算法只能对应一个流程图;④流程图中的流程线可以箭头不朝下.【解析】一个自然语言描述的算法,可能有多个流程图与之对应.【答案】①②④(2013·连云港高一检测)利用梯形的面积公式计算上底长为2、下底长为4、高为5的梯形的面积,设计解决该问题的一个算法,并画出流程图.【思路探究】 根据梯形的面积公式S =12(a +b )·h ,其中a 为上底长,b 为下底长,h为高,只要令a ←2,b ←4,h ←5,代入公式即可.【自主解答】 算法如下: S1 a ←2,b ←4,h ←5; S2 S ←12(a +b )·h ;S3 输出S . 流程图如下:1.画流程图时,应先根据题意设计算法,再画流程图,一般不直接画流程图. 2.应用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法; (2)梳理解题步骤;(3)用数学语言描述算法,明确输入量、计算过程、输出量; (4)用流程图表示算法过程.已知一个三角形的三边长分别为2,3,4.利用海伦公式设计一个算法,求出该三角形的面积,并画出流程图.(海伦公式:已知三角形的三边长分别为a ,b ,c ,则三角形的面积S =pp -a p -bp -c ,其中p =a +b +c2)【解】 先将三角形的各边长赋值,求出三角形周长的一半,然后利用公式求解. 算法如下:S1 a ←2,b ←3,c ←4;S2 p ←a +b +c2;S3 S ←p p -a p -b p -c ;S4 输出S .流程图如图所示.如图1-2-2所示是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:图1-2-2(1)该流程图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多少? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0?【思路探究】 先分析流程图的功能,然后根据函数关系式中变量间的关系依次解答,同时还要注意流程图中不同形式的图框的功能.【自主解答】 (1)该流程图解决的是求函数f (x )=ax +b 的函数值的问题. (2)y 1=3,即2a +b =3,y 2=-2, 即-3a +b =-2.由⎩⎪⎨⎪⎧2a +b =3,-3a +b =-2,得⎩⎪⎨⎪⎧a =1,b =1.∴f (x )=x +1.∴当x 取5时,5a +b =f (5)=5+1=6.(3)输入x 值越大,输出的函数值ax +b 越大.因为函数为增函数.(4)令f (x )=x +1=0,得x =-1,因此,当输入x 的值为-1时,输出的函数值为0.1.已知流程图,回答问题,首先应理清流程图的结构,本例中的流程图为——顺序结构.2.已知流程图的函数问题,将框图所表示的算法翻译成自然语言,是由用自然语言表达的算法画出流程图的逆向过程.对这两种语言的互译有助于熟练掌握算法的设计,而将流程图翻译成自然语言相对而言比较陌生,是一个难点.阅读如图1-2-3所示的流程图,回答下面的问题.图1-2-3(1)图框①中x ←4的含义是什么?(2)图框②中y 1←x 3+2x +3的含义是什么?计算y 1(3)图框④中y2←x2-2x的含义是什么?计算y2【解】(1)图框①的功能是初始化变量,令x=4.(2)图框②中y1←x3+2x+3的含义:该图框是在执行①的前提下,即当x=4时,计算x3+2x+3的值,并令y1等于这个值,y1=43+2×4+3=75.(3)图框④中y2←x2-2x的含义:该图框是在执行③的前提下,即当x=-1时,计算x2-2x的值,并令y2等于这个值,y2=(-1)2-2×(-1)=3.混淆构成流程图的符号及作用致误已知x=4,y=2,画出计算W=3x+4y的值的流程图.【错解】流程图如图(1)所示.(1) (2)【错因分析】输出框用平行四边形,而此题的错解中用了矩形框.【防范措施】 1.流程图中特定的符号表示特定的含义,不能乱用.2.熟练掌握流程图中的常见符号的含义及功能,掌握画流程图的技巧和方法.【正解】如图(2)画流程图时所遵循的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果,另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.1.下列是流程图的一部分,表示合理的是________.【解析】③是输入、输出框,不合要求,①②均可.【答案】①②2.流程图的图框“”可完成下列中的________.①输入a←10②判断a>10③输出a←10④赋值a←10【解析】图框为矩形框,其功能为计算或赋值,故④正确.【答案】④3.下列流程图1-2-4中输出S的值为________.图1-2-4【解析】该流程图的功能是求半径为r的圆的面积又r=5,∴S=25π.【答案】25π4.已知一个圆柱的底面半径为R,高为h,求出圆柱体积.设计解决该问题的一个算法,并画出相应的流程图.【解】算法如下:S1 输入R、h;S2 V←πR2h;S3 输出V.流程图如图.一、填空题1.下列关于流程线的说法.①流程线表示算法步骤执行的顺序,用来连结图框;②流程线只要是上下方向就表示自上向下执行可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.其中正确的有________.【答案】①③④2.流程图中表示判断的图框是________.【解析】由各种图框的符号及含义表示可知一般用菱形框表示判断框.【答案】3.图1-2-5(2013·苏州高一检测)如图1-2-5所示,A杯原来装酒,B杯原来装油,C杯原来空杯,则流程图运行结果为(每次操作都全部倒完)A杯为______,B杯为________,C杯为________.【解析】运行结果为先把酒放到空杯C中,此时A杯空着,然后把B中的油放到A杯中,此时B杯空着,最后将C杯中的酒放到B杯中,此时C杯空着,此时A杯中为油,B 杯中为酒,C杯为空杯.【答案】油酒空杯4.如图1-2-6所示的流程图的输出结果P=________.图1-2-6【解析】P=m+5=2+5=7.【答案】75.图1-2-7(2013·宿迁高一检测)给出如图1-2-7所示流程图,若输出结果为12,则①处的图框中应填的是________.【解析】由b=a-3=12知a=15,∴3x-3=15即x=6,∴①中应填x←6.【答案】x←66.下列图1-2-8中的算法功能为________.(a>0,b>0)图1-2-8【解析】 d =a 2+b 2,c =d =a 2+b 2故可根据几何意义填,答案不唯一. 【答案】 求以a ,b 为直角的直角三角形斜边的长度7.图1-2-9(2)是计算图1-2-9(1)的阴影部分面积的一个流程图,则①中应该填________.图(1) 图(2)图1-2-9【解析】 设阴影部分面积为M ,则M =x 2-π·(x 2)2=(1-π4)x 2.【答案】 M ←(1-π4)x 28.图1-2-10如图1-2-10是一个算法的流程图,已知a 1=3,输出的结果为7,则a 2的值为________. 【解析】 由输出的结果为7易知a 1+a 2=14,又a 1=3,∴a 2=11. 【答案】 11。

