最新初一数学下册知识点汇总

合集下载

七年级数学下册知识点归纳

七年级数学下册知识点归纳

七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。

初一数学下册知识点归纳(精选4篇)

初一数学下册知识点归纳(精选4篇)

初一数学下册知识点归纳〔精选4篇〕篇1:初一下册数学知识点【知识点一】实数的分类1、按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点间隔相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.4.平方根(1)假如一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根假如x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比拟1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比拟大小:【知识点五】实数的运算1.加法同号两数相加,取一样的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到准确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用(1≤篇2:初一下册数学知识点 1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。

初一数学下册知识点总结(6篇)

初一数学下册知识点总结(6篇)

初一数学下册知识点总结(6篇)初一数学下册知识点总结1初一数学下册期末考试知识点总结一(苏教版)第七章平面图形的认识(二) 1第八章幂的运算 2第九章整式的乘法与因式分解 3第十章二元一次方程组 4第十一章一元一次不等式 4第十二章证明 9第七章平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。

同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。

描述:平行于同一直线的两条直线是平行的。

补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。

描述:垂直于同一直线的两条直线是平行的。

3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形平移后,连接各组对应点得到的线段相互平行(或在同一条直线上)且相等。

5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任何两条边之差都小于第三条边。

若三角形的三边分别为a、b、c,则6、三角形中的主要线段:三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的外角大于与其不相邻的任何内角。

8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

第八章幂的运算幂(p5初一数学下册知识点总结21.同一平面内,两直线不平行就相交。

2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。

初一数学下册基本知识点总结(优秀5篇)

初一数学下册基本知识点总结(优秀5篇)

初一数学下册基本知识点总结(优秀5篇)新人教版初一下册数学知识点总结归纳篇一平行线与相交线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余。

性质:同角(或等角)的余角相等。

2、相加等于180°的两个角称这两个角互补。

性质:同角(或等角)的补角相等。

3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。

对顶角的性质:对顶角相等。

4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。

(相邻且互补)二、三线八角:两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。

②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。

③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。

三、平行线的判定①同位角相等②内错角相等两直线平行③同旁内角互补四、平行线的性质①两直线平行,同位角相等。

②两直线平行,内错角相等。

③两直线平行,同旁内角互补。

五、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段。

②作一个角等于已知角。

生活中的轴对称一、轴对称图形与轴对称①一个图形沿其中一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。

这条直线叫做对称轴。

②两个图形沿其中一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴。

③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等。

∵∠1=∠2PB⊥OBPA⊥OA∴PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。

②性质:线段垂直平分线上的点到线段两个端点的距离相等。

∵OA=OBCD⊥AB∴PA=PB四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形;(一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)③等腰三角形的两个底角相等。

七年级下数学(重要知识点总结)

七年级下数学(重要知识点总结)

七年级数学(下)重要知识点总结第一章:整式的运算一、概念1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

3、多项式:几个单项式的和叫做多项式。

多项式含加减运算。

4、整式:单项式和多项式统称为整式。

二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a -==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2 公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):完全平方和公式中间项=完全平方差公式中间项=完全平方公式中间项=例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

七年级数学下册知识点归纳(推荐3篇)

七年级数学下册知识点归纳(推荐3篇)

七年级数学下册知识点归纳(推荐3篇)七年级数学下册知识点归纳(1)整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

初一下册数学知识点总结

初一下册数学知识点总结

初一下册数学知识点总结第一章 二元一次方程1、二元一次方程的概念2、二元一次方程组的概念3、解二元一次方程组⎪⎩⎪⎨⎧程组)引入解复杂二元一次方换元法(书本上没有,加减消元法代入法.3.2.1 4、二元一次方程的实际应用⎩⎨⎧;分配类何图形的体积面积变化题型:时间路程类;几、解、验、答解题步骤:审、设、列.2.1 5、三元一次方程和三元一次方程组概念6、姐三元一次方程组:方法和解二元一次方程组的一样第二章 整式乘法1、同底数幂的乘法:n m n m n m n m x x x x x x -+=÷=⨯;2、幂的乘方:()mn nm x x =3、单项式乘单项式:11++=⨯m n n m y x y x xy ;11842++=⨯n m n m y x y x xy4、单项式乘多项式:1221)(+++=+n m n m y x y x xy y x xy5、多项式乘多项式:()()ny y mx y ny x mx x ny mx y x ∙+∙+∙+∙=++6、乘法公式:平方差公式()()()()()()2222323232)()(y x y x y x nb ma nb ma nb ma -=-+-=-+,例如 完全平方公式()()()()()b a b a b a nb ma nb ma nb ma 32232322)()(222222-∙∙+-+=-∙∙++=+例如第三章 因式分解1、因式分解的概念:把一个多项式变成若干个多项式的乘积的形式。

