Lingo求解线性规划问题

合集下载

实验利用Lingo求解整数规划和非线性规划问题

实验利用Lingo求解整数规划和非线性规划问题

三、Lingo 循环编程举例
例5 用Lingo循环编程语句求解线性规划模型
max z 72x1 64x2
x1 x2 50, 132xx1 1180x0,2 480, x1 0, x2 0.
三、划 模型
max z 72x1 64x2
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign(person,task):a,x; ENDSETS DATA: a=1100,800,1000,700,
600,500,300,800, 400,800,1000,900, 1100,1000,500,700; ENDDATA min=@sum(assign:a*x); @for(person(i):@sum(task(j):x(i,j))=1); @for(task(j):@sum(person(i):x(i,j))=1); @for(assign(i,j):@bin(x(i,j))); END
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目的函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6、指派问题
企业在各地有4项业务,选定了4位业务员去处理。因为 业务能力、经验和其他情况不同,4业务员去处理4项业 务旳费用(单位:元)各不相同,见下表:
(3) 集合旳循环函数 集合旳循环函数能够使全部旳元素反复完毕某些操作.
函数
函数功能
• 形成集合全部元素需满足旳约
@for
束条件
• 计算集合中元素所在体现式旳
@sum

线性规划问题及Lingo求解

线性规划问题及Lingo求解

1、某钢管零卖商从钢管厂进货。

将钢管按客户需求切割后出厂,从厂进货时得到原料钢管厂都19米。

(1)现有一客户需50根4米,20根6米,15根8米,如何下料才能最省?(2)若零售商采用不同切割方法太多,将会导致生产过程复杂化,从而增加生产和管理成本,所以零售商采用不同切割方法不超过3种,此外,该客户除许(1 )中三种钢管还需10根5米钢管。

如何下料最省?答:(1)分析问题:问题的目标就是如何下料最省,考虑到一根钢管如何进行切割才会使用料最省。

可以想到以下的方案。

假设19米的钢管有无限多,下面给出此问题的建模过程。

建模:根据题意,由一根钢管切割出要求( 1 )的共有七种方案,如上表所示。

现设:有x1根钢管按方案一进行切割,有x2根钢管按方案二进行切割有x3根钢管按方案三进行切割,有x4根钢管按方案四进行切割,有x5根钢管按方案五进行切割,有x6根钢管按方案六进行切割,有x7根钢管按方案七进行切割。

目标函数:若以切割后剩余总量最少为目标则:min( 3x1+x2+3x3+x4+3x5+3x6+x7 )若以原料钢管总根数最少为目标则:min( x1+x2+x3+x4+x5+x6+x7)约束条件:切割出是4米的钢管数目:4x1+x4+x5+2x6+3x7>=50切割出是6米的钢管数目:3x2+x4+2x5+x7>=20切割出是8米的钢管数目:2x3+x4+x6>=15综合上述分析可得如下线性规划模型:min Z=3x1+x2+3x3+x4+3x5+3x6+x7s.t.厂4x1+x4+x5+2x6+3x7>=503x2+x4+2x5+x7>=20<2x3+x4+x6>=15Xj>=0,j=1,2,3 (7)运用LINGO进行运算得出以下结果:Global optimal solution found at iteration:Objective value: 26.66667「iabl e Value Reduced Cost X1 0.000000 1.666667 X2 0.000000 1.000000 X3 0.000000 1.666667 X4 15.00000 0.000000 X5 0.000000 2.666667 X6 0.000000 1.666667 X711.666670.000000Row Slack or Surplus Dual Price1 26.66667 -1.0000002 0.000000 -0.3333333 36.666667 0.000000 40.000000-0.6666667结果用15根钢管按方案四进行切割,有 12根钢管按方案七进行切割。

最优化方法(线性规划)——用Lingo对线性规划进行灵敏度分析

最优化方法(线性规划)——用Lingo对线性规划进行灵敏度分析

lingo 软件求解线性规划及灵敏度分析注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法!所有程序运行环境为lingo10。

一、用lingo 软件求解线性规划例1:m a x 23..43103512,0z x ys t x y x y x y =++≤+≤≥在模型窗口输入:model:max=2*x+3*y;4*x+3*y<=10;3*x+5*y<12;! the optimal value is :7.454545 ;End如图所示:运行结果如下(点击 工具栏上的‘solve ’或点击菜单‘lingo ’下的‘solve ’即可):Global optimal solution found. Objective value: 7.454545(最优解函数值)Infeasibilities: 0.000000Total solver iterations: 2(迭代次数)Variable (最优解) Value Reduced CostX 1.272727 0.000000Y 1.636364 0.000000Row Slack or Surplus Dual Price1 7.454545 1.0000002 0.000000 0.9090909E-013 0.000000 0.5454545例2:12123124125m a x 54..39028045z x x s t x x x x x x x x x x =+++=++=++=≥在模型窗口输入:model:max=5*x1+4*x2;x1+3*x2+x3=90;2*x1+x2+x4=80;x1+x2+x5=45;end运行(solve )结果如下:Global optimal solution found.Objective value: 215.0000Infeasibilities: 0.000000Total solver iterations: 3Variable Value Reduced CostX1 35.00000 0.000000X2 10.00000 0.000000X3 25.00000 0.000000X4 0.000000 1.000000X5 0.000000 3.000000Row Slack or Surplus Dual Price1 215.0000 1.0000002 0.000000 0.0000003 0.000000 1.0000004 0.000000 3.000000例323123234235m in 2..22312z x x s t x x x x x x x x x x =-+-+=-+=-+=≥在模型窗口输入:model:min=-x2+2*x3;x1-2*x2+x3=2;x2-3*x3+x4=1;x2-x3+x5=2;end运行结果如下:Global optimal solution found.Objective value: -1.500000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX2 2.500000 0.000000X3 0.5000000 0.000000X1 6.500000 0.000000X4 0.000000 0.5000000X5 0.000000 0.5000000Row Slack or Surplus Dual Price1 -1.500000 -1.0000002 0.000000 0.0000003 0.000000 0.50000004 0.000000 0.5000000例4:(非线性)m in ..124x y zs t x y x z +++≤+= 在模型窗口输入:model :min =@abs (x)+@abs (y)+@abs (z);x+y<=1;2*x+z=4;@free (x);@free (y);@free(z);End求解器状态如下:(可看出是非线性模型!)运行结果为:Linearization components added:Constraints: 12Variables: 12Integers: 3Global optimal solution found.Objective value:(最优解函数值) 3.000000Objective bound: 3.000000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 3Variable(最优解) Value Reduced Cost X 2.000000 0.000000Y -1.000000 0.000000 Z 0.000000 0.000000Row Slack or Surplus Dual Price1 3.000000 -1.0000002 0.000000 1.0000003 0.000000 -1.000000二、用lingo软件进行灵敏度分析实例例5:m a x 603020864842 1.5202 1.50.585,,0S x y zx y z x y z x y z y x y z =++++≤++≤++≤≤≥ 在模型窗口输入:Lingo 模型:model:max=60*x+30*y+20*z;8*x+6*y+z<48;4*x+2*y+1.5*z<20;2*x+1.5*y+0.5*z<8;y<5;end(一)求解报告(solution report )通过菜单Lingo →Solve 可以得到求解报告(solution report )如下:Global optimal solution found at iteration: 0Infeasibilities: 0.000000Objective value: 280.0000Total solver iterations: 2Variable Value Reduced CostX 2.000000 0.000000Y 0.000000 5.000000Z 8.000000 0.000000Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.000000分析Value,Reduced Cost ,Slack or Surplus ,Dual Price 的意义如下:1、最优解和基变量的确定Value 所在列给出了问题的最优解。

