代数综合问题(二)

合集下载

代数式综合练习题教程文件

代数式综合练习题教程文件

代数式综合练习题用字母表示数练习讨论:1、a+b 比d 大(),a-s 比a 小()2、甲数比乙数大5,如果乙数是m,那么甲数是(),如果甲数是m,那么乙数是()3、a. b、c三个数的平均数是()4、当x=15时,2x-2X4的值是()5、一个正方形周长是a厘米,用字母表示它面积的式子是(),当沪24时,正方形面积应是()平方厘米.6、有两筐同样的梨,第一筐重a千克,第二筐重b千克,第一筐比第二筐少卖m /G o(1)、用式子表示出梨的价钱。

(2)、当a=24, b=27, m=9时,每千克梨价钱是多少元?7、一个正方形周长是m米,这个正方形的边长是()这个正方形的面积是()8、食堂买来200千克煤,已烧了&天,还剩b千克,平均每天烧了()千克.9、果园里有苹果树和梨树共45棵,其中梨树有&棵,苹果树比梨树多()棵.一、填空:1、学校有图书4000本,又买来a本,现在一共有()本。

2、学校有学生a人,其中男生b人,女生有()人。

3、李师傅每小时生产x个零件,10小时生产()个。

4、姐姐今年a岁,比妹妹年龄的2倍少2岁,妹妹今年()岁。

5、甲数是x,比乙数少y,乙数是(),甲乙两数之和是(),两数之差是6、小花今年12岁,比小兰大a岁,小兰今年()岁。

7、一件上衣54元,一件裤子48元,买b套这样的衣服,要用()元。

8、一本故事书有a页,小明每天看x页,看了y天,看了 ()页,还剩()页没看。

9、王阿姨买了m千克香蕉和n千克苹果,香蕉每千克4. 8元,苹果每千克5.4 元_共花了()元。

10、学校买来a个足球,每个m元,乂买来b个排球,每个n元,一共用去()元, 足球比排球多用()元.11、某工厂每月用水&吨,全年用水()吨12、2d表示()或者(),a2表示(),a+a+a+a+a=() a X a X a=()13、货车每小时行S千米,客车每小时行m千米,客车3小时后和货车5小时一共行驶7()千米.14、每个足球x元,买4个足球,付出200元,应找回()元.15、三个连续自然数,已知中间一个数是m,那么前一个数是(),后一个数是(),三数之和是()16、当x=5 时,x2=(), 2x+8=()17、一种商品降价a元后是80元,原价是()元.18、长方形周长计算公式用字母表示是()19、李师傅每天做m个零件,比张师傅多做8个,两人一天共做()20、每本练习本x,买了6本,付出10元,应找回()元.二、根据运算定律填空。

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析二次函数是一种常见的二次曲线,其一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

在代数推理的综合问题中,有一些与二次函数相关的问题需要解析。

下面将介绍几个常见的二次函数代数推理综合问题,并给出解析。

问题一:已知二次函数y = ax^2 + bx + c的顶点坐标为(2,3),且过点(-1,0),求该函数的表达式。

解析:由题可知,二次函数的顶点坐标为(2,3),则顶点坐标中的x坐标为2,代入函数表达式可以得到:3=a*2^2+b*2+c另外,已知过点(-1,0),把该点的坐标代入函数表达式可以得到:0=a*(-1)^2+b*(-1)+c将上述两个方程组成一个方程组:4a+2b+c=3----(1)a-b+c=0----(2)解决方程组(1)和(2),可以采用消元法或代入法:将公式(2)的c解出来得到c=-a+b,代入公式(1)可以得到:4a+2b+(-a+b)=3,整理得到3a+3b=3,整理为a+b=1由公式a+b=1可以得到a=1-b,代入公式(2)可以得到(1-b)-b+c=0,整理得到c=2b-1综上所述,函数表达式为:y = (1 - b)x^2 + bx + (2b - 1)。

问题二:已知二次函数y = ax^2 + bx + c的两个零点为-2和5,求该函数的表达式。

解析:已知二次函数的两个零点为-2和5,可得到两个方程:a*(-2)^2+b*(-2)+c=0a*5^2+b*5+c=0整理得到:4a-2b+c=0----(3)25a+5b+c=0----(4)解决方程组(3)和(4),可以采用消元法或代入法:将公式(3)的c解出来得到c=2b-4a,代入公式(4)可以得到:25a+5b+(2b-4a)=0,整理得到-21a+7b=0,整理为-3a+b=0。

由公式-3a+b=0可以得到b=3a,代入公式(3)可以得到4a-2(3a)+c=0,整理得到c=2a。

中考数学复习专题7几何综合题、几何与代数综合题 (2)

中考数学复习专题7几何综合题、几何与代数综合题 (2)

≥0的解集. 9.阅读下列材料,并用相关的思想方法解决问题. 计算:(1﹣ ﹣ ﹣ )×( + + + )﹣(1﹣ ﹣ ﹣ ﹣
)×( + + ). 令 + + =t,则 原式=(1﹣t)(t+ )﹣(1﹣t﹣ )t =t+ ﹣t2﹣ t﹣ t+t2 = 问题: (1)计算 (1﹣
﹣ ﹣ ﹣…﹣ )×( + + + +…+ + )﹣(1﹣ ﹣ ﹣ ﹣ ﹣…﹣
的代数式表示 ); (2)设该格点多边形外的格点数为 ,则 =
二、应用题 3.定义运算max{a, b}:当a≥b时,max{a,b}=a;当a<b时,max{a, b}=b.如max{﹣3,2}=2. (1)max{ , 3}= 3 ; (2)已知y1= 和y2=k2x+b在同一坐标系中的图象如图所示,若max{ ,k2x+b}= ,结合图象,直接写出x的取值范围; (3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
归纳证明 (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等 式表示出来,请利用图3证明你发现的关系式; 拓展应用 (3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中 点,BE⊥EG,AD= ,AB=3.求AF的长.
5.阅读理解 材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行 的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯 形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有 以下性质: 梯形的中位线平行于两底和,并且等于两底和的一半. 如图(1):在梯形ABCD中:AD∥BC ∵E、F是AB、CD的中点 ∴EF∥AD∥BC EF=

