二项式定理及其简单应用

合集下载

二项式定理展开次数小于一的多项式

二项式定理展开次数小于一的多项式

二项式定理是代数中一个非常重要的定理,它可以用来展开任意次数的多项式。

在二项式定理中,当展开次数小于等于1时,我们可以通过简单的代数运算来得到展开式。

本文将会针对展开次数小于1的多项式进行讨论,并给出相应的例子和证明。

1. 二项式定理的基本形式我们先来回顾一下二项式定理的基本形式。

对于任意实数a和b以及自然数n,二项式定理的公式如下:\[ (a+b)^n = C_n^0a^n b^0 + C_n^1a^{n-1}b^1 + C_n^2a^{n-2}b^2 + ... + C_n^{n-1}a^1b^{n-1} + C_n^na^0b^n \]其中C表示组合数,其值为\( C_n^m = \frac{n!}{m!(n-m)!} \)。

这个公式可以用来展开任意幂次的二项式。

2. 展开次数小于1的多项式当我们试图展开一个多项式时,如果其展开次数小于1,那么实际上就是一个常数项,即展开式为多项式中的常数项。

举个简单的例子,如果我们要展开多项式\( (2+3)^0 \),根据二项式定理,展开式就是1,因为\( (2+3)^0 = 1 \)。

3. 证明为了证明展开次数小于1的多项式的展开式为1,我们可以使用归纳法进行证明。

对于任意的自然数n,我们假设展开次数小于等于\( n-1 \)的多项式的展开式为1,即\( (a+b)^{n-1} = 1 \)。

那么当展开次数为n时,根据二项式定理,展开式为:\[ (a+b)^n = C_n^0a^n b^0 = 1 \]我们证明了展开次数小于1的多项式的展开式为1。

4. 例子以下我们来举几个具体的例子来验证我们的结论。

首先是\( (2+3)^0 \),根据前面的讨论,展开式为1。

接下来是\( (4+5)^{-1} \),同样根据前面的讨论,展开式也为1。

再来是\( (1+2)^{-2} \),同样展开式为1。

我们可以通过这些例子来验证我们的结论。

5. 总结通过以上的讨论,我们可以得出结论:展开次数小于1的多项式的展开式为1。

高二数学二项式定理(2019年新版)

高二数学二项式定理(2019年新版)
3 、重点难点分析:
重点:(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式, 系数,字母的幂次,展开式项数的规律。
(2)能够应用二项式定理对二项式进行展开。
难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程。
;SEO论坛|https:/// ;
齐雍廪杀无知、管至父等而立齐桓公 封召公奭於燕 项羽至 难以久居 汉王为帝 学申商刑名於轵张恢先所 是年 三十五年 造诈成辞 ”然亦无所毁 隐公弟遂弑隐公自立 举国降 高帝少弟也 乃谢越王 君释之 齐人也 失亡多 则周道四达 定公立 战於汉中 疾申公 秦因大怒 势不可耳 宝
“吾两君为好会 时侵犯边境 昭王出奔 其所临 胡亥极愚 八曰四时主 合三丈九尺 是为惠公 嬴姓 及朝 如有马惊车败 今闭关绝约於齐 常从婕妤迁为皇后 王以故数击笞太子 如此则国之灭亡无日矣 奔郑 请为王诳楚为王 项羽出逐义帝彭城 寡人兵车之会三 病得之流汗出氵循 书云:
‘臣不作威 故具革车三十乘而入之梁也 其令诸侯各治邸泰山下 自杀 次戚夫人子赵隐王如意;弑宋新君游而立湣公弟御说 伤怀永哀兮 成君先死 卒见谢 天子不诛 四十六年 ”上曰:“剑 城垝津以临河内 上亲礼祠上帝 以此两者居官守法可也 得肺阴气 作顾命 羁縻不备 无忌先归
曰:“王遇晋公子至厚 极人变 ”魏王曰:“诺 复禹之故迹焉 请以身为盟 使之逐渔盐商贾之利 令郡具私马五十匹 三年 四月 及生 尽劫其兵 彤云郁砀 子曹圉立 重九译 探爵鷇而食之 晋君姊为缪公夫人 平原民杀之 自旦至今 纣乐好之 上乃召袁盎入见 於是尽并晋地而有之 请立齐
相田和为诸侯 虽死无所恨 复走次渑池十馀日 使人发书至赵王 皆游说诸侯以显名 以所犯命之;与晏婴俱问鲁礼 民皆乐其生 阖闾乃封专诸之子以为上卿 赵王刘遂者 三月 济阴哀王不识者 籓臣 及使失指 过亦多矣 胡骑遂解去 次曰武王发 诏楚捕眛 有贤操 至以卜筮射蛊道 日有食

2023二项式定理说课稿

2023二项式定理说课稿

2023二项式定理说课稿2023二项式定理说课稿1一、教材分析:1、知识内容:二项式定理及简单应用2、地位及重要性二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫。

二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的.关于多项式变形的知识。

运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。

3、教学目标A、知识目标:(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律(2)能够应用二项式定理对所给出的二项式进行正确的展开B、能力目标:(1)在学生对二项式定理形成过程的参与、探讨过程中,培养学生观察、猜想、归纳的能力及分类讨论解决问题的能力(2)培养学生的化归意识和知识迁移的能力C、情感目标:(1)通过学生自主参与和二项式定理的形成过程培养学生解决数学问题的信心;(2)通过学生自主参与和二项式定理的形成过程培养学生体会到数学内在和谐对称美;(3)培养学生的民族自豪感,在学习知识的过程中进行爱国主义教育。

4、重点难点:重点:(1)使学生参与并深刻体会二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律;(2)能够利用二项式定理对给出的二项式进行正确的展开。

难点:二项式定理的发现。

二、教法学法分析为了达到这节课的目标:掌握并能运用二项式定理,让学生主动探索展开式的由来是关键。

“学习任何东西最好的途径是自己去发现”正所谓“学问之道,问而得,不如求而得之深固也”本节课的教法贯穿启发式教学原则,以启发学生主动学习,积极探索为主。

创设一个以学生为主体,师生互动、共同探索的教与学的情境。

通过复习引入,引申设疑,实验猜想,归纳推广等环节进行对此定理的探索。

不仅重视知识的结果,而且重视知识的发生、发现和解决的过程,贯切新课程理念。

高考数学复习考点知识专题讲解与训练52---二项式定理

高考数学复习考点知识专题讲解与训练52---二项式定理

高考数学复习考点知识专题讲解与训练专题52 二项式定理【考纲要求】1.了解“杨辉三角”的特征,掌握二项式系数的性质及其简单应用.2.掌握二项式定理,会用二项式定理解决有关的简单问题.【知识清单】知识点1. 二项式定理1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()n a b +的二项展开式,其中的系数r n C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点(1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,n n C .知识点2. 二项式系数的性质1. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数r n C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值.当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012rnn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,2.注意:(1).分清r n r r n C a b -是第1r +项,而不是第r 项.(2).在通项公式1r n r r r n T C a b -+=中,含有1r T +、r n C 、a 、b 、n 、r 这六个参数,只有a 、b 、n 、r 是独立的,在未知n 、r 的情况下,用通项公式解题,一般都需要首先将通式转化为方程(组)求出n 、r ,然后代入通项公式求解.(3).求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出r ,再求所需的某项;有时则需先求n ,计算时要注意n 和r 的取值范围以及 它们之间的大小关系.(4) 在1r n r r r n T C a b -+=中,r n C 就是该项的二项式系数,它与a ,b 的值无关;而1r T +项的系数是指化简后字母外的数.知识点3. 二项式定理的应用二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;(4)近似计算.当x 充分小时,我们常用下列公式估计近似值:①()11n x nx +≈+;②()()21112nn n x nx x -+≈++; (5)证明不等式.【考点梳理】考点一 : 二项式定理【典例1】(2020·北京高考真题)在52)-的展开式中,2x 的系数为( ).A .5-B .5C .10-D .10【答案】C【解析】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【典例2】(2020·全国高考真题(理))25()()x x y xy ++的展开式中x 3y3的系数为( )A .5B .10C .15D .20【答案】C【解析】5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155rrrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【典例3】(2020·天津高考真题)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rrrr r rr T C xC x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =. 所以2x 的系数为15210C ⨯=. 故答案为:10.【典例4】(2020·江苏省太湖高级中学高二期中)25(32)x x ++的展开式中3x 的项的系数是________.【答案】1560【解析】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15rrr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560.【规律方法】1.二项展开式问题的常见类型及解法(1)求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.2.求解形如(a +b )n (c +d )m 的展开式问题的思路(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2;(3)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.3.求形如(a+b+c)n展开式中特定项的方法逐层展开法的求解步骤:【变式探究】1.(2018·全国高考真题(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A.10 B.20 C.40 D.80【答案】C【解析】由题可得()5210315522rrr r r rr T C xC xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2=所以22552240r r C C =⨯=故选C.2.(2017·全国高考真题(理))(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A.-80B.-40C.40D.80【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2r rrr T x y -+=-可得: 当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=, 则33x y 的系数为804040-=.3.(2019·天津高考真题(理))83128x x ⎛⎫- ⎪⎝⎭是展开式中的常数项为________.【答案】28【解析】8848418831(2)()(1)28r r rr r r r r T C x C x x---+=-=-, 由840r -=,得2r ,所以的常数项为228(1)28C -=.4.(2017·山东高考真题(理))已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.【答案】4【解析】(1+3x )n的展开式中通项公式:T r +1rn =(3x )r =3rrn x r .∵含有x 2的系数是54,∴r =2.∴223n =54,可得2n =6,∴()12n n -=6,n ∈N *.解得n =4.故答案为:4.【特别提醒】在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定;②1r T +是展开式中的第1r +项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置;④对二项式()n a b -展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.考点二 : 二项式系数的性质及各项系数和【典例5】(2020·浙江高三月考)二项式6的展开式中,所有有理项...(系数为有理数,x 的次数为整数的项)的系数之和为________;把展开式中的项重新排列,则有理项...互不相邻的排法共有____种.(用数字作答)【答案】32. 144.【解析】因为二项式6的展开式的通项为6126321666---+==r rr r r r T C C x x x ,因为2122-=-∈r rZ ,所以0,2,4,6r =, 故所有有理项的系数为0246666611515132+++=+++=C C C C ;把展开式中的项重新排列,则有理项...互不相邻的排法共有3434144A A =种. 【典例6】(2019·全国高三月考)5(12)x -的展开式的各个二项式系数的和为________,含x x 的项的系数是________.【答案】32 80-【解析】根据题意,(512x -的展开式的各个二项式系数的和为52=32,当=3r 时,3533451(2)T C x -=⋅⋅- ,所以含x x 80-.【典例7】(2020·浙江省高考真题)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________.【答案】80;122 .【解析】5(12)x +的通项为155(2)2r r r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;122【总结提升】1.赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1).①奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-.②偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --.2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n 2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.3.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值.【变式探究】1.(2019·内蒙古高二期中(理))已知2012(1)n nn x a a x a x a x +=+++⋅⋅⋅+,01216n a a a a +++⋅⋅⋅+=,则自然数n 等于( )A .6B .5C .4D .3【答案】C由题意,令1x =,则01212(1)nn n a a a a +=++⋅⋅+=+⋅,因为01216n a a a a +++⋅⋅⋅+=,所以216n =,解得4n =. 故选:C.2. (2019·石家庄模拟)在(1-2x )n的展开式中,偶数项的二项式系数之和为128,则展开式二项式系数最大的项为 .【答案】1120x 4【解析】由二项式系数的性质知,2n -1=128,解得n =8,(1-2x )8的展开式共有9项,中间项,即第5项的二项式系数最大,T 4+1=C 4814(-2x )4=1120x 4. 3.(2020·湖南师大附中高三月考)若1721701217(2)(1)(1)(1)x a a x a x a x +=+++++⋯++,则012316a a a a a ++++⋯+=______.【答案】1721-由题意,由1717(2)[1(1)]x x +=++,17171(1)T x +=+,17令0x =,则17012172a a a a ++++=⋯,所以1701231621a a a a a ++++⋯+=-.故答案为:1721-. 【特别提醒】1.对于二项式系数问题,应注意以下几点:①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;[来源:学_科_网]③证明不等式时,应注意运用放缩法.2.对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.3.多项式乘法的进位规则:在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.考点三:二项式定理的应用【典例8】(2012·湖北高考真题(理))设,且,若能被13整除,则()A.0 B.1C.11 D.12【答案】D【解析】本题考察二项展开式的系数.由于51=52-1,,又由于13|52,所以只需13|1+a,0≤a<13,所以a=12选D.【典例9】(2019·湖北高二期末(理))71.95的计算结果精确到个位的近似值为()A.106B.107C.108D.109【答案】B【解析】∵()77716252771.9520.05220.0520.05C C =-=-⨯⨯+⨯⨯-⋅⋅⋅107.28≈, ∴71.95107≈. 故选:B【典例10】(多选题)我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的.以下关于杨辉三角的猜想中正确的有( )A .由“与首末两端‘等距离’的两个二项式系数相等”猜想:m n mn n C C -= B .由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:11r r rn n n C C C -+=+C .由“第n 行所有数之和为2n ”猜想:0122n n n n n n C C C C ++++=D .由“11111=,211121=,3111331=”猜想51115101051= 【答案】ABC【解析】由杨辉三角的性质以及二项式定理可知A 、B 、C 正确;550514*******555555111011010101010161051C C C C C C ,故D 错误.故选:ABC.【典例11】(2019·浙江杭十四中高三月考)7(ax的展开式中,3x 项的系数为14,则a =_____,展开式各项系数之和为______.【答案】2 1【解析】由题,7a x⎛ ⎝的展开式通项为()72577331771rrr r r r rr a T C x a C x x ---+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭令57363r r -=∴=,此时67142C a a =∴=所以原式为72x ⎛- ⎝,令1x =,得各项系数之和为()7211-=故答案为2、1【总结提升】二项式定理应用的常见题型及求解策略1.逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.3. 近似计算要首先观察精确度,然后选取展开式中若干项.【特别提醒】用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.【变式探究】1.(多选题)(2020·江苏省太湖高级中学高二期中)设6260126(21)(1)(1)(1)x a a x a x a x +=+++++++,下列结论正确的是( )A .6012563a a a a a -+-+= B .23100a a += C .1236,,,,a a a a 中最大的是2a D .当999x =时,6(21)x +除以2000的余数是1【答案】ABD【解析】将原二项展开式转化为()[]666260126(21)(211)12(1)(1)(1)(1)x x x a a x a x a x +=+-=-+=+++++++,再逐一判断.详解:由()[]666260126(21)(211)12(1)(1)(1)(1)x x x a a x a x a x +=+-=-+=+++++++,得40123562356666666601234564,2,2,2,2,2,2a a a a a a a C C C C C C C =======, 所以6012563a a a a a -+-+=,故A 正确;223323662+2=100a a C C +=,故B 正确;1236,,,,a a a a 中最大的是4a ,故C 错误;当999x =时,11000x +=,1256,,,a a a a 能被2000整除,所以6(21)x +除以2000的余数是1,故D 正确;故选:ABD2.(2019·浙江高考模拟)已知7280128(2)(12)x x a a x a x a x +-=+++,则128...a a a +++=_____,3a =_____.【答案】5- 476-【解析】因为7280128(2)(12)x x a a x a x a x +-=+++,令1x =得0128...(21)(121)3a a a a ++++=+-⨯=-,令0x =得02a =,所以128...5a a a +++=-,由7(12)x -展开式的通项为17(2)r r r r T C x +=-,则33223772(2)(2)476a C C =⨯-+-=-,故答案为:5- ,476-.3.若n 是正整数,则7n +7n -1C 1n +7n -2C 2n +…+7C n-1n 除以9的余数是 .【答案】0或7【解析】根据二项式定理可知,7n +7n -1C 1n +7n -2C 2n +…+7C n -1n =(7+1)n -1=8n -1,又因为8n -1=(9-1)n -1=9n +C 1n 9n -1·(-1)+C 2n 9n -2·(-1)2+…+C n -1n 9·(-1)n -1+(-1)n -1,所以当n 为偶数时,除以9的余数为0,当n 为奇数时,除以9的余数为7. 4.以下排列的数是二项式系数在三角形中的几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了.在欧洲,这个表叫做帕斯卡三角形,它出现要比杨辉迟393年.那么,第9行第8个数是______.【答案】36【解析】由题意,第0行的数为1,第1行的数为0111,C C ,第2行的数为012222,,C C C ,第3行的数为01233333,,,C C C C ,第4行的数为0123444444,,,,C C C C C ,因此,第n 行第m 个数为:1m n C -, 所以第9行第8个数是817299998362C C C -⨯====. 故答案为:36.。