例如()()32652++=++x x x x ,()()b a b a b a -+=-22,()22321294-=-+a a a 2、提公因式法:()()1,248442222322++=++++=++x x xy xy y x y x c b a c b a 3、十字相乘法:能把某些二次三项式分解因式。

要务必注意各项系数的符号。

方法是:交叉相乘,水平书写。

初一下册数学基础知识大全

初一下册数学基础知识大全

以下是一些初一下册数学的基础知识:
1. 有理数:有理数是整数和分数的统称,是正数、负数和零的统称。

有理数可以用数轴上的点来表示,数轴上原点左边的点表示负数,原点右边的点表示正数,原点表示零。

2. 乘方:乘方是指一个数的n次方,即求n个相同因数的积的运算。

例如,2的3次方表示2乘以2乘以2。

3. 绝对值:绝对值是指一个数的点到原点的距离。

正数的绝对值是正数,负数的绝对值是它的相反数,0的绝对值是0。

4. 对顶角:对顶角是指两个角有一个公共顶点,并且一个角的两条边分别是另一个角的两条边的反向延长线。

对顶角相等。

5. 垂线:垂线是指两条直线相交成直角时,这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线。

6. 同位角、内错角、同旁内角:同位角是指在两直线被第三条直线所截的八个角中,位于两直线相同位置的角;内错角是指在两直线被第三条直线所截形成的八个角中,位于两直线之间且在第三条直线同侧的两个角;同旁内角是指在两直线被第三条直线所截形成的八个角中,位于两直线之间且在第三条直线内部的两个角。