初中数学代数推理综合题

初中数学代数推理综合题

初中数学代数推理综合题1.已知关于x 的二次函数y = -x 2+bx +c 的图象经过点A (-2,y 1),B (-1,y 2),C (1,0),且y 1<0<y 2.(1)求b 的取值范围;(2)若AB ⊥BC ,求b 的值;(3)若-2<x <1中存在一个实数x 0=b -m ,求m 的取值范围.2.已知A 、B 为反比例函数x k y =上两点,A 的坐标为(a ,ma +2),B 的坐标为(b ,mb +2),其中a >0,b <0, m >0.(1)求证:mb a 2-=+; (2)若OA 2+OB 2=2a 2+2b 2,求m 的值;(3)若S △OCD =31S △OAB ,求km 的值.3.已知,点A 在二次函数(a 为常数,a <0)的图象上,A 点横坐标为m ,边长为1的正方形ABCD中,AB ⊥x 轴,点C 在点A 的右下方.(1)若A 点坐标为(﹣2,﹣),求二次函数图象的顶点坐标;(2)若二次函数图象与CD 边相交于点P (不与D 点重合),用含a 、m 的代数式表示PD 的长,并求a ﹣m 的范围;(3)在(2)的条件下,将二次函数图象在正方形ABCD 内(含边界)的部分记为L ,L 对应的函数的最小值为﹣,求a 与m 之间的函数关系式,并写出m 的范围.4.已知二次函数y=a x 2+bx+c 的图像与x 轴交于A (1,0)、B 两点,与y 轴交于点C .(1)若a =-1,函数图像与x 轴只有一个交点,求b 的值;(2)若c=1,0<a <1,设B 点的横坐标为x B ,求证:x B >1;(3)若a=1,c ≥3,问是否存在实数m ,使得z=y-m 2x 在x >0时,z 随x 的增大而增大,若存在,求m 的值;若不存在,请说明理由.5.已知二次函数21(0)y ax bx a =++≠(1)若此二次函数图像经过点A(1,0)和B(3,0),求二次函数关系式;(2)若a>0,二次函数图像与x 轴只有1个公共点,是否存在a ,b ,使此二次函数图像与直线y=x+2有且只有1个公共点,若存在,求出a ,b 的值;若不存在,请说明理由;(3)若此二次函数的图像的顶点在第二象限,且经过点(1,0) .当a-b 为整数时,求ab 的值.6.已知二次函数y=mx 2+nx+1经过点A (﹣1,0).(1)若该二次函数图象与x 轴只有一个交点,求此时二次函数的解析式;(2)若该二次函数y=mx 2+nx+1图象与x 轴有两个交点,另一个交点为B ,与y 轴交点为C .且S △ABC =1,求n 的值;(3)若x=1时,y >2,试判断该抛物线在0<x <1之间的部分与x 轴是否有公共点?若有,求出公共点的坐标,若没有,请说明理由.7.已知一次函数y 1 = 2x 和二次函数y 2 = x 2 + 1.(1)求证:函数y 1、y 2的图像都经过同一个定点;(2)求证:在实数范围内,对于任意同一个x 的值,这两个函数所对应的函数值y 1 ≤ y 2 总成立;(3)是否存在抛物线y 3 = ax 2 + bx + c ,其图象经过点(-5,2),且在实数范围内,对于同一个x 的值,这三个函数所对应的函数值y 1 ≤ y 3 ≤ y 2总成立?若存在,求出y 3的解析式;若不存在,说明理由.8.已知:关于x 的二次函数)0(2>a ax x y +-=,点A )(1y n ,、B )1(2y n ,+、C )2(3y n ,+都在这个二次函数的图像上,其中n 为正整数.(1)y 1=y 2,请说明a 必为奇数;(2)设a =11,求使y 1≤y 2≤y 3成立的所有n 的值;(3)对于给定的整实数a ,是否存在n ,使△ABC 是以AC 为底边的等腰三角形?若存在,求n 的值(用含a 的代数式表示),若不存在,请说明理由.9.已知抛物线y=3ax 2+2bx+c ,(1)若a=b=1,c=﹣1,求该抛物线与x 轴公共点的坐标;(2)若a=b=1,且当﹣1<x <1时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若a+b+c=0,且x 1=0时,对应的y 1>0;x 2=1时,对应的y 2>0,试判断当0<x <1时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.。

专题02 二次根式综合(压轴33题10个考点)(解析版)

专题02 二次根式综合(压轴33题10个考点)(解析版)