实验1 利用Lingo求解线性规划

实验1 利用Lingo求解线性规划

实验一:利用Lingo 软件求解线性规划问题实验一 利用Lingo 软件求解线性规划问题1、 实验目的和任务1.1. 进一步掌握Lingo 编程操作;1.2通过实验进一步掌握运筹学线性规划问题的建模以及求解过程,提高学生分析问题和解决问题能力。

2、 实验仪器、设备及材料计算机、Lingo3、 实验内容料场选址问题P10某公司有6个建筑工地要开工,每个工地的位置(用平面坐标a,b 表示,距离单位:km )及水泥日用量d(单位:t)由下表给出,目前有两个临时料场位于P (5,1),Q (2,7),日储量各有20t.请回答以下问题: 假设从料场到工地之间有直线道路相连,试制定每天的供应计划,即从P,Q 两料场分别向各工地运送多少吨水泥,使总的吨公量数最小。

工地的位置(a,b )及水泥日用量d建模 设工地的位置为(,)i i a b ,水泥日用量为i d ,i=1,2,…,6;料场位置为(,)j j x y ,日储量为j e ,j=1,2; 从料场j 向工地i 的运送量为ij c 。

决策变量:在问题(1)中,决策变量就是料场j 向工地i 的运送量为ij c ;在问题(2)中,决策变量除了料场j 向工地i 的运送量为ij c 外,新建料场位置(,)j j x y 也是决策变量。

目标函数:这个优化问题的目标函数f 是总砘公量数(运量乘以运输距离),所以优化目标可表为2611min j i f c ===∑∑约束条件:各工地的日用量必须满足,所以21,1,2, (6)ij ijc d i ===∑各料场的运送量不能超过日储量,所以61,1,2. ij jic e j =≤=∑求解过程编写模型程序:(介绍集合的定义及应用)model:sets:!确定变量a(1),a(2),a(3),a(4),a(5),a(6);demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!分割数据的空格与逗号或回车的作用是等价的;a=1.25 8.75 0.5 5.75 3 7.25;b=1.25,0.75,4.75,5,6.5,7.75;d=3,5,4,7,6,11;e=20,20;!a=enddatainit:!lingo对数据是按列赋值的,而不是按行;x,y=5,1,2,7;endinit[OBJ] min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));@for(demand(i):[demand_con] @sum(supply(j):c(i,j))=d(i););@for(supply(i):[supply_con] @sum(demand(j):c(j,i))<=e(i););@for(supply(i):@bnd(0.5,x(i),8.75);@bnd(0.75,y(i),7.75););End计算结果:(如果你使用的是试用版软件,则可能不能用全局求解器求解本例,因为问题规模太大了,激活全局最优求解程序的方法,是用“lingo|Options”菜单命令打开选项对话框,在“Global Solver”选项卡上选择“Use Global Solver”)Local optimal solution found.Objective value: 85.26604Total solver iterations: 61Variable Value Reduced CostA( 1) 1.250000 0.000000A( 2) 8.750000 0.000000A( 3) 0.5000000 0.000000A( 4) 5.750000 0.000000A( 5) 3.000000 0.000000A( 6) 7.250000 0.000000B( 1) 1.250000 0.000000B( 2) 0.7500000 0.000000B( 3) 4.750000 0.000000B( 4) 5.000000 0.000000B( 5) 6.500000 0.000000B( 6) 7.750000 0.000000D( 1) 3.000000 0.000000D( 2) 5.000000 0.000000D( 3) 4.000000 0.000000D( 4) 7.000000 0.000000D( 5) 6.000000 0.000000D( 6) 11.00000 0.000000X( 1) 3.254883 0.000000X( 2) 7.250000 0.6335133E-06 Y( 1) 5.652332 0.000000Y( 2) 7.750000 0.5438639E-06 E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000C( 1, 1) 3.000000 0.000000C( 1, 2) 0.000000 4.008540C( 2, 1) 0.000000 0.2051358C( 2, 2) 5.000000 0.000000C( 3, 1) 4.000000 0.000000C( 3, 2) 0.000000 4.487750C( 4, 1) 7.000000 0.000000C( 4, 2) 0.000000 0.5535090C( 5, 1) 6.000000 0.000000C( 5, 2) 0.000000 3.544853C( 6, 1) 0.000000 4.512336C( 6, 2) 11.00000 0.000000Row Slack or Surplus Dual PriceOBJ 85.26604 -1.000000DEMAND_CON( 1) 0.000000 -4.837363DEMAND_CON( 2) 0.000000 -7.158911DEMAND_CON( 3) 0.000000 -2.898893DEMAND_CON( 4) 0.000000 -2.578982DEMAND_CON( 5) 0.000000 -0.8851584DEMAND_CON( 6) 0.000000 0.000000SUPPLY_CON( 1) 0.000000 0.000000SUPPLY_CON( 2) 4.000000 0.000000如果把料厂P,Q的位置看成是已知并且固定的,这时是LP模型,只需把上面的程序中初始段的语句移到数据段就可以了。