以上是一些初一下册数学的基础知识,希望能对您有所帮助。

七年级下册数学所有知识点

七年级下册数学所有知识点

七年级下册数学所有知识点
1.相交线与平行线:包括平行线的性质和判定,平行线的传递性,平行线间的距离,同位角、内错角、同旁内角的概念和性质等。

2.实数:无理数的概念,平方根和立方根的概念和性质,实数的分类,实数的运算等。

3.平面直角坐标系:包括平面直角坐标系的概念,坐标的表示方法,点到坐标轴的距离,坐标的平移等。

4.二元一次方程组:二元一次方程组的概念,二元一次方程组的解法(代入消元法和加减消元法),二元一次方程组的应用等。

5.不等式与不等式组:不等式的概念,不等式的性质,一元一次不等式的解法,一元一次不等式组的解法,不等式的应用等。

6.数据的收集、整理与描述:包括数据的收集方法,数据的整理方法(频数分布表和频数分布直方图),数据的描述方法(平均数、中位数、众数)等。

初一下册数学要点

初一下册数学要点

初一下册数学要点一、数与代数1.1 整数初一下册的数与代数部分主要包括整数的概念、运算与计算等内容。

1.1.1 整数的概念整数是由正整数、负整数和0组成的集合。

它们可以用于表示数轴上的点和做数与数之间的运算。

1.1.2 整数的加减法整数的加法和减法涉及到正数、负数和0之间的运算关系。

需要注意的是减法可以转化为加法:a - b = a + (-b)。

1.1.3 整数的乘法整数的乘法遵循交换律、结合律和分配律。

同时,需要注意正数与正数、负数与负数以及正数与负数相乘的结果。

1.1.4 整数的除法整数的除法遵循除法的基本原则,即被除数除以非零的除数得到商。

需要注意除法运算中的整除与带余除法。

1.2 分数与小数1.2.1 分数的概念分数由一个整数表示为几个相等部分之和的形式。

分数可以是带分数,也可以是假分数。

分数在数轴上的位置可以通过比大小确定。

1.2.2 分数与小数的转换分数可以转换为小数,也可以将小数转换为分数。

转换的方法包括除法和乘法等。

1.2.3 分数的运算分数的加减法、乘法和除法都可以通过分数的数学定义和运算规则进行计算。

需要注意分数的通分与约分。

二、图形与几何2.1 平面图形初一下册的图形与几何部分主要包括平面图形的认识、性质及其计算等内容。

2.1.1 点、线、面的认识点、线、面是平面图形的基本要素,通过这三个要素可以构成不同的平面图形。

正方形是具有四条相等边和四个直角的四边形。

正方形有自身的性质和计算公式。

2.1.3 长方形长方形是具有两对相等边和四个直角的四边形。

长方形有自身的性质和计算公式。

2.1.4 平行四边形平行四边形是具有两对平行边和四个内角为补角的四边形。

平行四边形有自身的性质和计算公式。

2.2 空间图形2.2.1 立体图形的认识立体图形是由平面图形沿着一条给定的曲线移动所形成的图形。

常见的立体图形有圆柱体、四棱锥和正方体等。

2.2.2 圆柱体圆柱体是具有两个底面和一个侧面的立体图形。

七年级下学期数学知识点

七年级下学期数学知识点

七年级下学期数学知识点
七年级下学期数学包括平面几何、三角形、比例与相似、函数等内容,下面将对这些知识点进行详细介绍。

一、平面几何
1.1 基本概念:点、线、面、角、相似
1.2 直线和角的基本性质:相交、平行、垂直、补角、余角、同位角
1.3 三角形的基本概念:周长、面积、内角和、外角和
二、三角形
2.1 等腰三角形和等边三角形的性质
2.2 直角三角形:勾股定理、特殊角度的三角函数
2.3 不等式定理:任意两边之和大于第三边
三、比例与相似
3.1 比例:比例的概念、比例大小、比例中项
3.2 相似形:相似三角形的性质、相似比例
3.3 三角形的相似:相似三角形的判定、相似三角形的应用
四、函数
4.1 函数的基本概念:输入、输出、定义域、值域、图像、映射
4.2 线性函数:斜率、截距、函数图像、应用
4.3 反比例函数:反比例函数的概念、函数图像、应用
以上就是七年级下学期数学知识点的详细介绍。

在学习的过程中,需要多加练习,抓住重点难点,理解概念,把握方法,才能掌握本学期数学知识,考试取得好成绩。

初一下数学知识点归纳

初一下数学知识点归纳

初一下数学知识点归纳
1. 整数
- 整数的概念
- 正整数、负整数、零的表示和性质
- 整数的加法、减法、乘法和除法
- 小数与整数的关系
2. 分数
- 分数的概念及表示方法
- 分数的大小比较
- 分数的加法、减法、乘法和除法
- 分数与整数的关系
3. 小数
- 小数的概念及表示方法
- 小数和分数的互换
- 小数的加法、减法、乘法和除法
- 小数的大小比较
4. 百分数
- 百分数的概念及表示方法
- 百分数与分数、小数的互换
- 百分数的加法、减法、乘法和除法
- 百分数的应用:百分比、利息、折扣等
5. 代数与方程式
- 代数式的概念及表示方法
- 代数式的运算:加法、减法、乘法、除法
- 简单方程式的解法
- 代数式和方程式的应用:问题解决、图形的性质等
6. 平面图形
- 点、线、线段、射线、角的概念
- 三角形、矩形、正方形、梯形、平行四边形的性质
- 圆的概念和性质
- 平面图形的相似和全等
7. 数字计算
- 大数加法、减法、乘法和除法运算
- 近似计算和约数
- 数字计算中的应用问题
8. 几何变换
- 平移、旋转、翻折、对称的概念和性质
- 几何变换的作用和应用:图形的对称、相似等
9. 数据统计
- 统计调查和数据收集
- 数据的整理和处理:频数表、直方图、折线图等- 数据的分析和应用:平均数、中位数、范围等
10. 坐标与图形
- 直角坐标系的概念和使用
- 点的坐标表示和性质
- 图形在坐标系中的位置和性质
- 坐标与图形的应用:图形的平移、旋转、对称等。