2019-2020学年高中数学苏教版必修3教学案:复习课(一) 算法初步 Word版含解析

2019-2020学年高中数学苏教版必修3教学案:复习课(一) 算法初步 Word版含解析

复习课(一) 算法初步本部分考查题型以填空题为主,主要考查由流程图确定输入、输出的内容及流程图中程序框中文字和符号操作的内容,属于低档题.[考点精要]1.流程图中的程序框图2.算法的三种基本逻辑结构 (1)顺序结构:(2)选择结构:(3)循环结构:[典例] (1)执行如图(1)的流程图,若输入t =0.01,则输出的n =________.(2)执行如图(2)的流程图,若输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是________.流程图的识读图(1) 图(2)[解析] (1)运行第一次s =1-12=0.5,m =0.25,n =1,s >0.01;运行第二次s =0.5-0.25=0.25,m =0.125,n =2, s >0.01;运行第三次s =0.25-0.125=0.125,m =0.062 5, n =3,s >0.01;运行第四次s =0.125-0.0625=0.062 5,m =0.031 25,n =4,s >0.01; 运行第五次s =0.031 25,m =0.015 625,n =5, s >0.01;运行第六次s =0.015 625,m =0.007 812 5,n =6, s >0.01;运行第七次s =0.007 812 5,m =0.003 906 25,n =7,s <0.01; 输出n =7.(2)依题意及框图可得, ⎩⎨⎧ -2<x <2,1≤2x≤3或⎩⎨⎧|x|≥2,1≤x +1≤3,解得0≤x ≤log 23或x =2.[答案] (1)7 (2){x |0≤x ≤log 23或x =2} [类题通法]理解程序框图表示的算法含义,逐次运行程序是解决此类问题常用的方法.[题组训练]1.(北京高考)执行如图所示的流程图,输出的结果为________.解析:x =1,y =1,k =0, s =x -y =0, t =x +y =2, x =s =0,y =t =2, k =1 不满足k ≥3,s =x -y =-2, t =x +y =2, x =-2, y =2, k =2 不满足k ≥3,s =x -y =-4, t =x +y =0, x =-4, y =0, k =3 满足k ≥3,输出结果为(-4,0).答案:(-4,0)2.(安徽高考)执行如图所示的算法流程图,输出的n 为________.解析:执行第一次判断|a -1.414|=0.414>0.005,a =32,n =2;执行第二次判断|a -1.414|=0.086>0.005,a =75,n =3;执行第三次判断|a -1.414|=0.014>0.005,a =1712,n =4; 执行第四次判断|a -1.414|<0.005,输出n =4. 答案:43.执行如图所示的流程图.如果输出i =4,那么空白判断框中应填入的条件是______.解析:根据流程图 i =2时,s =5; i =3时,s =8;i =4时,s =9,此时输出i =4,故应填s <9. 答案:s <9本部分考查题型以填空题为主,主要考查由伪代码确定相应的算法,进而确定输入输出的内容,解决此类问题常常把伪代码转化成流程图来解决.[考点精要]识读伪代码1.赋值语句的一般格式:变量←表达式.2.输入、输出语句:用Read a ,b 表示输入的数据依次赋值给a ,b . 用Print x 表示输出运算结果x . 3.条件语句的一般形式: If A Then B ElseCEndIf4.条件语句的嵌套的一般形式:其相应的流程图如下图所示:5.循环语句当型语句: 直到型语句: While P循环体End WhileDo循环体Until P End Do当循环的次数已经确定,可用“For ”语句表示.“For ”语句的一般形式为: For I From “初值”To“终值”Step“步长” 循环体EndFor[典例] (1)(江苏高考)根据如图所示的伪代码,可知输出的结果S 为________. S←1I←1While I <8S←S +2I←I +3End While Print S(2)某算法的伪代码如图所示,若输出结果为12,则输入的实数x 的值为________.Read xIf x >1 Then y←log2x Else y←x -1End If Print y(3)如图所示的伪代码是求1+12+…+11 000的值的伪代码,在横线上应填入的语句是________.s←0For i From 1 To 1 000s← End For Print s[解析] (1)由程序可知S =1,I =1,I <8; S =3, I =4,I <8; S =5, I =7,I <8; S =7, I =10,I >8; 此时结束循环,输出S =7.(2)本题的伪代码是条件语句,算法的功能是计算并输出分段函数y =⎩⎪⎨⎪⎧log2x ,x >1,x -1,x≤1的函数值,已知输出结果为12,即函数值为12,若x >1,则有log 2x =12,解得x =2,符合x >1;若x ≤1, 则有x -1=12,∴x =32,不符合x ≤1;∴输入实数x 的值为 2.(3)由算法语句可知,要填的应该是被执行的循环体,故填s +1/i . [答案] (1)7 (2) 2 (3)s +1/i [类题通法]解决此类问题关键要深刻理解伪代码表示的算法语句,注意算法流程图和算法伪代码的相互转化.[题组训练]1.根据如图所示的伪代码,当输入a ,b 分别为2和3时,最后输出的m 值为______. Read a ,bIf a >b Then m←a Else m←b End If Print m解析:∵a =2,b =3,∴a <b ,应把b 赋值给m, ∴m 的值为3.答案:32.某算法的伪代码如下:. 解析:由算法的伪代码知其功能为 S =0+11×3+13×5+…+199×101=12⎝⎛⎭⎫1-13+13-15+…+199-1101 =12⎝⎛⎭⎫1-1101=50101. 答案:501013.