线性规划问题的Lingo求解

线性规划问题的Lingo求解

Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。

用lingo求解线性规划问题

用lingo求解线性规划问题

用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。

并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。

一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。

有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。

问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。

表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。

第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。

三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。

第二,假设各蔬菜价格在一定时间内保持相对稳定。

第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。

四、符号约定(1)Z 代表目标函数,此题即为费用。

(2)i c 为价值系数,此题即为每份蔬菜的价格。

下标i 代表蔬菜的种类。

(3)i x 为决策变量,表示各种蔬菜的数量。

(4)i b 为最低限定条件,表示蔬菜最低营养需要。

五、模型建立根据以上各种假设和符号约定,建立模型如下。

所求的值就是min,也就是最优化结果.s 。

用LINGO求解线性规划问题

用LINGO求解线性规划问题

实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。

《数学建模》实验指导_02_Lingo求解线性规划问题

《数学建模》实验指导_02_Lingo求解线性规划问题

实验二:Lingo求解线性规划问题学时:4学时实验目的:掌握用Lingo求解线性规划问题的方法,能够阅读Lingo结果报告。

实验内容:(选做两题以上)1、求解书本上P130的习题1:某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表1所示,按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税,此外还有以下限制:1)政府及代办机构的证券总共至少要购进400万元;2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程序越高);3)所购证券的平均到期年限不超过5年。

表 1(1)若该经理有1000万元资金,应如何投资?(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?列出线性规划模型,然后用Lindo求解,根据结果报告得出解决方案。

提示:可参考书上4.1节。

模型可以如下建立:设投资证券A,B,C,D,E的金额分别为x1,x2,x3,x4,x5 万元.max 0.043x1+0.027x2+0.025x3+0.022x4+0.045x5x2+x3+x4>=400x1+x2+x3+x4+x5<=1000(2x1+2x2+x3+x4+5x5)/(x1+x2+x3+x4+x5)<=1.4(9x1+15x2+4x3+3x4+2x5)/(x1+x2+x3+x4+x5)<=52、建立模型并求解P130页第3题。

(建立线性规划模型的技巧:问什么假设什么,如何雇用即雇用多少全时服务员以12:00-1:00为午餐, 雇用多少全时服务员以1:00-2:00为午餐,雇佣多少从9:00、10:00、11:00、12:00、1:00开始工作的半时服务员)。

建立线性规划模型:设全时工人为X1:工作时间:9—12 、13—17 工资为100元X2:工作时间:9—13 、14—17 工资为100元半时工人:工资为40元Y1:工作时间:9—13Y2:工作时间:10—14Y3:工作时间:11—15Y4:工作时间:12—16Y5:工作时间:13—17Min= (x1+x2)*100+(y1+y2+y3+y4+y5)*40Y1+y2+y3+y4+y5<39-10 X1+x2+y1>410-11 X1+x2+y1+y2>311-12 X1+x2+y1+y2+y3>412-13 x2+y1+y2+y3+y4>613-14 X1+y2+y3+y4+y5>514-15 x1+x2+y3+y4+y5>615-16 x1+x2+y4+y5>816-17 x1+x2 +y5>8Min =(x1+x2)*100+(y1+y2+y3+y4+y5)*40;y1+y2+y3+y4+y5<3;x1+x2+y1>4;x1+x2+y1+y2>3;x1+x2+y1+y2+y3>4;x2+y1+y2+y3+y4>6;x1+y2+y3+y4+y5>5;x1+x2+y3+y4+y5>6;x1+x2+y4+y5>8;x1+x2 +y5>8;@gin(x1);@gin(x2);@gin(y1);@gin(y2);@gin(y3);@gin(y4);@gin(y5);Global optimal solution found at iteration: 14Objective value: 820.0000Variable Value Reduced Cost X1 2.000000 100.0000 X2 5.000000 100.0000 Y1 0.000000 40.00000Y3 1.000000 40.00000 Y4 1.000000 40.00000 Y5 1.000000 40.00000Row Slack or Surplus Dual Price1 820.0000 -1.0000002 0.000000 0.0000003 3.000000 0.0000004 4.000000 0.0000005 4.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 4.000000 0.0000009 1.000000 0.00000010 0.000000 0.000000第二问:Min =(x1+x2)*100;x1+x2 >4;x1+x2>3;x1+x2>4;x2 >6;x1 >5;x1+x2 >6;x1+x2 >8;x1+x2 >8;@gin(x1);@gin(x2);Global optimal solution found at iteration: 0Objective value: 1100.000Variable Value Reduced Cost X1 5.000000 100.0000 X2 6.000000 100.0000Row Slack or Surplus Dual Price1 1100.000 -1.0000002 7.000000 0.0000004 7.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 5.000000 0.0000008 3.000000 0.0000009 3.000000 0.000000第三问:Min =(x1+x2)*100+(y1+y2+y3+y4+y5)*40;x1+x2+y1>4;x1+x2+y1+y2>3;x1+x2+y1+y2+y3>4;x2+y1+y2+y3+y4>6;x1+y2+y3+y4+y5>5;x1+x2+y3+y4+y5>6;x1+x2+y4+y5>8;x1+x2 +y5>8;@gin(x1);@gin(x2);@gin(y1);@gin(y2);@gin(y3);@gin(y4);@gin(y5);Global optimal solution found at iteration: 5Objective value: 560.0000Variable Value Reduced Cost X1 0.000000 100.0000 X2 0.000000 100.0000 Y1 4.000000 40.00000 Y2 2.000000 40.00000 Y3 0.000000 40.00000 Y4 0.000000 40.00000 Y5 8.000000 40.00000Row Slack or Surplus Dual Price1 560.0000 -1.0000002 0.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 5.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.0000003、指派问题:6个人计划做6项工作,其效益如下表(”-”表示某人无法完成某项工作),4、有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物),如果某个发点向某个收点运输货物,则运输量不得低使用Lingo的一些注意事项Min z1.“>”与“>=”功能相同。