七年级数学下册知识点

七年级数学下册知识点

七年级数学下册知识点一、数的基本概念1、定义整数:整数是阿拉伯数字0,1,2,3,4,5,6,7,8,9组成的数字,如123、-10、0。

2、正数和负数:正数是由阿拉伯数字0-9组成的数字,其值是大于(或等于)0的数,如5、27、128等;负数是由带有“-”符号的正数组成,其值是小于0的数,如:-13、-20、-101等。

3、有理数:有理数是分数、小数及其整数倍构成的数。

所有正数和负数都是有理数,小数也是有理数。

二、算术运算1、加法运算:给出一组数,用“+”号连接,将数从左往右从低位数到高位数依次相加,将他们的和称为加法运算,如365+54=419。

2、减法运算:给出一组数,用“-”号连接,将被减数从左右从低位数到高位数依次减去减数,所得的差称为减法运算,如675-255=420。

3、乘法运算:给出一组数,用“乘号”“×”连接,将两个乘数的各个位的数相乘,加起来的积称为乘法运算,如765×43=32995。

4、除法运算:给出一组数,用“除号”“÷”连接,将被除数依次除以除数,所得的结果称为除法运算,如945÷5=189。

三、因式分解1、定义:因式分解是将一个多项式拆分为一系列单项式的乘积,每一系列单项式称为一个因子,例如:3x2+9x -4=(3x+4)×(x-1)。

2、目的:通过因式分解,可以将一个复杂的表达式简化,使其表达的更加清晰明了,也可以使算式更容易求解。

3、步骤:(1)列出多项式并将因式分子写成原因式。

(2)左右分别拆分因式成为两个不包括系数,最高次幂小于等于一的多项式;(3)将拆出来的因式乘起来,检验积与原式是否相等。

四、分式1、定义:分式是无限小数与一个正整数(或零)的比值标准表示法,由一个带有分子(分母为1的无限小数)和分母构成,如5/4表示5与4的比率,是一个分数。

2、形式:分式的形式可以是真分式、假分式、互分式以及真分数,当分子和分母皆为整数时为真分数。

七年级下册数学全本知识点

七年级下册数学全本知识点

七年级下册数学全本知识点一、整数
1.整数的概念和表示方法
2.整数的加法和减法
3.整数的绝对值及其基本性质
4.相反数和倒数
5.小数的概念及表示方法
二、分数
1.分数的概念及其基本性质
2.练习分数的加法和减法
3.分数的乘法和除法
4.分数的化简和与整数的互化
5.分数的比较大小
三、代数式
1.代数式的概念
2.字母的含义及常见字母的代表的含义
3.运算符号的含义及代数式的运算
4.含有代数式的计算题的解法
四、方程式
1.方程式的概念和种类
2.如何列方程
3.进行方程式的解法
4.方程式的应用问题
五、图形
1.二维图形的分类
2.相似和全等,特别是图形的判定
3.平面直角坐标系和点的坐标
4.坐标轴上点的坐标
六、数据的收集和分析
1.数据的整理和汇总
2.数据的分析
3.统计图和图表
4.概率和预测
七、几何变换
1.对称与轴
2.平移和旋转
3.三角形的内部和外部
4.数轴上的对称变换和平移。

2024年初一下册数学知识点总结北师(3篇)

2024年初一下册数学知识点总结北师(3篇)

