人教版数学高一-集合间的基本关系 教案
集合间的基本关系(教案)-2021-2022学年高一上学期数学人教A版(2019)必修第一册
第一章集合与常用逻辑用语1.2集合间的基本关系教学设计一、教学目标1.通过类比,理解两个集合的包含关系,达到逻辑推理核心素养水平二的要求2.利用Venn图来帮助理解集合的包含关系,达到直观想象核心素养水平一的要求.3.理解空集与子集、真子集之间的关系,达到逻辑推理核心素养水平一的要求.4.能通过相关计算明确集合之间的包含或相等关系,达到数学运算核心素养水平一的要求.二、教学重难点1.教学重点子集和真子集的概念.集合的相等.2.教学难点元素与子集,即属于与包含之间的关系.三、教学过程(一)复习导入思考:实数之间有相等关系、大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.教师:对两个数a,b,应有a>b或a=b或a<b而对于两个集合A,B,它们之间是否也有类似的关系呢?学生:思考讨论.(二)探究新知探究一:子集分析实例:实例:考察下列三组集合,并说明两集合之间存在怎样的关系.(1){1,2,3},{1,2,3,4,5}A B ==;(2)C 为立德中学高一2班全体女生组成的集合,D 为这个班全体学生组成的集合;(3){},{}E x x F x x ==∣是两条边相等的三角形∣是等腰三角形学生:(1)(2)的共同特点是A 的每一个元素都是B 的元素。
教师:具备(1)(2)的两个集合之间关系的称A 是B 的子集,那么A 是B 的子集怎样定义呢? 学生合作讨论、归纳子集的共性.子集定义:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合B 的子集.记作:A B ⊆或B A ⊇.读作:“A 包含于B ”(或“B 包含A ”)学生:E 是F 的子集,同时F 是E 的子集.教师:类似(3)的两个集合称为相等集合.集合相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A = B .也就是说,若A B ⊆,且B A ⊆,则A = B .教师提问:.集合A 与B 什么关系?学生回答:A = B .探究二:真子集教师:观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5},B ={1,2,3,4,5,6};(2)A ={四边形},B ={多边形}.学生:思考回答.真子集定义:如果集合A B ⊆,但存在元素x B ∈,且x A ∉,就称集合A 是集合B 的真子集.记作:A B (或B A ). R :实数集.探究三:空集教师:方程x 2 + 1 = 0没有实数根,所以方程x 2 + 1 = 0的实数根组成的集合中没有元素.定义:一般地,我们把不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.问题:你还能举几个空集的例子吗?学生:思考回答.探究四:韦恩图韦恩图(Venn 图):用平面上封闭曲线的内部来代表集合的图称为韦恩图(Venn 图).练习1:下图中,集合A 是否为集合B 的子集?练习2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×: ①A ={1,3,5},B ={1,2,3,4,5,6}(√)②A ={1,3,5},B ={1,3,6,9}(×)③A ={0},B ={x | x 2+2=0}(×)④A ={a ,b ,c ,d },B ={d ,b ,c ,a }(√)(三)课堂练习1.已知集合{} 0,1,2A ⊆,且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A.6B.5C.4D.3答案:A 解析:集合{0,1,2}A ⊆,且集合A 中至少含有一个偶数,∴满足条件的集合A 可以为:{0},{2},{0,1},{1,2},{0,2},{0,1,2},共6个,故选A . 2.已知集合{}{}3|log (2)2,|20A x x B x x m =-≤=->,若A B ⊆,则实数m 的取值范围是( )A.(,4]-∞B.(,4)-∞C.(,22)-∞D.(,22]-∞答案:A 解析:{}{}3|log (2)2|211A x x x x =-≤=<≤,{}|20|2m B x x m x x ⎧⎫=->=>⎨⎬⎩⎭,则由A B ⊆,得22m ≤,解得4m ≤,则实数m 的取值范围是(],4-∞.故选A . 3.集合{3,1}A =-,2{2,1}B m m =--,且A B =,则实数m =( )A.3B.1-C.3或1-D.1答案:C解析:由集合{3,1}A =-,2{2,1}B m m =--, A B =,223m m ∴-=,即2230m m --=,解得3m =或1m =-. 故选:C.(四)小结作业小结:本节课我们主要学习了哪些内容?1. 子集的定义2. 集合的相等3. 真子集的定义4. 空集的定义5. Venn 图四、板书设计1.子集的定义2.集合的相等3.真子集的定义4.空集的定义5.Venn图。
人教版高中数学教案-集合间的基本关系
§1.1.2集合間的基本關係一. 教學目標:1.知識與技能(1)瞭解集合之間包含與相等的含義,能識別給定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn圖表達集合間的關係,體會直觀圖示對理解抽象概念的作用.2. 過程與方法讓學生通過觀察身邊的實例,發現集合間的基本關係,體驗其現實意義.3.情感.態度與價值觀(1)樹立數形結合的思想.(2)體會類比對發現新結論的作用.二.教學重點.難點重點:集合間的包含與相等關係,子集與其子集的概念.難點:難點是屬於關係與包含關係的區別.三.學法與教學用具1.學法:讓學生通過觀察.類比.思考.交流.討論,發現集合間的基本關係.2.學用具:投影儀.四.教學思路(—)創設情景,揭示課題問題l:實數有相等.大小關係,如5=5,5<7,5>3等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?讓學生自由發言,教師不要急於做出判斷。
而是繼續引導學生;欲知誰正確,讓我們一起來觀察.研探.(二)研探新知投影問題2:觀察下面幾個例子,你能發現兩個集合間有什麼關係了嗎?(1){1,2,3},{1,2,3,4,5}A B ==;(2)設A 為一中高一(3)班男生的全體組成的集合,B 為這個班學生的全體組成的集合;(3)設{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.組織學生充分討論.交流,使學生發現兩個集合所含元素範圍存在各種關係,從而類比得出兩個集合之間的關係:①一般地,對於兩個集合A ,B ,如果集合A 中任意一個元素都是集合B 中的元素,我們就說這兩個集合有包含關係,稱集合A 為B 的子集.記作:()A B B A ⊆⊇或讀作:A 含於B(或B 包含A).②如果兩個集合所含的元素完全相同,那麼我們稱這兩個集合相等.教師引導學生類比表示集合間關係的符號與表示兩個實數大小關係的等號之間有什麼類似之處,強化學生對符號所表示意義的理解。
集合间的基本关系教案
集合间的基本关系教案1.1.2 集合间的基本关系教学目标:1.知识与技能1) 理解集合包含和相等的含义;2) 能够识别给定集合的子集;3) 能够使用 Venn 图表达集合之间的包含关系。
2.过程与方法1) 通过复元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合的从属关系,探究集合之间的包含与相等关系;2) 初步研究使用最基本的集合语言表示有关的数学对象,体会集合语言,发展运用数学语言进行交流的能力。
3.情感、态度、价值观1) 了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义。
2) 探索利用直观图示(Venn 图)理解抽象概念,体会数形结合的思想。
重点、难点:重点:(1) 帮助学生由具体到抽象地认识集合与集合之间的关系——子集;2) 如何确定集合之间的关系。
难点:集合关系与其特征性质之间的关系。
教学过程:1.新课引入问题1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?2.概念的形成问题1的探究:具体实例1:看下面各组中两个集合之间有什么关系1) A={1,2,3},B={1,2,3,4,5}2) A={菱形},B={平行四边形}3) A={x|x>2},B={x|x>1}学生分组讨论)大家分析的都很好,能够抓住问题的核心,从元素看集合。
在第3组中出现了两个不等式,我们可以借助于数轴进而看到它们的关系(黑板画数轴表示集合)。
具有这样关系的两个集合如何准确地用数学语言表述呢?1) 子集的定义:文字语言:一般地,对于两个集合 A,B,如果集合 A 中的任何一个元素都是集合 B 中的元素,我们就说这两个集合有包含关系,称集合 A 为集合 B 的子集。
符号语言:A⊆B 或B⊇A。
图形语言:B 这种图称为 XXX 图。
A练1、用适当的符号填空:0.{0},{正方形}。
{矩形},三角形{等边三角形}梯形}。
人教A版高中数学高一必修1教案1集合间的基本关系