二项式定理

二项式定理

§10.3 二项式定理考试要求 能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.知识梳理 1.二项式定理二项式定理 (a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n nb n (n ∈N *) 二项展开式的通项 T k +1=C k n an -k b k,它表示展开式的第k +1项 二项式系数C k n (k =0,1,…,n )2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项2C nn取得最大值;当n 是奇数时,中间的两项12Cn n-与12Cn n+相等,且同时取得最大值.(3)各二项式系数的和:(a +b )n 的展开式的各二项式系数的和等于2n . 常用结论 1.两个常用公式(1)C 0n +C 1n +C 2n +…+C n n=2n . (2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n+…=2n -1. 2.二项展开式的三个重要特征 (1)字母a 的指数按降幂排列由n 到0. (2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数的和等于n . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n an -k b k 是(a +b )n 的展开式的第k 项.( × ) (2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( × ) (4)(a +b )n 的展开式中,某项的系数与该项的二项式系数不同.( × )教材改编题1.(x -1)10的展开式的第6项的系数是( ) A .C 610 B .-C 610 C .C 510 D .-C 510答案 D解析 T 6=C 510x 5(-1)5, 所以第6项的系数是-C 510. 2.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( ) A .7 B .8 C .9 D .10答案 ABC解析 ∵(a +b )n 的展开式中第5项的二项式系数C 4n 最大,∴n =7或n =8或n =9. 3.在(1-2x )10的展开式中,各项系数的和是________. 答案 1解析 令x =1可得各项系数的和为(1-2)10=1.题型一 通项公式的应用命题点1 形如(a +b )n (n ∈N *)的展开式的特定项例1 (1)(2022·烟台模拟)(1-2x )8展开式中x 项的系数为( ) A .28 B .-28 C .112 D .-112答案 C解析 (1-2x )8展开式的通项公式为 T k +1=C k 8(-2x )k=28(-2)C k kkx .要求x 项的系数,只需k2=1,解得k =2,所以x 项系数为(-2)2C 28=4×8×72×1=112. (2)(2022·德州模拟)若n ∈Z ,且3≤n ≤6,则⎝⎛⎭⎫x +1x 3n 的展开式中的常数项为______.答案 4解析 ⎝⎛⎭⎫x +1x 3n 的通项公式为 T k +1=C k n x n -k ⎝⎛⎭⎫1x 3k =C k n x n -4k, 因为3≤n ≤6,令n -4k =0, 解得n =4,k =1,所以⎝⎛⎭⎫x +1x 3n 的展开式中的常数项为4. 命题点2 形如(a +b )m (c +d )n (m ,n ∈N *)的展开式问题 例2 (1)(2022·泰安模拟)(x 3-2)⎝⎛⎭⎫x +1x 6的展开式中x 6的系数为( ) A .6 B .10 C .13 D .15 答案 C 解析 由于⎝⎛⎭⎫x +1x 6的展开式的通项为 T k +1=36-26C k k x⋅,令6-3k2=3,求得k =2;令6-3k2=6,求得k =0,故(x 3-2)⎝⎛⎭⎫x +1x 6的展开式中x 6的系数为C 26-2C 06=15-2=13. (2)(2022·合肥模拟)二项式⎝⎛⎭⎫2-xa (1-2x )4的展开式中x 3项的系数是-70,则实数a 的值为( ) A .-2 B .2 C .-4 D .4答案 D解析 因为⎝⎛⎭⎫2-xa (1-2x )4 =2×(1-2x )4-xa×(1-2x )4,(1-2x )4的展开式的通项公式为T k +1=C k 4(-2x )k =(-2)k C k 4x k,k =0,1,2,3,4,所以2×(1-2x )4展开式中x 3项的系数是2×(-2)3C 34=-64,xa×(1-2x )4展开式中x 3项的系数是 1a ×(-2)2C 24=24a, 所以-64-24a =-70,解得a =4.教师备选1.(2022·菏泽模拟)已知正整数n ≥7,若⎝⎛⎭⎫x -1x (1-x )n 的展开式中不含x 5的项,则n 的值为( ) A .7 B .8 C .9 D .10答案 D解析 (1-x )n 的二项展开式中第k +1项为T k +1=C k n (-1)k x k,又因为⎝⎛⎭⎫x -1x (1-x )n =x (1-x )n -1x (1-x )n 的展开式不含x 5的项, 所以x C 4n (-1)4x 4-1xC 6n (-1)6x 6=0, C 4n x 5-C 6n x 5=0,即C 4n =C 6n, 所以n =10.2.(2022·烟台模拟)在(x 2+2x +y )5的展开式中,x 5y 2的系数为( ) A .60 B .30 C .15 D .12答案 A解析 由(x 2+2x +y )5=[(x 2+2x )+y ]5,由通项公式可得T k +1=C k 5(x 2+2x )5-k y k , ∵要求x 5y 2的系数,故k =2,此时(x 2+2x )3=x 3·(x +2)3,其对应x 5的系数为C 1321=6.∴x 5y 2的系数为C 25×6=60.思维升华 (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏. 跟踪训练1 (1)(2021·北京)⎝⎛⎭⎫x 3-1x 4的展开式中常数项为________. 答案 -4解析 ⎝⎛⎭⎫x 3-1x 4的展开式的通项 T k +1=C k 4(x 3)4-k ·⎝⎛⎭⎫-1x k =(-1)k C k 4x 12-4k ,令k =3得常数项为T 4=(-1)3C 34=-4. (2)(2022·攀枝花模拟)⎝⎛⎭⎫1-1x 2(1+2x )5的展开式中,含x 3的项的系数是( ) A .-112 B .-48 C .48 D .112答案 C解析 由⎝⎛⎭⎫1-1x 2(1+2x )5 =(1+2x )5-1x 2(1+2x )5,(1+2x )5展开式的通项公式为T k +1=C k 5(2x )k =2k C k 5x k,其中k =0,1,2,3,4,5, (1+2x )5展开式中含x 3项的系数为23C 35=80, 1x 2(1+2x )5展开式中含x 3项的系数为25C 55=32,所以⎝⎛⎭⎫1-1x 2(1+2x )5的展开式中,含x 3的项的系数为80-32=48.题型二 二项式系数与项的系数的问题 命题点1 二项式系数和与系数和 例3 (1)(多选)(2022·十堰调研)在⎝⎛⎭⎫3x -1x n的展开式中,各项系数和与二项式系数和之和为128,则( )A .二项式系数和为64B .各项系数和为64C .常数项为-135D .常数项为135答案 ABD 解析 在⎝⎛⎭⎫3x -1x n的展开式中,各项系数和与二项式系数和之和为128,令x =1,得各项系数和为2n ,二项式系数和为2n ,则2×2n =128,得n =6,即二项式系数和为64,各项系数和也为64,故A ,B 正确;⎝⎛⎭⎫3x -1x 6展开式的通项为T k +1=C k 6·(3x )6-k ·⎝⎛⎭⎫-1x k=36-626C (-1)3k k kkx-⋅⋅,令6-32k =0,得k =4,因此展开式中的常数项为T 5=C 46·(-1)4·32=135.故D 正确. (2)已知多项式(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,则a 1=______,a 2+a 3+a 4+a 5+a 6=______. 答案 1 23解析 根据题意,令x =1,则(1-2)+(1+1+1)3=a 0+a 1+a 2+…+a 6=26,令x =0,a 0=1+1=2, 由于(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,a 1为展开式中x 项的系数,考虑一次项系数a 1=-2+C 13C 22×12=1,所以a 2+a 3+a 4+a 5+a 6=26-1-2=23. 命题点2 系数与二项式系数的最值问题例4 ⎝⎛⎭⎫y -2x 26的展开式中二项式系数最大的项为第________项,系数最大的项为________. 答案 4 240x -8y 2解析 因为⎝⎛⎭⎫y -2x 26的展开式中二项式系数的最大值为C 36,所以二项式系数最大的项为第4项.因为⎝⎛⎭⎫y -2x 26的展开式的通项为 T k +1=C k 6·y 6-k ⎝⎛⎭⎫-2x 2k =C k 6·(-2)k x -2k y 6-k , 所以展开式中系数最大的项为奇数项.展开式中第1,3,5,7项的系数分别为C 06·(-2)0,C 26·(-2)2,C 46·(-2)4,C 66·(-2)6,即1,60,240,64,所以展开式中系数最大的项为240x -8y 2. 教师备选1.(多选)已知(1-2x )2 022=a 0+a 1x +a 2x 2+…+a 2 022x 2 022,下列命题中正确的是( ) A .展开式中所有项的二项式系数的和为22 022 B .展开式中所有奇次项系数的和为32 022-12C .展开式中所有偶次项系数的和为32 022+12D.a 12+a 222+a 323+…+a 2 02222 022=-1 答案 ACD解析 选项A ,由二项式知,C 02 022+C 12 022+…+C 2 0222 022=(1+1)2 022=22 022,A 正确; 当x =1时,有a 0+a 1+a 2+…+a 2 022=1, 当x =-1时,有a 0-a 1+a 2-a 3+…-a 2 021+a 2 022=32 022, 选项B ,由上可得a 1+a 3+a 5+…+a 2 021=1-32 0222,B 错误; 选项C ,由上可得a 0+a 2+a 4+…+a 2 022=32 022+12,C 正确;选项D ,令x =12可得a 0+a 12+a 222+a 323+…+a 2 02222 022=0,又a 0=1,所以a 12+a 222+a 323+…+a 2 02222 022=-1,D 正确.2.(多选)已知(x -3)8=a 0+a 1(x -2)+a 2(x -2)2+…+a 8(x -2)8,则下列结论正确的有( ) A .a 0=1 B .a 6=-28C.a 12+a 222+…+a 828=-255256D .a 0+a 2+a 4+a 6+a 8=128 答案 ACD解析 对于A ,取x =2,得a 0=1,A 正确;对于B ,(x -3)8=[-1+(x -2)]8展开式中第7项为C 68(-1)2(x -2)6=28(x -2)6,即a 6=28,B 不正确; 对于C ,取x =52,得a 0+a 12+a 222+…+a 828=⎝⎛⎭⎫52-38=1256, 则a 12+a 222+…+a 828=1256-a 0=-255256, C 正确;对于D ,取x =3,得a 0+a 1+a 2+a 3+…+a 7+a 8=0, 取x =1,得a 0-a 1+a 2-a 3+…-a 7+a 8=(-2)8=256, 两式相加得2(a 0+a 2+a 4+a 6+a 8)=256, 即a 0+a 2+a 4+a 6+a 8=128,D 正确. 思维升华 赋值法的应用一般地,对于多项式(a +bx )n =a 0+a 1x +a 2x 2+…+a n x n ,令g (x )=(a +bx )n ,则(a +bx )n 的展开式中各项的系数和为g (1),(a +bx )n 的展开式中奇数项的系数和为12[g (1)+g (-1)],(a +bx )n的展开式中偶数项的系数和为12[g (1)-g (-1)].跟踪训练2 (1)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|等于( ) A .1 B .243 C .121 D .122答案 B 解析 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.(2)(多选)(2022·济南模拟)在⎝⎛⎭⎫2x -x 6的展开式中,下列说法正确的是( ) A .常数项为160B .第4项的二项式系数最大C .第3项的系数最大D .所有项的系数和为64 答案 BC解析 展开式的通项为T k +1=C k 6·⎝⎛⎭⎫2x 6-k ·(-x )k =26-k (-1)k ·C k 6x 2k -6,由2k -6=0,得k =3,所以常数项为23(-1)3C 36=-160,A 错误;展开式共有7项,所以第4项二项式系数最大,B 正确;第3项的系数最大,C 正确;令x =1,得⎝⎛⎭⎫2x -x 6=1,所有项的系数和为1,D 错误. 题型三 二项式定理的综合应用例5 (1)设a ∈Z ,且0≤a ≤13,若512 021+a 能被13整除,则a 等于( ) A .0 B .1 C .11 D .12 答案 B解析 因为a ∈Z ,且0≤a ≤13, 所以512 021+a =(52-1)2 021+a ,=C 02 021522 021-C 12 021522 020+C 22 021522 019-…+C 2 0202 02152-C 2 0212 021+a , 因为512 021+a 能被13整除,结合选项, 所以-C 2 0212 021+a =-1+a 能被13整除, 所以a =1.(2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是( )A .1.23B .1.24C .1.33D .1.34答案 D解析 1.056=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…+C 66×0.056=1+0.3+0.037 5+0.002 5+…+0.056≈1.34. 教师备选已知n 为满足S =n +C 127+C 227+C 327+…+C 2727(n ≥3)能被9整除的正数n 的最小值,则⎝⎛⎭⎫x -1x n 的展开式中,系数最大的项为( ) A .第6项 B .第7项C .第11项D .