2024年初一下册数学知识点总结北师第一单元:自然数与整数1. 自然数:0、1、2、3、4、5……,它们可以用来表示物体的数量。

2. 整数:自然数及其相反数与零的集合,包括正整数、负整数和零。

3. 整数的加法:同号相加得更大的数,异号相加得正数减去绝对值较大的数。

4. 整数的减法:a-(-b) = a + b,a-(-b) = a-b。

5. 整数的乘法:正数相乘为正数,负数相乘为负数,0与任何数相乘为0。

6. 整数的除法:除数不为0时,两正数相除为正数,两负数相除为正数,正数除以负数为负数。

7. 素数与合数:只有两个相异因数1和自身的整数是素数,可以被除了1和自身外的其他数整除的整数是合数。

第二单元:有理数1. 有理数:可以表示成两整数之比的数,包括整数、分数和小数。

2. 分数的加法与减法:分母相同,分子相加(减);分母不同,通分后分子相加(减)。

3. 分数的乘法与除法:分子相乘(除),分母相乘(除)。

4. 有理数的相反数与数轴:任何有理数与其相反数的和为0,数轴上,正数在右侧,负数在左侧。

5. 有理数的比较与排序:将有理数转化为分数后比较其大小。

第三单元:代数的基本概念1. 代数:利用字母(变量)表示数的运算。

2. 代数式:由字母、数字和运算符号组成的式子。

3. 项与系数:含有加减号的代数式可以分解成若干项,每一项中字母的指数与系数的乘积称为项的系数。

4. 等式:左右两边的值相等的代数式称为等式。

5. 解方程:通过变换等式的形式找到使等式成立的未知数的值。

第四单元:一次方程与消元法1. 一次方程:未知数的最高次数为1的方程。

2. 解一元一次方程:通过变换等式的形式找到使等式成立的未知数的值。

3. 消元法:通过两个方程的相加、相减或相乘消除其中一个未知数,以求解另一个未知数。

第五单元:图形的认识与运用1. 平面图形:点、线段、直线、射线、角、三角形、矩形、正方形、平行四边形、菱形、梯形、圆等。

2. 两条直线的位置关系:平行、相交、重合。

七年级数学下各章知识点汇总

七年级数学下各章知识点汇总

七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。

(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。

4、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)内错角相等,同旁内角互补。

5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,则……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。

6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行且相等。

第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。

2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

七年级下册数学公式大全总结

七年级下册数学公式大全总结

七年级下册数学公式大全总结一、整式的运算。

1. 同底数幂相乘。

- 公式:a^m· a^n=a^m + n(m,n都是正整数)- 例如:2^3·2^4=2^3 + 4=2^72. 幂的乘方。

- 公式:(a^m)^n=a^mn(m,n都是正整数)- 例如:(3^2)^3=3^2×3=3^63. 积的乘方。

- 公式:(ab)^n=a^nb^n(n是正整数)- 例如:(2×3)^2=2^2×3^2=4×9 = 364. 同底数幂相除。

- 公式:a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)- 例如:5^6÷5^3=5^6 - 3=5^35. 单项式乘以单项式。

- 法则:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

- 例如:2x^2·3x^3=(2×3)(x^2· x^3) = 6x^56. 单项式乘以多项式。

- 公式:m(a + b+c)=ma+mb + mc- 例如:2x(x + 3y - 1)=2x^2+6xy-2x7. 多项式乘以多项式。

- 公式:(a + b)(m + n)=am+an+bm+bn- 例如:(x + 2)(x + 3)=x^2+3x+2x + 6=x^2+5x + 68. 平方差公式。

- 公式:(a + b)(a - b)=a^2-b^2- 例如:(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 59. 完全平方公式。

- (a + b)^2=a^2+2ab + b^2- 例如:(x+1)^2=x^2+2x + 1- (a - b)^2=a^2-2ab + b^2- 例如:(x - 2)^2=x^2-4x + 4二、相交线与平行线。

1. 余角和补角。

- 若两角之和为90^∘,则这两个角互余,∠1+∠2 = 90^∘,∠1与∠2互余。

初一数学下册全部知识点归纳

初一数学下册全部知识点归纳

初一数学下册全部知识点归纳第一章:整式的运算一、单项式1.代数式中由数字和字母的乘积构成的式子叫做单项式。

2.单项式中数字因子叫做系数,字母的指数和叫做次数。

3.单独一个数或一个字母也是单项式。

4.只含有字母因式的单项式的系数是1或-1.5.单独的一个数字是单项式,它的系数是它本身。

6.单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

7.单项式的系数包括它前面的符号。

8.单项式的系数是带分数时,应化成假分数。

9.单项式的系数是1或-1时,通常省略数字“1”。

10.单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1.由多个单项式相加(或相减)构成的式子叫做多项式。