专题02二次根式综合(压轴33题10个考点)一.二次根式的定义(共1小题)1.若是整数,则正整数n的最小值是51.【答案】51.【解答】解:∵204=4×51,∴,∴,∵是整数,且n是整数,∴n的最小值为:51.故答案为:51.二.二次根式有意义的条件(共3小题)2.使式子有意义的x的取值范围是()A.x≥﹣1B.﹣1≤x≤2C.x≤2D.﹣1<x<2【答案】B【解答】解:根据题意,得,解得,﹣1≤x≤2;故选:B.3.已知|2004﹣a|+=a,则a﹣20042=2005.【答案】2005.【解答】解:∵有意义,∴a﹣2005≥0,解得:a≥2005,∴|2004﹣a|+=a﹣2004+=a,故=2004,∴a﹣2005=20042,∴a﹣20042=a﹣(a﹣2005)=a﹣a+2005=2005.故答案为:2005.4.已知,则x2022y2023=﹣.【答案】.【解答】解:∵,即,解得:,∴x=2,∴,∵x2022y2023=(xy)2022•y,将x=2,代入,∴x2022y2023=(xy)2022•y=[2×(﹣)]2022×(﹣)=(﹣1)2022×(﹣)=﹣.故答案为:.三.二次根式的性质与化简(共8小题)5.已知x<1,则化简的结果是()A.x﹣1B.x+1C.﹣x﹣1D.1﹣x【答案】D【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.6.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.8.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.9.已知a≠0,b≠0且a<b,化简的结果是﹣a.【答案】﹣a.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|=﹣a,故答案为:﹣a.10.已知|x+2|+|1﹣x|=9﹣﹣,则x+y的最小值为﹣3.【答案】﹣3.【解答】解:∵|x+2|+|1﹣x|=9﹣﹣,∴|x+2|+|x﹣1|+|y+1|+|y﹣5|=9,∵|x+2|+|x﹣1|可理解为在数轴上,数x的对应的点到﹣2和1两点的距离之和;|y+1|+|y ﹣5|可理解为在数轴上,数y的对应的点到﹣1和5两点的距离之和,∴当﹣2≤x≤1,|x+2|+|x﹣1|的最小值为3;当﹣1≤y≤5时,|y+1|+|y﹣5|的最小值为6,∴x的范围为﹣2≤x≤1,y的范围为﹣1≤y≤5,当x=﹣2,y=﹣1时,x+y的值最小,最小值为﹣3.故答案为﹣3.11.若,则m的取值范围是m≤4.【答案】见试题解答内容【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.12.若x<2,化简|﹣x|的正确结果是2x+2或﹣4x+2.【答案】2x+2或﹣4x+2.【解答】解:当0≤x<2时,原式=|x﹣2|+3x=2﹣x+3x=2x+2;当x<0时,原式=|x﹣2|﹣3x=2﹣x﹣3x=﹣4x+2.故答案为:2x+2或﹣4x+2.四.二次根式的乘除法(共4小题)13.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【答案】B【解答】解:由题意得:,解得:a>5.故选:B.14.“分母有理化”是我们常用的一种化简的方法,如:==7+ 4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【答案】D【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.15.若a,b为有理数且满足,则a+b=4.【答案】1.【解答】解:∵,∴=.∴a=3,b=1.∴a+b=3+1=4.故答案为:4.16.阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简:.解:隐含条件1﹣3x≥0,解得:.∴1﹣x>0.∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x.【启发应用】(1)按照上面的解法,试化简.【类比迁移】(2)实数a,b在数轴上的位置如图所示,化简:.(3)已知a,b,c为A B C的三边长.化简:.【答案】(1)1;(2)﹣a﹣2b;(3)2a+2b+2c.【解答】解:(1)隐含条件2﹣x≥0,解得:x≤2,∴x﹣3<0,∴原式=(3﹣x)﹣(2﹣x)=3﹣x﹣2+x=1;(2)观察数轴得隐含条件:a<0,b>0,|a|>|b|,∴a+b<0,b﹣a>0,∴原式=﹣a﹣a﹣b﹣b+a=﹣a﹣2b;(3)由三角形的三边关系可得隐含条件:a+b+c>0,a﹣b<c,b﹣a<c,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,∴原式=(a+b+c)+(﹣a+b+c)+(﹣b+a+c)+(﹣c+b+a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c.五.分母有理化(共1小题)17.阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+()2=6,1×=,所以:===1+;(2)首先把化为,这里m=13,n=40,由于5+8=13,5×8=40,即()2+()2=13,×=,所以====﹣=2﹣;(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,所以,.六.同类二次根式(共1小题)18.已知最简二次根式与是同类二次根式,则a的值为()A.16B.0C.2D.不确定【答案】B【解答】解:∵=3,而最简二次根式与是同类二次根式,∴a+2=2,解得a=0.故选:B.七.二次根式的加减法(共1小题)19.若,则x﹣x2的值为﹣6.【答案】﹣6.【解答】解:由题意得,x﹣2≥0.∴x≥2.∴1﹣x<0.∴.∴x﹣1+=x.∴.∴x=3.∴x﹣x2=3﹣9=﹣6.故答案为:﹣6.八.二次根式的混合运算(共4小题)20.已知,,则2y﹣3x的平方根为±4.【答案】±4.【解答】解:∵,∴96﹣x≥0,∴x≤96,∴100﹣x+96﹣x=200,解得x=﹣2,∵,∴m+23≥0,m﹣2≥0,2﹣m≥0,解得m=2,∴y=5,∴±=±=±4,故答案为:±4.21.计算的结果是+.【答案】+.【解答】解:原式=[(﹣)(+)]2022×(+)=(2﹣3)2022×(+)=+.故答案为:+.22.已知a=,b=.(1)求a+b的值;(2)设m是a小数部分,n是b整数部分,求代数式4m2+4mn+n2的值.【答案】(1)2;(2)20.【解答】解:(1)a===﹣2,b===+2.a+b=﹣2++2=2,(2)∵2<<3,∴0<﹣2<1,4<+2<5,∴m=﹣2,n=4,∴4m2+4mn+n2=(2m+n)2=(2﹣4+4)2=20.23.先阅读下面的材料,再解答下列问题.∵,∴.特别地,,∴.这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1);(2).【答案】(1)2020;(2)1.【解答】解:(1)===2021﹣1=2020;(2)====1.九.二次根式的化简求值(共8小题)24.已知,则代数式x2﹣2x﹣6的值是()A.B.﹣10C.﹣2D.【答案】C【解答】解:∵,∴x﹣1=,∴x2﹣2x﹣6=(x﹣1)2﹣7=()2﹣7=5﹣7=﹣2,故选:C.25.已知,,则a与b的关系是()A.a=b B.ab=1C.ab=﹣1D.a+b=0【答案】D【解答】解:a===3﹣=﹣(﹣3),A.a=﹣b,故本选项不符合题意;B.ab=(3﹣)×(﹣3)=﹣(﹣3)2=﹣(5﹣6+3)=﹣5+6﹣3=﹣8+6,故本选项不符合题意;C.ab=﹣8+6,故本选项不符合题意;D.a+b=3﹣+﹣3=0,故本选项符合题意.故选:D.26.若x2+y2=1,则++的值为()A.0B.1C.2D.3【答案】D【解答】解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.27.若a=2+,b=2﹣,则=8.【答案】8.【解答】解:∵a=2+,b=2﹣,∴a2=(2+√5)2=4+4+5=9+4,b2=(2﹣)2=4﹣4+5=9﹣4,ab=(2+)(2﹣)=4﹣5=﹣1.﹣===8.故答案为:8.28.若m=,则m3﹣m2﹣2017m+2015=4030.【答案】见试题解答内容【解答】解:∵m====,∴原式=m2(m﹣1)﹣2017m+2015=(+1)2×﹣2017(+1)+2015=(2017+2)﹣2017﹣2017+2015=2017+2×2016﹣2017﹣2017+2015=4032﹣2=403029.已知a=2+,b=,则a2﹣3ab+b2的值为11.【答案】11.【解答】解:当a=2+,b=时,a2﹣3ab+b2,=﹣+,=,=,=11.30.某同学在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与求解的:先将a进行分母有理化,过程如下,,∴,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据上述分析过程,解决如下问题:(1)若,请将a进行分母有理化;(2)在(1)的条件下,求a2﹣2a的值;(3)在(1)的条件下,求2a3﹣4a2﹣1的值.【答案】(1);(2)1;(3).【解答】解:(1)a===;(2)∵,∴(a﹣1)2=2,(a﹣1)2=a2﹣2a+1,∴a2﹣2a+1=2,∴a2﹣2a=1;(3)根据(2)可知,a2﹣2a=1,∴2a3﹣4a2﹣1=2a(a2﹣2a)﹣1=2a﹣1,当a=时,原式=2()﹣1=2.31.小芳在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:a==2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:.(2)若a=.①化简a,求4a2﹣8a﹣1的值;②求a3﹣3a2+a+1的值.【答案】(1)9;(2)①a=+1,4a2﹣8a﹣1的值是3;②0.【解答】解:(1)=﹣1+++…+=﹣1+=﹣1+10=9;(2)①a====+1,∴a=+1,∴(a﹣1)2=()2=2,∴a2﹣2a+1=2,∴a2﹣2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1﹣1=4﹣1=3;②由①知a2﹣2a=1,∴a3﹣3a2+a+1=a(a2﹣2a)﹣(a2﹣2a)﹣a+1=a×1﹣1﹣a+1=a﹣1﹣a+1=0.十.二次根式的应用(共2小题)32.俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞霞说:“有一个等腰三角形的腰长是1”;俊俊说:“有一个等腰三角形的腰长是﹣1”;那么另外两个等腰三角形的腰长可能是1或或2﹣.【答案】1或或2﹣.【解答】解:如图1方式裁剪,另两个等腰三角形腰长是或;如图2方式裁剪,另两个等腰三角形腰长都是1.故答案为:1或或2﹣.33.古希腊几何学家海伦通过证明发现:如果一个三角形的三边长分别为a,b,c.记,那么三角形的面积为,俗称海伦公式,若在△ABC中,AB=3,BC=6,AC=7,则用海伦公式求得△ABC的面积为.【答案】【解答】解:由题意可得:a=6,b=7,c=3,∴,∴===,故答案为:.。