第6项和第7项答案 B解析 S =n +C 127+C 227+C 327+…+C 2727=n +(1+1)27-C 027 =(9-1)9+n -1=9(98-C 1997+…+C 89)+n -2,∵n ≥3,∴S 能被9整除的正数 n 的最小值是n -2=9, ∴n =11.∴⎝⎛⎭⎫x -1x 11的展开式中的通项公式为 T k +1=C k 11x 11-k ⎝⎛⎭⎫-1x k =(-1)k C k 11x11-2k , 只考虑k 为偶数的情况,由T 5=C 411x 3,T 7=C 611x -1,T 9=C 811x -5, 可知系数最大的项为第7项.思维升华 二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx .跟踪训练3 (1)设n 为奇数,那么11n +C 1n ·11n -1+C 2n ·11n -2+…+C n -1n ·11-1除以13的余数是( )A .-3B .2C .10D .11答案 C解析 11n +C 1n ·11n -1+C 2n ·11n -2+…+C n -1n ·11-1=C 0n ·11n +C 1n ·11n -1+C 2n ·11n -2+…+C n -1n ·11+C n n -2=(11+1)n -2 =12n -2=(13-1)n -2=C 0n ·13n -C 1n ·13n -1+…+(-1)n -1·C n -1n·13+(-1)n ·C n n -2, 因为n 为奇数,则上式=C 0n ·13n -C 1n ·13n -1+…+(-1)n -1·C n -1n ·13-3=[C 0n ·13n -C 1n ·13n -1+…+(-1)n -1·C n -1n·13-13]+10,所以11n +C 1n ·11n -1+C 2n ·11n -2+…+C n -1n·11-1除以13的余数是10. (2)0.996的计算结果精确到0.001的近似值是( )A .0.940B .0.941C .0.942D .0.943答案 B解析 (0.99)6=(1-0.01)6=C 06×1-C 16×0.01+C 26×0.012-C 36×0.013+…+C 66×0.016 =1-0.06+0.001 5-0.000 02+…+0.016≈0.941.课时精练1.(2022·济南模拟)⎝⎛⎭⎫x +1x 6的展开式中,含x 4项的系数为( ) A .4B .6C .10D .15答案 B解析 ⎝⎛⎭⎫x +1x 6的展开式通项为 T k +1=C k 6·x 6-k ·⎝⎛⎭⎫1x k =C k 6·x 6-2k , 令6-2k =4,解得k =1,因此,展开式中含x 4项的系数为C 16=6.2.(2022·武汉部分重点中学联考)在⎝⎛⎭⎪⎫x 2-13x n 的展开式中,只有第7项的二项式系数最大,则展开式常数项是( )A.552B .-552C .-28D .28 答案 B解析 展开式中,只有第7项的二项式系数最大,可得展开式有13项,所以n =12, 展开式的通项为T k +1=C k 12⎝⎛⎭⎫x 212-k ·⎝⎛⎭⎪⎫-13x k =12-412-3121C (-1) 2k k kk x ⎛⎫ ⎪⎝⎭,若为常数项,则12-43k =0, 所以k =9 ,得常数项为T 10=C 912(-1)9⎝⎛⎭⎫1212-9=-2208=-552. 3.(2022·邯郸模拟)(x 2-x )(1+x )6的展开式中x 3项的系数为( )A .-9B .9C .-21D .21答案 A解析 展开式中x 3项的系数为C 16-C 26=-9. 4.(2022·芜湖质检)已知(x -m )(x +2)5=a 0+a 1x +a 2x 2+…+a 6x 6,其中m 为常数,若a 4=30,则a 0等于( )A .-32B .32C .64D .-64答案 A解析 由多项式乘法知,第一个因式中x 乘以(x +2)5展开式中的x 3项得一个x 4项,第一个因式中的常数-m 乘以(x +2)5展开式中的x 4项得另一个x 4项,两项合并同类项得系数即为a 4,所以a 4=C 25×22-m ×C 15×2=30,解得m =1,再令x =0,得a 0=-25=-32.5.(2022·大连模拟)(ax -y )(x +y )4的展开式中x 3y 2的系数为-2,则实数a 的值为( )A .-13B .-1C .1 D.13答案 D解析 化简得(ax -y )(x +y )4=ax ·(x +y )4-y ·(x +y )4,∵(x +y )4的展开式的通项公式T k +1=C k 4x4-k y k , 当k =2时,ax ·(x +y )4的展开式中x 3y 2的系数为C 24a =6a , 当k =1时,-y ·(x +y )4的展开式中x 3y 2的系数为-C 14=-4,综上,(ax -y )(x +y )4的展开式中x 3y 2的系数为6a -4=-2,∴a =13. 6.已知在(2x -1)n 的二项展开式中,奇次项系数的和比偶次项系数的和小38,则C 1n +C 2n +C 3n +…+C n n的值为( ) A .28B .28-1C .27D .27-1答案 B 解析 设(2x -1)n =a 0+a 1x +a 2x 2+…+a n x n ,且奇次项的系数和为A ,偶次项的系数和为B . 则A =a 1+a 3+a 5+…,B =a 0+a 2+a 4+a 6+….由已知得,B -A =38,令x =-1,得a 0-a 1+a 2-a 3+…+a n (-1)n =(-3)n ,即(a 0+a 2+a 4+a 6+…)-(a 1+a 3+a 5+a 7+…)=(-3)n ,即B -A =(-3)n ,∴(-3)n =38=(-3)8,∴n =8,由二项式系数性质可得C 1n +C 2n +C 3n +…+C n n =2n -C 0n =28-1.7.(多选)(2022·邯郸模拟)已知⎝⎛⎭⎫5x -3x n 的展开式中,二项式系数之和为64,下列说法正确的是( )A .2,n,10成等差数列B .各项系数之和为64C .展开式中二项式系数最大的项是第3项D .展开式中第5项为常数项答案 ABD解析 由⎝⎛⎭⎫5x -3x n 的二项式系数之和为2n =64, 得n =6,得2,6,10成等差数列,A 正确;令x =1,⎝⎛⎭⎫5x -3x 6=26=64, 则⎝⎛⎭⎫5x -3x 6的各项系数之和为64,B 正确; ⎝⎛⎭⎫5x -3x 6的展开式共有7项,则二项式系数最大的项是第4项,C 不正确; ⎝⎛⎭⎫5x -3x 6的展开式中的第5项为C 46(5x )2⎝⎛⎭⎫-3x 4=15×25×81为常数项,D 正确. 8.(多选)(2022·烟台模拟)已知(2-3x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则下列选项正确的是( )A .a 3=-360B .(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=1C .a 1+a 2+…+a 6=(2-3)6D .展开式中系数最大的为a 2答案 BD解析 (2-3x )6的展开式通项为T k +1=C k 6·26-k ·(-3x )k =C k 6·(-3)k ·26-k ·x k , 对于A ,令k =3,则a 3=C 36×23×(-3)3=-4803,A 错误;对于B ,令x =1,则a 0+a 1+…+a 6=(2-3)6;令x =-1,则a 0-a 1+a 2-…+a 6=(2+3)6,∴(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=(a 0+a 1+a 2+…+a 6)(a 0-a 1+a 2-…+a 6)=[(2-3)×(2+3)]6=1,B 正确;对于C ,令x =0,得a 0=26,∴a 1+a 2+…+a 6=(2-3)6-26,C 错误;对于D ,∵a 0,a 2,a 4,a 6为正数,a 1,a 3,a 5为负数,又a 0=26=64,a 2=C 26×24×3=720,a 4=C 46×22×32=540,a 6=33=27,∴展开式中系数最大的为a 2,D 正确.9.(2021·天津)在⎝⎛⎭⎫2x 3+1x 6的展开式中,x 6的系数是________. 答案 160解析 ⎝⎛⎭⎫2x 3+1x 6的展开式的通项为 T k +1=C k 6(2x 3)6-k ·⎝⎛⎭⎫1x k =26-k C k 6·x 18-4k , 令18-4k =6,解得k =3,所以x 6的系数是23C 36=160.10.(2022·济宁模拟)已知⎝⎛⎭⎫x -2x n 的展开式中各项的二项式系数的和为128,则这个展开式中x 3项的系数是________.答案 84解析 依题意,2n =128,解得n =7,⎝⎛⎭⎫x -2x 7的展开式的通项为 T k +1=C k 7x 7-k ·⎝⎛⎭⎫-2x k=(-2)k C k 7x7-2k (k ∈N ,k ≤7), 由7-2k =3得k =2,所以所求展开式中x 3项的系数是(-2)2C 27=4×7×62×1=84. 11.(2022·温州模拟)若⎝⎛⎭⎫x +2x n 的展开式中共有7项,则常数项为________(用数字作答). 答案 240解析 因为⎝⎛⎭⎫x +2x n 的展开式中共有7项, 所以n +1=7,可得n =6,所以⎝⎛⎭⎫x +2x 6展开式的通项为 T k +1=1626C 2k kk k x x --=3626C 2k kk x -令6-32k =0,可得k =4, 所以常数项为C 4624=15×16=240.12.(2021·浙江)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.答案 5 10解析 (x -1)3展开式的通项T r +1=C r 3x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4x 4-k ,则a 1=C 03+C 14=1+4=5;a 2=C 13(-1)1+C 24=3;a 3=C 23(-1)2+C 34=7;a 4=C 33(-1)3+C 44=0.所以a 2+a 3+a 4=3+7+0=10.13.已知n 为正整数,若1.1510∈[n ,n +1),则n 的值为( )A .2B .3C .4D .5答案 C解析 因为1.155=⎝⎛⎭⎫1+3205=C 05·⎝⎛⎭⎫3200+C 15·⎝⎛⎭⎫3201+C 25·⎝⎛⎭⎫3202+C 35·⎝⎛⎭⎫3203+C 45·⎝⎛⎭⎫3204+C 55·⎝⎛⎭⎫3205=1+34+940+27800+⎝⎛⎭⎫5×320+9400⎝⎛⎭⎫3203 =2+7800+309400×⎝⎛⎭⎫3203, 而2<2+7800+309400×⎝⎛⎭⎫3203<2+7800+278 000<2+7800+308 000=2+180<2.1, 所以2<1.155<2.1,因此4<1.1510<4.41,又n 为正整数,1.1510∈[n ,n +1),所以n =4.14.(2022·浙江Z20名校联盟联考)设(x -1)(2+x )3=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1=________,2a 2+3a 3+4a 4=________.答案 -4 31解析 因为x ·C 03·23·x 0-C 13·22·x 1=-4x , 所以a 1=-4,对所给等式,两边对x 求导,可得(2+x )3+3(x -1)(2+x )2=a 1+2a 2x +3a 3x 2+4a 4x 3,令x =1,得27=a 1+2a 2+3a 3+4a 4,所以2a 2+3a 3+4a 4=31.15.已知S n 是数列{a n }的前n 项和,若(1-2x )2 022=b 0+b 1x +b 2x 2+…+b 2 022x 2 022,数列{a n }的首项a 1=b 12+b 222+…+b 2 02222 022,a n +1=S n ·S n +1,则S 2 022等于( ) A .-12 022B.12 022 C .2 022D .-2 022答案 A解析 令x =12,得⎝⎛⎭⎫1-2×12 2 022=b 0+b 12+b 222+…+b 2 02222 022=0. 又因为b 0=1,所以a 1=b 12+b 222+…+b 2 02222 022=-1. 由a n +1=S n S n +1=S n +1-S n ,得S n +1-S nS n S n +1=1S n -1S n +1=1, 所以1S n +1-1S n=-1, 所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=-1,公差为-1的等差数列, 所以1S n=-1+(n -1)·(-1)=-n , 所以S n =-1n, 所以S 2 022=-12 022. 16.(多选)(2022·南京模拟)已知n ∈N *,n ≥2,p ,q >0,p +q =1,设f (k )=C k 2n p k q 2n -k ,其中k ∈N ,k ≤2n ,则( )A.∑k =02n f (k )=1B.∑k =02n kf (k )=2npq C .若np =4,则f (k )≤f (8)D.∑k =0n f (2k )<12<∑k =1n f (2k -1) 答案 AC解析 ∑k =02n f (k )=∑k =02nC k 2n p k q2n -k =(q +p )2n =1, A 正确;k C k 2n =k (2n )!k !(2n -k )!=2n ×(2n -1)!(k -1)![(2n -1)-(k -1)]!=2n C k -12n -1,所以∑k =02n kf (k )=∑k =12nk C k 2n p k q2n -k =∑k =12n2n C k -12n -1p k q2n -k =2npq ∑k =12nC k -12n -1pk -1q 2n -1-k =2np ∑k =02n -1C k 2n -1p k q2n -1-k =2np (q +p )2n -1=2np ≠2npq (除非p =0),B 错;设f (m )是f (k )中最大项,⎩⎪⎨⎪⎧ f (m )≥f (m -1),f (m )≥f (m +1), 即⎩⎪⎨⎪⎧C m 2n p m q 2n -m ≥C m -12n p m -1q 2n -m +1,C m 2n p m q 2n -m ≥C m +12n p m +1q 2n -m -1, 注意到C m 2n C m -12n =(2n )!m !(2n -m )!(2n )!(m -1)!(2n -m +1)!=2n -m +1m, C m 2n C m +12n=m +12n -m , 又np =4,不等式组可解为8-q ≤m ≤8+p ,所以m =8,所以f (k )≤f (8),C 正确;例如n =2时,p =13,q =23,∑k =0n f (2k )=⎝⎛⎭⎫134+6⎝⎛⎭⎫132⎝⎛⎭⎫232+⎝⎛⎭⎫234=4181, ∑k =1n f (2k -1)=4081,D 错误.。