2.多项式中的每一个单项式叫做多项式的项。

3.多项式中不含字母的项叫做常数项。

4.多项式的项数决定了它的次数。

5.多项式的每一项都包括项前面的符号。

6.多项式没有系数的概念,但有次数的概念。

7.多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1.单项式和多项式统称为整式。

2.单项式或多项式都是整式。

3.整式不一定是单项式。

4.整式不一定是多项式。

5.分母中含有字母的代数式不是整式,而是分式。

四、整式的加减1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2.几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3.几个整式相加减的一般步骤:1) 列出代数式:用括号把每个整式括起来,再用加减号连接。

2) 按去括号法则去括号。

3) 合并同类项。

4.代数式求值的一般步骤:1) 代数式化简。

2) 代入计算。

3) 对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法1.n个相同因式(或因数)a相乘,记作a^n,读作a的n 次方(幂),其中a为底数,n为指数,a的结果叫做幂。

2.底数相同的幂叫做同底数幂。

1、单项式与多项式相乘,把单项式的系数与多项式中每一项的系数分别相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

初一数学下册基本知识点总结(通用8篇)

初一数学下册基本知识点总结(通用8篇)

初一数学下册基本知识点总结(通用8篇)新人教版初一下册数学知识点总结归纳篇一一元一次方程一、几个概念1、一元一次方程:2、方程的解:使方程的未知数的值叫方程的解。