2020年中考代数综合第2讲:二次函数图象与线段公共点问题

2020年中考代数综合第2讲:二次函数图象与线段公共点问题

2020 年中考代数综合第 2 讲:二次函数图象与线段公共点问题【案例赏析】1.在平面直角坐标系xOy 中,抛物线y=x2﹣2x+a﹣3,当a=0 时,抛物线与y 轴交于点A,将点A 向右平移4 个单位长度,得到点B.(1)求点B 的坐标;(2)将抛物线在直线y=a 上方的部分沿直线y=a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.2.在平面直角坐标系xOy 中,已知抛物线y=x2﹣mx+n.(1)当m=2 时,①求抛物线的对称轴,并用含n 的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m 的取值范围.3.在平面直角坐标系xOy 中,抛物线y=x2+2x+a﹣3,当a=0 时,抛物线与y 轴交于点A,将点A 向左平移4 个单位长度,得到点B.(1)求点B 的坐标;(2)抛物线与直线y=a 交于M、N 两点,将抛物线在直线y=a 下方的部分沿直线y=a 翻折,图象的其他部分保持不变,得到一个新的图象,即为图形M.①求线段MN 的长;②若图形M 与线段AB 恰有两个公共点,结合函数图象,直接写出a 的取值范围.4.在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A 向右平移2 个单位,再向上平移5 个单位,得到点B.(1)求点B 的坐标;(2)求抛物线C1 的对称轴;(3)把抛物线C1 沿x 轴翻折,得到一条新抛物线C2,抛物线C2 与抛物线C1 组成的图象记为G,若图象G 与线段AB 恰有一个交点时,结合图象,求a 的取值范围.5.在平面直角坐标系xOy 中,抛物线y=mx2﹣2mx+2(m≠0)与y 轴交于点A,其对称轴与x 轴交于点B.(1)求点A,B 的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.【专项突破】6.在平面直角坐标系xOy 中,直线y=2x﹣3 与y 轴交于点A,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l,直线l 与直线y=2x﹣3 交于点C.(1)求点C 的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC 有唯一公共点,求n 的取值范围.7.已知:过点A(3,0)直线l1:y=x+b 与直线l2:y=﹣2x 交于点B.抛物线y=ax2+bx+c的顶点为B.(1)求点B 的坐标;(2)如果抛物线y=ax2+bx+c 经过点A,求抛物线的表达式;(3)直线x=﹣1 分别与直线l1,l2 交于C,D 两点,当抛物线y=ax2+bx+c 与线段CD 有交点时,求 a 的取值范围.8.已知:抛物线y=ax 2+4ax+4a (a>0)(1)求抛物线的顶点坐标;(2)若抛物线经过点A(m,y1),B(n,y2),其中﹣4<m≤﹣3,0<n≤1,则y1 y2(用“<”或“>”填空);(3)如图,矩形CDEF的顶点分别为C(1,2),D(1,4),E(﹣3,4),F(﹣3,2),若该抛物线与矩形的边有且只有两个公共点(包括矩形的顶点),求a的取值范围.9.在平面直角坐标系中,已知抛物线y=x2﹣2x+n﹣1 与y 轴交于点A,其对称轴与x 轴交于点B.(1)当△OAB 是等腰直角三角形时,求n 的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n 的取值范围.10.如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C 点,tan∠ABC=2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A、B 作x 轴的垂线,交直线CD 于点E、F,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF(含线段端点)只有 1 个公共点.求m 的取值范围.11.在平面直角坐标系xOy 中,抛物线y=x2﹣2mx+m2﹣m+2 的顶点为D.线段AB 的两个端点分别为A(﹣3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.12.在平面直角坐标系xOy 中,抛物线y=﹣x2+2mx﹣m2﹣m+1(1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m 的取值范围.13.已知:直线l:y=x+2与过点(0,﹣2),且与平行于x轴的直线交于点A,点A关于直线x=﹣1 的对称点为点B.(1)求A,B 两点的坐标;(2)若抛物线y=﹣x2+bx+c 经过A,B 两点,求抛物线解析式;(3)若抛物线y=﹣x2+bx+c 的顶点在直线l 上移动,当抛物线与线段AB 有一个公共点时,求抛物线顶点横坐标t 的取值范围.14.在平面直角坐标系xOy 中,抛物线y=ax2+bx﹣与y 轴交于点A,将点A 向右平移2 个单位长度,得到点B,点B 在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a 的取值范围.15.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a 经过点A,将点B 向右平移5 个单位长度,得到点C.(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.16.在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线y=x﹣1 交于点A,点A 关于直线x=1 的对称点为B,抛物线C1:y=x2+bx+c 经过点A,B.(1)求点A,B 的坐标;(2)求抛物线C1 的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围.17.