1.1.2集合间的基本关系[读教材·填要点]1.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集A⊆B(或B⊇A)2.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集A B(或B A)3.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.4.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.[小问题·大思维]1.若A B,则A⊆B且A≠B,对吗?提示:对.∵A B,首先A⊆B,其中B中至少有一个元素不属于A,即A≠B.2.任何集合都有真子集吗?提示:不是,空集∅就没有真子集.3.{0}和∅表示同一集合吗?它们之间有什么关系?提示:{0}和∅不是同一个集合.{0}表示含有一个元素0的集合,∅是不含任何元素的集合,且∅{0}.有限集合子集确定问题[例1]写出集合A={1,2,3}的所有子集和真子集.[自主解答]由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.——————————————————1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个. ————————————————————————————————————————1.已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解:当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5}.所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.集合间关系的判定[例2]下列各式正确的是________.(1){a}⊆{a};(2){1,2,3}={3,1,2};(3)0⊆{0};(4){1}{x|x≤5};(5){1,3}{3,4}.[自主解答]题号正误原因(1)√任何一个集合都是它本身的子集.(2) √ 两集合中的元素是一样的,符合集合相等的定义. (3) × 元素0是集合{0}中的一个元素,故应为0∈{0}.(4) √ ∵1<5,∴1∈{x |x ≤5}.∴{1}⊆{x |x ≤5}.又∵{1}≠{x |x ≤5},∴{1}{x |x ≤5}.(5) ×∵1∈{1,3},但1∉{3,4},∴{1,3}⃘{3,4}.“”是“真包含于”的意思[答案] (1)(2)(4) ——————————————————集合间关系的判定的步骤:首先,判断一个集合A 中的任意元素是否属于另一集合B ,若是,则A ⊆B ,否则A B ;,其次,判断另一个集合B 中的任意元素是否属于第一个集合A ,若是,则B ⊆A ,否则B A ;,最后,下结论:若A ⊆B ,B ⊆A ,则A =B ;若A ⊆B ,B A ,则A B ;若AB ,B ⊆A ,则B A ;若上述三种情况都不成立,则AB ,BA .[注意] 有时一个集合可以看成另一个集合的元素,如{1}可以看成集合{{1},1,2,3}中的元素,也可以看成子集,因此{1}∈{{1},1,2,3}与{1}⊆{{1},1,2,3}都正确. ————————————————————————————————————————2.集合M ={x |x 2+x -6=0},N ={x |2x +7>0},试判断集合M 和N 的关系. 解:M ={-3,2},N =⎩⎨⎧⎭⎬⎫x |x >-72.∵-3>-72,2>-72,∴-3∈N,2∈N .∴M ⊆N . 又0∈N ,但0∉M ,∴M N .集合间关系的应用[例3] 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.[自主解答] ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1解得-1≤m <2, 综上得m ≥-1. ——————————————————(1)利用集合之间的关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实点表示,不含“=”用虚点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论是必须的.————————————————————————————————————————3.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,求a 的值. 解:∵A ⊇B ,而a 2-a +1∈B ,∴a 2-a +1∈A . ∴a 2-a +1=3或a 2-a +1=a . 当a 2-a +1=3时,a =2或a =-1.(1)a =2时,A ={1,3,2},B ={1,3},这时满足条件A ⊇B ; (2)a =-1时,A ={1,3,-1},B ={1,3},这时也满足条件A ⊇B .当a 2-a +1=a 时,a =1,此时A ={1,3,1},B ={1,1},根据集合中元素的互异性,故舍去a =1.∴a 的值为2或-1.解题高手易错题审题要严,做题要细,一招不慎,满盘皆输,试试能否走出迷宫!已知M ={x |x 2-3x +2=0},N ={x |x 2-2x +a =0},若N ⊆M ,求实数a 的取值范围. [错解] ∵M ={x |x 2-3x +2=0}={1,2},(1)当N ={1}时,有⎩⎪⎨⎪⎧1+1=2,1×1=a ,∴a =1.(2)当N ={2}时,有⎩⎪⎨⎪⎧2+2=2,2×2=a ,不成立.(3)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.所以,a =1.[错因] 空集是一个特殊的集合,是任何集合的子集,在解决集合关系问题时极易忽略∅,错解中没有考虑集合N 为∅的情况.[正解] ∵M ={x |x 2-3x +2=0}={1,2},又N ⊆M ,∴N =∅,或N ={1},或N ={2},或N ={1,2}. (1)当N =∅时,方程x 2-2x +a =0的判别式Δ=4-4a <0,即a >1.(2)当N ={1}时,有⎩⎪⎨⎪⎧ 1+1=2,1×1=a ,∴a =1.(3)当N ={2}时,有⎩⎪⎨⎪⎧2+2=2,2×2=a ,不成立.(4)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.综上可知实数a 的取值范围是a ≥1.1.下列命题中,正确的有( ) ①空集是任何集合的真子集; ②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集; ④如果不属于B 的元素也不属于A ,则A ⊆B . A .①② B .②③ C .②④D .③④解析:①空集只是空集的子集而非真子集,故①错;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确.答案:C2.设集合M ={x |x >-2},则下列选项正确的是( ) A .{0}⊆M B .{0}∈M C .∅∈MD .0⊆M解析:选项B 、C 中均是集合之间的关系,符号错误;选项D 中是元素与集合之间的关系,符号错误.答案:A3.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定是菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .答案:B4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:∵∅{x |x 2-x +a =0}. ∴{x |x 2-x +a =0}≠∅. 即x 2-x +a =0有实根. ∴Δ=(-1)2-4a ≥0,得a ≤14.答案:a ≤145.若{a,0,1}={c ,1b ,-1},则a =________,b =________,c =________.解析:∵1b ≠0,∴c =0,∴a =-1,1b =1.∴a =-1,b =1.答案:-1 1 06.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,求实数m 的值. 解:∵B ⊆A ,∴m 2=-1,或m 2=2m -1,当m 2=-1时,显然无实数根;当m 2=2m -1时,m =1.∴实数m =1.一、选择题1.已知集合M ={x ∈Z |-3<x ≤1},则它的真子集的个数为( ) A .12 B .14 C .15D .16解析:∵M ={x ∈Z |-3<x ≤1}={-2,-1,0,1}共有4个元素,∴它的真子集共有24-1=15个.答案:C2.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集个数为( )A .1B .2C .3D .4解析:由题意知A *B ={1,3}, ∴A *B 的子集个数为22=4个. 答案:D3.已知集合M ={x |-5<x <3,x ∈Z },则下列集合中为集合M 子集的是( ) A .P ={-3,0,1} B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }解析:先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .答案:D4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( ) A .6 B .5 C .4D .3解析:集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.答案:A 二、填空题5.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是________.解析:∵A ⊇B ,∴⎩⎪⎨⎪⎧a -1≤3,a +2≥5,∴3≤a ≤4. 答案:3≤a ≤46.设a ,b ∈R ,集合{0,ba,b }={1,a +b ,a },则b -a =________.解析:由题意可知a ≠0,则a +b =0,a =-b ,所以ba =-1,则a =-1,b =1,故b-a =2.答案:27.下列关系中正确的是________.①∅∈{0}; ②∅{0}; ③{0,1}⊆{(0,1)}; ④{(a ,b )}={(b ,a )}.解析:∵∅{0},∴①错误;空集是任何非空集合的真子集,②正确,{(0,1)}是含有一个元素的点集,③错误;{(a ,b )}与{(b ,a )}是两个不等的点集,④错误,故正确的是②.答案:②8.已知集合P ={1,2},那么满足Q ⊆P 的集合的个数是________. 解析:∵P ={1,2},Q ⊆P ,∴集合Q 可以是∅或{1}或{2}或{1,2}. 答案:4 三、解答题9.由“2,a ,b ”三个元素构成的集合与由“2a,2,b 2”三个元素构成的集合是同一个集合,求a ,b 的值.解:根据集合相等,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.10.设集合A ={x |x 2-5x +6=0},B ={x |x 2-(2a +1)x +a 2+a =0},若B ⊆A ,求a 的值.解:法一:A ={x |x 2-5x +6=0}={2,3},由B ⊆A 得,B =∅,或B ={2},或B ={3},或B ={2,3},由于Δ=(2a +1)2-4a 2-4a =1>0,∴B ≠∅,且B 含有两个不同元素.∴B ={2,3},需2a +1=5和a 2+a =6同时成立, ∴a =2. 综上所述:a =2.法二:A ={x |x 2-5x +6=0}={2,3}, B ={x |x 2-(2a +1)x +a 2+a =0}={x |(x -a )· (x -a -1)=0}={a ,a +1},∵a≠a+1,∴当B⊆A时,只有a=2且a+1=3. ∴a=2.。