如图是求20个数的平均数的程序,在横线上应填入的语句是______. S←0I←1DoRead x S =S +xI =I +1Until End Do a =S/20Print a解析:由语句直到型循环可知I >20. 答案:I >201.下面这段伪代码的功能是______. n←0Read x1,x2,…,x10For i From 1 To 10 If xi <0 Thenn←n +1End If End For Print n答案:统计x1到x10这十个数据中负数的个数2.如图所示,算法的结果为________.解析:∵b=5+10×5=55,∴2b=110.答案:1103.(天津高考)执行如图所示的流程图,则输出的s值为________.解析:s=20,i=1,i=2i=2,s=s-i=20-2=18,不满足i>5;i=2i=4,s=s-i=18-4=14,不满足i>5;i=2i=8, s=s-i=14-8=6,满足i>5.故输出s=6.答案:64.(山东高考)执行如图所示的程序框图,若输入的x的值为1,则输出的y值为______.解析:当x=1时,1<2,则x=1+1=2,当x=2时,不满足x<2,则y=3×22+1=13.答案:135.如图是一个算法流程图,则输出的n的值是________.解析:n=1,21<20;n=2,22<20;n=3,23<20;n=4,24<20;n=5,25>20,故输出n=5.答案:56.如图是计算某年级500名学生期末考试(满分100分)及格率q的流程图,则图中空白框内应填入______.解析:由判断框可知M表示及格人数,N表示不及格人数,∴及格率q=M500.答案:q←M 5007.执行如图所示的流程图,如果输入的t∈[-2,2],则输出的s属于________.解析:当0≤t≤2时,s=t-3,此时s∈[-3,-1],当-2≤t<0时,执行t←2t2+1后,1<t≤9,执行1<t≤9时,输出s=t-3,此时s∈(-2,6],故s∈[-3,6].答案:[-3,6]8.(全国卷Ⅱ)执行如图所示流程图,若输入的a,b分别是14,18,则输出的a值为________.解析:a=14,b=18,第一次循环14≠18且14<18,b=18-14=4;第二次循环14≠4且14>4,a=14-4=10;第三次循环10≠4且10>4,a=10-4=6;第四次循环6≠4且6>4,a=6-4=2;第五次循环2≠4且2<4,b=4-2=2;第六次循环a=b=2,跳出循环,输出a=2.答案:29.执行如图所示的流程图,如果输出s=3,那么判断框内应填入的条件是________.解析:第一步,s=s·log k(k+1)=log23,k=2+1=3;第二步,s=s·log k(k+1)=log23·log34=log24,k=3+1=4;第三步,s=s·log k(k+1)=log24·log45=log25,k=5;…;第n步,s=log2(n+1)·log(n+1)(n+2)=log2(n+2),k=n+2,若输出s=3,则log2(n+2)=3,n+2=8,n=6,k=n+2=8,说明k=8时结束,故应填k≤7.答案:k≤710.执行如图所示流程图,若输入x =-2,h =0.5,则输出的各个数的和为______.解析:输入x =-2时,y =0,执行x ←x +0.5后,x =-1.5; 当x =-1.5时,y =0,执行x ←x +0.5后,x =-1; 当x =-1时,y =0,执行x ←x +0.5后,x =-0.5; 当x =-0.5时,y =0,执行x ←x +0.5后,x =0; 当x =0时,y =0,执行x ←x +0.5后,x =0.5; 当x =0.5时,y =0.5,执行x ←x +0.5后,x =1; 当x =1时,y =1,执行x ←x +0.5后,x =1.5; 当x =1.5时,y =1,执行x ←x +0.5后,x =2; 当x =2时,y =1,此时2≥2,结束循环. 故输出各数之和为0.5+1+1+1=3.5. 答案:3.511.将下列问题的算法改为“Do …End Do ”语句形示,并画出其流程图. i←1S←0While i≤10 S←S +i i←i +1End While Print S解:伪代码: 流程图如图: i←1S←0DoS←S +ii←i +1Until i >10End Do Print S12.民乐乐团筹备了一场新年音乐会.12月31日晚在中山音乐礼堂演出,并对外售票,成人票5元,学生票3元.假设有n 个成人和m 个学生参加了新年音乐会.请设计算法(用伪代码表示),完成售票计费工作,要求输出最后的票房收入,并画出流程图.解:流程图: 伪代码:13.某商场为了促销,采用购物打折的优惠办法,每位顾客一次购物:①在1 000 元以上者按九五折优惠; ②在2 000元以上者按九折优惠;③在5 000元以上者按八折优惠.(1)写出实际付款y (元)与购物原价款 x (元)的函数关系式;(2)用伪代码表示(1)中的算法.解:(1)设购物原价款数为x 元,实际付款为y 元,则实际付款方式可用分段函数表示为y =⎩⎪⎨⎪⎧ x ,x≤1 000,0.95x ,1 000<x≤2 000,0.9x ,2 000<x≤5 000,0.8x ,x>5 000.(2)用条件语句表示为14.已知函数y =⎩⎪⎨⎪⎧ 2x +3,x >0,1,x =0,-x2+2,x <0,画出相应的流程图并写出程序语句.解:由于函数分为三段,故用三个判断框或两个判断框来画流程图.法一:三个判断框 法二:两个判断框Read x , If x ≤1 000 Then y ←x Else If x ≤2 000 Theny ←0.95xElse If x ≤5 000Then y ←0.9x Else y ←0.8x End IfEnd IfPrint y程序语句如下:法一:三个判断框法二:两个判断框Read xIf x>0Then y←2x+3 End IfIf x=0Then y←1End IfIf x<0Then y←-x2+2 End IfPrint y Read xIf x>0Theny←2x+3ElseIf x=0Then y←1Elsey←-x2+2End IfEnd IfPrint y。