在平面直角坐标系xOy 中,抛物线y=mx2+(m﹣3)x﹣3(m>0)与x 轴交于A、B 两点(点A在点B左侧),与y轴交于点C,AB=4,点D为抛物线的顶点.(1)求点A 和顶点D 的坐标;(2)将点D 向左平移4 个单位长度,得到点E,求直线BE 的表达式;(3)若抛物线y=ax2﹣6 与线段DE 恰有一个公共点,结合函数图象,求a 的取值范围.18.在平面直角坐标系xOy 中,抛物线y=x2﹣2mx+m2﹣1 与y 轴交于点C.(1)试用含m 的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m 的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1 只有一个公共点时,直接写出k 的取值范围.19.直线y=﹣3x+3 与x 轴、y 轴分别父于A、B 两点,点A 关于直线x=﹣1 的对称点为点C.(1)求点C 的坐标;(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C 三点,求抛物线的表达式;(3)若抛物线y=ax2+bx+3(a≠0)经过A,B 两点,且顶点在第二象限.抛物线与线段AC 有两个公共点,求a 的取值范围.20.在平面直角坐标系xOy 中.已知抛物线y=ax2+bx+a﹣2 的对称轴是直线x=1.(1)用含a 的式子表示b,并求抛物线的顶点坐标;(2)已知点A(0,﹣4),B(2,﹣3),若抛物线与线段AB没有公共点,结合函数图象,求a 的取值范围;(3)若抛物线与x轴的一个交点为C(3,0),且当m≤x≤n时,y的取值范围是m≤y ≤6,结合函数图象,直接写出满足条件的m,n 的值.21.在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.参考答案与试题解析1.在平面直角坐标系xOy 中,抛物线y=x2﹣2x+a﹣3,当a=0 时,抛物线与y 轴交于点A,将点A 向右平移4 个单位长度,得到点B.(1)求点B 的坐标;(2)将抛物线在直线y=a 上方的部分沿直线y=a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M 与线段AB 恰有两个公共点,y=a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点;【解答】解:(1)当a=0时,∴抛物线的解析式为y=x2﹣2x﹣3 A(0,﹣3),∵将点A 向右平移4 个单位长度,得到点B.∴B(4,﹣3);(2)当函数经过点A 时,a=0,有三个交点.∵图形M 与线段AB 恰有两个公共点,∴y=a 要在AB 线段的上方,∴a>﹣3∴﹣3<a<0,当a=1 时,y=x2﹣2x+a﹣3 沿着y=1 翻折,此时,图形M 与线段AB 恰有两个公共点.综上所述:﹣3<a<0 或a=1.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.2.在平面直角坐标系xOy 中,已知抛物线y=x2﹣mx+n.(1)当m=2 时,①求抛物线的对称轴,并用含n 的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是x2<﹣2 或x2>4 ;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m 的取值范围.【分析】(1)①把m=2 代入抛物线解析式,利用x=﹣,求出对称轴,然后把顶点横坐标代入,即可用含n 的式子表示出顶点的纵坐标;②利用抛物线的对称性,及开口向上,可知离对称轴越远,函数值越大,从而可解;(2)把n=3代入,再分抛物线经过点Q,抛物线经过点P(﹣1,2),抛物线的顶点在线段PQ 上,三种情况分类讨论,得出相应的m 值,从而得结论.【解答】解:(1)①∵m=2,∴抛物线为y=x2﹣2x+n.∵x=﹣=1,∴抛物线的对称轴为直线x=1.∵当线x=1 时,y=1﹣2+n=n﹣1,∴顶点的纵坐标为:n﹣1.②∵抛物线的对称轴为直线x=1,开口向上,x=﹣2 到x=1 的距离为3,∴点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是x2<﹣2或x2>4,故答案为:x2<﹣2 或x2>4.(2)∵点P(﹣1,2),向右平移4个单位长度,得到点Q.∴点Q的坐标为(3,2),∵n=3,抛物线为y=x2﹣mx+3.当抛物线经过点Q(3,2)时,2=32﹣3m+3,解得;当抛物线经过点P(﹣1,2)时,2=(﹣1)2+m+3,解得m=﹣2;当抛物线的顶点在线段PQ 上时,=2,解得m=±2.结合图象可知,m 的取值范围是m≤﹣2 或m=2 或.故答案为:m≤﹣2 或m=2 或.【点评】本题考查二次函数图象与系数的关系,以及二次函数的对称性和抛物线与线段交点个数的问题,属于中等难度的题目.3.在平面直角坐标系xOy 中,抛物线y=x2+2x+a﹣3,当a=0 时,抛物线与y 轴交于点A,将点A 向左平移4 个单位长度,得到点B.(1)求点B 的坐标;(2)抛物线与直线y=a 交于M、N 两点,将抛物线在直线y=a 下方的部分沿直线y=a 翻折,图象的其他部分保持不变,得到一个新的图象,即为图形M.①求线段MN 的长;②若图形M 与线段AB 恰有两个公共点,结合函数图象,直接写出a 的取值范围.【分析】(1)求出A(0,﹣3),即可得到B(﹣4,﹣3);(2)令x2+2x+a﹣3=a 即可求出MN 的长;(3)顶点(﹣1,a﹣4),关于y=a的对称点为(﹣1,a+4),当a+4=﹣3时,a=﹣7,此时图形M 与线段AB 恰有两个公共点,当a=﹣6 时,y=x2+2x﹣9,y=﹣6,y=x2+2x ﹣9 关于y=﹣6 翻折部分的函数解析式为y=﹣x2﹣2x﹣4,当x=0 时,y=﹣4,当a=﹣6 时,图形与y=﹣6 有三个交点,由此可知在﹣6≤a<﹣7 时,图形与y=a 有三个交点,y=a 要在线段AB 的下方,a<﹣3,故﹣6<a<﹣3 且a=﹣7.