线性规划问题的Lingo求解

线性规划问题的Lingo求解

注:1、写程序要习惯给程序用title命名 2、为了方便查看报告,用行号区分约束 3、此程序的格式可以固定为标准形式的求解模式。
程序改进三:可以减少引入的变量个数,将模型修改为下面的形式 min f=12*x11+24*x12+8*x13+30*x21+12*x22+24*x23 s.t. x11+x12+x13<=4 x21+x22+x23<=8 -x11-x21<= -2 -x12-x22<= -4 -x13-x23<= -5 x11,x12,x13,x21,x22,x23>=0 写成lingo语言如下所示:
转成相应的Lingo语言如下:
模型改进(2):引入库存变量,再利用库存平衡方程使模型更加流畅简洁。设xi为第i 个月的产量,di为销售量,ei为存储费,ci为单位成本,设第i个月的库存为si,则:
min f ci xi ei si
i 1 i 1
4
4
si 1 si xi di s1 0 s.t. s5 0 0 x 10000, i 1, 2,3, 4 i si 0且为整数,i 1, 2,3, 4
因为具有项目D,所以可以认为该部门每年都把自己全部投出去,而且年末的总资
本等于第二年初的总投资额。由此可建立模型如下:
max
f 1.15 x4 A 1.40 x2C 1.25 x3 B 1.06 x5 D
初始资金总额 x1 A x1D 10 x x x 1.06 x 第二年的总投资额 2 A 2 C 2 D 1 D x2C 3 x3 A x3 B x3 D 1.15 x1 A 1.06 x2 D 第三年的总投资额 s.t. x3 B 4 x4 A x4 D 1.15 x2 A 1.06 x3 D 第四年的总投资额 第五年的总投资 x5 D 1.15 x3 A 1.06 x4 D x , x , x , x 0, i 1,...,5 iA iB iC iD 转换成Lingo程序如下所示:

lingo解决线性规划问题的程序(经典)要点

lingo解决线性规划问题的程序(经典)要点
2*x+y<600; !决策变量黙认为非负 ; <相当于 <=; 大小写不区分
当规划问题的规模很大时,需要定义数组 下面定义下标集和对应数组的三种方法, sets : r1/1..3/:a; r2 : b; r3 : c; link2(r1,r2): x; link3(r1,r2,r3): y; endsets data : ALPHA = 0.7; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddata
model : !6 发点 8收点运输问题 ;
sets :
rows/1..6/: s;
! 发点的产量限制 ;
cols/1..8/: d;
! 售点的需求限制 ;
links(rows,cols): c, x; endsets
! 运输单价,决策运输量 ;
!==================================; data :
! 目标函数 =运输总成本 ;
@sum(cols(j): x(i,j))<=s(i) ); @for (cols(j):
! 产量约束 ;
@sum(rows(i): x(i,j))=d(j) ); end
! 需求约束 ;
例 3 把上述程序进行改进,引进运行子模块和打印运算结果的语句:
!exam_3.lg4 源程序
Lingo12 软件培训教案
Lingo 主要用于求解线性规划,整数规划,非线性规划,
例 1 一个简单的线性规划问题
V10 以上版本可编程。
max z 2 x 3 y st. x y 350
x 100 2 x y 600 x, y 0

第三章线性规划及LINGO求解

第三章线性规划及LINGO求解
32
在Generator Memory Used(K)框中显示的 内存使用量为16K.
在Elapsed Runtime(hh:mm:ss)框中显示 的是求解花费的时间,显示为0是因为所花时间太 短.
33
解答报告窗口
34
在解答报告窗口中,很容易观察得最
优解(4,2)及目标函数最优值14.
其中“Slack or Surplus”表示松驰或剩
第三章 线性规划及LINGO求解
在工程技术、经济管理、科学研究和日常生活
等诸多领域,人们常常遇到这样的问题,就是在一
系列客观或主观条件的限制之下,寻求使所关注的
某个指标达到最大或最小,这类决策问题通常称为 优化建模或最优化问题.解决最优化问题的一般方 法是建立优化模型、求解最优决策.
1
一般地,优化模型包括目标函数与约束条 件.当目标函数与约束条件中出现的解析表达式 均为线性表达式时,则称之为线性规划(LP).
49
(2)数据输入部分 从“data:”到“enddata”,用于输入常
量dem的值.
50
(3)其它部分
给出目标函数与约束条件.其中 @sum是求和函数,使用格式是:
@sum(集合(下标):关于集合属性的表达式)
@for是遍历函数,使用格式是:
@for(集合(下标):关于集合属性的表达式)
另外
“#gt#”是大于号, “#lt#”是小于号 “#eq#”是等于号, “#ne#”是不等于号 “#ge#”是大于等于号, “#le#”是小于号
本章主要内容是线性规划模型的建立、二维 决策变量情形下的图象解法以及较复杂线性规划 模型的LINGO求解.
2
3-1 线性规划模型的建立 及二维决策变量的图解

最优化方法——用Lingo对线性规划进行灵敏度分析

最优化方法——用Lingo对线性规划进行灵敏度分析

lingo 软件求解线性规划及灵敏度分析注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法!所有程序运行环境为lingo10。