人教A版高中数学必修一集合间的基本关系教案(2)
1.1.2 集合间的基本关系㈠教学目标:1.知识与技能①理解 集合的包含和相等的关系; ②了解使用Venn 图表示集合及其关系; ③掌握包含和相等有关术语、符号,并会使用它们表达集合之间的关系.2.过程与方法①通过类比两个实数之间的大小关系,探究两个集合之间的关系;②通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.教学重点与难点:重点:子集的概念.难点:元素与子集,即属于与包含之间的区别.教学过程:实数有相等关系,大小关系,类比实数之间的关系,集合之间是否具备类似的关系? 示例1:观察下面三个集合, 找出它们之间的关系:A ={1,2,3}B ={1,2,7}C ={1,2,3,4,5}1.子 集一般地,对于两个集合,如果A 中任意一个元素都是B 的元素,称集合A 是集合B 的子集,记作A ⊆B .读作“A 包含于B ”或“B 包含A ”.这时说集合A 是集合B 的子集.注意:①区分∈;②也可用⊂.这时, 我们说集合A 是集合C 的子集. ),,(C A C x A x ⊆∈∈则则若而从B 与C 来看,显然B 不包含于C .2.集合相等示例2:A ={x|x 是两边相等的三角形},B ={ x|x 是等腰三角形},有A ⊆B ,B ⊆A ,则A =B. 若A ⊆B ,B ⊆A ,则A =B.练习1:观察下列各组集合,并指明两个集合的关系① A =Z ,B =N ; A ⊆B② A ={长方形}, B ={平行四边形方形}; A ⊆B③ A ={x|x 2-3x +2=0}, B ={1,2}. A = B3.真子集示例3:A ={1, 2, 7},B ={1, 2, 3, 7},如果A ⊆B ,但存在元素x ∈B ,且x ∈A ,称A 是B 的真子集.记作A ⊂B ,或B ⊃A.4.空 集示例4:考察下列集合,并指出集合中的元素是什么?A ={(x , y )| x +y =2};B ={x | x 2+1=0,x ∈R}.A 表示的是x +y =2上的所有的点;B 没有元素.不含任何元素的集合为空集,记作∅.规定:空集是任何集合的子集,空集是任何集合的真子集. B 是A 的真子集.记为B ⊂C 或C ⊃B.≠≠≠A ⊂B ,或B ⊃A.≠练习2:R _Q _Z _N N .1⊆⊆⊆⊆* .,,.2C A C B B A ⊆⊆⊆则若子集的传递性例题例1⑴写出集合{a ,b }的所有子集; ⑵写出所有{a ,b ,c }的所有子集;⑶写出所有{a ,b ,c ,d }的所有子集.一般地,集合A 含有n 个元素,则A 的子集共有2n 个,A 的真子集共有2n -1个. ⑴{a },{b },{a ,b };⑵{a },{b },{c },{a ,b },{a ,b ,c }, {a ,c },{b , c },∅;⑶{a },{b },{c },{d },{a , b },{b , c }, {a , d },{a , c }, {b , d }, {c , d }, {a ,b ,c },{a ,b ,d }, {b ,c ,d }, {a ,d ,c } {a ,b ,c ,d },∅;例2在以下六个写法中①{0}∈{0,1} ②∅⊂{0} ③{0,-1,1}⊆{-1,0,1}④ ⑤∅⊂{∅} ⑥{(0,0)}={0}. 错误个数为 ( A )A.3个B.4个C.5个D.6个例3设集合A ={1, a , b },B ={a , a 2, ab },若A =B ,求实数a , b .例4已知A ={x | x 2-2x -3=0}, B ={x | ax -1=0},若B ⊆A , 求实数a 的值.课堂练习1.教科书7面练习第2、3题2.教科书12面习题1.1第5题课堂小结子集:A ⊆B ⇔任意x ∈A ⇒ x ∈B .真子集: 集合相等:A =B ⇔ A ⊆B 且B ⊆A.空集:∅.性质:①⊆∅A ,若A 非空, 则∅ A. ②A ⊆A. ③A ⊆B ,B ⊆C ⇒A ⊆C. {}}2,1{}2{}1{}2,1{,,⊂≠≠≠≠⊂≠A ⊂B ⇔x ∈A ,x ∈B ,但存在x 0∈A 且x 0∉A.。
集合间的基本关系教案
集合间的基本关系教案篇一:集合间的基本关系示范教案1.1.2 集合间的基本关系整体设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与�恋那�别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R. 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)��;(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A�罛,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A?B,但存在x∈B,且x?A,我们称集合A是集合B的真子集,记作AB(或BA).(3)实数中的“≤”类比集合中的?.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A?B时,AB或A=B.(7)方程x2+1=0没有实数解.(8)空集记为?,并规定:空集是任何集合的子集,即??A;空集是任何非空集合的真子集,即A(A≠?).(9)类比子集.讨论结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子①中A?B,但有一个元素4∈B,且4?A;而例子②中集合E和集合F中的元素完全相同.(3)若A?B,且B?A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B. ?图1-1-2-1(6)如图1-1-2-3和图1-1-2-4所示. 图1-1-2-2图1-1-2-3(7)不能.因为方程x2+1=0没有实数解.(8)空集. 图1-1-2-4(9)若A?B,B?C,则A?C;若A应用示例 B,BC,则AC.思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A?B,B?A,A?C,C?A.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A?B成立,否则A?B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:B?A,C?A.(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么. 判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有A?B;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为?,{a},{b},{a,b}.真子集为?,{a},{b}.变式训练2007山东济宁一模,1已知集合P={1,2},那么满足Q?P的集合Q的个数是( )A.4B.3C.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q?P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为?,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为?,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为?,{a},{b},{a,b},即子集的个数是4=22. ……集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.思路21.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若B?A,则实数m=_______. 活动:先让学生思考B?A的含义,根据B?A,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为B?A,所以3∈A,m2∈A.对m2的值分类讨论. 解:∵B?A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠?,由于NM,则N=?或N≠?,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠?,则N=?或N≠?.当N=?时,关于x的方程ax=1中无解,则有a=0;111,又∵NM,∴∈M.∴>2. aaa111∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是{a|0≤a<} 2222.(1)分别写出下列集合的子集及其个数:?,{a},{a,b},{a,b,c}. 当N≠?时,关于x的方程ax=1中有解,则a≠0,此时x=(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)?的子集有:?,即�劣�1个子集;{a}的子集有:?、{a},即{a}有2个子集;{a,b}的子集有:?、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:?、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A 有……( )A.3个B.4个C.5个D.6个分析:对集合A所含元素的个数分类讨论.A=?或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集.( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集.( )(4)若B?A,那么凡不属于集合A的元素,则必不属于B.( ) 分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集. 对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x?A时也必有x?B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:?、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为( ) ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}?{1,0,2}④?∈{0,1,2} ⑤?∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是 ( ) A.aMB.a?MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于?只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}?{0,1,2},④应是??{0,1,2},⑤应是??{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}答案:(1)C (2)C (3)D M.篇二:2014高中学科教学设计-集合间的基本关系我的教学设计模板篇三:《集合间的基本关系》教学设计1.1.2集合间的基本关系一、设计理念新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