【解答】解:(1)当a=0时,A(0,﹣3),∴B(﹣4,﹣3);(2)①∵抛物线y=x2+2x+a﹣3 与直线y=a 交于M、N 两点,∴x2+2x+a﹣3=a 即x2+2x﹣3=0,∴MN=4;②顶点(﹣1,a﹣4),关于y=a的对称点为(﹣1,a+4),当a+4=﹣3 时,a=﹣7,此时图形M 与线段AB 恰有两个公共点,当a=﹣6 时,y=x2+2x﹣9,y=﹣6,y=x2+2x﹣9 关于y=﹣6 翻折部分的函数解析式为y=﹣x2﹣2x﹣4,当x=0 时,y=﹣4,当a=﹣6 时,图形与y=﹣6 有三个交点,∴在﹣6≤a<﹣7 时,图形与y=a 有三个交点,∴y=a 要在线段AB 的下方,∴a<﹣3,∴﹣6<a<﹣3 且a=﹣7.【点评】本题考查二次函数的图象与性质;能够画出M 图形,结合函数图象,运用二次函数的性质求解是关键.4.在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A 向右平移2 个单位,再向上平移5 个单位,得到点B.(1)求点B 的坐标;(2)求抛物线C1 的对称轴;(3)把抛物线C1 沿x 轴翻折,得到一条新抛物线C2,抛物线C2 与抛物线C1 组成的图象记为G,若图象G 与线段AB 恰有一个交点时,结合图象,求a 的取值范围.【分析】(1)根据坐标平移的特点是左减右加、上加下减可以求得点B 的坐标;(2)根据抛物线C1:y=ax2﹣2ax﹣3a(a≠0)可以求得该抛物线的对称轴;(3)根据翻折的性质和二次函数的性质可以求得a 的取值范围,本题得以解决.【解答】解:(1)∵点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B,∴点B的坐标为(2,2);(2)∵抛物线C1:y=ax2﹣2ax﹣3a,∴对称轴是直线x=﹣=1;(3)当抛物线C1:y=ax2﹣2ax﹣3a 过点A(0,﹣3)时,此时﹣3a=﹣3,得a=1,∵对称轴是直线x=1,∴当x=2 时,y<3,点B 在抛物线C2 下方,此时抛物线C1 与线段AB 一个交点,抛物线C2 与线段AB 没有交点,当抛物线C1:y=ax2﹣2ax﹣3a 过点(0,﹣2)时,﹣3a=﹣2,得a=,∵对称轴是直线x=1,∴当x=2 时,y=2,点B 在抛物线C2 上,此时抛物线C1 与线段AB 一个交点,抛物线C2 与线段AB 有一个交点,∴a 的取值范围是;同理可得,当抛物线C2:y=﹣ax2+2ax+3a 过点A(0,﹣3)或(0,﹣2)时,可以求得a=﹣1 或a=﹣,∴a 的取值范围是﹣1≤a<﹣,由上可得,a 的取值范围是﹣1≤a<﹣或.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.5.在平面直角坐标系xOy 中,抛物线y=mx2﹣2mx+2(m≠0)与y 轴交于点A,其对称轴与x 轴交于点B.(1)求点A,B 的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.【分析】(1)求出x=0 时y 的值与y=0 时x 的值即可得答案;(2)分m>0 和m<0 两种情况,结合函数图象可得.【解答】解:(1)由题意,当x=0时,y=2.∴A(0,2).∵y=mx2﹣2mx+2=m(x﹣1)2+2﹣m,∴对称轴为直线x=1.∴B(1,0).(2)由题意,C(﹣1,0),D(3,0).①当m>0 时,结合函数图象可知,满足题意的抛物线的顶点须在x 轴下方,即2﹣m<0.∴m>2.②当m<0 时,过C(﹣1,0)的抛物线的顶点为E(1,).结合函数图象可知,满足条件的抛物线的顶点须在点 E 上方或与点E 重合,即2﹣m≥.∴m≤.综上所述,m 的取值范围为m>2 或m≤.【点评】本题主要考查抛物线与x 轴的交点,熟练掌握二次函数的图象与性质是解题的关键.6.在平面直角坐标系xOy 中,直线y=2x﹣3 与y 轴交于点A,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l,直线l 与直线y=2x﹣3 交于点C.(1)求点C 的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC 有唯一公共点,求n 的取值范围.【分析】(1)根据题意分别求出点A、B、C 的坐标;(2)求得抛物线的对称轴,顶点的坐标;再分类讨论①当n>3 时;②当n=3 时;③ 当0<n<3 时,抛物线y=nx2﹣4nx+5n(n>0)与线段BC 有唯一公共点,求n 的取值范围.【解答】解:(1)∵直线y=2x﹣3与y轴交于点A(0,﹣3),∴点A关于x轴的对称点B(0,3),l为直线y=3,∵直线y=2x﹣3 与直线l 交于点C,∴点C坐标为(3,3),(2)∵抛物线y=nx2﹣4nx+5n(n>0),∴y=nx2﹣4nx+4n+n=n(x﹣2)2+n(n>0)∴抛物线的对称轴为直线x=2,顶点坐标为(2,n),∵点B(0,3),点C(3,3),①当n>3 时,抛物线的最小值为n>3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3 时,抛物线最小值为n,与线段BC 有两个公共点;如果抛物线y=n(x﹣2)2+n 经过点B,则3=5n,解得n=,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B;如果抛物线y=n(x﹣2)2+n 经过点C,则3=2n,解得n=,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点;综上所述,当≤n<或n=3 时,抛物线与线段BC 有一个公共点.【点评】本题主要考查二次函数的性质,以及一次函数的性质,根据题意得出关于n 的不等式组是解题的关键.7.已知:过点A(3,0)直线l1:y=x+b 与直线l2:y=﹣2x 交于点B.抛物线y=ax2+bx+c的顶点为B.