二项式定理

二项式定理

第二节 二项式定理[最新考纲] 会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *); (2)通项公式:T r +1=C r n an -r b r ,它表示第r +1项; (3)二项式系数:二项展开式中各项的系数C 0n ,C 1n ,…,C n n .2.二项式系数的性质(1)0≤r ≤n 时,C r n 与C n -r n 的关系是C r n =C n -r n .(2)二项式系数先增后减中间项最大当n 为偶数时,第n2+1项的二项式系数最大,最大值为;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为.3.各二项式系数和(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.一、思考辨析(正确的打“√”,错误的打“×”)(1)C r n an -r b r是(a +b )n 的展开式中的第r 项. ( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (4)通项T r +1=C r n an -r b r 中的a 和b 不能互换. ( )[答案](1)× (2)× (3)√ (4)√二、教材改编1.(1-2x )4展开式中第3项的二项式系数为( ) A .6 B .-6 C .24 D .-24A [(1-2x )4展开式中第3项的二项式系数为C 24=6.故选A.] 2.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( )A .5B .-20C .20D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r(-2y )r .根据题意,得⎩⎪⎨⎪⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.] 3.C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( ) A .1 B .2C .2 019D .2 019×2 020A [原式=22 01922 020-1=22 01922 019=1.故选A.]4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为 . 8 [令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]考点1 二项式展开式的通项公式的应用 形如(a +b )n 的展开式问题 求二项展开式中的项的3种方法求二项展开式的特定项问题,实质是考查通项一般需要建立方程求r ,再将r 的值代回通项求解,注意r 的取值范围(r =0,1,2,…,n ).(1)第m 项:此时r +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程;(3)有理项:令通项中“变元”的幂指数为整数建立方程.(1)(2018·全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80(2)若⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a = .(3)(2019·浙江高考)在二项式(2+x )9的展开式中,常数项是 ;系数为有理数的项的个数是 .(1)C (2)-2 (3)162 5 [(1)T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫2x r=C r 52r x 10-3r,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.(2)⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r·x 10-52r ,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2.(3)由题意,(2+x )9的通项为T r +1=C r 9(2)9-r x r(r =0,1,2…9),当r =0时,可得常数项为T 1=C 09(2)9=162;若展开式的系数为有理数,则r =1,3,5,7,9,有T 2, T 4, T 6, T 8, T 10共5个项.]已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.[教师备选例题]1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87B [1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.]1.在(x 2-4)5的展开式中,含x 6的项为 .160x 6 [因为(x 2-4)5的展开式的第k +1项为T k +1=C k 5(x 2)5-k(-4)k =(-4)k C k 5x10-2k , 令10-2k =6,得k =2,所以含x 6的项为T 3=(-4)2·C 25x 6=160x 6.]2.若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中常数项为1516,则实数a 的值为( )A .±2 B.12 C .-2D .±12形如(a +b )n (c +d )m 的展开式问题求解形如(a +b )n (c +d )m 的展开式问题的思路(1)若n ,m 中一个比较小,可考虑把它展开得到多个,如(a +b )2(c +d )m =(a 2+2ab +b 2)(c +d )m ,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如(1+x )5(1-x )7=[(1+x )(1-x )]5(1-x )2=(1-x 2)5(1-x )2.(3)分别得到(a +b )n ,(c +d )m 的通项公式,综合考虑.(1)(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35(2)(1-x )6(1+x )4的展开式中x 的系数是( ) A .-4 B .-3 C .3D .4(1)C (2)B [(1)因为(1+x )6的通项为C r 6x r ,所以⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4.因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为30.故选C.(2)(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3.] 求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.1.(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( ) A .-3 B .-2 C .2D .3D [能够使其展开式中出现常数项,由多项式乘法的定义可知需满足:第一个因式取x 2项,第二个因式取1x 2项得x 2×1x2×C 45(-1)4=5;第一个因式取2,第二个因式取(-1)5得2×(-1)5×C 55=-2,故展开式的常数项是5+(-2)=3,故选D.]2.若(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A.13B.12 C .1D .2D [由题意得⎝ ⎛⎭⎪⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝ ⎛⎭⎪⎫1x k=C k 10x 10-2k ,⎝ ⎛⎭⎪⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.]形如(a +b +c )n 的展开式问题求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.(1)将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是 .(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6的展开式中,x 3y 3的系数是 .(用数字作答) (3)设(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10,则a 1等于 . (1)-160 (2)-120 (3)-240 [(1)⎝ ⎛⎭⎪⎫x +4x -43=⎝⎛⎭⎪⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎪⎫-2x k=(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6表示6个因式x 2-2x +y 的乘积,在这6个因式中,有3个因式选y ,其余的3个因式中有2个选x 2,剩下一个选-2x ,即可得到x 3y 3的系数.即x 3y 3的系数是C 36C 23×(-2)=20×3×(-2)=-120.(3)(x 2-3x +2)5=(x -1)5(x -2)5,其展开式中x 的系数a 1=C 45(-1)4×(-2)5+(-1)5C 45(-2)4=-240.]二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.1.(2015·全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60C [法一:利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2项的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.]2.⎝ ⎛⎭⎪⎪⎫x -13x -y 6的展开式中含xy 的项的系数为( )A .30B .60C .90D .120B [展开式中含xy 的项来自C 16(-y )1⎝ ⎛⎭⎪⎪⎫x -13x 5,⎝ ⎛⎭⎪⎪⎫x -13x 5展开式通项为T r +1=(-1)r C r 5x 5-43r ,令5-43r =1⇒r =3,⎝⎛⎭⎪⎪⎫x -13x 5展开式中x 的系数为(-1)3C 35,所以⎝ ⎛⎭⎪⎪⎫x -13x -y 6的展开式中含xy 的项的系数为C 16(-1)C 35(-1)3=60,故选B.]考点2 二项式系数的和与各项的 系数和问题赋值法在求各项系数和中的应用(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.(1)在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120(2)(2019·汕头质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 .(1)C (2)-3或1 [(1)令x =1,则⎝ ⎛⎭⎪⎫x +3x n =4n ,所以⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数和为4n,又二项式系数和为2n,所以4n 2n =2n=32,解得n =5.二项展开式的通项T r +1=C r 5x5-r ⎝ ⎛⎭⎪⎫3x r =C r 53rx 5-32r ,令5-32r =2,得r =2, 所以x 2的系数为C 2532=90,故选C.(2)令x=0,则(2+m)9=a0+a1+a2+…+a9,令x=-2,则m9=a0-a1+a2-a3+…-a9,又(a0+a2+…+a8)2-(a1+a3+…+a9)2=(a0+a1+a2+…+a9)(a0-a1+a2-a3+…+a8-a9)=39,∴(2+m)9·m9=39,∴m(2+m)=3,∴m=-3或m=1.](1)利用赋值法求解时,注意各项的系数是指某一项的字母前面的数值(包括符号).(2)在求各项的系数的绝对值的和时,首先要判断各项系数的符号,然后将绝对值去掉,再进行赋值.1.在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A.-960 B.960C.1120 D.1680C[因为偶数项的二项式系数之和为2n-1=128,所以n-1=7,n=8,则展开式共有9项,中间项为第5项,因为(1-2x)8的展开式的通项T r+1=C r8(-2x)r =C r8(-2)r x r,所以T5=C48(-2)4x4,其系数为C48(-2)4=1120.]2.在(1-x)(1+x)4的展开式中,含x2项的系数是b.若(2-bx)7=a0+a1x+…+a7x7,则a1+a2+…+a7=.-128[在(1-x)(1+x)4的展开式中,含x2项的系数是b,则b=C24-C14=2.在(2-2x)7=a0+a1x+…+a7x7中,令x=0得a0=27,令x=1,得a0+a1+a2+…+a7=0.∴a 1+a 2+…+a 7=0-27=-128.]3.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a = .3 [设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.]考点3 二项式系数的性质 二项式系数的最值问题求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二次项系数的性质求解.1.二项式⎝ ⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( )A .3B .5C .6D .7D [根据⎝ ⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎪⎫3x +13x n 的展开式的通项为T r +1=C r 20·(3x )20-r ·⎝ ⎛⎭⎪⎪⎫13x r=(3)20-r ·C r 20·x 20-4r3,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.]2.(2019·南昌模拟)设m 为正整数,()x +y 2m 展开式的二项式系数的最大值为a ,()x +y 2m +1展开式的二项式系数的最大值为b ,若15a =8b ,则m = . 7 [()x +y 2m 展开式中二项式系数的最大值为a =C m 2m ,()x +y 2m +1展开式中二项式系数的最大值为b =C m +12m +1,因为15a =8b ,所以15C m 2m =8C m +12m +1,即15(2m )!m !m !=8(2m +1)!m !(m +1)!,解得m =7.] 3.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为 .C 715(3x )7和C 815(3x )8 [由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.] 二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.项的系数的最值问题二项展开式系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1从而解出k 来,即得.已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,二项式系数最大的项为 ,系数的绝对值最大的项为 .-8 064 -15 360x 4 [由题意知,22n -2n =992,即(2n -32)(2n +31)=0,故2n =32,解得n =5.由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510(2x )5⎝ ⎛⎭⎪⎫-1x 5=-8 064. 设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x )10-k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k C k 10·210-k ·x 10-2k , 令⎩⎪⎨⎪⎧ C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1, 得⎩⎪⎨⎪⎧C k 10≥2C k -110,2C k 10≥C k +110, 即⎩⎪⎨⎪⎧11-k ≥2k ,2(k +1)≥10-k解得83≤k ≤113. ∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.] 展开式中项的系数一般不同于二项式系数,求解时务必分清.[教师备选例题]已知(x 23+3x 2)n 的展开式中第3项与第4项的二项式系数相等.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.[解](1)易知n =5,故展开式共有6项,其中二项式系数最大的项为第三、第四两项.所以T 3=C 25(x 23)3·(3x 2)2=90x 6, T 4=C 35(x 23)2·(3x 2)3=270x 223.(2)设展开式中第r +1项的系数最大.T r +1=C r 5(x 23)5-r ·(3x 2)r =C r 5·3r ·x 10 + 4r 3,故有⎩⎪⎨⎪⎧C r 5·3r ≥C r -15·3r -1,C r 5·3r ≥C r +15·3r +1, 即⎩⎨⎧ 3r ≥16-r .15-r ≥3r +1.解得72≤r ≤92.因为r ∈N , 所以r =4,即展开式中第5项的系数最大.T 5=C 45·x 23·(3x 2)4=405x 263. 若⎝ ⎛⎭⎪⎫x 3+1x 2n 的展开式中第6项系数最大,则不含x 的项为( )A .210B .10C .462D .252 A [∵第6项系数最大,且项的系数为二项式系数,∴n 的值可能是9,10,11.设常数项为T r +1=C r n x 3(n -r )x -2r =C r n x3n -5r , 则3n -5r =0,其中n =9,10,11,r ∈N ,∴n =10,r =6,故不含x 的项为T 7=C 610=210.]。