高中数学《集合间的基本关系》--教学设计
1.2 集合间的基本关系教材分析:本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。
集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。
高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。
本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn图理解抽象概念,培养学生数形结合思想。
教学目标:A.了解集合之间包含与相等的含义,能识别给定集合的子集;B.理解子集、真子集的概念;C.能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想。
核心素养:1.数学抽象:集合间的关系的含义;2.逻辑推理:由集合的元素的关系推导集合之间的关系;3.数学运算:由集合与集合之间的关系求值;4.直观想象:体会直观图示对理解抽象概念的作用,体会数形结合的思想。
教学重难点:1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.教学过程:牛刀小试1:下图中,集合A 是否为集合B 的子集?牛刀小试2判断集合A 是否为集合B 的子集,若是则在( )打√,若不是则在( )打×:①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} ( × ) ③A={0}, B={x | x 2+2=0} ( × ) ④A={a,b,c,d}, B={d,b,c,a} ( √ )思考2:与实数中的结论 “若a ≥b,且b ≥a,则a=b ”。
集合间的基本关系教案
集合间的基本关系教案集合间的基本关系教案1(一)教学目标;1.知识与技能(1)理解集合的包含和相等的关系.(2)了解使用Venn图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.2.过程与方法(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.3.情感、态度与价值观应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.(二)教学重点与难点重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.(三)教学方法在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.(四)教学过程教学环节教学内容师生互动设计意图创设情境提出问题思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.师:对两个数a、b,应有a>b或a = b或a<b.而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系.类比生疑,引入课题概念形成分析示例:示例1:考察下列三组集合,并说明两集合内存在怎样的关系(1)A = {1,2,3}B = {1,2,3,4,5}(2)A = {新华中学高(一)6班的全体女生}B = {新华中学高(一)6 班的全体学生}(3)C = {x | x是两条边相等的三角形}D = {x | x是等腰三角形}1.子集:一般地,对于两个集合A、B,如果A中任意一个元素都是B 的元素,称集合A是集合B的子集,记作,读作:“A含于B”(或B包含A)2.集合相等:若,且,则A=B.生:实例(1)、(2)的共同特点是A的每一个元素都是B 的元素.师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的'子集怎样定义呢?学生合作:讨论归纳子集的共性.生:C是D的子集,同时D是C的子集.师:类似(3)的两个集合称为相等集合.师生合作得出子集、相等两概念的数学定义.通过实例的共性探究、感知子集、相等概念,通过归纳共性,形成子集、相等的概念.初步了解子集、相等两个概念.概念深化示例1:考察下列各组集合,并指明两集合的关系:(1)A = Z,B = N;(2)A = {长方形},B = {平行四边形};(3)A={x| x2–3x+2=0},B ={1,2}.1.Venn图用平面上封闭曲线的内部代表集合.如果,则Venn图表示为:2.真子集如果集合,但存在元素x∈B,且x A,称A是B的真子集,记作AB (或B A).示例3 考察下列集合. 并指出集合中的元素是什么?(1)A = {(x,y) | x + y =2}.(2)B = {x | x2 + 1 = 0,x∈R}.3.空集称不含任何元素的集合为空集,记作 .规定:空集是任何集合的子集;空集是任何非空集合的真子集.示例1 学生思考并回答.生:(1)(2)(3)A = B师:进一步考察(1)、(2)不难发现:A的任意元素都在B中,而B中存在元素不在A 中,具有这种关系时,称A是B的真子集.示例3 学生思考并回答.生:(1)直线x+y=2上的所有点(2)没有元素师:对于类似(2)的集合称这样的集合为空集.师生合作归纳空集的定义.再次感知子集相等关系,加深对概念的理解,并利用韦恩图从“形”的角度理解包含关系,层层递进形成真子集、空集的概念.能力提升一般结论:① .②若,,则 .③A = B ,且 .师:若a≤a,类比 .若a≤b,b≤c,则a≤c类比.若,,则 .师生合作完成:(1)对于集合A,显然A中的任何元素都在A中,故 .(2)已知集合,同时,即任意x∈A x∈B x∈C,故 .升华并体会类比数学思想的意义.应用举例例1(1)写出集合{a、b}的所有子集;(2)写出集合{a、b、c}的所有子集;(3)写出集合{a、b、c、d}的所有子集;一般地:集合A含有n个元素则A的子集共有2n个.A的真子集共有2n – 1个.学习练习求解,老师点评总结.师:根据问题(1)、(2)、(3),子集个数的探究,提出问题:已知A = {a1,a2,a3…an},求A的子集共有多少个?通过练习加深对子集、真子集概念的理解.培养学生归纳能力.归纳总结子集:任意x∈A x∈B真子集:A B 任意x∈A x∈B,但存在x0∈B,且x0 A.集合相等:A = B 且空集():不含任何元素的集合性质:①,若A非空,则 A.② .③, .师生合作共同归纳—总结—交流—完善.师:请同学合作交流整理本节知识体系引导学生整理知识,体会知识的生成,发展、完善的过程.课后作业1.1 第二课时习案学生独立完成巩固基础提升能力备选训练题例1 能满足关系{a,b} {a,b,c,d,e}的集合的数目是( A )A.8个B.6个C.4个D.3个【解析】由关系式知集合A中必须含有元素a,b,且为{a,b,c,d,e}的子集,所以A中元素就是在a,b元素基础上,把{c,d,e}的子集中元素加上即可,故A = {a,b},A = {a,b,c},A = {a,b,d},A = {a,b,e},A = {a,b,c,d},A = {a,b,c,e},A = {a,b,d,e},A = {a,b,c,d,e},共8个,故应选A.例2 已知A = {0,1}且B = {x | },求B.【解析】集合A的子集共有4个,它们分别是:,{0},{1},{0,1}.由题意可知B = { ,{0},{1},{0,1}}.例3 设集合A = {x – y,x + y,xy},B = {x2 + y2,x2 – y2,0},且A = B,求实数x和y的值及集合A、B.【解析】∵A = B,0∈B,∴0∈A.若x + y = 0或x – y = 0,则x2 – y2 = 0,这样集合B = {x2 + y2,0,0},根据集合元素的互异性知:x + y≠0,x – y≠0.∴(I)或(II)由(I)得:或或由(II)得:或或∴当x = 0,y = 0时,x – y = 0,故舍去.当x = 1,y = 0时,x – y = x + y = 1,故也舍去.∴或,∴A = B = {0,1,–1}.例4 设A = {x | x2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若,求实数a组成的集合,并写出它的所有非空真子集.【解析】A = {3,5},∵,所以(1)若B = ,则a = 0;(2)若B≠,则a≠0,这时有或,即a = 或a = .综上所述,由实数a组成的集合为 .其所有的非空真子集为:{0},共6个.集合间的基本关系教案2一、预习目标:初步理解子集的含义,能说明集合的基本关系。
高中高一数学上册《集合之间的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解集合的包含关系,能够判断两个集合之间的包含与被包含关系。
2.掌握集合的交集、并集和补集的定义,能够运用这些概念进行集合运算。
3.学会使用集合的符号表示法,如大括号、小括号等,正确表示集合之间的关系和运算。
4.能够解决实际问题时运用集合之间的关系,如解决线性方程组、不等式组等问题。
2.培养严谨性:强调数学语言的严谨性和逻辑性,使学生养成认真、细致的学习习惯。
3.情感教育:通过数学史的了解,让学生感受数学家们为人类文明进步所做出的贡献,培养他们的爱国主义情怀。
4.价值观引导:引导学生认识到数学知识在实际生活中的重要作用,培养他们运用数学知识为人类服务的价值观。
二、学情分析
针对高中高一学生,他们在学习集合之间的关系这一章节时,已经具备了初步的数学逻辑思维能力和基本的代数运算技能。然而,由于集合概念较为抽象,学生在理解集合之间的包含关系、交集、并集和补集等概念时,可能会存在一定的困难。此外,学生在运用集合知识解决实际问题时,可能缺乏将问题转化为集合运算的能力。因此,在教学过程中,应注重以下几点:
9.教学反思:在课后对自己的教学进行反思,分析教学过程中的优点和不足,不断调整和优化教学方法,以提高教学效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将采用生活实例和问题驱动的教学方法,激发学生的兴趣和求知欲。
1.生活实例引入:向学生展示一组照片,包括家庭成员、学习用品等,引导学生观察并说出这些照片的共同点和不同点。通过这个实例,让学生感受到集合的概念。
(四)课堂练习
课堂练习环节旨在巩固所学知识,提高学生的解题能力。
1.设计练习题:针对集合之间的关系和运算,设计不同难度的练习题,让学生在练习中掌握知识。
集合间的基本关系教案
集合间的基本关系教案教学目标:1. 了解并理解集合间的基本关系,包括子集、真子集、超集、幂集的概念。
2. 能够判断集合之间的包含关系,并能运用集合间的基本关系解决实际问题。
3. 提高逻辑思维能力和数学表达能力。
教学内容:1. 集合间的基本关系2. 子集、真子集、超集的概念及判断3. 幂集的概念及判断4. 集合间的基本运算5. 实际问题中的应用教学重点:1. 集合间的基本关系的理解2. 子集、真子集、超集、幂集的判断3. 集合间的基本运算的应用教学难点:1. 幂集的概念及判断2. 集合间的基本运算的运用教学准备:1. 教学课件或黑板2. 教学素材(如集合卡片、实例等)教学过程:一、导入(5分钟)1. 引入集合的概念,复习集合的基本运算(并集、交集、补集)。
2. 提问:我们已经学习了集合的基本运算,集合之间还有哪些基本关系呢?二、子集、真子集、超集(10分钟)1. 介绍子集的概念,讲解子集的定义及判断方法。
2. 举例说明如何判断一个集合是否是另一个集合的子集。
3. 引入真子集的概念,讲解真子集的定义及判断方法。
4. 举例说明如何判断一个集合是否是另一个集合的真子集。
5. 介绍超集的概念,讲解超集的定义及判断方法。
6. 举例说明如何判断一个集合是否是另一个集合的超集。
三、幂集(10分钟)1. 介绍幂集的概念,讲解幂集的定义及判断方法。
2. 举例说明如何求一个集合的幂集。
3. 讲解幂集的性质及运算规律。
四、集合间的基本运算(10分钟)1. 复习集合的基本运算(并集、交集、补集)。
2. 讲解集合间的基本运算的运用,如求集合的并集、交集、补集等。
3. 举例说明如何运用集合间的基本运算解决实际问题。
五、实际问题中的应用(10分钟)1. 给出几个实际问题,让学生运用集合间的基本关系和基本运算解决。
2. 引导学生思考如何将实际问题转化为集合间的基本关系和基本运算问题。
3. 讲解解题思路和方法,并进行解答。
教学反思:本节课通过讲解集合间的基本关系,让学生了解并理解子集、真子集、超集、幂集的概念及判断方法,能够判断集合之间的包含关系,并能运用集合间的基本关系解决实际问题。
人教版高一数学必修1教案§1.1.2集合间的基本关系
课题:第一章第二节§集合间的基本关系一. 教学目标:.知识与技能()了解集合之间包含与相等的含义,能识别给定集合的子集。
()理解子集.真子集的概念。
()能使用. 过程与方法.情感.态度与价值观()树立数形结合的思想.()体会类比对发现新结论的作用.二. 教学重难点、教学重点:集合间的包含与相等关系,子集与其子集的概念.、教学难点:难点是属于关系与包含关系的区别.三.教学准备.学法:让学生通过观察.类比.思考.交流..学用具:投影仪.四.教学过程(—)创设情景,揭示课题问题:实数有相等.之间有什么关系呢?起来观察.研探.(二)研探新知问题:观察下面几个例子:(){} {, }(){高一班全体男生} {高一班全体学生}(){} {}组织学生充分讨论.得出两个集合之间的关系:①一般地,对于两个集合,两个集合有包含关系,称集合为的子集.记作:读作:含于(或包含).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.类似之处,强化学生对符号所表示意义的理解。
并指出:们常用平面上封闭曲线的内部代表集合,这种图称为图。
实例的图.图 图 投影问题:与实数中的结论“若”相类比,在集合中,你能得出什么结论?教师引导学生通过类比,思考得出结论:若.问题:请同学们举出几个具有包含关系.相等关系的集合实例,并用图表示. 学生主动发言,教师给予评价. (三)学生自主学习,阅读理解然后教师引导学生阅读教材第页中的相关内容,并思考回答下例问题: ()集合是集合的真子集的含义是什么?什么叫空集?()集合是集合的真子集与集合是集合的子集之间有什么区别? (),{}与三者之间有什么关系? ()包含关系与属于关系正义有什么区别?试结合实例作出解释.()空集是任何集合的子集吗?空集是任何集合的真子集吗? ()能否说任何一人集合是它本身的子集,即?()对于集合,,,,如果,,那么集合与有什么关系? 教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.(四)巩固深化,发展思维. 学生在教师的引导启发下完成下列两道例题:例、写出集合{,}的所有子集,并指出哪些是它的真子集。
集合间的基本关系教案
集合间的基本关系教案教学目标:1. 了解并掌握集合间的四种基本关系:子集、真子集、非子集、相等。
2. 能够运用集合间的四种基本关系解决实际问题。
3. 理解集合间的基本关系在数学及其它领域的重要性。
教学内容:一、集合间的基本关系概述1. 引入集合的概念,引导学生回顾集合的基本定义。
2. 介绍集合间的四种基本关系:子集、真子集、非子集、相等。
二、子集与真子集1. 讲解子集的定义,举例说明子集的概念。
2. 引导学生理解真子集的概念,即除去集合本身外的子集。
3. 通过例题,让学生掌握判断子集和真子集的方法。
三、非子集1. 讲解非子集的定义,即一个集合不是另一个集合的子集。
2. 通过例题,让学生理解非子集的概念,并掌握判断非子集的方法。
四、相等1. 讲解集合相等的定义,即两个集合包含的元素完全相同。
2. 通过例题,让学生理解集合相等的概念,并掌握判断集合相等的方法。
五、集合间基本关系的应用1. 引导学生运用集合间的四种基本关系解决实际问题。
2. 通过例题,让学生学会运用集合间的基本关系分析问题和解决问题。
教学方法:1. 采用讲解法,明确集合间基本关系的定义和概念。
2. 运用例题,让学生通过实践掌握集合间基本关系的判断方法。
3. 引导学生进行小组讨论,培养学生的合作能力和解决问题的能力。
教学评价:1. 通过课堂提问,检查学生对集合间基本关系的理解和掌握程度。
2. 通过课后作业,检验学生运用集合间基本关系解决问题的能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习效果进行综合评价。
六、集合的幂集1. 引入幂集的概念,讲解幂集的定义。
2. 通过图示和例题,让学生理解幂集的概念,并掌握求解幂集的方法。
七、集合的笛卡尔积1. 讲解笛卡尔积的概念,引导学生理解笛卡尔积的定义。
2. 通过例题,让学生掌握求解集合的笛卡尔积的方法。
3. 引导学生运用笛卡尔积解决实际问题,如排列组合问题。
八、集合的包含关系与维恩图1. 讲解集合的包含关系的概念,引导学生理解包含关系的含义。
高中数学教案《集合间的基本关系》
《集合间的基本关系》一、教学目标1.知识与技能:学生能够理解集合间的基本关系(子集、真子集、相等)的概念,掌握判断集合间关系的方法,并能准确描述集合间的这些关系。
2.过程与方法:通过具体实例分析,引导学生从直观感受出发,逐步抽象出集合间关系的数学定义,培养学生的抽象思维能力和逻辑推理能力。
同时,通过小组讨论和合作探究,提升学生的团队协作能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养严谨的数学态度和实事求是的科学精神。
通过解决实际问题,让学生感受到数学的实用价值,增强学好数学的信心。
二、教学重点和难点●重点:子集、真子集、相等三种集合间关系的定义及判断方法。
●难点:理解并准确区分子集与真子集的概念,以及在复杂情境下判断集合间的关系。
三、教学过程1. 引入新课(5分钟)●生活实例:以班级中的男生集合、女生集合及全班学生集合为例,引导学生思考这些集合之间的关系,初步感受集合间的包含与被包含关系。
●提出问题:如何用数学语言描述这些集合之间的关系?引出子集、真子集、相等等概念。
●明确目标:告知学生本节课将要学习集合间的基本关系,并简要介绍学习目标。
2. 概念讲解(10分钟)●子集定义:详细讲解子集的定义,强调“所有元素都属于另一个集合”的含义,并通过实例说明。
●真子集与相等:在子集的基础上,进一步讲解真子集的概念(即子集且不等于原集合),以及两个集合相等的条件(即互相为子集)。
●比较区分:通过图表或对比表格的形式,帮助学生直观区分子集、真子集和相等三种关系。
3. 例题解析(15分钟)●典型例题:选取几个具有代表性的例题,分别涉及子集、真子集和相等的判断。
教师边讲边练,逐步展示解题过程。
●思路引导:在解题过程中,注重引导学生分析题目中的关键信息,明确判断集合间关系的依据。
●学生尝试:让学生尝试解答几个类似的题目,教师巡回指导,及时纠正学生的错误思路。
4. 小组讨论与合作探究(15分钟)●分组任务:将学生分成若干小组,每组分配一个实际问题或情境,要求将其转化为集合间关系的判断问题。
人教课标版高中数学必修一《集合间的基本关系》教案-新版