2019-2020年高中数学第1章算法初步1.2流程图1.2.1顺序结构教学案苏教版必修3

2019-2020年高中数学第1章算法初步1.2流程图1.2.1顺序结构教学案苏教版必修3

2019-2020年高中数学第1章算法初步1.2流程图1.2.1顺序结构教学案苏教版必修3[新知初探]1.流程图的概念流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及各自表示的功能[点睛]关于流程图,要注意以下几点(1)起止框是任何流程图必不可少的,它表明算法的开始和结束.(2)输入、输出框可用在算法中任何需要输入、输出的位置,需要输入、输出的字母、符号、数据都填在框内.(3)处理框用于数据处理需要的算式、公式等,另外,对变量进行赋值,也用到了处理框.(4)流程线是有方向箭头的,不要忘记画箭头,因为它是反映流程图的先后执行顺序的,如不画箭头,就难以判定各框内程序的执行顺序了.3.顺序结构及形式顺序结构的定义结构形式依次进行多个处理的结构称为顺序结构[小试身手]1.下列几个选项中不是流程图符号的是________.答案:(1)2.下面三个流程图,不是顺序结构的是________.答案:(2)流程图的基本概念[典例]下列关于流程图的符号的理解中,正确的有________.①任何一个流程图都必须有起止框;②输入框只能在开始框之后,输出框只能在结束框之前;③判断框是唯一具有超过一个退出点的图形符号;④判断框内的条件是唯一的.[解析]任何一个程序都有开始和结束,因而必须有起止框;输入框和输出框可以放在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如条件a>b,也可写成a≤b,故只有①③正确.[答案]①③正确理解流程图的概念及图框和流程线的功能是解决此类问题的关键.[活学活用]下列关于流程线的说法:①流程线表示算法步骤执行的顺序,用来连接图框;②流程线只要是上下方向就表示自上向下执行可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.其中正确的有________.答案:①③④[典例]已知点P(x0,y0)和直线l:Ax+By+C=0(A2+B2≠0),求点P(x0,y0)到直线l 的距离d.设计算法,并画出流程图.[解]算法如下:S1输入点的坐标x0,y0,输入直线方程的系数A,B,C;S2E1←Ax0+By0+C;S3E2←A2+B2;S4d←|E1|E2;S5输出d.流程图如图所示:画顺序结构的流程图应用顺序结构表示算法的步骤(1)设计问题的算法;(2)明确输入量,计算过程,输出量; (3)用流程图表示算法过程. [活学活用]利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积.设计出该问题的算法及流程图.解:算法如下:S1 a ←2,b ←4,h ←5;S2 S ←12(a +b )h ;S3 输出S .该算法的流程图如图所示.[典例] 如图是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x ←2的含义是什么? (2)图框②中y 1←ax +b 的含义是什么? (3)图框④中y 2←ax +b 的含义是什么?顺序结构流程图的识读(4)该流程图解决的是怎样的一个问题?(5)若最终输出的结果y 1=3,y 2=-2,当x 取5时,输出的结果5a +b 的值应该是多少? (6)在(5)的前提下输入的x 值越大,输出的ax +b 的值是不是也越大?为什么? (7)在(5)的前提下,当输入的x 为多大时,输出的结果为0? [解] (1)图框①中x ←2表示把2赋给变量x (即使x =2). (2)图框②中y 1←ax +b 的含义:当x =2时, 计算ax +b 的值,并把这个值赋给y 1.(3)图框④中y 2←ax +b 的含义:当x =-3时, 计算ax +b 的值,并把这个值赋给y 2.(4)该流程图解决的是求函数f (x )=ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(5)y 1=3,即2a +b =3;y 2=-2,即-3a +b =-2;从而可得a =1,b =1,故f (x )=x +1,当x 取5时,5a +b =f (5)=6.(6)输入的x 值越大,输出的函数值ax +b 越大, 因为f (x )=x +1是(-∞,+∞)上的增函数. (7)令f (x )=x +1=0,得x =-1,因而当输入值为-1时,输出的函数值为0.由流程图识别算法功能应注意的问题(1)要明确各框图符号的含义及作用; (2)要明确框图的方向流程;(3)要正确识图,即根据框图说明该算法所要解决的问题. [活学活用]图1是计算图2中阴影部分面积的一个流程图,其中,①中应填________________.解析:∵一个花瓣形面积为2=2⎝⎛⎭⎫a 216π-18a 2=14a 2·π-22, ∴图中阴影部分面积应为π-22a 2,故①处应填S ←π-22a 2.答案:S ←π-22a2[层级一 学业水平达标]1.下列几个选项中,不是流程图的符号的是________.(填序号)答案:(2)(3)(4)2.如图表示的算法结构是________. 答案:顺序结构3.要解决下面的四个问题,只用顺序结构画不 出其流程图的是________.①当n =10时,利用公式1+2+3+…+n =nn +12,计算1+2+3+…+10; ②当圆的面积已知时,求圆的半径;③给定一个数x ,求函数f (x )=⎩⎪⎨⎪⎧1,x >0,-1,x ≤0的值;④当x =5时,求函数f (x )=x 2-3x -5的函数值. 答案:③4.阅读下列流程图:若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3.答案:x ←35.某学生五门功课成绩为80,95,78,87,65.写出平均成绩的算法,画出流程图. 解:算法如下:S1S←80;S2S←S+95;S3S←S+78;S4S←S+87;S5S←S+65;S6A←S/5;S7输出A.流程图:[层级二应试能力达标] 1.如图所示的流程图解决的数学问题是________.答案:计算半径为2的圆的面积2.阅读如图所示流程图,其输出的结果是________.答案:43.下面四个流程图中不是顺序结构的是________.答案:(3)4.如图所示的流程图最终输出的结果是________.解析:由题意y=(22-1)2-1=8.答案:85.下列流程图表示的算法最后运行的结果为________.解析:无论a ,b 输入什么数值,程序执行到第二、三步重新对a ,b 进行赋值,a =4,b =2,所以T =8.答案:86.如图所示的流程图的输出结果是________.解析:执行过程为x =1,y =2,z =3, x =y =2,y =x =2,z =y =2. 答案:27.如图是解方程组⎩⎪⎨⎪⎧2x -y =1 ①4x +3y =7 ②的一个流程图,则对应的算法为:S1 _________________________________________________________; S2 _________________________________________________________; S3 _________________________________________________________. 答案:将方程②中x 的系数除以方程①中x 的系数得商数m =4÷2=2方程②减去m 乘以方程①的积消去方程②中的x 得到⎩⎪⎨⎪⎧2x -y =1,5y =5将上面的方程组自下而上回代求解得到y =1,x =18.要求底面边长为4,侧棱长为5的正四棱锥的侧面积及体积.甲、乙二同学分别设计了一个算法并画出了相应的流程图如下,其中正确的是________.答案:甲、乙9.如图所示是一个流程图,根据该图和下列各小题的条件回答问题.(1)该流程图解决的是一个什么问题?(2)若输入的a值为0和4时,输出的值相等,则当输入的a的值为3时,输出的值为多少?(3)在(2)的条件下,要想使输出的值最大,输入的a值应为多大?解:(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)若输入的a值为0和4时,输出的值相等,即f(0)=f(4).∵f(0)=0,f(4)=-16+4m,∴-16+4m=0.∴m=4,∴f(x)=-x2+4x.∵f(3)=-32+4×3=3,∴当输入的a的值为3时,输出的值为3.(3)∵f (x )=-x 2+4x =-(x -2)2+4,当x =2时,f (x )max =4,∴要想使输出的值最大,输入的a 的值应为2.10.阅读下列两个求三角形面积的流程图,回答问题.(1)图①的流程图输出结果S 是多少?图②中若输入a =4,h =3,输出的结果是多少?(2)对比一下两个流程图,你有什么发现?解:(1)图①运行后,S =12×4×3=6,故图①输出结果为6.图②当a =4,h =3时输出的结果也为6.(2)通过对比,图①只能求底边长为4、高为3的三角形的面积.图②由于底边长和高要求输入,故可求任意三角形的面积.可见一个好的算法,不仅可以解决某个问题,更可以解决某一类问题,也就是说,设计算法时,我们应尽量“优化”..。