高三数学人教版A版数学(理)高考一轮复习教案二项式定理1

高三数学人教版A版数学(理)高考一轮复习教案二项式定理1

第三节 二项式定理二项式定理的应用(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 知识点一 二项式定理 1.定理公式(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N *)叫作二项式定理. 2.通项T k +1=C k n an -k b k为展开式的第k +1项. 易误提醒 (1)二项式的通项易误认为是第k 项实质上是第k +1项.(2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)通项是T k +1=C k n an -k b k (k =0,1,2,…,n ).其中含有T k +1,a ,b ,n ,k 五个元素,只要知道其中四个即可求第五个元素.[自测练习]1.⎝⎛⎭⎫2x -1x 6的展开式中常数项为________. 解析:由题意可知常数项为C 46(2x )2⎝⎛⎭⎫-1x 4=60. 答案:602.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项. 解析:∵T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r 4∴r 为4的倍数,故r =0,4,8共3项. 答案:3知识点二 二项式系数与项的系数 1.二项式系数与项的系数 (1)二项式系数二项展开式中各项的系数C k n (k ∈{0,1,…,n })叫作二项式系数. (2)项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.2.二项式系数的性质性质内容对称性与首末两端等距离的两个二项式系数相等,即C m n=C n-mn增减性当k<n+12时,二项式系数逐渐增大;当k>n+12时,二项式系数逐渐减小最大值当n是偶数时,中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大,最大值为Cn2n;当n 是奇数时,中间两项⎝⎛第n-12+1项和⎭⎫第n+12+1项的二项式系数相等,且同时取得最大值,最大值为Cn-12n或Cn+12n3.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+C2n+…+C k n+…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1.易误提醒二项式系数与展开式项的系数的异同:在T k+1=C k n a n-k b k中,C k n就是该项的二项式系数,它与a,b的值无关;T k+1项的系数指化简后除字母以外的数,如a=2x,b=3y,T k+1=C k n2n-k·3k x n-k y k,其中C k n2n-k3k就是T k +1项的系数.[自测练习]3.(2015·高考四川卷)在(2x-1)5的展开式中,含x2的项的系数是________.(用数字填写答案).解析:由二项展开式的通项T r+1=C r5(2x)5-r(-1)r(r=0,1,…,5)知,当r=3时,T4=C35(2x)5-3(-1)3=-40x2,所以含x2的项的系数是-40.答案:-404.C0n+3C1n+5C2n+…+(2n+1)C n n=________.解析:设S=C0n+3C1n+5C2n+…+(2n-1)·C n-1n+(2n+1)C n n,∴S=(2n+1)C n n+(2n-1)C n-1n+…+3C1n+C0n,∴2S=2(n+1)(C0n+C1n+C2n+…+C n n)=2(n+1)·2n,∴S=(n+1)·2n.答案:(n +1)·2n考点一 二项展开式中特定项与系数问题|1.(2016·海淀模拟)⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为( ) A .12 B .-12 C .6D .-6解析:由题意可得,二项展开式的通项为T r +1=C r 3·(x 2)3-r ⎝⎛⎭⎫-2x r =(-2)r C r 3x 6-3r ,令6-3r =0,得r =2,∴⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为T 2+1=(-2)2C 23=12,故选A. 答案:A2.(2015·高考安徽卷)⎝⎛⎭⎫x 3+1x 7的展开式中x 5的系数是________.(用数字填写答案) 解析:由题意知,展开式的通项为T r +1=C r 7(x 3)7-r ⎝⎛⎭⎫1x r =C r 7x 21-4r ,令21-4r =5,则r =4,∴T 5=C 47x 5=35x 5,故x 5的系数为35.答案:353.若⎝⎛⎭⎫1x -x x n 展开式中含有x 2项,则n 的最小值是________.解析:⎝⎛⎭⎫1x -x x n 的展开式的通项是T r +1=C r n ·⎝⎛⎭⎫1x n -r ·(-x x )r =C r n ·(-1)r ·x 52r -n .依题意得,关于r 的方程52r -n =2,即r =2×(n +2)5有正整数解;又2与5互质,因此n +2必是5的倍数,即n +2=5k ,n =5k -2,n 的最小值是3.答案:3求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.考点二 二项式系数性质与各项系数和问题|(1)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是( )A .360B .180C .90D .45(2)若a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,则a 2+a 3+a 4=________. [解析] (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10, 通项公式为T r +1=C r 10(x )10-r ·⎝⎛⎭⎫2x 2r =C r 102r x 5-52r , 所以r =2时,常数项为180.(2)x 4=[(x -1)+1]4=C 04(x -1)4+C 14(x -1)3+C 24(x -1)2+C 34(x -1)+C 44,对照a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4得a 2=C 14,a 3=C 24,a 4=C 34,所以a 2+a 3+a 4=C 14+C 24+C 34=14.[答案] (1)B (2)14(1)赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大. (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第⎝⎛⎭⎫n +12+1项的二项式系数相等并最大.(2015·成都一中模拟)设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:令等式中x =-1可得a 0+a 1+a 2+…+a 11=(1+1)(-1)9=-2,故选A. 答案:A考点三 多项式展开式中特定项或系数问题|在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力,归纳起来常见的命题角度有:1.几个多项式和的展开式中的特定项(系数)问题. 2.几个多项式积的展开式中的特定项(系数)问题. 3.三项展开式中的特定项(系数)问题.探究一几个多项式和的展开式中的特定项(系数)问题1.(2016·商丘月考)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121C.-74 D.-121解析:展开式中含x3项的系数为C35(-1)3+C36(-1)3+C37(-1)3+C38(-1)3=-121.答案:D探究二几个多项式积的展开式中的特定项(系数)问题2.(2015·高考全国卷Ⅱ)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:法一:直接将(a+x)(1+x)4展开得x5+(a+4)x4+(6+4a)x3+(4+6a)x2+(1+4a)x +a,由题意得1+(6+4a)+(1+4a)=32,解得a=3.法二:(1+x)4展开式的通项为T r+1=C r4x r,由题意可知,a(C14+C34)+C04+C24+C44=32,解得a=3.答案:3探究三三项展开式中特定项(系数)问题3.(2015·高考全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60解析:(x2+x+y)5=[(x2+x)+y]5的展开式中只有C25(x2+x)3y2中含x5y2,易知x5y2的系数为C25C13=30,故选C.答案:C(1)对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.(3)对于三项式问题一般先变形化为二项式再解决.30.一般与特殊的思想在二项式问题中的应用(赋值法)【典例】若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是________.[思维点拨] 要求解的问题与二项式系数有关考虑赋值法,令x =±1,可求得奇数项与偶数项系数之和.[解析] 令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,① 令x =-1,得a 0-a 1+a 2-a 3+a 4=(-2+3)4.②故(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)(a 0+a 2+a 4-a 1-a 3)=(2+3)4×(-2+3)4=(3-4)4=1.[答案] 1[方法点评] 赋值法是求展开式中的系数与系数和的常用方法,注意所赋的值要有利于问题的解决,可以取一个或几个值,常赋的值为0,±1.一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. [跟踪练习] 若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案:364A 组 考点能力演练1.若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为( ) A .-84 B .84 C .-36D .36解析:由二项式系数之和为2n =512,得n =9.又T r +1=(-1)r C r 9x18-3r , 令18-3r =0,得r =6,故常数项为T 7=84.故选B. 答案:B2.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2D .-1解析:(1+x )5中含x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1.答案:D3.(2016·青岛模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3解析:∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3.答案:B4.(2016·西城一模)若⎝⎛⎭⎪⎫3x -13x 2m 的展开式中二项式系数之和为128,则展开式中1x 3的系数是( )A .21B .-21C .7D .-7解析:∵2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r ·⎝ ⎛⎭⎪⎫-13x 2r =C r 737-r (-1)r x 7-5r3, 令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21,故选A. 答案:A5.(2016·广州调研)已知a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x ,则二项式⎝⎛⎭⎫x 2+ax 5的展开式中x 的系数为( )A .10B .-10C .80D .-80解析:a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x =2sin ⎝⎛⎭⎫x +π6| π0=-2,展开式的通项为T r +1=C r 5(-2)r x 10-3r ,令10-3r =1,则r =3,T 4=C 35(-2)3x =-80x.答案:D6.⎝⎛⎭⎫x -12x 6的展开式中常数项为________. 解析:⎝⎛⎭⎫x -12x 6的通项为T k +1=C k 6x 6-k ⎝⎛⎭⎫-12x k =⎝⎛⎭⎫-12k C k 6x 6-2k ,令6-2k =0,得k =3,故展开式中常数项为-52.答案:-527.(2015·高考天津卷)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. 解析:二项式⎝⎛⎭⎫x -14x 6展开式的第r +1项为T r +1=C r 6x 6-r ·⎝⎛⎭⎫-14r x -r =C r 6⎝⎛⎭⎫-14r x 6-2r ,令6-2r =2,解得r =2,故x 2的系数为C 26⎝⎛⎭⎫-142=1516. 答案:15168.若(1-2x)2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015,则a 12+a 222+…+a 2 01522 015=________.解析:当x 0=0时,左边=1,右边=a 0,∴a 0=1 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01522 015∴0=1+a 12+a 222+…+a 2 01522 015∴a 12+a 222+…+a 2 01522 015=-1 答案:-19.已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求正数a 的值.解:⎝⎛⎭⎫165x 2+1x 5展开式的通项T r +1=C r5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r C r 5x 20-5r 2, 令20-5r =0,得r =4,故常数项T 5=C 45·165=16,又(a 2+1)n 展开式的各项系数之和为2n , 由题意,得2n =16,∴n =4.∴(a 2+1)4展开式中系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3.10.(1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除;(2)求S =C 127+C 227+…+C 2727除以9的余数.解:(1)证明:∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.B 组 高考题型专练1.(2014·高考湖北卷)若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B.54 C .1D.24解析:T r +1=C r 7·(2x )7-r ·⎝⎛⎭⎫a x r =27-r C r 7a r ·1x 2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1,故选C.答案:C2.(2014·高考四川卷)在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .10解析:在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15.答案:C3.(2015·高考湖北卷)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212解析:因为(1+x )n 的展开式中第4项与第8项的二项式系数相等,所以C 3n =C 7n,解得n =10,所以二项式(1+x )10的展开式中奇数项的二项式系数和为12×210=29.答案:A4.(2015·高考广东卷)在(x -1)4的展开式中,x 的系数为________. 解析:由题意得T r +1=C r 4(x )4-r (-1)r =(-1)r C r 4·x 4-r 2,令4-r2=1,得r =2,所以所求系数为(-1)2C 24=6.答案:65.(2013·高考浙江卷)设二项式⎝⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:展开式通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎫-13x r =C r 5(-1)r x 52-56r .令52-56r =0,得r =3, 当r =3时,T 4=C 35(-1)3=-10.故A =-10.答案:-10。