1.1.2 集合间的基本关系一、教学目标 (一)核心素养本节课是集合的含义与表示的延续,核心是集合与集合间的“包含”、“真包含”、“相等”关系,通过对集合间关系的探究,感受数学抽象、直观想象、逻辑推理,提高分析与解决数学问题的能力,熟悉数学探究基本特点.通过实例,了解子集、真子集、空集等概念,区分一些容易混淆的关系和符号,规范数学表达. (二)学习目标1.在应用类比思想探究两个集合的包含和相等关系的过程中,体会辨证思想,能用数学的思维方式去认识世界,提高分析、解决问题的能力.2.理解集合之间包含与相等的含义,在具体情境中,了解空集的含义,掌握并能使用Venn 图表达集合的关系,加强从具体到抽象的思维能力,体会数形结合的思想.3.能识别给定集合的子集,能判断给定集合间的关系,能区别元素与集合间的属于关系和集合间的包含关系. (三)学习重点 1.子集、真子集、空集的概念.2.集合间包含关系与相等关系的含义.(四)学习难点 1.对子集、真子集、空集概念的正确理解. 2.对新学的数学符号的正确使用.3.属于与包含之间的区别.二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第6页至第7页,填空:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作)(或A B B A ⊇⊆,读作“A 包含于B ”(或“B 包含A ”).如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时,集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A =B .如果B A ⊆,但存在元素,B x ∈且,A x ∉我们称集合A 是集合B 的真子集,记作AB (或B ⫌A ).我们把不含任何元素的集合叫空集,记作∅,并规定:空集是任何集合的子集. (2)写一写:写出集合},{b a 的所有子集. 0个元素的:∅;1个元素的:}{},{b a ; 2个元素的:},{b a .(3)想一想:包含关系⊆与属于关系∈有什么区别?“∈”与“⊆”的区别:“∈”表示元素与集合之间的关系,如N N ∉-∈1,1;“⊆”表示集合与集合之间的关系,如R N ⊆,R ⊆∅.2.预习自测(1)数0与集合 ∅的关系是( )A .0∈∅B .0=∅C .{0}=∅D .0 ∉∅【答案】D .(2)集合{1,2,3}的子集的个数是( ) A .7B .4C .8D .6【答案】C .(3)下列六个关系式中正确的个数为( )①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤0∈{0}. A .2 B .5 C .4 D .3 【答案】D . (二)课堂设计 1.知识回顾(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.(2)如果a 是集合A 中的元素,就说a 属于集合A ,记作A a ∈;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A .(3)除了用自然语言表示集合,还能用列举法、描述法表示集合.2.问题探究探究一 回顾旧知,提出新问 ●活动① 回顾旧知问题:元素与集合之间的关系应如何表示?(可举例进行说明) 元素与集合间是“∈”或“∉”的关系,如1∈{1,2,3};0∉{1,2,3}等.【设计意图】检验学生上节课所学知识掌握情况,并为后续探究集合间的关系做好铺垫. ●活动② 创设情境,提出问题对两个数b a 、,应有,b a b a b a =<>或或对于两个集合A 、B ,它们之间有什么关系? 【设计意图】结合学生已有知识经验,通过类比启发学生思考并积极探索集合间的关系.探究二 探究集合间的关系、集合的子集以及集合的性质★▲ ●活动① 归纳提炼子集的概念观察下面4个例子,指出给定两个集合中的元素有什么关系?每个例子中的两个集合又有什么关系呢?(1)}3,2,1{=A ,}6,5,4,3,2,1{=B ;(2)}2{)班全体女生新华中学高一(=C ,}2{)班全体学生新华中学高一(=C ; (3)E ={x ︱x 是等边三角形},F ={x ︱x 是三角形};(4)G ={x ︱x >2},H ={x ︱2x -1≥3}.我们可以看到,(1)中的集合A 中的任何元素都是集合B 的元素,(2)中的集合C 中的元素都是集合D 中的元素,(3)中的集合E 的任何元素都是集合F 的元素,(4)中的集合G 中的任何元素都是集合H 中的元素.一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(subset ),记作)(A B B A ⊇⊆或,读作“A 包含于B ”(或“B 包含A ”).在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法——用平面上的封闭曲线的内部来表示集合Venn (韦恩)图.那么,集合A 是集合B 的子集用图形表示如下:B A ⊆【设计意图】通过实例的共性探究,感知子集的概念,并通过图形更加深入体会子集的含义及数形结合的思想.●活动② 归纳提炼集合相等的概念观察下面4个例子,各对集合中,有没有包含关系? (1){}{}1,3,5,5,1,3A B ==; (2)};01|{},1{=-==x x D C(3)E ={x ︱x 是等腰三角形},F ={x ︱x 是两条边相等的三角形}; (4)G ={x ︱x >2},H ={x ︱2x -1≥3}.显然,A 是B 的子集,C 是D 的子集,E 是F 的子集,G 是H 的子集.反过来,B 是A 的子集,D 是C 的子集,F 是E 的子集,H 是G 的子集.一般地,如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时,集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作B A =.【设计意图】通过实例的共性探究,感知集合相等的概念.在上一节课用元素完全相同表示集合相等的基础上 ,从子集的角度提升对集合相等的理解.●活动③ 归纳提炼真子集的概念问题1:若B A ⊆,则集合A 与B 一定相等吗? 不一定,比如活动②中的四个例子.问题2:若B A ⊆,则可能有B A =,也可能B A ≠.当 B A ⊆,且B A ≠时,我们如何进行数学解释?如果B A ⊆,但存在元素,B x ∈且,A x ∉我们称集合A 是集合B 的真子集,记作AB (或B ⫌A ).【设计意图】在理解子集、集合相等的含义基础上,进一步提炼真子集的概念.BA●活动④ 归纳提炼空集的概念观察下面2个集合,它们有何共同特点? (1)}01|{2=+∈=x x A R ; (2)}02|{<+∈=x x B R . 显然,这两个集合中都没有元素.我们把不含任何元素的集合叫空集,记作∅. 规定:空集是任何集合的子集,即∅A ⊆. 空集是任何非空集合的真子集,即∅.A【设计意图】通过实例的共性探究,感知空集这个比较难理解的抽象的概念. ●活动⑤ 类比实数大小关系,归纳子集基本性质实数集合对于实数a ,有a a ≤;对于集合A ,有A A ⊆.对于实数,,,c b a 如果;,,c a c b b a ≤≤≤那么且 那么且如果对于集合,,,,,C B B A C B A ⊆⊆.C A ⊆【设计意图】通过类比数的大小关系的结论,引导学生推导集合的两个性质. 探究三 识别给定集合的子集,判断给定集合间的关系★▲●活动① 基础型例题 填写下表,并回答问题原集合子集 子集的个数 ∅________ ________ }{a ________ ________ },{b a ________ ________ },,{c b a________________空真子集个数呢?【知识点】子集与真子集、集合中元素个数的最值. 【数学思想】分类讨论思想.【解题过程】∅的子集只有它本身,子集有1个.}{a 的子集为:∅,}{a ;子集共2个.},{b a 的子集为:∅,}{a ,}{b ,},{b a ;子集共4个.},,{c b a 的子集为:∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a ;子集共8个. 【思路点拨】按子集元素个数为标准进行分类. 【答案】有n 个元素的集合,含有2n 个子集,2n -1个真子集,2n -1个非空子集,n 个元素的非空真子集有2n -2个.同类训练 已知集合M 满足}5,4,3,2,1{}2,1{⊆⊆M ,写出集合M . 【知识点】子集与真子集、集合中元素个数的最值. 【数学思想】分类讨论思想.【解题过程】因为M ⊆}2,1{,则1、2一定在M 中.又因为}5,4,3,2,1{⊆M ,则M 中的元素一定在}5,4,3,2,1{中,即M 中的元素不包含1、2、3、4、5以外的元素. 若M 含有2个元素,则}2,1{=M ;若M 含有3个元素,则{1,2,5}{1,2,4}}3,2,1{或或=M ; 若M 含有4个元素,则{1,2,4,5}{1,2,3,5}}4,3,2,1{或或=M ; 若M 含有5个元素,则}5,4,3,2,1{=M .【思路点拨】通过集合间包含关系的含义按元素个数分类罗列.【答案】}.5,4,3,2,1{},5,4,2,1{},5,3,2,1{},4,3,2,1{},5,2,1{},4,2,1{},3,2,1{},2,1{=M【设计意图】从简单到复杂,从特殊到一般,归纳总结出集合子集个数与元素个数的关系,更加深入理解子集的含义.例2 判断下列关系是否正确.(1)}2,1{}3,2,1{; (2)}3,2,1{⊆}4,2,1{; (3)}{}{a a ⊆; (4)}0{=∅; (5)}0{⊆∅; (6)∅⊆∅. 【知识点】集合的包含关系判断及应用、集合相等. 【数学思想】【解题过程】(1)集合}2,1{中的元素1、2都是集合}3,2,1{的元素,而集合}3,2,1{中的元素3不是集合}2,1{的元素,故}2,1{}3,2,1{正确; (2)因为}4,2,1{3∉,所以}3,2,1{⊆}4,2,1{错误;(3)任何一个集合是它本身的子集,因此}{}{a a ⊆正确;(4)∅中没有任何元素,而{0}中有一个元素,两者不相等,故∅={0}错误; (5)空集是任何非空集合的真子集,因此∅{0}正确; (6)空集是任何集合的子集,因此∅⊆∅正确.【思路点拨】通过子集、真子集、集合相等的含义及集合性质做出正确判断. 【答案】(1)、(3)、(5)、(6)正确,(2)、(4)错误. 同类训练 下列各式中错误的个数为( )(1){}10,1,2∈ (2){}{}10,1,2∈ (3){}{}0,1,20,1,2⊆ (4){}{}0,1,22,0,1= A .1 B .2 C .3 D .4【知识点】元素与集合关系的判断、集合的包含关系判断及应用、集合相等. 【数学思想】【解题过程】(1)显然正确;(2)“∈”是表示元素与集合间的关系,不能表示集合与集合之间的关系,因此{}{}10,1,2∈错误;(3)因为任何一个集合是它本身的子集,则}2,1,0{}2,1,0{⊆正确;(4)因为集合}1,0,2{}2,1,0{⊆,且}2,1,0{}1,0,2{⊆,则}1,0,2{}2,1,0{=正确.【思路点拨】通过子集、真子集、集合相等的集合间的关系及元素与集合的关系做出正确判断. 【答案】C .【设计意图】巩固检查集合间的关系、元素与集合的关系.●活动② 提升型例题 例 3 已知集合},21|{Z ∈+==k k x x A ,},21|{Z ∈==k k x x B ,则A 与B 的关系为________.【知识点】集合关系中的参数取值问题. 【数学思想】化归与转化思想. 【解题过程】方法一:(列举法)对于集合A ,取k =…,0,1,2,3,…,得A ={…,12,32,52,72,…}.