2019-2020年苏教版高中数学(必修3)《第一章算法初步综合小结》word学案2篇

2019-2020年苏教版高中数学(必修3)《第一章算法初步综合小结》word学案2篇

2019-2020年苏教版高中数学(必修3)《第一章算法初步综合小结》word学案2篇算法不仅是数学及其应用的重要组成部分.也是计算机科学的重要基础.在现代社会单,在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具.听音乐、看电巨、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域.那么计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.从数学发E的历史来看,算法并不是一个全新的概念.比如,在西方数学中很早就有了欧几里得算法,而中国古代数学中蕴涵着更为丰富的算法内容和思想,割圆术、秦九韶算法等等都是很经典的算法.在算法初步这一章里,要学习的是算法的概念和程序框图,理解算法的基本结构、基本算法语句,了解一些很有意思的重要算法,体会算法的基本思想,发展有条理的思考与表达的能力,提高逻辑思维能力.一、基础知识要点总结算法一章的主要内容是算法的概念及含义,算法思想、程序框图及其规则,算法的三种基本结构.用数学语言写出算法并实现与程序框图的转换;赋值语句、输入语句和输出语句,用条件语句描述条件分支结构的算法,用循环语句描述循环结构的算法;用辗转楣除法与更相减损术求最大公约数,用秦九韶算法计算一元多次函数值,及割圆术的算法案例.二、专题总结.算法一章分三大节,第一节是算法与程序框图,主要介绍了算法、程序框图、顺序结构、条件结构、循环结构的概念,要求我们写出的算法必须能解决一类问题,并且能重复使用,算法的过程要能一步步执行,每步执行的操作必须确切,不能含混不清,而且经过有限步运算后能得出结果.要能够正确的画出框图.第二节是基本算法语句.主要介绍了赋值语句及格式,键盘输入语句、输出语句、条件语句夕环语句的概念.要知道这些语句的一般格式,以及它们的作用,能够将很多抽象算法及理论在计算机上操作、执行,从而能更好地解决问题.第三节是算法案例.主要介绍了辗转相除法、更相减损术、秦九韶算法等概念,能够利用对比方法,如辗转相除法与更相减损术对比等.三、学习目标1.通过对解决具体问题过程与步骤的分析(如二元一次方程组求解问题),体会算法的思想,了解算法的含义.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.3.经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想.4.通过阅读中国古代数学的算法案例,体会中国古代数学对世界数学发展的贡献.四、课程标准知识和能力总结1.能用数学语言写出算法,并实现与程序框图的转换,体会对同一个问题而言,算法的多样性、优劣性,以及学习算法的必要性,注重观摩实例,操作简例,探索应用科学学习方法.2.在由自然语言,数学语言、程序框图向形式语言甚至简单的程序语言过渡的过程中进一步培养自己的抽象概括能力、语言表达能力和逻辑思维能力以及构造性解决问题的创新能力.注意循序渐进、由易到难、由简到繁的学习程序,重在原理及基本结构的掌握.注重由算法思想、算理算法过渡到算法语言及简单的程序语言.学习中多观察、模仿、理解、记忆,然后再实践操作.3.体会辗转相除法与更相减损术在求最大公约数时,更相减损术的优越性.深刻体会数学与实际的紧密XXX,以较高的志趣与热情投入到数学学习中.五、学习警示算法的学习应当通过实例进行,在解决具体问题的过程中学习一些基本逻辑结构和语句,体会算法的思想,提高逻辑思维能力.为了有条理地、清析地表达算法应将解决问题的过程整理成程序框图,进一步将程序框图翻译成计算机语言.但不应将此部分内容简单处理成程序语言的学习和程序设计.在高中数学课程其他有关内容中应渗透算法思想方法,尽可能地运用算法解决相关问题和上机尝试.六、高考导航高考中应重点考查对变量赋值的理解掌握,对循环结构的灵活运用,阅读程序框图说明算理与算法(包括输出结果),根据要求画出程序框图等.如2001年上海高考题第22题,便考查了程序框图、循环结构、算法思想,并结合函数与数列,考查较强的逻辑思维能力,这说明,算法知识与其他知识的结合将是高考的重点,也恰恰体现了算法的普遍性、工具性,当然难度不会太大,重在算理、算法及其思想.算法中的函数与方程一、算法与函数函数中的许多问题,例如:分段函数求值,高次函数求值,求函数的最值等,利用算法思想,通过算法中的选择结构和循环结构等可以简单的求解.例1 已知函数,,且.求该函数的最大值.画出流程图,并写出伪代码.分析:所给函数是二次函数,但定义域是,即函数自变量只能取到10之间的整数,因此要求出其最大值,可以将函数自变量对应的每一个函数值都求出,从中找出最大值即可解:流程图如图1所示:伪代码如下:点评:本题中由于所给函数的自变量的取值是到10之间的整数,只有有限个,且他们之间都相差1,这一特点正好适合用算法中循环语句进行算法描述,只需将所有函数值一一求出,从中找到最大值即可.例2在音乐唱片超市里,每张唱片售价25元.顾客如果购买5张以上(含5张)唱片,则按照九折收费;如果顾客购买10张以上(含10张)唱片,则按照八五折收费.请设计一个完成计费工作的算法,并画出流程图.分析:假设用变量a表示顾客购买的唱片数,用C表示顾客要缴纳的金额,依题意应有解:算法步骤如下:第一步:输入a;第二步:若a<5,则;否则,执行第三步;第三步:若a<10,则;否则第四步:输出C;流程图如图2.