完整版二项式定理教案

完整版二项式定理教案

1.3.1 二项式定理(第一课时)、教学目标1、知识与技能(1)理解二项式定理,并能简单应用(2)能够区分二项式系数与项的系数2、过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察,分析,归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。

3、情感与态度价值观通过探究问题,归纳假设让学生在学习的过程中养成独立思考的好习惯,在自主学习中体验成功, 在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。

、教学重点难点1、教学重点:二项式定理及二项式定理的应用2、教学难点:二项式定理中单项式的系数三、教学设计:三、典例分析例1例1、求(2 _)4的展开式x解:(2 -)4C:24C4 23(丄)C4 22(-)2C:2 (-)3C:』)x x x x x “32 24 8 116 2 3 4x x x x例2 (1)求(1 2x)5的展开式中第3项5 23 2 3解.(1 2x)的展开式的第3项疋T2 1 C5 1 (2x) 40 x,1 9 3例3.求(x -)9的展开式中x3的系数x1解:••• (x -)9的展开式的通项是xT k 1 C9x9 k(1)k C9k x9 2k,x二9 2k 3 , k 3,二x3的系数C: 84课堂检测:1.(2a b)4的展开式中的第2项•解:T2 1 C4(2a)3b 32a3b,2.(x 1)10的展开式的第6项的系数(D )厂6 厂6 厂5 厂5A. C10B. C10C. C10D. C10x 5 23.(1 )5的展开式中x2的系数为(C )25A. 10B. 5C. -D. 12四、小结X二项式定理:通理J(灯+小『=Ctf+U十%+…彳U旷方*+…+6弟斤十]域的一,顼成乘数区别:展开式中第2项的系数,第2项二项式系数4思考:展开式中第3项的系数,第3项二项式系数通过例题让学生更好的理解二项式定理强调:通项公式的应用进一步巩固二项式定理学生应用二项式定理明确通项的作用板书设计:1.3.1 二项式定理一. 二项式定理:(a b)n C0n a n C1n a n 1b L C k n a n k b k L C n n b n(n N* )1.项数:n 1项;2•指数:字母a , b的指数和为n ,a 的指数由n 递减至0,b的指数由0递增至n ;3.二项式系数:C n0,C n1,C n2,L ,C n k L ,C n n (k {0,1, 2,L n})4.通项:第k 1项:T k 1 C n k a n k b k二. 典例三. 作业。

二项展开公式

二项展开公式

二项展开公式摘要:1.二项式定理的定义2.二项展开公式的推导3.二项展开公式的应用4.结论正文:一、二项式定理的定义二项式定理,又称二项式定理公式,是组合数学中的一种重要公式。

它表示了在给定的二项式中,每一项的系数与项数之间的关系。

二项式定理的表达式为:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 +...+ C(n, n)b^n其中,a 和b 是任意实数或复数,n 是非负整数,C(n, k) 表示组合数,即从n 个元素中取k 个元素的组合数。

二、二项展开公式的推导二项式定理的推导过程比较简单,主要是通过数学归纳法来证明。

当n=0 时,等式左边为1,右边为C(0, 0)a^0 = 1,等式成立。

假设当n=k 时等式成立,即:(a + b)^k = C(k, 0)a^k + C(k, 1)a^(k-1)b + C(k, 2)a^(k-2)b^2 +...+ C(k, k)b^k当n=k+1 时,等式左边为:(a + b)^(k+1) = (a + b)^k * (a + b)根据假设,(a + b)^k 的每一项都可以表示为C(k, i)a^(k-i)b^i,将其乘以(a + b),得到:(a + b)^(k+1) = C(k, 0)a^(k+1) + C(k, 1)a^kb + C(k, 2)a^(k-1)b^2 +...+ C(k, k)ab^k + C(k, 0)a^kb + C(k, 1)a^(k-1)b^2 +...+ C(k, k)b^k 可以看到,每一项的系数都是C(k, i) 与C(k, k-i) 的和,即C(k+1, i)。

因此,当n=k+1 时,等式也成立。

根据数学归纳法,二项式定理对所有的非负整数n 都成立。

三、二项展开公式的应用二项式定理在组合数学、概率论、统计学等领域都有广泛的应用。

下面举一个简单的例子:假设有一个袋子里有3 个红球,2 个绿球,现在从袋子里随机取2 个球,求取到的球都是红球的概率。

二项式定理的起源及其应用

二项式定理的起源及其应用

二项式定理的起源及其应用二项式定理(Binomial Theorem)是数学中非常重要的定理之一,它被广泛应用于代数、组合数学、概率论和数值计算等领域。

本文将介绍二项式定理的起源及其应用。

二项式定理的起源可以追溯到中国古代的代数学研究。

中国古代的代数学家以诸如《周髀算经》、《海岳赋》等著作,奠定了二项式计算的基础。

真正成为二项式定理的形式化表述可以追溯到17世纪的法国数学家Pascal和Newton。

Pascal在1654年提出了二项式展开式的形式,但是直到1665年Newton的著作《通向无限的新方法》中,二项式定理才得到了证明和完善。

二项式定理的完整表述如下:(a + b)^n = C_n^0 \cdot a^n \cdot b^0 + C_n^1 \cdot a^{n-1} \cdot b^1 + C_n^2 \cdot a^{n-2} \cdot b^2 + \cdots + C_n^{n-1} \cdot a \cdot b^{n-1} + C_n^n \cdot a^0 \cdot b^nC_n^k表示组合数,表示从n个元素中选取k个元素的方法数,也就是n个元素中任取k个元素的组合数。

二项式定理的应用非常广泛。

以下是二项式定理的一些具体应用:1. 多项式展开:二项式定理允许我们展开一个多项式的幂,从而可以用简单的方式表示一个复杂的多项式。

这在代数学、数值计算等领域具有重要的应用。

2. 概率计算:在概率论中,二项式定理可以用来计算在n次独立重复试验中,成功次数为k的概率。

投掷一颗硬币n次,成功为正面朝上的次数为k的概率可以用二项式定理计算。

3. 组合数计算:二项式定理中的组合数可以用于计算排列、组合和多重子集等组合数问题。

在组合数学中,我们经常需要计算在一个集合中选取k个元素的所有可能组合数,这可以通过二项式定理和组合数的性质来计算。

4. 近似计算:当n比较大时,二项式定理可以用于近似计算。

二项式系数奇数项与偶数项和公式推导

二项式系数奇数项与偶数项和公式推导

一、概述二项式系数的奇数项与偶数项和公式是数学中重要的内容之一,其推导方法广泛应用于组合数学、代数学及概率统计等领域。

我们将从二项式定理开始,推导出二项式系数的奇数项与偶数项和公式,探讨其数学性质及应用。

二、二项式定理与二项式系数二项式定理是代数学中的基本定理之一,表述为:$ (a + b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + ... + C_n^kb^{n-k} + ... + C_n^nb^n$其中,$C_n^k$表示n阶二项式系数,其计算公式为:$C_n^k = \frac{n!}{k!(n-k)!}$这里,n为非负整数,k为整数,并且满足0≤k≤n。

三、奇数项与偶数项性质1. 奇数项与偶数项性质我们可以观察到,当k为奇数时,二项式系数$C_n^k$的值为奇数;当k为偶数时,二项式系数$C_n^k$的值为偶数。

2. 证明假设n阶二项式系数$C_n^k$的k为奇数,我们可以对二项式系数进行分解:$(1 + 1)^n = C_n^0 + C_n^1 + C_n^2 + ... + C_n^n$由于$(1 + 1)^n = 2^n$,且2^n为偶数,所以n阶二项式系数奇数项和$\sum_{k=0}^{n}C_n^k$为偶数。

同理,当k为偶数时,$\sum_{k=0}^{n}C_n^k$为奇数。

四、奇数项与偶数项和公式推导1. 奇数项和公式的推导我们可以将$(a + b)^n$展开为两部分:$(a + b)^n = (a - b)^n + 2C_n^1a^{n-1}b + 2C_n^3a^{n-3}b^3 + ... + 2C_n^{n-2}a^2b^{n-2} + 2C_n^nb^n$由于$(a - b)^n = C_n^0a^n - C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 - ... + (-1)^nC_n^nb^n$将两式相加得到:$2\sum_{i=0}^{n/2}(-1)^iC_n^{2i}a^{n-2i}b^{2i}$由此我们可以得到n阶二项式系数奇数项和公式:$\frac{(a + b)^n - (a - b)^n}{2} = \sum_{i=0}^{n/2}(-1)^iC_n^{2i}a^{n-2i}b^{2i}$2. 偶数项和公式的推导同理,我们可以将$(a + b)^n$展开为两部分:$(a + b)^n = (a - b)^n + 2C_n^1a^{n-1}b + 2C_n^3a^{n-3}b^3 + ... + 2C_n^{n-2}a^2b^{n-2} + 2C_n^nb^n$由于$(a - b)^n = C_n^0a^n - C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 - ... + (-1)^nC_n^nb^n$将两式相减得到:$2\sum_{i=0}^{n/2}C_n^{2i}a^{n-2i}b^{2i}$由此我们可以得到n阶二项式系数偶数项和公式:$\frac{(a + b)^n + (a - b)^n}{2} =\sum_{i=0}^{n/2}C_n^{2i}a^{n-2i}b^{2i}$五、简单案例分析我们以具体的n值进行分析,假定$a = 1$,$b = 1$:1. 当n为偶数时,$(1 + 1)^n = \sum_{i=0}^{n/2}C_n^{2i}1^{n-2i}1^{2i} = \frac{(1 + 1)^n + (1 - 1)^n}{2}$= $\frac{2^n + 2^0}{2} = 2^{n-1} + 1$2. 当n为奇数时,$(1 + 1)^n = \sum_{i=0}^{(n-1)/2}(-1)^iC_n^{2i}1^{n-2i}1^{2i} = \frac{(1 + 1)^n - (1 - 1)^n}{2}$= $\frac{2^n - 2^0}{2} = 2^{n-1}$六、结论通过以上推导与分析,我们得到了n阶二项式系数奇数项与偶数项和的公式,分别为:$\frac{(a + b)^n - (a - b)^n}{2} = \sum_{i=0}^{n/2}(-1)^iC_n^{2i}a^{n-2i}b^{2i}(奇数项和公式)$$\frac{(a + b)^n + (a - b)^n}{2} =\sum_{i=0}^{n/2}C_n^{2i}a^{n-2i}b^{2i}(偶数项和公式)$这两个公式在组合数学、代数学以及概率统计等领域有广泛的应用,对于理解二项式系数的性质和计算具有重要意义。