对于集合B ,取k =…,0,1,2,3,4,5,…,得B ={…,0,12,1,32,2,52,…}. 故A B .方法二:(特征性质法) 集合A :)(212Z ∈+=k k x ,分子为奇数. 集合B :)(2Z ∈=k kx ,分子为整数. 则A B .【思路点拨】通过列举法和特征性质法两种不同的方法进行分析,均可得到集合A 、B 之间的关系. 【答案】A B .同类训练 设集合},12|{*N ∈+==k k x x M ,},12|{*N ∈-==k k x x N 则M ,N 之间的关系为( ) A .M N B .M ⫌N C .M ⊇N D .M =N【知识点】集合关系中的参数取值问题. 【数学思想】化归与转化思想.【解题过程】}13,11,9,7,5,3{ =M ,}13,11,9,7,5,3,1{ =N ,则MN .【思路点拨】将两个用描述法表示的集合转化成列举法表示的集合. 【答案】A .【设计意图】巩固检查集合的表示法,提高转化的思维能力.例 4 设集合}23|{≤≤-=x x A ,}112|{+≤≤-=k x k x B 且A B ⊆,求实数k 的取值范围.【知识点】集合的包含关系判断及应用、集合关系中的参数取值问题. 【数学思想】数形结合思想.【解题过程】因为A B ⊆,所以B =∅或B ≠∅. 当B =∅时,有112+>-k k ,解得2>k .当B ≠∅时,有⎪⎩⎪⎨⎧≤+-≥-+≤-,21,312,112k k k k 解得11≤≤-k .综上,11≤≤-k 或2>k .【思路点拨】关注真子集的含义,结合图形解决. 【答案】11≤≤-k 或2>k .同类训练 已知集合}41|{<≤=x x A ,}|{a x x B <=,且A B ,求实数a 的取值集合. 【知识点】集合的包含关系判断及应用、集合关系中的参数取值问题. 【数学思想】数形结合思想.【解题过程】将数集A 表示在数轴上(如下图),要满足A B ,表示数a 的点必须在表示4的点处或在表示4的点的右边,所以所求a 的集合为}4|{≥a a .【思路点拨】关注真子集的含义,结合图形解决. 【答案】}4|{≥a a .【设计意图】巩固检查真子集的含义,体会数形结合的思想. ●活动③ 探究型例题例5 已知集合},3,1{2x A =,}2,1{+=x B ,是否存在实数x ,使得集合B 是A 的子集?若存在,求出A ,B ,若不存在,说明理由.【知识点】集合的包含关系判断及应用、集合关系中的参数取值问题、集合的确定性、互异性、无序性.【数学思想】分类讨论思想.【解题过程】因为B ⊆A ,所以x +2=3或2x . 当x +2=3,即x =1时,A ={1,3,1}不满足互异性. 当22x x =+,即x =2或x =-1.若x =2时,A ={1,3,4},B ={1,4},满足B ⊆A . 若x =-1时,A ={1,3,1}不满足互异性. 综上,存在x =2使得B ⊆A . 此时,A ={1,3,4},B ={1,4}.【思路点拨】结合集合的确定性、互异性、无序性分清况讨论x 的值和集合A 、B . 【答案】存在x =2使得B ⊆A .此时,A ={1,3,4},B ={1,4}.同类训练 若集合}06|{2=-+=x x x A ,}01|{=+=mx x B ,且A B ⊆.求由m 的可取值组成的集合.【知识点】集合的包含关系判断及应用,集合关系中的参数取值问题,集合的确定性、互异性、无序性.【数学思想】分类讨论思想.【解题过程】易得}2,3{-=A ,当0=m 时,=B ∅,有A B ⊆. 当0≠m 时,方程01=+mx 的解为mx 1-=, 又因为A B ⊆,则31-=-m 或21=-m ,即31-=m 或21-=m . 故所求集合为}21,31,0{-.【思路点拨】先确定集合A 的元素,再结合集合的确定性、互异性、无序性分清况讨论m 的值和集合B .【答案】}21,31,0{-.【设计意图】巩固检查子集的含义,锻炼分类讨论问题的能力. 3.课堂总结知识梳理(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(subset ),记作)(A B B A ⊇⊆或,读作“A 包含于B ”(或“B 包含A ”).(2)如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时,集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A =B .(3)如果B A ⊆,但存在元素,B x ∈且,A x ∉我们称集合A 是集合B 的真子集,记作A B (或B A ).(4)不含任何元素的集合叫空集,记作∅.(5)空集是任何集合的子集,即A ∅⊆;空集是任何集合的真子集,即∅A ;任何一个集合都是它自己的子集,即A A ⊆;那么且如果对于集合,,,,,C B B A C B A ⊆⊆.C A ⊆重难点归纳(1)元素与集合间的关系用“∈”、“∉”来表示,集合与集合间的关系用“⊆”、“”、“=”来表示.(2)集合与集合间的关系涉及到含参数问题时,要注意分类讨论,并能用元素的互异性进行检验.(三)课后作业基础型 自主突破1.下列集合中表示空集的是( )A .}55|{=+∈x R xB .}55|{>+∈x R xC .}0|{2=∈x R xD .}01|{2=++∈x x R x【知识点】空集的定义、性质及运算.【数学思想】【解题过程】因为C B A ,,中分别表示的集合为}0{,}0|{>x x ,}0{,则都不是空集;又因为012=++x x 无解,则}01|{2=++∈x x R x 表示空集.【思路点拨】根据空集的含义进行判断.【答案】D .2.集合{1,2,3}的子集的个数是( )A .7B .4C .6D .8【知识点】子集与真子集、集合中元素个数的最值.【数学思想】分类讨论思想.【解题过程】根据探究结论得该集合的子集个数为823=.【思路点拨】根据集合子集的个数与集合元素的个数关系求得. 【答案】D .3.已知集合}4,3,2,1{=P ,},1|{P x x y y Q ∈+==,那么集合}5,4,3{=M 与Q 的关系是( )A .Q M ⊆B .Q M ⊇C .M QD .Q M =【知识点】集合的表示法、子集与真子集.【数学思想】【解题过程】因为},1|{P x x y y Q ∈+==,}4,3,2,1{=P ,则Q ={2,3,4,5}.因此,M Q .【思路点拨】先求出集合Q ,再判断集合M 与集合Q 的关系. 【答案】C . 4.设R b a ∈,,集合},,0{},,1{b ab a b a =+,则a b -等于( ) A .1 B .-1 C .2 D .-2【知识点】集合的相等.【数学思想】【解题过程】因为0≠a ,所以1,0-==+ab b a ,即.1,1-==a b 因此,2=-a b ,选C . 【思路点拨】结合集合的确定性、互异性、无序性分清况讨论b a 、的值.【答案】C .5.已知集合},3,1{m A -=,集合}4,3{=B ,若A B ⊆,则实数=m ________.【知识点】子集与真子集、集合关系中的参数取值问题.【数学思想】【解题过程】因为A B ⊆,}4,3{=B ,},3,1{m A -=,所以4=m .【思路点拨】根据集合的包含关系确定两集合元素间的关系.【答案】4.6.已知},12|{2R x x x y y M ∈--==,}42{≤≤-=x N ,则集合M 与N 之间的关系是________.【知识点】集合的包含关系判断及应用.【数学思想】【解题过程】因为22)1(1222-≥--=--=x x x y ,则}2|{-≥=y y M .又因为}42{≤≤-=x N ,则N M .【思路点拨】先用配方法求解集合M ,再判断集合M 和集合N 的关系.【答案】NM .能力型 师生共研7.已知集合A }3,2,1{,且A 中至少含有一个奇数,则这样的集合A 的个数为( )A .6B .5C .4D .3【知识点】集合的包含关系判断及应用.【数学思想】分类讨论思想. 【解题过程】因为A 中至少含有一个奇数,所以A 可能含有1个奇数,也可能含有2个奇数.若A 只含有1个奇数,则}1{=A 或}3{;若A 含有2个奇数,则}3,1{=A .因此,满足条件的A 有4个.【思路点拨】对集合A 中奇数元素按个数分类讨论. 【答案】D .8.设集合},3,1{a A =,}1,1{2+-=a a B ,A B ⊆,求a 的值.【知识点】元素与集合的关系、集合的包含关系判断及应用.【数学思想】【解题过程】因为A B ⊆,所以B 中元素1,12+-a a 都是A 中的元素,故分两种情况.(1)312=+-a a ,解得=a -1或2,经检验满足条件.(2)a a a =+-12,解得=a 1,此时A 中元素重复,舍去.综上所述,=a -1或=a 2.【思路点拨】利用元素与集合关系、集合的包含关系构造方程组或数量关系求解.【答案】=a -1或=a 2.探究型 多维突破9. 已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.【知识点】集合的确定性、互异性、无序性、集合的相等.【数学思想】分类讨论思想.【解题过程】因为{}{}22,,,2,2,A x y B x y A B ===且,则⎩⎨⎧==22y y x x ,或⎩⎨⎧==x y y x 22;即⎩⎨⎧==00y x (舍去),或⎩⎨⎧==10y x ,或⎪⎪⎩⎪⎪⎨⎧==2141y x . 【思路点拨】利用元素与集合关系、集合的相等关系构造方程组或数量关系求解. 【答案】⎩⎨⎧==10y x ,或⎪⎪⎩⎪⎪⎨⎧==2141y x . 10.b a ,是实数,集合}1,,{ab a A =,}0,,{2b a a B +=,若B A =,求20162015b a +. 【知识点】集合的相等、集合关系中的参数取值问题.【数学思想】分类讨论思想.【解题过程】因为B A =,所以0=b ,}1,0,{a A =,}0,,{2a a B =,即12=a ,得1±=a .若1=a ,则}1,0,1{=A 不满足互异性,舍去;若1-=a ,}1,0,1{-=A 满足题意.因此,120162015-=+b a .【思路点拨】利用元素与集合关系、集合的相等关系构造方程组或数量关系求解.【答案】120162015-=+b a .自助餐1.集合{1,2,3}的所有真子集的个数为( )A .3B .6C .7D .8【知识点】子集与真子集.【数学思想】【解题过程】该集合的真子集个数为7123=-.【思路点拨】利用元素个数与真子集个数的关系求得.【答案】C .2.已知集合}8,7,4{⊆M ,且M 中至多有一个偶数,则这样的集合共有( )A .5个B .6个C .7个D .8个【知识点】集合的含义、元素与集合的关系.