二、算法与方程中外历史上曾经有无数多位数学家作了大量的工作,探求得到了各种方程的求根公式,这些公式实际上就是一种算法,对于某些没有求根公式的方程,也借助现代计算技术的发展得到了一些典型的算法,如:二分法、牛顿法等等.例3 写出用二分法求方程的近似解(误差不超过0.01)的流程图.分析:这是一个五次方程,对于这类高次方程,我们没有求根公式,要求其近似解,可以利用二分法.令,由于,,所以取初始区间为,然后根据二分法的步骤进行算法设计.解:流程图如下:点评:由于用二分法求方程的近似解是用越来越小的区间逐次逼近,因此可以利用循环结构控制这一过程,在逼近过程中每次都要对是否满足精确度进行判断,所以可以利用选择结构实现.《算法初步》复习指导大的比例.随着现代信息技术的飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养,下面我们从以下几方面对算法知识进行复习.一、重点、难点分析一般地讲,算法是人们解决问题的固定步骤和方法.在本模块中,我们应重点掌握的是在数值计算方面的算法.xx年高考新课程标准数学考试大纲对《算法初步》的要求是:(1)算法的含义、流程图:①了解算法的含义,了解算法的思想;②理解流程图的三种基本逻辑结构:顺序结构、选择结构、循环结构.(2)基本算法语句:理解几种基本算法语句——输入语句、输出语句、赋值语句、选择语句、循环语句的含义.注意的是,考纲对算法的含义和算法的思想的要求是“了解”,而对流程图和基本算法语句的要求是“理解”.由此可见,复习中应把重点放在流程图和基本算法语句上,要对这两方面的内容重点掌握、多加练习.表达算法的方法有自然语言、流程图和基本算法语句三种.自然语言描述算法只是学习算法的一个过渡,流程图和基本算法语句才是学习的重点,同时也是难点,尤其是选择结构和循环结构,在复习中是重中之重.1.理解基本逻辑结构顺序结构、选择结构和循环结构是算法的三种基本逻辑结构.在画流程图时,首先要进行逻辑结构的选择,若求只含有一个关系式的解析式的函数的函数值时,只用顺序结构就能解决,顺序结构是任何一个算法中必不可少的结构.选择结构主要用在一些需要依据选择进行判断的算法中,如分段函数的求值、数据的大小关系比较等问题.循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等问题.用循环结构表达算法,关键要做好以下三点:①确定循环变量和初始值;②确定算法中反复执行的部分,即循环体;③确定循环的终止选择.循环结构又分为当型(While型)和直到型(Until型)两种.当型循环在每次执行循环体前对控制循环的选择进行判断,当选择满足时执行循环体,不满足则停止;直到型循环在执行了一次循环体之后,对控制循环的选择进行判断,当选择不满足时执行循环体,满足则停止.两种循环只是实现循环的不同方法,它们是可以互相转换的.对同一个问题如果分别用当型循环和直到型循环来处理的话,那么两者判断的条件恰好相反.2.理解基本算法语句伪代码是表达算法的简单而实用的好方法,要注意各语句的作用,准确理解赋值语句,灵活表达选择语句,注意While语句和For语句的区别.(1)输入、输出语句和赋值语句基本对应于算法中的顺序结构,这是任何一个伪代码都用到的语句,利用输入、输出语句和赋值语句设计伪代码时应明确:需输入信息时用Read语句,需输出信息时用Print语句.当变量需要的数据较少或给变量赋予表达式时,用赋值语句即可,当变量需要输入多组数据且程序重复使用时,使用输入语句较好.当然,赋值语句还具有将一个变量的值赋给另一个变量,前一个变量的值保持不变的功能(2)选择语句是表达算法中的选择结构,因为算法的流程根据选择是否成立有不同的流向,就需要对选择作出判断,所以伪代码中要用到选择语句.在某些较复杂的算法中,有时需要对按选择要求执行的某一语句(特别是Else后的语句)继续按照另一选择进行判断,这时可以再利用一选择语句完成这一要求,这就需要选择语句的嵌套.(3)循环语句是用来实现循环结构的,在本章我们主要需要掌握For语句与While语句.两种循环语句的区别:“For循环”一般用于循环次数已知时;“While循环”是“前测试”的当型循环,即先判断,后执行,若初始条件不成立,则一次也不执行循环体中的内容,任何一种需要重复处理的问题都可以用这种循环来实现.注:①循环有时还可通过Goto语句实现,但Goto语句破坏了语句顺序执行的正常状况,因此,一般不提倡使用;②注意计数变量的取值范围,以免出现多一次或少一次循环的错误.3.掌握一些常见的算法类型对一些常见的算法,尤其是算法中特有的方法要熟练掌握,通过重点理解分析,做到举一反三.其中最常见的算法有:①累加(乘)算法;②二分法;③分段函数求值算法;④递推算法;⑤求两数最大公约数的算法(辗转相除法与更相减损术);⑥秦九韶算法等,这些算法的每一类都有其规律,可通过重点分析典型例题的方法,进行模仿、类比,从而掌握其一般规律.4.掌握运算符号含义在算法中,有一些运算符号具有确定的含义,如赋值时常用等,这些式子在伪代码中非常重要,应切实理解;又如,我们经常用mod(a,b)表示a除以b所得的余数,用表示不超过x的最大整数.注:伪代码没有统一的格式,只要书写简便、容易理解、表达清楚即可,但在学习本章时,建议使用符号相对统一,以免引起混淆.如用赋值语句“”表示给变量x赋值5,就不要再用“”或“”等其他形式来表示了.算法部分章质量检测本章知识结构一、知识点剖析1.算法的定义和特点掌握要点:算法定义:在数学中指按照一定规则解决某一类问题的明确和有限的步骤。