(1)求点B 的坐标;(2)如果抛物线y=ax2+bx+c 经过点A,求抛物线的表达式;(3)直线x=﹣1 分别与直线l1,l2 交于C,D 两点,当抛物线y=ax2+bx+c 与线段CD 有交点时,求 a 的取值范围.【分析】(1)将点A 的坐标代入直线l1,求出其函数表达式,联立直线l1、l2 表达式成方程组,解方程组即可得出点B 的坐标;(2)设抛物线y=ax2+bx+c 的顶点式为y=a(x﹣h)2+k,由抛物线的顶点坐标即可得出y=a(x﹣1)2﹣2,再根据点C 的坐标利用待定系数法即可得出结论;(3)根据两直线相交,求出点C、D 的坐标,将其分别代入y=a(x﹣1)2﹣2 中求出a 的值,由此即可得出抛物线y=ax2+bx+c 与线段CD 有交点时,a 的取值范围.【解答】解:(1)将A(3,0)代入直线l1:y=x+b中,0=3+b,解得:b=﹣3,∴直线l1:y=x﹣3.联立直线l1、l2 表达式成方程组,,解得:,∴点B的坐标为(1,﹣2).(2)设抛物线y=ax2+bx+c 的顶点式为y=a(x﹣h)2+k,∵抛物线y=ax2+bx+c的顶点为B(1,﹣2),∴y=a(x﹣1)2﹣2,∵抛物线y=ax2+bx+c 经过点A,∴a(3﹣1)2﹣2=0,解得:a=,∴抛物线的表达式为y=(x﹣1)2﹣2.(3)∵直线x=﹣1 分别与直线l1,l2 交于C、D 两点,∴C、D两点的坐标分别为(﹣1,﹣4),(﹣1,2),当抛物线y=ax2+bx+c 过点C 时,a(﹣1﹣1)2﹣2=﹣4,解得:a=﹣;当抛物线y=ax2+bx+c 过点D 时,a(﹣1﹣1)2﹣2=2,解得:a=1.∴当抛物线y=ax2+bx+c 与线段CD 有交点时,a 的取值范围为﹣≤a≤1 且a≠0.【点评】本题考查了待定系数法求函数解析式、两直线相交与平行、一次函数图象上点的坐标特征以及二次函数的三种形式,解题的关键是:(1)利用待定系数法求出直线l1的表达式;(2)将二次函数一般式改写为顶点式;(3)分别代入C、D点的坐标求出a 值.8.已知:抛物线y=ax 2+4ax+4a (a>0)(1)求抛物线的顶点坐标;(2)若抛物线经过点A(m,y1),B(n,y2),其中﹣4<m≤﹣3,0<n≤1,则y1<y2(用“<”或“>”填空);(3)如图,矩形CDEF的顶点分别为C(1,2),D(1,4),E(﹣3,4),F(﹣3,2),若该抛物线与矩形的边有且只有两个公共点(包括矩形的顶点),求a的取值范围.【分析】(1)把抛物线解析式化为顶点式可求得其顶点坐标;(2)由抛物线的对称性可知当开口向上时,离对称轴越近其函数值则越小,则可求得答案;(3)由于抛物线的顶点确定,且开口向上,所以当抛物线开口越大时a 的值越小,当抛物线开口越小时a 的值越大,可知当抛物线过C 时a 有最小值,当抛物线过F 时a 有最大值,则可求得a 的取值范围.【解答】解:(1)∵y=a (x 2+4x+4 )=a (x+2 )2,∴抛物线的顶点坐标为(﹣2,0);(2)∵a>0,且对称轴为直线x=﹣2,∴当函数图象上的点离对称轴越近时其函数值越小,∵﹣4<m≤﹣3,0<n≤1,∴A 点离对称轴x=﹣2 近,∴y 1<y 2,故答案为:<;(3)∵y=a(x+2)2开口向上,且顶点为(﹣2,0),∴当开口越大时a 的值越小,当开口越小时 a 的值越大,∴当抛物线过点C 时 a 有最小值,当抛物线过点F 时a 有最大值代入点C(1,2),得a=,代入点F(﹣3,2),得a=2,∴<a<2.【点评】本题为二次函数的综合应用,涉及二次函数的性质、二次函数的开口大小、二次函数的比较大小及数形结合思想等知识.在(1)中把二次函数解析式化为顶点式是解题的关键,在(2)中掌握抛物线上的点离对称轴的距离的远近与函数值的大小关系是解题的关键,在(3)中掌握抛物线的开口大小与二次项系数的关系是解题的关键.本题考查知识点不多,但综合性很强,难度适中.9.在平面直角坐标系中,已知抛物线y=x2﹣2x+n﹣1 与y 轴交于点A,其对称轴与x 轴交于点B.(1)当△OAB 是等腰直角三角形时,求n 的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n 的取值范围.【分析】(1)先求得点B 的坐标,再根据△OAB 是等腰直角三角形得出点A 的坐标,代入求得n 即可;(2)分两种情况:抛物线的顶点在x 轴上和抛物线的顶点在x 轴下方两种情况求解可得.【解答】解:(1)二次函数的对称轴是x=﹣=1,则B的坐标是(1,0),当△OAB 是等腰直角三角形时,OA=OB=1,则A的坐标是(0,1)或(0,﹣1).抛物线y=x2﹣2x+n﹣1与y轴交于点A的坐标是(0,n﹣1).则n﹣1=1 或n﹣1=﹣1,解得n=2 或n=0;(2)①当抛物线的顶点在x 轴上时,△=(﹣2)2﹣4(n﹣1)=0,解得:n=2;②当抛物线的顶点在x 轴下方时,如图,由图可知当x=0 时,y<0;当x=3 时,y≥0,即,解得:﹣2≤n<1,综上,﹣2≤n<1 或n=2.【点评】本题考查了二次函数的图象和等腰直角三角形的性质,明确等腰直角三角形中两条边相等,解题的关键是根据抛物线与线段OC 有且只有一个公共点得出x=0 时y<0;x=3 时,y≥0 的结论.10.如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C 点,tan∠ABC=2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A、B 作x 轴的垂线,交直线CD 于点E、F,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF(含线段端点)只有 1 个公共点.求m 的取值范围.【分析】(1)由OC=8、tan∠ABC=2 得点 B 坐标,将点A、B 坐标代入求解可得;(2)先求出直线CD 解析式和点E、F 坐标,设平移后解析式为y=﹣(x﹣1)2+9+m,结合图象根据抛物线与线段EF(含线段端点)只有1 个公共点,求得临界时m 的值,从而得出答案,【解答】解:(1)由抛物线的表达式知,点C(0,8),即OC=8;Rt△OBC 中,OB=OC•tan∠ABC=8×=4,则点B(4,0).