【数学思想】【解题过程】M 可能为∅,}7{,}4{,}8{,}4,7{,}8,7{共6个.【思路点拨】根据集合元素满足的要求得,注意空集不能漏掉.【答案】B .3.下列命题正确的是( )A .无限集的真子集是有限集B .任何一个集合必定有两个子集C .自然数集是整数集的真子集D .{1}是质数集的真子集【知识点】子集与真子集.【数学思想】【解题过程】无限集的真子集有可能是无限集,如N 是R 的真子集,A 错误;由于∅只有一个子集,即它本身,B 错误;由于1不是质数,D 错误.显然自然数集是整数集的真子集,C 正确.【思路点拨】逐一通过集合间的关系进行检验,注意子集、真子集的概念.【答案】C .4.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若BA ,则实数a 的值为__. 【知识点】子集与真子集. 【数学思想】【解题过程】易知}2,1{=A .如果0=a ,则=B ∅,B 满足A .如果0≠a ,则}1{a B =.又因为B A ,则211或=a ,即211或=a .综上,211,0或=a . 【思路点拨】先求出集合A ,再根据真子集对a 分情况讨论.【答案】0,1或12 . 5.写出满足{},a b A ⊆{},,,a b c d 的所有集合A .【知识点】子集与真子集.【数学思想】【解题过程】因为{},a b A ⊆,则A 中必须有元素.b a 、又因为A {},,,a b c d},,{},,,{},,{d b a c b a b a A =则.【思路点拨】利用集合间的包含关系和真包含关系求解.【答案】},,{},,,{},,{d b a c b a b a A =. 6.已知{}{}|25,|121A x x B x a x a =-≤≤=+≤≤-,B A ⊆,求实数a 的取值范围.【知识点】子集与真子集.【数学思想】转化与化归思想.【解题过程】若=B ∅,.2,121<->+a a a 即若≠B ∅,.32,21512112≤≤⎪⎩⎪⎨⎧-≥+≤-+≥-a a a a a 即综上,.3≤a【思路点拨】根据集合间的包含关系构造方程组或数量关系求解.【答案】.3≤a。
高中数学必修一集合间的基本关系教案
第一章 集合与函数概念1.1集合 1.1.2集合间的基本关系【学习目标】1.理解集合之间的包含与相等的含义,能识别给定集合的子集;2.在具体情境中,了解全集与空集的含义. 【预习指导】1.集合间有几种基本关系?2.集合的基本关系分别用哪些符号表示?怎样用Venn 图来表示?3.什么叫空集?它有什么特殊规定?4.集合之间关系的性质有哪些? 【自主尝试】1.判断下列集合的关系①{}{}1,2,3,2,1,3A B == ②{}{},,,,A a b B a b c == 2.判断正误① {}0是空集②{}5的子集的个数为1【课堂探究】一、问题1我们知道实数有大、小或相等的关系,哪么集合间是不是也有类似的关系呢? 1.{}{}1,2,3,1,2,3,4,5A B ==2.设集合A为高一(2)班全体女生组成的集合,集合B为这个班全体学生组成的集合. 3.设{}{}|,|C x x D x x ==是等边三角形是三角形. 4.{}{}|,|213A x x D x x =≥=-≥2.观察上面的例子,指出给定两个集合中的元素有什么关系?对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系则称集合A 为集合B 的子集.我们已经知道元素与集合的关系用 表示,那么集合A 是B 的子集如何表示呢?2B A ⊆(或 A B ⊇),读作:“A 含于B ”(或“B 包含A ”)其中:“A 含于B ”中的于是被的意思,简单地说就是A 被B 包含.“⊆”类似于“≤”开口朝向谁谁就“大”.在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法——用平面上的封闭曲线的内部来表示集合venn (韦恩)图.那么,集合A 是集合B 的子集用图形表示如下: B A ⊆问题2①{}{}1,3,5,5,1,3A B ==②}|{D }|{是两条边相等的三角形,是等腰三角形x x x x C == ③{}{}1,|10A B x x ==-=④131(,)|,(,)222x y A x y B x y ⎧+=⎫⎧⎧⎫==-⎨⎨⎬⎨⎬-=⎩⎭⎩⎩⎭上面的各对集合中,有没有包含关系? 集合相等思考:上述各组集合中,集合A 是集合B 的子集吗?集合B 是集合A 的子集吗? 对于实数b a ,,如果b a ≥且a b ≥,则 a 与b 的大小关系如何?b a =用子集的观点,仿照上面的结论在什么条件下A=B⎩⎨⎧⊆⊆⇔=AB BA B A问题3 若B A ⊆,则集合A 与B 一定相等吗?若B A ⊆,则可能有A=B ,也可能B A ≠.当 B A ⊆,且B A ≠时,我们如何进行数学解释?如果 B A ⊆,但存在元素B x ∈且A x ∉ ,则 称集合A 是集合B 的真子集.A B (或B A )A = BB A ⊆A B问题4:(1)2{|10}x R x ∈+= (2){|||20}x R x ∈+<ABA B B A ⊆⊆且上述两个集合有何共同特点? 集合中没有元素 ,我们就把上述集合称为空集 不含任何元素的集合叫做空集,记为∅,规定:空集是任何集合的子集空集与集合{0}相等吗?∅{0}空集是任何非空集合的真子集 通过前面的学习我们可以知道: 1) 任何集合是它本身的 子集2) 对于集合A ,B ,C ,如果B A ⊆,且C B ⊆,那么C A ⊆ 例题:写出集合{a,b,c}的所有子集并指出,真子集、非空真子集. 解:集合{a,b,c}子集:∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}集合{a,b,c}真子集∅,{a},{b},{c},{a,b},{a,c},{b,c}集合{a,b,c}的非空真子集{a},{b},{c},{a,b},{a,c},{b,c}【典型例题】:1.写出下列各集合的子集及其个数 {}{}{},,,,,,a a b a b c ∅2.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,求k 的取值范围.3.已知含有3个元素的集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A=B,求20102010a b +的值.4.已知集合{}|03A x x =<<,{}|4B x m x m =<<-,且B A ⊆,求实数m 的取值范围.◆ 规律总结:有n 个元素的集合,含有2n 个子集,2n -1个真子集,2n -1个非空子集,n 个元素的非空真子集有2n -2个。
高中数学1.2集合间的基本关系教案新人教必修1(1)
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、 引入课题1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、 新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含”关系)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
高中数学必修一集合间的基本关系教案
高中数学必修一集合间的基本关系教案高中数学必修一集合间的基本关系教案1教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域。
点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。
高一数学教案集合间的基本关系教学设计2021文案3教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
人教A版高中数学必修一集合间的基本关系教案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B 用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper⊆subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn 图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
一、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N ;(2
;(3)-1.5 R
2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣
布课题)
二、新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;
如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或
读作:A 包含于(is contained in )B ,或B 包含(contains )A
当集合A 不包含于集合B 时,记作A B 用Venn
)(A B B A ⊇⊆或
(二)
A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =
即 ⎩⎨⎧⊆⊆⇔=A
B B A B A 练习
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper
⊆
subset )。
记作:A B (或B A )
读作:A 真包含于B (或B 真包含A )
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set ),记作:∅
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:
○
1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题
(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(九) 作业布置
1、 书面作业:习题1.1 第5题
2、 提高作业:
○
1 已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围。
○
2 设集合}{}{}{矩形平行四边形四边形===,C ,B A , }{正方形=D ,试用Venn 图表示它们之间的关系。
板书设计(略)。