二项式定理

二项式定理

(2)∵Tr+1=34C20rx20-ryr(r=0,1,2,„,20)系数为有理数, ∴r=0,4,8,12,16,20,共 6 项.
[答案] (1)-5 (2)6
r
a 1.(2010· 陕西高考)(x+x)5(x∈R)展开式中 x3 的系数为 10,则实数 a 等于( ) C.1 D.2
解析:A-B=(3-1)7=27=128.
答案:128
5 .已知 (1 - 2x)7 = a0 + a1x + a2x2 +„+ a7x7 ,那么 a1 + a2 + a3
+„+a7=________.
解析:令x=1,则a0+a1+a2+„+a7=-1,
又令x=0,则得a0=1,
所以a1+a2+a3+„+a7=-1-1=-2. 答案:-2
解析:二项式系数之和 2 =64,则
2k n k 6-k 1 n=6,Tk+1=C6 · x ·k=C6kx6-
x
,当 6-2k=0 时,即 k=3 时为常数项,T3+1=C63=20.
答案:B
4.设A=37+C7235+C7433+C763 ,B=C7136+C7334+C7532+
1,则A-B=________.
解得 n=8 或 n=-3(舍去). (1)令 x=1 得各项系数的和为(1-2)8=1.
(2)通项公式 Tr+1=C8 · ( x)
r
8-r
8-r 2 r r r · (-x2) =C8 · (-2) · x 2 -2r,
3 3 8-r 3 令 2 -2r=2,则 r=1,故展开式中含 x2的项为 T2=-16x2.
二项式定理
1.能用计数原理证明二项式定理.
2.会用二项式定理解决与二项展开式有关的简单

高二二项式定理(理科)

高二二项式定理(理科)

年 级 高二 学科 数学内容标题 二项式定理(理科) 编稿老师胡居化一、教学目标1. 理解二项式定理的内容及其通项公式的概念,掌握二项式定理的应用.2. 理解二项式系数与展开式中某项系数的区别,掌握二项式系数的性质及其简单的应用.3. 理解方程的数学思想、转化的数学思想及赋值法等数学思想方法的应用.二、知识要点分析1.二项式定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)(这个公式表示的规律叫二项式定理.(1)二项式nb a )(+的展开式的特点:(i )展开式共有n+1项;(ii )各项的次数之和等于n ;(iii )a 的次数由n 降到0,b 的次数由0升到n .(2)二项展开式的系数:+∈∈≤≤N n N r n r C r n ,,0(,)(3)二项展开式的通项公式:rr n r n r b a C T -+=1,r=0,1,2n Λ,表示二项展开式的第(r+1)项.注:(i )二项式n b a )(+的展开式的第(r+1)项r rn r n b a C -与二项展开式(b+a )n 的第(r+1)项r rn rn a bC -是有区别的,应用时a ,b 不能随便交换.(ii )二项展开式的系数rn C 与展开式中的对应项的系数不一定相等,二项式系数rn C 恒为正.而某项的系数可以是任意的实数.(iii )二项式nb a )(-的展开式的通项公式是r r n r n r r b a C T -+-=)1(1,各项的二项式系数是r n C ,各项的系数是rn r C )1(-2. 二项式定理的应用:(1)进行近似计算;(2)证明整除或求余数问题;(3)证明有关的不等式.3. 二项式系数的性质:(1)rn r n r n C C C +=-+11(组合性质(2)的体现).(2)mn nm n C C -=(与首末两端等距离的两项的二项式系数相等),即对称性. (3)增减性:当21+<n k 时,二项式系数kn C 是逐渐增大的;当21+>n k 时,二项式系数是逐渐减小的.(4)最大二项式系数:当n 是偶数时,n+1是奇数,展开式共有(n+1)项,故展开式中间一项的二项式系数最大,即第()12+n项的二项式系数最大.最大的二项式系数是2nn C ;当n 为奇数时,(n+1)是偶数,共有(n+1)项,故中间有两项,即第)项项、(121n 21n +++的二项式系数最大,这两项的二项式的系数相等且最大,为21121+-+=n nn nCC. (5)二项式的系数和是nn n n n n n C C C C 22210=++++Λ,即,奇数项的二项式系数和等于偶数项的二项式系数和,即131202-=++=++n n n n n C C C C ΛΛ.二项展开式的各项系数和:一般的,设f (x )=nn x a x a x a a ++++Λ2210的各项的系数和是f (1),其中x 的奇次项系数和等于)]1(f )1(f [21--;x 的偶次项系数和等于)]1()1([21-+f f .【典型例题】知识点一:二项式定理及其简单应用.例1. 123)1(xx -展开式中的常数项是( )A . -1320B . 1320C . -220D . 220【题意分析】本题是利用二项式定理求二项展开式中的某项问题,即通项公式的应用. 【思路分析】可设第(r+1)项是常数项,利用通项公式及x 的次数是零确定r 的值,即可确定常数项.【解题步骤】设第(r+1)项是常数项,则31212312121)1()1()1(rr rr r rr r r xC xx C T ---+-=-=9r 03rr 12x =⇒=--∴的次数是零,Θ,故第10项是常数项. 220)1(912910-=-=C T ,选C【解题后的思考】关于利用二项式定理求二项展开式中的某项或某项的系数问题,是二项展开式的通项公式的应用,一般设第(r+1)项是要求的项.根据要求确定r 的值,即可确定要求的项.易错点:把通项公式中的第(r+1)项误认为是第r 项.例2. 利用二项式定理解决下列问题 求:(1)(x 3-22x)5的展开式中x 5的系数; (2)在1003)23(+x 的展开式中,系数为有理数的项的个数.【题意分析】这两道试题都是二项展开式中的通项公式rr n r n r b a C T -+=1的应用.【思路分析】(1)假设第(r+1)项是展开式中含5x 的项,根据x 的次数是5确定r 的值.(2)假设第(r+1)项是有理项,根据通项公式中的各个因数的次数都是整数确定r 的取值个数,从而确定有理项的个数.【解题步骤】(1)假设第(r+1)项是展开式中含5x 的项,则T r +1=r r r rrrx C xx C 51552535)2()2()(---=-, 依题意15-5r =5,解得r =2, 故(-2)225C =40为所求x 5的系数. (2)假设第(r+1)项是展开式中的有理项, 则T r +1=r r r r rr r x Cx C---⋅⋅=1003250100310010023)2()3(,要使x 的系数为有理数,指数50-2r 与3r都必须是整数, 因此r 应是6的倍数,即r =6k (k ∈Z ), 又0≤6k ≤100,解得0≤k ≤1632(k ∈Z ), ∴x 的系数为有理数的项共有17项..【解题后的思考】求二项展开式中具有某特定性质的项,关键是确定r 的值或取值范围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.易错点是:在通项公式中漏掉r)1(-.例3. (1)求证:3724332+-+n n 能被64整除(2)求证:)3,(,12)32(1≥∈+<+-n N n n n 【题意分析】本题是应用二项式定理证明整除问题和证明不等式问题. 【思路分析】(1)将已知含有n 的式子中的323n 进行变形,即2n 23n 2333++⋅=1n )18(3++⋅=,然后用二项式定理展开.(2)21)23(12)32(11+>⇔+<--n n n n ,把11)211()23(--+=n n 用二项式定理展开.【解题步骤】 证明:(1)3724332+-+n n =3724)18(31+-+⋅+n n=3724)8888(311121111101+-++++++++-++++n C C C C C n n n n n n n n n n Λ =3402424)88(64111211101+-++++⨯+-+-+-+n C C C C nn n n n n n n Λ =34024)1(24)88(6411211101+-+++++⨯-+-+-+n n C C C n n n n n n Λ =364)88(6411211101++++⨯-+-+-+n n n n n n C C C Λ故原式可被64整除. (2)21)23(12)32(11+>⇔+<--n n n n Θ21211)21()21(211)21()21(21)211()23(1221111*********+=-+>+++-+=++++=+=----------n n C n C C C C n n n n n n n n n n ΛΛΘ故原不等式成立.【解题后的思考】利用二项式定理证明整除问题时关键是找除数或其倍数的因式,要对已知的式子变形(如1321833++⋅n n )+(变形为)利用二项式定理展开含有除数或除数的倍数的式子或数.证明不等式问题也同样要对已知的不等式进行等价变形,目的是为使用二项式定理创造条件,体现了等价转化的数学思想的应用.【小结】本题组主要是二项式定理的通项公式的应用及利用二项式定理证明整除问题或证明不等式.在通项公式的应用过程中,注意它是第(r+1)项而不是第r 项.在证明整除或不等式问题时要对含有n 的式子变形为利用二项式定理提供条件.知识点二:求特定项的系数及二项式系数的性质的简单应用.例1. (2x -5y )20展开式中各项系数之和是( ) A . 203-B . 203C . 202D . 202-【题意分析】本题是利用赋值法求二项展开式的各项系数之和的问题.【思路分析】假设各项的系数是20210,,,a a a a Λ,在20)52(y x -中取x=y=1代入可求.【解题步骤】假设各项的系数是20210,,,a a a a Λ,令x=y=1得:202020103)1512(=⨯-⨯=+++a a a Λ,选B【解题后的思考】在求二项展开式的各项系数之和问题常采用赋值法,要体会这种数学方法的应用.易错点是:混淆各项系数与各项二项式系数,误选答案C例2. 已知(nx )21+中第6项的系数与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【题意分析】本题首先确定n ,要根据n 的值确定二项式系数最大的项,要注意二项式系数与某项系数的区别.【思路分析】由已知确定n 的值,根据二项式系数的增减性可确定第几项二项式系数最大.对于系数最大的项的确定可以假设第(r+1)项的系数最大是T 0,第r 项的系数是T 1,第(r+2)项的系数是T 2,则T T T T 0201;≤≤,由此确定r 的值.【解题过程】822,)2(,)2(66556616755156=⇒=∴====++n C C x C T T x C T T n n n n ,故二项展开式(8)21x +中共有9项,中间一项第5项的二项式系数最大,所以所求的二项式系数最大的项是4444814511202x x C T T ===+,假设第(r+1)项的系数最大是T 0,第r 项的系数是T 1,第(r+2)项的系数是T 211821181802,2,2++--===r r r r r r C T C T C T ,⎪⎩⎪⎨⎧-------≥-------≥⇒⎪⎩⎪⎨⎧≥≥∴+-++--)2(2)1(2222218818811881188r rr r r r r r r r r r C C C C C C C C 由(1)得:6912)!18()!1(!8)!8(!!82≤⇒-≥⇒+-⨯-≥-⨯⨯r rr r r r r , 同理由(2)得:5≥r ,故}8,2,1,0{,65Λ∈≤≤r r ,即系数最大的项是第6项、第7项,67561792,1792x T x T ==【解题后的思考】对于求二项式系数最大项的问题可根据二项式系数的性质求解,对求系数最大项的问题通过建立不等式求解,本题的易错点是:混淆二项式系数与某项系数的概念.例3. 设1001002210100)32(x a x a x a a x ++++=-Λ,求下列各式的值. (1)99531a a a a ++++Λ(2)29931210020)()(a a a a a a +++-+++ΛΛ(3)||||||10010a a a +++Λ【题意分析】本题为采用赋值法求值的问题,根据所求的系数和赋予x 不同的值.【思路分析】对于(1)设1001002210)(x a x a x a a x f ++++=Λ,则99531a a a a ++++Λ=2)1()1(--f f ,对于(2)用平方差公式分解得:29931210020)()(a a a a a a +++-+++ΛΛ=f (1)f (-1).(3)对于||||||10010a a a +++Λ等价于100)32(x +的各项系数之和.【解题步骤】(1)设1001002210)(x a x a x a a x f ++++=Λ,则99531a a a a ++++Λ=2)1()1(--f f =2)32()32(100100+--(2)29931210020)()(a a a a a a +++-+++ΛΛ=))((10099983210100210a a a a a a a a a a a +-++-+-++++ΛΛ=1)32()32()1()1(100100=+-=-f f(3)令x =-1得:10010010)32(||||||)1(+=+++=-a a a f Λ【解题后的思考】像这类求二项展开式各项系数和的问题,或求奇次项系数和、偶次项系数和的问题常采用赋值法解决,要根据不同的系数之和赋予不同的值.【小结】本组三个例题是关于二项展开式的系数的问题,对于二项式的系数问题要利用二项式系数的性质解决,对于求某些特定的项的系数或系数和问题要采用赋值法和方程、不等式的数学思想方法解决.容易产生的错误是:把二项式系数与某项的系数混淆.【本讲涉及的数学思想和方法】本讲主要讲述二项式定理和二项式系数性质的简单应用.在解决问题的过程中体现了方程的数学思想、不等式的数学思想、转化的数学思想的应用.【模拟试题】(答题时间:60分钟,满分60分)一、选择题(共3小题,每题5分,计15分)1. )()1(5)1(10)1(10)1(5)1(2345x x x x xA . 5xB . 1x 5-C . 1x 5+D . 1)1x (5--2. 若n )(b ),Z b ,a (,b a 2)12(,N n n n n n n =∈+=+∈+则A . 一定是奇数B . 一定是偶数C . 与n 的奇偶性相反D . 与n 有相同的奇偶性3. 在二项式52)1(xx -的展开式中,含4x 项的系数是( ) A . -10 B . 10 C . -5 D . 5二、填空题(共3题,每题5分,计15分)4. 设_______________6C 6C C 6C ,N n 1n n n 23n 2n 1n =++++∈-+Λ 5. 已知5525101)1(x a bx x ax ++++=+Λ,则b=_____________ 6. 若nxx )1(+的展开式的各项系数之和是32,则n=________________三、计算题(30分,每题10分)7. 已知(2x +x lg x )8的展开式中,二项式系数最大的项的值等于1120,求x 的值. 8. 求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数.9. 求:(1)321⎪⎪⎭⎫ ⎝⎛-+x x 的展开式中的常数项; (2)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4, 求(a 0+a 2+a 4)2-(a 1+a 3)2的值.【试题答案】一、选择题1. B 解析:原式=5545235325415505)1()1()1()1()1(C x C x C x C x C x C +-+-+-+-+- -11]1)1[(5555-=-+-=x x C2. A 解析:特值法:取n=1时,,12)12(1+=+此时b=1,是奇数取n=2时,223)12(2+=+,此时b=3,为奇数3. B 解析:设第(r+1)项是含4x 的项,则r r r r rrrr x C xx C T 31055251)1()1()()1(--+-=⋅-=, 令10-3r =4知:r=2,故含4x 项的系数是10)1(252=-C二、填空题4.)17(61-n 解析:nn n n n nn C C C C 666)61(2210++++=+ΛΘ )17(61666)666(6171232112321-=++++⇒++++=-∴--nn n nnn n n n n n n n n C C C C C C C C ΛΛ 5. 40,解析:据题意知:b 是展开式中含2x 项的系数,r r r r r r x a C ax C T 551)(==+,r=2 又21015=⇒=a x ax C 故402225==C b .6. 5, 解析:5322=⇒=n n. 三、计算题7. 解:依题意T 5=4lg 448)()2(x x x C =1120,整理得x 4(1+lg x )=1,两边取对数,得lg 2x +lg x =0,解得lg x =0或lg x =-1, ∴x =1或x =101,故所求x 的值是:x =1或x =101. 8. 解:(1)∵ (x +2)10=x 10+20x 9+180x 8+…∴ (x +2)10(x 2-1)的展开式中x 10的系数是-1+180=179 (2)∵ (x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=xx x x x x 65)1()1()]1([1})]1([1){1(-+-=-------∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数36C -=-20.9. 解:(1)∵ 321⎪⎪⎭⎫ ⎝⎛-+x x =61⎪⎪⎭⎫ ⎝⎛-x x ,设第(r+1)项是常数项,则r r r r rr r r x C x x C T --+-=-=36661|)(|)1()||1()||()1(,令r=3,∴ 所求展开式中的常数项是-36C =-20.(2)令x =1,得a 0+a 1+a 2+a 3+a 4=(32+)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=4)23(-,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)( a 0-a 1+a 2-a 3+a 4) =[)23)(23(-+]4=1.。