2019-2020学年高中数学第一章算法初步1.2.2循环结构学案苏教版必修.doc

2019-2020学年高中数学第一章算法初步1.2.2循环结构学案苏教版必修.doc

2019-2020学年高中数学第一章算法初步1.2.2循环结构学案苏教版必修 理解循环结构的执行过程.会用流程图表示循环结构.
一、自学准备与知识导学
1.问题:
北京获得了2008年的奥运会的主办权,你知道在申办奥运会的最后阶段时,国际奥委会是如何通过投票来决定主办权归属的吗?
对五个申报的城市进行表决的程序是:首先进行的第一轮投票,如果有哪一个城市得票超过半数,那么该城市将获得举办权,表决结束;如果所有的申报城市的票数都没有半数,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.
你能用一个算法来表达上述过程吗?
你能猜想出循环结构的大致流程图吗?
二、学习交流与问题探讨
例1 写出求54321⨯⨯⨯⨯值的一个算法.
画出计算10
19131211+++++
值的一个算法的流程图.
例3 设计一个计算10个数的平均数的算法,并画出流程图.
三、练习检测与拓展延伸
1.设计计算108642⨯⨯⨯⨯值的一个算法,并画出流程图.
2.先分步写出计算100642++++ 的一个算法,再画出流程图(使用循环结构).
例2
3.用i N 代表第i 个学生的学号,i G 代表第i 个学生的成绩(50321 =,,,, i ),上图表示了一
个什么样的算法?
四、小结与提高。

高中数学 第1章《算法初步》复习 精品导学案 苏教版必修三

高中数学 第1章《算法初步》复习 精品导学案 苏教版必修三

江苏省响水中学高中数学 第1章《算法初步》复习导学案 苏教版必修3一、学习目标:1.了解算法含义,能用自然语言描述算法。

2.会用流程图表示简单的常见问题的算法。

3.能用伪代码表示算法。

二、课前预习:1.写出求100321++++ 的一个算法,可运用公式2)1(321+=++++n n n 直接计算,第一步 ;第二步 ;第三步输出计算结果。

2.对于一元n 次多项式,0111)(a x a x a x a x f n n n n ++++=-- 可以通过一次式的反复计算,逐步得到高次多项式值的方法,称为秦九韶算法。

使用秦九朝算法求0111)(a x a x a x a x f n n n n ++++=-- ,当0x x =时的值可减少运算次数,做加法和乘法的次数分别为 .3.下面的程序执行后的结果是 .4.下面是一个算法的伪代码.如果输出的y 的值是20,则输入的x 的值是 . 5.已知流程图,运行后输出的b 值是________.三、课堂探究:ba prb a b b a a b a ,int 31-←+←←←第3题Read x If x≤5 Then y←10x Elsey←2.5x+5 End If Print y 第4题第5题1.写出求函数⎪⎩⎪⎨⎧≥+<≤<-=1,710,50,1)(2x x x x x x x f 的函数值的伪代码.并画出相应的流程图.3.下列语句是求S =2+3+4+…+99的一个伪代码,请回答问题:(1)语句中是否有错误?请加以改正; (2)把伪代码改成另一种类型的循环语句.四、课堂检测1.下图的流程图最后输出的n 的值是 .1←i 0←SDoi S S +← 1+←i i Until 99<i End Do Print S 第3题2.运行下图的程序,输出的I 值为 .3.当3=x 时,下面程序段输出的结果是( )4. 如果执行右面的程序框图(即流程图),输入n =6,m =4,那么输出的p 等于________. 5.如图,若流程图运行的结果为S =90,那么判断框中应填入的关于k 的判断条件是________.6.如图所示的流程图的功能是计算表达式12+122+…+1210的值,则在①、②两处应填入______.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

2019-2020学年高一数学《算法初步》复习教案.doc

2019-2020学年高一数学《算法初步》复习教案.doc

2019-2020学年高一数学《算法
初步》复习教案
分层训练
1.求方程023=-x x 的近似根,要先将它近似地放在某两个连续整数之间,下面正确的是( )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
2.移动公司出台一项新的优惠政策:若顾客该月接听电话时间在500分钟以内,则收取8元的费用,超过500分钟的,按超过部分每分钟0.2元计(不足1分钟按1分钟计)。

根据下面的流程图,空白处应填写的语句是________________
3.下面是一个算法的流程图,回答下面的问题:当输入x 的值为3时,输出的结果为 .
4.根据条件把流程图补充完整,求11000→内所有奇数的和; (1)处填 ; (2)处填 .
思考∙运用 5.画出下列问题的算法的流程图. 6
.下图给出的是计算
111124620++
+
⋅⋅⋅+
的值的一个程序框图,其中判断框内应填入的条件是。