一、用lingo 软件求解线性规划例1:max 23..43103512,0z x y s t x y x y x y =++≤+≤≥在模型窗口输入:model: max=2*x+3*y; 4*x+3*y<=10; 3*x+5*y<12;! the optimal value is :7.454545 ; End 如图所示:运行结果如下(点击 工具栏上的‘solve ’或点击菜单‘lingo ’下的‘solve ’即可):Global optimal solution found.Objective value: 7.454545(最优解函数值) Total solver iterations: 2(迭代次数)Variable (最优解) Value Reduced Cost X 1.272727 0.000000 Y 1.636364 0.000000Row Slack or Surplus Dual Price 1 7.454545 1.000000 2 0.000000 0.9090909E-01 3 0.000000 0.5454545例2:12123124125max 54..390280450z x x s t x x x x x x x x x x =+++=++=++=≥ 在模型窗口输入:model:max=5*x1+4*x2; x1+3*x2+x3=90; 2*x1+x2+x4=80; x1+x2+x5=45; end运行(solve )结果如下:Global optimal solution found.Objective value: 215.0000 Total solver iterations: 3Variable Value Reduced Cost X1 35.00000 0.000000 X2 10.00000 0.000000 X3 25.00000 0.000000 X4 0.000000 1.000000 X5 0.000000 3.000000Row Slack or Surplus Dual Price 1 215.0000 1.000000 2 0.000000 0.000000 3 0.000000 1.000000 4 0.000000 3.000000例323123234235min 2..223120z x x s t x x x x x x x x x x =-+-+=-+=-+=≥ 在模型窗口输入:model:min=-x2+2*x3; x1-2*x2+x3=2; x2-3*x3+x4=1; x2-x3+x5=2; end运行结果如下:Global optimal solution found.Objective value: -1.500000 Total solver iterations: 2Variable Value Reduced Cost X2 2.500000 0.000000 X3 0.5000000 0.000000 X1 6.500000 0.000000 X4 0.000000 0.5000000 X5 0.000000 0.5000000Row Slack or Surplus Dual Price 1 -1.500000 -1.000000 2 0.000000 0.000000 3 0.000000 0.5000000 4 0.000000 0.5000000例4:min ..124x y z s t x y x z +++≤+= 在模型窗口输入:model :min =@abs (x)+@abs (y)+@abs (z); x+y<1; 2*x+z=4; @free (x); @free (y); @free (z);End求解器状态如下:(可看出是非线性模型!)运行结果为:Linearization components added:Constraints: 12Variables: 12Integers: 3Global optimal solution found.Objective value: 3.000000Extended solver steps: 0Total solver iterations: 4Variable Value Reduced Cost X 2.000000 0.000000Y -1.000000 0.000000 Z 0.000000 0.000000Row Slack or Surplus Dual Price1 3.000000 -1.0000002 0.000000 1.0000003 0.000000 -1.000000二、用lingo软件进行灵敏度分析实例例5:max 603020864842 1.5202 1.50.585,,0S x y z x y z x y z x y z y x y z =++++≤++≤++≤≤≥在模型窗口输入: Lingo 模型:model:max=60*x+30*y+20*z; 8*x+6*y+z<48; 4*x+2*y+1.5*z<20; 2*x+1.5*y+0.5*z<8; y<5; end(一)求解报告(solution report )通过菜单Lingo →Solve 可以得到求解报告(solution report )如下:Global optimal solution found at iteration: 0 Objective value: 280.0000Variable Value Reduced Cost X 2.000000 0.000000 Y 0.000000 5.000000 Z 8.000000 0.000000Row Slack or Surplus Dual Price 1 280.0000 1.000000 2 24.00000 0.000000 3 0.000000 10.00000 4 0.000000 10.00000 5 5.000000 0.000000分析Value,Reduced Cost ,Slack or Surplus ,Dual Price 的意义如下: 1、最优解和基变量的确定Value 所在列给出了问题的最优解。

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)

2024/1/27
求解整数规划问题
Lingo支持整数变量的定义和求 解,能够处理复杂的整数规划 问题。
求解非线性规划问题
Lingo具备强大的非线性求解能 力,能够处理包含非线性目标 函数和约束条件的问题。
数据分析和可视化
Lingo提供丰富的数据分析和可 视化工具,帮助用户更好地理 解问题和分析结果。
03
目标函数
04
以总运费为目标函数,求解最优 运输方案。
Lingo程序实现
使用Lingo语言描述问题,调用 Lingo求解器求解。
2024/1/27
22
资源分配问题
问题描述
有若干项任务需要完成,每项任务需要一定数量 的资源,且每项任务完成后有一定的收益。问题 是如何分配有限的资源给各项任务,使得总收益 最大。
将数学模型中的目标函数 输入到Lingo程序中,注意 正确设置优化方向(最大 化或最小化)。
将数学模型中的约束条件 逐一输入到Lingo程序中, 确保语法和逻辑正确。
保存编写好的Lingo程序, 并点击运行按钮开始求解 线性规划问题。
2024/1/27
18
程序运行与结果分析
查看运行结果
分析结果合理性
Lingo软件会自动求解线性规划问题,并显 示运行结果,包括目标函数值、决策变量 取值等。
根据问题的实际情况,分析运行结果的合 理性,确保解符合问题的实际要求。
调整模型或参数
输出结果报告
如果运行结果不合理或不符合预期,可以 调整数学模型或参数设置,并重新运行程 序进行求解。
2024/1/27
将运行结果整理成报告形式,包括问题背景 、数学模型、运行结果、结果分析等部分, 以便后续参考和使用。

最优化方法——用Lingo对线性规划进行灵敏度分析

最优化方法——用Lingo对线性规划进行灵敏度分析

最优化方法——用Lingo对线性规划进行灵敏度分析lingo软件求解线性规划及灵敏度分析注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法~所有程序运行环境为lingo10。