1.3.1二项式定理(学、教案)

1.3.1二项式定理(学、教案)

§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。

【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。

【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。

如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。

问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。

二项式定理教学设计

二项式定理教学设计

二项式定理一、教学目标1.知识目标:掌握二项式定理及其简单应用2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理能力以及科学的思维方式。

3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简洁美、和谐美和对称美。

二、教学重点、难点重点:二项式定理的发现、理解和初步应用及通项公式难点:展开式中某一项的二项式系数与该项的系数的区别三、教学过程创设问题情境:今天是星期三,15天后星期几,30天后星期几,1008天后星期几呢?前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几新课讲解:问题1 ()()a b c d ++的展开式有多少项?有无同类项可以合并?由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。

问题2 ()()a b ab ++的()2a b +原始展开式有多少项?有几项是同类项?项是怎样构成的?有规律吗?学生根据乘法展开式也很快得出结论问题3 ()()()a b a b a b +++的()3a b +原始展开式有多少项?经合并后又只能有几项?是哪几项?学生仍然根据乘法公式算出了答案问题4 ()()()()a b a b a b a b ++++的()4a b +的原始展开式有多少项?问题5 你能准确快速地写出()4a b +的原始展开式的16项吗?经合并后,又只能有哪几项?此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,易出错——借此“愤悱”之境,有效的实现思维的烘热)启发类比:4个袋中有红球a ,白球b 各一个,每次从4个袋子中各取一个球,有什么样的取法?各种取法有多少种?在4个括号(袋子)中问题6 其个数,为何恰好应为该项的系数?问题7 ()n a b +在合并后的展开式中,n r r ab -的系数应该是多少?有理由吗? 问题8 那么,该如何将()n a b +轻松、清晰地展开?请同学们归纳猜想学生们快速地说出()()011222*n n n n n k n k k n n n n n n n a b C a C a b C a b C a b C b n N ---+=++++++∈我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢? 思路:证明中主要运用了计数原理!① 展开式中为什么会有那几种类型的项?()n a b +是n 个()a b +相乘,展开式中的每一项都是从这n 个()a b +中各任取一个字母相乘得到的,每一项都是n 次的。

二项式定理教学设计

二项式定理教学设计

二项式定理一、教学目标1.知识目标:掌握二项式定理及其简单应用2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理能力以及科学的思维方式。

3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简洁美、和谐美和对称美。

二、教学重点、难点重点:二项式定理的发现、理解和初步应用及通项公式难点:展开式中某一项的二项式系数与该项的系数的区别三、教学过程创设问题情境:今天是星期三,15天后星期几,30天后星期几,1008天后星期几呢?前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几新课讲解:问题1 ()()a b c d ++的展开式有多少项?有无同类项可以合并?由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。

问题2 ()()a b ab ++的()2a b +原始展开式有多少项?有几项是同类项?项是怎样构成的?有规律吗?学生根据乘法展开式也很快得出结论问题3 ()()()a b a b a b +++的()3a b +原始展开式有多少项?经合并后又只能有几项?是哪几项?学生仍然根据乘法公式算出了答案问题4 ()()()()a b a b a b a b ++++的()4a b +的原始展开式有多少项?问题5 你能准确快速地写出()4a b +的原始展开式的16项吗?经合并后,又只能有哪几项?此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,易出错——借此“愤悱”之境,有效的实现思维的烘热)启发类比:4个袋中有红球a ,白球b 各一个,每次从4个袋子中各取一个球,有什么样的取法?各种取法有多少种?在4个括号(袋子)中问题6 其个数,为何恰好应为该项的系数?问题7 ()n a b +在合并后的展开式中,n r r ab -的系数应该是多少?有理由吗? 问题8 那么,该如何将()n a b +轻松、清晰地展开?请同学们归纳猜想学生们快速地说出()()011222*n n n n n k n k k n n n n n n n a b C a C a b C a b C a b C b n N ---+=++++++∈我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢? 思路:证明中主要运用了计数原理!① 展开式中为什么会有那几种类型的项?()n a b +是n 个()a b +相乘,展开式中的每一项都是从这n 个()a b +中各任取一个字母相乘得到的,每一项都是n 次的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 4r 1 r 2
1
r
x
1 r 2r C4r x2r
x
1
4
2 x
x2 21 C41 x 22 C42 23 C43 x1 24 C44 x2
x2 2x 3 1 x1 1 x2 2 2 16
T3 T21
1
2
22
C42
x22
3 2
13
问题4:有3个口袋,每个口袋都同样装有a,b两个小 球,现依次从这3个口袋中各取出一个小球,共有多 少种不同的取法?
请用分类计数原理进行分析
第一类,三次都不取 b, C30种; 第二类,任一次取b, 其他两次取a, C31 C22 C31种,
第三类,任两次取b, 其他一次取a,C32 C11 C32种,
1.项数规律:
(n N )
展开式共有n+1项
2.二项式系数规律:
Cn0、Cn1、Cn2、 、Cnn
3.指数规律:
(1)各项的次数和均为n;
(2)二项式的第一项a的次数由n逐次降到0,
第一项b的次数由0逐次升到n.
注意:公式中a,b可以是单项式、多项式、任意实数。 10
(1)令a=1,b=x:
1 x n Cn0x0 Cn1x Cn2x2 Cnr xr Cnnxn
思考:问题2与问题1的处理过程之间有何异同点?
同:展开的过程就是取球的过程; 异:取球ab,ba属两种方法,展开式中的ab,ba
可合并同类项。
问题3:将(a b)2展开并整理后,各项的系数与取球 问题中有何联系?
整理后,各项系数为各项在展开式中出现的次数, 即取球问题中分类计数原理的各类结果数。
即(a b)2 a2 2ab b2 C20a2 C21ab C22b52
(2)令a=1,b=1:
(11)n Cn0 Cn1 Cnr Cnn
(二项式系数和公式) (3)用-b代替b :
a b n Cn0anb0 Cn1an1b Cn2an2b2 1 r Cnr anrbr Cnna0bn 11
四、理论迁移(一)
例1
(1)求
x
1开
法二:先化简通项,后展开
(2)求 x 1 7的展开式的第4项的系数.
x
(3)求 x 1 7的展开式中x的二项式系数.
x
注:一个二项展开式的某一项的二项式系数与
这一项的系数是两个不同的概念。
12
活学活用(一)

x-2
1
4
x
的展开式,并求该展开式的第
3
项.
解: Tr1 C4r
15
五、课堂小结
二项式定理
(a b)n Cn0anb0 Cn1an1b Cnranrbr Cnna0bn
1.项数规律:
(n N )
展开式共有n+1项
列举法:aa,ab,ba,bb
共4种.
分类计数原理:由于b选定后,a也随之确定,因此:
第一类,两次都不取b(即两次都取a),有
C20 1种取法, 第二类,任一次取b(即另一次取a),有
C21 2种取法; 第三类,两次都取b(即两次都不取a),有
C21 1种取法。
共4种. 4
问题2:请将(a+b)(a+b)逐项展开并整理
四、理论迁移(二)
例2
化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+
(-1)kCkn(x+1)n-k+…+(-1)nCnn.
[解]: 原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2(-1)2+…
+Ckn(x+1)n-k(-1)k+…+Cnn(-1)n=[(x+1)+(-1)]n=xn.
那么(a+b)n 的展开式是什么呢?
2
二、讲授新课 问题1:有2个口袋,每个口袋都同样装有a,b两个 小球,现依次从这2个口袋中各取出一个小球,共 有多少种不同的取法?
请分别用列举法、分类计数原理进行分析。
3
问题1:有2个口袋,每个口袋都同样装有a,b两 个小球,现依次从这2个口袋中各取出一个小球, 共有多少种不同的取法?
(n N )
1)公式右边的多项式叫做(a+b)n的 二项展开式 ,
其2)中CCnrrn(a nr=r0b,r1,叫2,做…二…项,展n)开叫式做的通二项项,式用系Tr数+1表示;,
该项是指展开式的第 r+1 项.
即T C r 1
ranrbr
n
r Z,且0 r n
9
二项式定理
(a b)n Cn0anb0 Cn1an1b Cnranrbr Cnna0bn
总结:逆用二项式定理可以化简多项式,
体现的是整体思想.注意分析已知多项式的 特点,向二项展开式的形式靠拢.
14
活学活用(二)
化简(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
[解]: 原式=C05(x-1)5+C15(x-1)4+C25(x-1)3+C35(x-1)2+ C45(x-1)+C55-C55=[(x-1)+1]5-1=x5-1.
第四类,全部取b, C33种,
即共C30 C31 C32 C33 8种
6
问题5: 请写出(a b)3展开后的多项式 .
(a b)3 C30a3 C31a2b C32ab2 C33b3
a3 3a2b 3ab2 b3
练习:谁能快速写出将 (a b)4展开后的多项式 ?
(a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
二项式定理(1)
----二项式定理及其简单应用
1
一、问题引入
什么是二项式,二项式定理研究的是什么?
二项式
对于a+b,(a+b)2,(a+b)3,(a+b)4,(a+b)5等代
数式,数学上统称为二项式,其一般形式为:
(a+b)n(n∈N*)
由于在许多代数问题中需要将二项式展开,因此,
二项式定理研究的是(a+b)n展开后的表达式的一般结构。
a4 4a3b 6a2b2 4ab3 b4
7
问题6: 将(a b)n展开并整理后的多项式 ?
(a b)n Cn0anb0 Cn1an1b Cnranrbr Cnna0bn
二项式定理
(n N )
8
三、二项式定理
二项式定理:
(a b)n Cn0anb0 Cn1an1b Cnranrbr Cnna0bn
相关文档
最新文档