2019-2020学年度最新高中数学第一章算法初步习题课学案苏教版必修3

2019-2020学年度最新高中数学第一章算法初步习题课学案苏教版必修3
第三步,将所有步骤的流程图用__________连接起来,并加上起止框,得到表示整个算法的流程图.
类型一 算法的设计
例1 已知函数y=试设计一个算法,输入x的值,求对应的函数值.
反思与感悟 设计一个具体问题的算法,通常按以下步骤:
(1)认真分析问题,找出解决此题的一般数学方法.
(2)借助有关变量或参数对算法加以表述.
S3 y←x3.
S4 输出y.
跟踪训练1 解 算法如下:
S1 输入x的值.
S2 当x≤-1时,y←2x-1,否则执行S3.
S3 当x<2时,y←log2(x+1),否则执行S4.
S4 y←x2.
S5 输出y.
例2 解 算法如下:
S1 设M的值为1.
S2 设i的值为2.
Sபைடு நூலகம் 如果i≤2 017,则执行S4,否则转去执行S6.
(3)将解决问题的过程划分为若干步骤.
(4)用简练的语言将这个步骤表示出来.
跟踪训练1 已知函数y=试设计一个算法,输入x的值,求对应的函数值.
类型二 画流程图
例2 设计求1×2×3×4×…×2 016×2 017的值的算法,并画出流程图.
反思与感悟 算法要求指令明确,在有限步内解决问题,故用自然语言设计算法时不能大而化之.一旦用自然语言表述出算法,转换为流程图就会相对简单,但画时要用对图框,并尽量使主线在一条纵轴上,以增强流程图的条理性.
跟踪训练2 某流程图如图所示,它的功能是什么?
类型三 算法在生活中的应用
例3 以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60,画出求80分以上的同学的平均分的流程图.

2019_2020学年高中数学第1章算法初步章末复习课课件苏教版必修3

2019_2020学年高中数学第1章算法初步章末复习课课件苏教版必修3

[解] 老爷爷过河的步骤如下: S1 把羊带到对岸; S2 回来接狼,把狼带到对岸后把羊带回来; S3 把羊放在原地,把菜运到对岸; S4 回来接羊.
流程图的应用 【例 2】 (1)执行如图所示的流程图,若输入的 t∈[-2,2],则输 出的 S 属于________.
(2)执行如图所示的流程图,如果输入的 a=4,b=6,那么输出 的 n 的值为________.
[解] 算法如下: S1 计算 x0←-12+3=1,y0←0+2 2=1,得 AB 的中点 N(1,1); S2 计算 k1←3-2--01=12,得 AB 斜率; S3 计算 k←-k11=-2,得 AB 垂直平分线的斜率; S4 由点斜式得直线 AB 的垂直平分线的方程,并输出.
1.算法设计与一般意义上的问题解决不同,它是对一类问题、 一般解法的抽象与概括.算法设计既要借助一般问题的解决方法,又 要包含这类问题的所有可能情形,它往往是把问题的解决划分为若干 个可执行的步骤,有时甚至需要重复多次某些步骤,但最终都必须在 有限个步骤之内完成.
(1)[-3,6] (2)4 [(1)当 0≤t≤2 时,S=t-3∈[-3,-1],当- 2≤t<0 时,2t2+1∈(1,9],t←2t2+1,即 t∈(1,9],此时执行 S=t-3, 则 S∈(-2,6],
综上,S∈[-3,6]. (2)运行流程图,第 1 次循环,a=2,b=4,a=6,s=6,n=1; 第 2 次循环,a=-2,b=6,a=4,s=10,n=2;第 3 次循环,a= 2,b=4,a=6,s=16,n=3;第 4 次循环,a=-2,b=6,a=4, s=20,n=4,结束循环,故输出的 n=4.]
批发数小于等于 300 双时,每双批发价为 2.5 元,当批发数超过 300
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第一章《算法初步复习与小结》教案苏教
版必修3
教学目标:
1.进一步体会算法的思想,能设计解决简单问题的算法;
2.进一步学习有条理地、清晰地表达问题,提高逻辑思维能力;
3.在理解的基础上进一步熟练几种算法的使用,并能根据程序框图来编写循环结构及伪代码.
教学重点:
1.系统化本章的知识结构;
2.提高对几种常见算法思想的认识;
3.提升算法设计、优化和表达的能力.
教学难点:
1.算法的设计和优化;
2.对算法思想的认识.
教学方法:
1.通过实例,发展对解决具体问题的过程与步骤进行分析的能力;
2.通过模仿、操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程发展应用算法的能力;
3.在解决具体问题的过程中学习一些程序框图及循环结构,感受算法的重要意义.
教学过程:
一、问题情境
在算法初步这一章里,我们都学习了哪些主要内容?
二、学生活动
能不能把这些内容画到一个结构图中?
三、建构数学
1
2.三种基本逻辑结构;
3.五种基本算法语句;
4.三个算法案例.
四、数学运用
例1 1.下面对流程图中的图形符号的说法错误的是 ( )
A.起、止框是任何流程不可少的,表明程序开始和结束;
B.输入、输出可用在算法中任何需要输入、输出的位置;
C.算法中间要处理数据或计算,可分别写在不同的注释框内;
D.当算法要求对两个不同的结果进行判断时,要写在判断框内.
2.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( )
A.一个算法只能含有一种逻辑结构;
B.一个算法最多可以包含两种逻辑结构;
C.一个算法必须含有上述三种逻辑结构;
D.—个算法可以含有上述三种逻辑结构的任意组合.
3.下列给出的赋值语句中正确的是 ( )
A.3←A B.M←-M
C.B←A←2 D.x+y←0
例2 算法、程序框图和算法语句的设计、编写
1.设计一个程序语句,输入任意三个实数,将它们按从小到大的顺序排列
后输出.
2.某市电信部门规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则不超过部分收取0.2元,超过部分以每分钟0.1元收取通话费(通话时间以分钟计,不足1分钟时按1分钟计),试设计一个计算通话费用的算法.要求写出算法,画出流程图,编制程序.
3.适合方程a2+b2=c2的一组正整数称为勾股数或商高数,设计一个满足
a≤30,b≤40,c≤50的勾股数的算法.
五、要点归纳与方法小结
1.算法思想作为数学的一种基本思想,就是探求解决问题的一般性方法,并将解决问题的步骤用具体化、程序化的语言加以表述,主要作用是使计算机能代替人完成某些工作,这也是学习算法的重要原因之一.算法思想在解决某些问题时,只要能设计出一系列可操作或可计算的有限而明确的步骤,就可以通过实施这些步骤来解决问题.
2.算法设计并不是一次就能成功的.我们应先有一个基本的框架,其中含有最典型最重要或最核心的算法语句或结构.然后再来思考其中的每一步的执行情况,增添一些细节,逐步完善流程图与程序.。

相关文档
最新文档