5、移项:叫做移项。

(切记:移项必须)。

二、解一元一次方程的一般步骤:①去分母,方程两边同乘各分母的(注意:去分母不漏乘,对分子添括号)②,③,④,⑤三、列方程(组)解应用题的一般步骤①。

设,②。

列,③。

解,④。

检,⑤。

答第七章二元一次方程组一、几个概念1、二元一次方程:2、二元一次方程组:3、二元一次方程组的解:使二元一次方程组的的两个未知数的值。

二、二元一次方程组的解法:1、代入消元的条件:将一个方程化为的形式。

(当一个方程中有一个未知数系数为±1时,最适合)。

2、加减消元的条件:两个方程中,其中一未知数的系数或。

(当两个方程中,其中一未知数系数成倍数关系时,最适合)。

三、解三元一次方程组的一般步骤:①。

先用代入法或加减法消去系数较简单的一个未知数,转化为;②。

然后再解,得到两个未知数的值;③。

最后将上步所得两个未知数的值代回前边其中一方程,求出另一未知数的值。

第八章一元一次不等式一、几个概念1、不等式:叫做不等式。

2、不等式的解:叫做不等式的解。

3、不等式的解集:5、一元一次不等式:6、一元一次不等式组:7、一元一次不等式组的解集:二、一元一次不等式(组)的解法:1、解一元一次不等式的一般步骤:①。

,②。

,③。

,④。

,⑤。

2、怎样在数轴上表示不等式的解集:①先定起点:有等号时用点;无等号时用点。

②再画范围:小于号向画;大于号向画。

3、一元一次不等式组的解法:先分别求;再求4、注意:①。

在不等式两边同时乘或除以负数时,不等号必须②。

求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:同大取,同小取;“大小,小大”取,“大大,小小”则第九章多边形一、几个概念1、三角形的有关概念:①三角形:是由三条不在同一直线上的组成的平面图形,这三条就是三角形的边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初一数学下册知识点汇总————————————————————————————————作者:————————————————————————————————日期:1初一数学(下)应知应会的知识点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解). 4.二元一次方程组的解法: (1)代入消元法;(2)加减消元法; (3)注意:判断如何解简单是关键. ※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”; (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; 不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变; 不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变. 3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b >0或ax+b <0 ,(a ≠0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点. 6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔ 0b a >⇔ ⎩⎨⎧>>0b 0a 或⎩⎨⎧<<0b 0a ;ab <0 ⇔0b a < ⇔ ⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0a ; ab=0 ⇔ a=0或b=0; ⎩⎨⎧≤≥ma m a ⇔ a=m . 7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.8.一元一次不等式组的解集的四种类型:设 a >ba xb x a x >∴⎩⎨⎧>>是不等式组的解集 bx b x a x <∴⎩⎨⎧<<不等式的组解集是 ab >ab>bx a b x a x >>∴⎩⎨⎧><不等式组的解集是 是空集不等式组解集∴⎩⎨⎧<>b x a x ab >ab>9.几个重要的判断:是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭⎬⎫><+, 异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+.y x 0xy 0y x 异号且负数绝对值大、⇔⎭⎬⎫<<+整式的乘除1.同底数幂的乘法:a m·a n=a m+n,底数不变,指数相加.2.幂的乘方与积的乘方:(a m )n=a mn,底数不变,指数相乘; (ab)n=a n b n,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里. 4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加. 6.乘法公式:(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差; (2)完全平方公式:① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2, 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a 2+b 2+c 2+2ab-2ac-2bc ,略. 7.配方:(1)若二次三项式x 2+px+q 是完全平方式,则有关系式:q 2p 2=⎪⎭⎫⎝⎛;※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k ①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k. ※(3)注意:2x 1x x 1x 222-⎪⎭⎫ ⎝⎛+=+.8.同底数幂的除法:a m ÷a n =a m-n,底数不变,指数相减. 9.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n=na 1,(a ≠0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式. 13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内. 线段、角、相交线与平行线几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)1. 角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)ABCO几何表达式举例: (1) ∵OC 平分∠AOB∴∠AOC=∠BOC (2) ∵∠AOC=∠BOC∴OC 是∠AOB 的平分线 2.线段中点的定义:点C 把线段AB 分成两条相等的线段,点C 叫线段中点.(如图)BAC几何表达式举例: (1) ∵C 是AB 中点∴ AC = BC (2) ∵AC = BC∴C 是AB 中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等; (3)等量的等倍量相等;(4)等量的等分量相等.C DA B(1)CDABO(2)AEFGB CMO(3)CGABEF(4)几何表达式举例: (1) ∵AC=DB∴AC+CD=DB+CD 即AD=BC (2) ∵∠AOC=∠DOB ∴∠AOC-∠BOC=∠DOB-∠BOC即∠AOB=∠DOC (3) ∵∠BOC=∠GFM 又∵∠AOB=2∠BOC∠EFG=2∠GFM ∴∠AOB=∠EFG(4) ∵AC=21AB ,EG=21EF 又∵AB=EF ∴AC=EG4.等量代换:几何表达式举例: ∵a=c b=c ∴a=b几何表达式举例: ∵a=c b=d 又∵c=d ∴a=b 几何表达式举例: ∵a=c+d b=c+d ∴a=b5.补角重要性质:同角或等角的补角相等.(如图)3214几何表达式举例: ∵∠1+∠3=180° ∠2+∠4=180° 又∵∠3=∠4∴∠1=∠2 6.余角重要性质:几何表达式举例:同角或等角的余角相等.(如图)1423∵∠1+∠3=90° ∠2+∠4=90° 又∵∠3=∠4∴∠1=∠2 7.对顶角性质定理:对顶角相等.(如图)BACD O几何表达式举例:∵∠AOC=∠DOB ∴ …………… 8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)C DABO几何表达式举例: (1) ∵AB 、CD 互相垂直∴∠COB=90°(2) ∵∠COB=90°∴AB 、CD 互相垂直9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)C D A B EF几何表达式举例: ∵AB ∥EF 又∵CD ∥EF ∴AB ∥CD 10.平行线判定定理: 两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图) (2)若内错角相等,两条直线平行;(如图) (3)若同旁内角互补,两条直线平行.(如图)B E G A CDF H几何表达式举例: (1) ∵∠GEB=∠EFD∴ AB ∥CD(2) ∵∠AEF=∠DFE∴ AB ∥CD (3) ∵∠BEF+∠DFE=180° ∴ AB ∥CD 11.平行线性质定理:(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)B EGA CDF H几何表达式举例: (1) ∵AB ∥CD∴∠GEB=∠EFD (2) ∵AB ∥CD∴∠AEF=∠DFE(3) ∵AB ∥CD ∴∠BEF+∠DFE=180°几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明. 二 定理:1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短. 4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.三 公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四 常识:1.定义有双向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解. 5.数射线、线段、角的个数时,应该按顺序数,或分类数.6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析. 7.方向角: (1) (2)8.比例尺:比例尺1:m 中,1表示图上距离,m 表示实际距离,若图上1厘米,表示实际距离m 厘米.9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.北偏西30°南偏东60°30°60°北南东西东北东南西北西南。

相关文档
最新文档