一、用lingo软件求解线性规划例1:max23zxy,,stxy..4310,, 3512xy,,xy,0,在模型窗口输入:model:max=2*x+3*y;4*x+3*y<=10;3*x+5*y<12;! the optimal value is :7.454545 ; End如图所示:运行结果如下(点击工具栏上的‘solve’或点击菜单‘lingo’下的‘solve’即可):Global optimal solution found.Objective value: 7.454545(最优解函数值)Total solver iterations: 2(迭代次数)road, are the structural road traffic within the city. In addition, suitable for high speed, and high-speed, S206, S307, also serve inner-city traffic. Outbound traffic: existing highways (suitable for high-speed, and high speed), darts (S206, S307) and Yi wei road, and so on. After years of constant development, road conditions have been greatly Variable (最优解) Value Reduced CostX 1.272727 0.000000Y 1.636364 0.000000Row Slack or Surplus Dual Price1 7.454545 1.0000002 0.000000 0.9090909E-013 0.000000 0.5454545 例2:max54zxx,,12stxxx..390,,,123280xxx,,,124xxx,,,45125x,0在模型窗口输入:model:max=5*x1+4*x2;x1+3*x2+x3=90;2*x1+x2+x4=80;x1+x2+x5=45;end运行(solve)结果如下:Global optimal solution found.Objective value: 215.0000Total solver iterations: 3Variable Value Reduced CostX1 35.00000 0.000000X2 10.00000 0.000000X3 25.00000 0.000000X4 0.000000 1.000000X5 0.000000 3.000000Row Slack or Surplus Dual Price1 215.0000 1.0000002 0.000000 0.0000003 0.000000 1.0000004 0.000000 3.000000例3conditions have been greatly speed, and high speed), darts (S206, S307) and Yi wei road, and so on. After years of constant development, road-city traffic. Outbound traffic: existing highways (suitable forhigh-speed, S206, S307, also serve inner-ion, suitable for high speed, and highroad, are the structural road traffic within the city. In addit2 min2zxx,,,23stxxx..22,,,123xxx,,,31234xxx,,,2235x,0在模型窗口输入:model:min=-x2+2*x3;x1-2*x2+x3=2;x2-3*x3+x4=1;x2-x3+x5=2;end运行结果如下:Global optimal solution found.Objective value: -1.500000Total solver iterations: 2Variable Value Reduced CostX2 2.500000 0.000000X3 0.5000000 0.000000X1 6.500000 0.000000X4 0.000000 0.5000000X5 0.000000 0.5000000Row Slack or Surplus Dual Price1 -1.500000 -1.0000002 0.000000 0.0000003 0.000000 0.50000004 0.000000 0.5000000 例4:minxyz,,stxy..1,,24xz,,在模型窗口输入:model:min=@abs(x)+@abs(y)+@abs(z);x+y<1;2*x+z=4;@free(x);@free(y);@free(z);greatly nd high speed), darts (S206, S307) and Yi wei road, and so on. After years of constant development, road conditions have beenspeed, a-city traffic. Outbound traffic: existing highways (suitable for high-speed, S206, S307, also serve inner-road, are the structural roadtraffic within the city. In addition, suitable for high speed, and high3 End求解器状态如下:(可看出是非线性模型~)运行结果为:Linearization components added: Constraints: 12Variables: 12Integers: 3Global optimal solution found. Objective value: 3.000000 Extended solver steps: 0Total solver iterations: 4 Variable Value Reduced CostX 2.000000 0.000000Y -1.000000 0.000000Z 0.000000 0.000000Row Slack or Surplus Dual Price1 3.000000 -1.0000002 0.000000 1.0000003 0.000000 -1.000000二、用lingo软件进行灵敏度分析实例例5:conditions have been greatly speed, and high speed), darts (S206,S307) and Yi wei road, and so on. After years of constant development, road-city traffic. Outbound traffic: existing highways (suitable forhigh-speed, S206, S307, also serve inner-ion, suitable for high speed, and highroad, are the structural road traffic within the city. In addit4 max603020Sxyz,,,8648xyz,,,421.520xyz,,, 21.50.58xyz,,,y,5xyz,,0,在模型窗口输入:Lingo模型:model:max=60*x+30*y+20*z;8*x+6*y+z<48;4*x+2*y+1.5*z<20;2*x+1.5*y+0.5*z<8;y<5;end(一)求解报告(solution report)通过菜单Lingo?Solve可以得到求解报告(solution report)如下:Global optimal solution found at iteration: 0Objective value: 280.0000Variable Value Reduced CostX 2.000000 0.000000Y 0.000000 5.000000Z 8.000000 0.000000Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.000000分析Value,Reduced Cost,Slack or Surplus,Dual Price的意义如下: 1、最优解和基变量的确定Value所在列给出了问题的最优解。

2024版lingo解决线性规划问题的程序经典要点

2024版lingo解决线性规划问题的程序经典要点

资源分配问题案例
01
问题描述
资源分配问题涉及如何将有限的资源分配给不同的项目或部 门,以实现整体效益最大化的目标。
02 03
Lingo模型构建
在资源分配问题中,决策变量通常表示分配给不同项目或部 门的资源数量。目标函数可以是最大化整体效益或满足特定 目标下的资源分配,约束条件则包括资源总量的限制、项目 或部门的需求限制等。
数据处理能力
Excel在数据处理和表格计算方面 非常强大,而Lingo则更适合处理 复杂的优化问题。
求解规模
对于较小规模的线性规划问题, Excel的规划求解工具可以胜任, 但对于大规模问题,Lingo更具优 势。
扩展性
Lingo可以通过编写程序来解决各 种复杂的优化问题,而Excel则受 限于其内置的函数和工具。
对偶单纯形法
内点法
启发式算法
单纯形法是求解线性规 划问题的经典方法,它 通过迭代的方式在可行 域的顶点上寻找最优解。
对偶单纯形法是单纯形 法的一种改进,它通过 对偶问题的求解来得到 原问题的最优解,适用 于初始基可行解不易找 到的情况。
内点法是一种适用于大 规模线性规划问题的求 解方法,它通过在可行 域内部寻找最优解来避 免单纯形法在迭代过程 中可能出现的退化情况。
Lingo程序编写注意事项
变量命名规范 变量命名应具有描述性,避免使用无意 义的字符或数字组合,以提高代码可读
性和可维护性。 避免重复计算
在循环或迭代过程中,避免重复计算 相同的表达式或值,以减小计算量和
时间复杂度。
注释清晰明了 在关键代码处添加注释,解释代码功 能和实现思路,便于他人理解和修改。
Lingo软件功能与特点
功能丰富
Lingo软件提供了丰富的数学规划求解功能,包括 线性规划、非线性规划、整数规划、二次规划等。 用户可以根据实际问题需求选择合适的求解方法。

(2024年)用Lingo软件编程求解规划问题解决方案

(2024年)用Lingo软件编程求解规划问题解决方案
用Lingo软件编程求解规划问题解 决方案
2024/3/26
1
目录
2024/3/26
• 引言 • 规划问题建模 • Lingo软件编程实现 • 规划问题求解与分析 • 案例研究:用Lingo解决实际规划问题 • 总结与展望
2
01
引言
2024/3/26
3
规划问题概述
规划问题定义
规划问题是一类优化问题,旨在 寻找满足一系列约束条件的决策 变量最优解,使得目标函数达到 最优(最大或最小)。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
2024/3/26
29
THANKS
感谢观看
2024/3/26
30
。同时,需要注意Lingo语言的语法和规则,确保模型的正确性和可解
性。
10
03
Lingo软件编程实现
2024/3/26
11
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
束条件。
8
数学模型建立
1 2
选择合适的数学模型
根据问题的特点和目标,选择合适的数学模型, 如线性规划、整数规划、非线性规划等。
构建目标函数
根据优化目标,构建目标函数,即问题的优化标 准。
3
构建约束条件方程

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)Lingo12软件培训教案Lingo 主要用于求解线性规划,整数规划,非线性规划,V10以上版本可编程。

例1 一个简单的线性规划问题0 , 600 2 100 350 st. 3 2max >=<=+=<<=++=y x y x x y x y x z!exam_1.lg4 源程序 max = 2*x+3*y; [st_1] x+y<350; [st_2] x<100;2*x+y<600; !决策变量黙认为非负; <相当于<=; 大小写不区分当规划问题的规模很大时,需要定义数组(或称为矩阵),以及下标集(set) 下面定义下标集和对应数组的三种方法,效果相同::r1 = r2 = r3, a = b = c. sets :r1/1..3/:a; r2 : b;r3 : c;link2(r1,r2): x; link3(r1,r2,r3): y; endsets data :ALPHA = 0.7; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddatarows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量;endsets!-------------------------------------;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!------------------------------------;min = @sum(links: c*x); !目标函数=运输总成本;@for(rows(i):@sum(cols(j): x(i,j))<=s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j))=d(j) ); !需求约束;end例3把上述程序进行改进,引进运行子模块和打印运算结果的语句:!exam_3.lg4 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量;endsets!==================================;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!==================================;submodel transfer:min = cost; ! 目标函数极小化;cost = @sum(links: c*x); !目标函数:运输总成本;@for(rows(i):@sum(cols(j): x(i,j)) < s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j)) > d(j) ); !需求约束;endsubmodel!==================================;calc:@solve(transfer); !运行子模块(解线性规划);@divert('transfer_out.txt');!向.txt文件按自定格式输出数据;@write('最小运输成本=',cost,@newline(1),'最优运输方案x=');@for(rows(i):@write(@newline(1));@writefor(cols(j): ' ',@format(x(i,j),'3.0f') ) );@divert(); !关闭输出文件;endcalcend打开transfer_out.txt文件,内容为:最小运输成本=664最优运输方案x=0 19 0 0 41 0 0 01 0 0 32 0 0 0 00 11 0 0 0 0 40 00 0 0 0 0 5 0 3834 7 0 0 0 0 0 00 0 22 0 0 27 3 0例4 data段的编写技巧(1):从txt文件中读取原始数据!exam_3.lg4 源程序中的data也可以写为:data:s = @file('transfer_data.txt');d = @file('transfer_data.txt');c = @file('transfer_data.txt');enddata其中,transfer_data.txt的内容为:!transfer.lg4程序的数据;!产量约束s= ;60,55,51,43,41,52 ~!需求约束d= ;35 37 22 32 41 32 43 38 ~!运输单价c= ;6 2 67 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3 ~!注:字符~是数据分割符,若无此符,视所有数据为一个数据块,只赋给一个变量;例5lingo程序的的3种输入和3种输出方法;!exam_5.lg4的源程序;sets:rows/1..3/: ;cols/1..4/: ;link(rows,cols): a, b, mat1, mat2;endsetsdata:b = 1,2,3,45,6,7,89,10,11,12; !程序内输入;a = @file('a.txt'); !外部txt文件输入;mat1 = @ole('d:\lingo12\data.xls',mat1); !EXcel文件输入; enddatacalc:@text('a_out.txt') = a; !列向量形式输出数据;@for(link: mat2 = 2*mat1);@ole('d:\lingo12\data.xls') = mat2 ;!把mat2输出到xls文件中的同名数据块;!向.txt文件按自定格式输出数据(参照前例);Endcalc例6 程序段中的循环和选择结构举例!exam_6.lg4的源程序;sets:rows/1..5/:;cols/1..3/:;links(rows,cols):d;endsetsdata:d=0 2 34 3 21 3 24 7 22 1 6;enddatacalc:i=1;@while(i#le#5:a = d(i,1);b = d(i,2);c = d(i,3);@ifc(a#eq#0:@write('infeasible!',@newline(1));@elsedelta = b^2-4*a*c;sqrt = @sqrt(@if(delta#ge#0, delta,-delta));@ifc(delta#ge#0:@write('x1=',(-b+sqrt)/2/a,'x2=',(-b-sqrt)/2/a,@newline(1));@else@write('x1=',-b/2/a,'+',sqrt/2/a,'i','x2=',-b/2/a,'-',sqrt/2/a,'i',@newline(1));););i=i+1;);endcalc本程序中的循环结构也可以用@for(rows(i): 程序体);进行计算。

lingo解线性规划问题个人总结

lingo解线性规划问题个人总结

(2)sets: dim/1..5/:x,a,b,c; endsets data: a=2 2 1 1 5; b=9 15 4 3 2; c=4.3 5.4 5.0 4.4 4.5; enddata max=@sum(dim(i):c(i)*x(i)/100)-2.75; @sum(dim(i):x(i))<1100; x(2)+x(3)+x(4)>400; @sum(dim(i):x(i)*a(i)/1100)<1.4; @sum(dim(i):x(i)*b(i)/1100)<5; @for(dim(i):x(i)>0);
;
enddata min=@sum(link:time*x); @for(swimming(i):@sum(player(j):x(i,j))=1);!一种泳姿有且只能是一个人参加; @for(player(j):@sum(swimming(i):x(i,j))<1);!每个人参加的比赛不能多于一项; end
2.
.某班准备从 5 名游泳队员中选拔 4 人组成接力队, 参加学校的 4 乘 100 米混
合泳接力比赛。5 名队员 4 种泳姿的百米平均成绩如表所示,问应如何选拔 队员组成接力队? 如果最近队员丁的蛙泳成绩有较大退步,只有 1 分 15 秒 2;而队员戊经过艰苦 训练自由泳成绩有所进步,达到 57 秒 5,组成接力队的方案是否应调整?(单 位 秒) 甲 蝶泳 乙 丙 丁 70 戊 67.4 66.8 57.2 78
Lingo 程序: max=0.1*y1-0.2226*x1-0.1833*x2-0.2618*x3-0.1695*x40.1571*y2-0.0196*y3;!目标函数,易拉罐利润-余料损失; 1.5*x1+2*x2+x3+3*x4<14.4; x1+x2+x3<5; x4<2;!条件约束; y1=@smin(x1+2*x2+4*x4,(10*x1+4*x2+16*x3+5*x4)/2);!配套易拉罐的个数; y2=x1+2*x2+4*x4-y1;!余料易拉罐身; y3=10*x1+4*x2+16*x3+5*x4-2*y1;

实验一、应用LINGOB软件求解线性规划2

实验一、应用LINGOB软件求解线性规划2

问题1.1 某工厂在计划期内要安排生产A、B两种产 . 品,已知生产单位产品所需设备台时及对甲、乙两 种原材料的消耗,有关数据如表1.1.问:应如何安 排生产计划,使工厂获利最大?
• 例1 用LINGO求解例1.1。 • 解 例1.1建立的线性规划数学模型为
max S 2 x1 3 x2 x1 2 x2 8 4x 16 1 s.t 4 x2 12 x1 , x2 0
Range Report :
Ranges in which the basis is unchanged: Allowable Allowable Coefficient Increase Decrease 5.000000 3.000000 1.000000 4.000000 1.000000 1.333333 3.000000 4.000000 INFINITY Righthand Side Ranges Current Allowable RHS Increase 45.00000 5.000000 80.00000 10.00000 90.00000 INFINITY
在LINGO的MODEL窗口内输入如下模型: model: max=2*x1+3*x2; x1+2*x2<=8; 4*x1<=16; 4*x2<=12; End
选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解” 按纽,如果模型有语法错误,则弹出一个标题为 “LINGO Error Message”(错误信息)的窗口,指出在 哪一行有怎样的错误,每一种错误都有一个编号(具 体含义可查阅相关文献或LINGO的Help)。改正错误 以后再求解,如果语法通过, LINGO用内部所带的求 解程序求出模型的解, 然后弹出一个标题为“LINGO Solver Status”(求解状态)的窗口, 其内容为变量个数、 约束条件个数、优化状态、耗费内存、所花时间等信 息, 点击Close关闭窗口, 屏幕上出现标题为“Solution Report”(解的报告)的信息窗口, 显示优化计算(线性规 划中换基迭代)的步数、优化后的目标函数值、列出各 变量的计算结果。本例的具体内容如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佛山科学技术学院
上机报告
课程名称数学应用软件
上机项目Lingo求解线性规划问题
专业班级
一.上机目的
1.了解线性规划的基本理论知识。
2.对比Matlab求解线性规划,学习用Lingo求解线性规划的问题。
二.上机内容
(1)教材习题第2题
(2)教材习题第3题
(3)教材习题第6题
三.上机方法与步骤
第(1)题:
要求线性规划目标函数最大值,选用lingo编程model:+目标函数+约束条件+end运行且中间对每个变量作整数说明即可。
model:
title原料生产最优计划;
max=12*x1+5*x2+4*x3;
4*x1+3*x2+x3<=180;
2*x1+6*x2+3*x3<=200;
@gin(x1);@gin(x2);@gin(x3);
x11+2*x12+3*x13<=80;
x21+x22+3*x23<=100;
x11+x21>=70;
x12+x22>=50;
x13+x23>=20;
@gin(x11);
@gin(x12);
@gin(x13);
@gin(x21);
@gin(x22);
@gin(x23);
end
第2题:
设生产 产品为 件,生产 产品为 ,生产 产品为 件。
设 车床加工零件 数量为 ,加工 数量为 ,加工 数量为 , 车床加工零件 数量为 ,加工 数量为 ,加工 数量为 。
要求线性规划目标函数最小值,选用lingo编程model:+目标函数+约束条件+end运行且中间对每个变量作整数说明即可。
model3;3*x12+5*x13+3*x21+3*x22+6*x23;
x11+x12+x13>=60;
x21+x22+x23>=100;
x11+x21>=45;
x12+x22>=75;
x13+x23>=40;
end
四.上机结果
第1题:
第2题:
第3题:
end
第3题:
设煤矿厂A向三个居民区分别供煤 ,煤矿厂B向三个居民区分别供煤 。
要求线性规划目标函数最大值,选用lingo编程model:+目标函数+约束条件+end运行即可。
model:
title分配供煤总运输最优化;
min=10*x11+5*x12+6*x13+4*x21+8*x22+15*x23;
相关文档
最新文档