将A、B 的坐标代入抛物线的表达式中,得:,解得:,∴抛物线的表达式为y=﹣x2+2x+8,∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴抛物线的顶点坐标为D(1,9).(2)设直线CD 的表达式为y=kx+8,∵点D(1,9),∴直线CD 表达式为y=x+8.∵过点A、B 作x 轴的垂线,交直线CD 于点E、F,可得:E(﹣2,6),F(4,12).设抛物线向上平移m个单位长度(m>0),则抛物线的表达式为:y=﹣(x﹣1)2+9+m;当抛物线过E(﹣2,6)时,m=6,当抛物线过F(4,12)时,m=12,∵抛物线与线段EF(含线段端点)只有1 个公共点,∴m 的取值范围是6<m≤12.【点评】本题主要考查待定系数法求函数解析式及抛物线与直线的交点问题,利用图象与线段只有一个交点得出临界是m 的值是解题关键11.在平面直角坐标系xOy 中,抛物线y=x2﹣2mx+m2﹣m+2 的顶点为D.线段AB 的两个端点分别为A(﹣3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.【分析】(1)由y=x2﹣2mx+m2﹣m+2=(x﹣m)2﹣m+2,于是得到结论;(2)由于抛物线经过点B(1,m),得方程于是得到结论;(3)根据题意得到线段AB:y=m(﹣3≤x≤1),与y=x2﹣2mx+m2﹣m+2联立得到x2﹣2mx+m2﹣2m+2=0,令y′=x2﹣2mx+m2﹣2m+2,若抛物线y=x2﹣2mx+m2﹣m+2 与线段AB 只有1 个公共点,于是得到结论.【解答】解:(1)∵y=x2﹣2mx+m2﹣m+2=(x﹣m)2﹣m+2,∴D(m,﹣m+2);(2)∵抛物线经过点B(1,m),∴m=1﹣2m+m2﹣m+2,解得:m=3 或m=1;(3)根据题意:∵A(﹣3,m),B(1,m),∴线段AB:y=m(﹣3≤x≤1),与y=x2﹣2mx+m2﹣m+2 联立得:x2﹣2mx+m2﹣2m+2=0,令y=x2﹣2mx+m2﹣2m+2,若抛物线y=x2﹣2mx+m2﹣m+2 与线段AB 只有1 个公共点,即函数y 在﹣3≤x≤1 范围内只有一个零点,当x=﹣3 时,y=m2+4m+11>0,∵△>0,∴此种情况不存在,当x=1 时,y=m2﹣4m+3≤0,解得1≤m≤3.解法二:由题意或,解得1≤m≤3.【点评】本题考查了抛物线的性质,直线与抛物线的位置关系,考查了转化思想和数形结合的数学思想.12.在平面直角坐标系xOy 中,抛物线y=﹣x2+2mx﹣m2﹣m+1(1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m 的取值范围.【分析】(1)利用配方法求出抛物线的顶点坐标是(m,﹣m+1),根据顶点在x轴上,得出﹣m+1=0,求出m=1,即可得出抛物线的解析式;(2)由于抛物线的顶点坐标是(m,﹣m+1),即可得出顶点在直线y=﹣x+1上;(3)把点A(﹣1,0)代入y=﹣x2+2mx﹣m2﹣m+1,求出m 的值,再把B(1,0)代入y=﹣x2+2mx﹣m2﹣m+1,求出m 的值,即可求解.【解答】解:(1)∵y=﹣x2+2mx﹣m2﹣m+1=﹣(x﹣m)2﹣m+1,∴顶点坐标是(m,﹣m+1),∵抛物线的顶点在x 轴上,∴﹣m+1=0,∴m=1,∴y=﹣x2+2x﹣1;(2)∵抛物线y=﹣x2+2mx﹣m2﹣m+1的顶点坐标是(m,﹣m+1),∴抛物线的顶点在直线y=﹣x+1 上;(3)当抛物线y=﹣x2+2mx﹣m2﹣m+1 过点A(﹣1,0)时,﹣1﹣2m﹣m2﹣m+1=0,解得m1=0,m2=﹣3,当抛物线y=﹣x2+2mx﹣m2﹣m+1 过点B(1,0)时,﹣1+2m﹣m2﹣m+1=0,解得m1=0,m2=1,故﹣3≤m≤1.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,抛物线与x 轴的交点,求直线的解析式等知识,有一定难度.把求二次函数与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解题的关键.13. 已知:直线 l :y =x +2 与过点(0,﹣2),且与平行于 x 轴的直线交于点 A ,点 A 关于直线 x =﹣1 的对称点为点 B .(1) 求 A ,B 两点的坐标;(2) 若抛物线 y =﹣x 2+bx +c 经过 A ,B 两点,求抛物线解析式;(3) 若抛物线 y =﹣x 2+bx +c 的顶点在直线 l 上移动,当抛物线与线段 AB 有一个公共点时,求抛物线顶点横坐标 t 的取值范围.【分析】(1)由点 A 在直线 l 上可得 A 的坐标,根据点 A 、B 关于直线 x =﹣1 对称可得点 B 坐标;(2) 根据(1)中 A 、B 两点坐标,利用待定系数法可求得解析式;(3) 由顶点在直线 l 上可设顶点坐标为(t ,t +2),继而可得抛物线解析式为 y =﹣(x﹣t )2+t +2,根据抛物线与线段 AB 有一个公共点,考虑抛物线过点 A 或点 B 临界情况可得 t 的范围.【解答】解:(1)由题可知 A 点的纵坐标为﹣2,∵点 A 在直线 l :y =x +2 上,∴A (﹣4,﹣2),由对称性可知 B (2,﹣2);(2) ∵抛物线 y =﹣x 2+bx +c 过点 A 、B ,,∴抛物线解析式为 y =﹣x 2﹣2x +6;(3) ∵抛物线 y =﹣x 2+bx +c 顶点在直线 y =x +2 上,由题可知,设抛物线顶点坐标为(t ,t +2),∴抛物线解析式可化为 y =﹣(x ﹣t )2+t +2.把 A (﹣4,﹣2)代入解析式可得﹣2=﹣(﹣4﹣t )2+t +2,解得:t =﹣3 或 t =﹣4.∴﹣4≤t <﹣3,把 B (2,﹣2)代入解析式可得﹣2=﹣(2﹣t )2+t +2.∴解得:,解得:t=0 或t=5,∴0<t≤5.综上可知t 的取值范围时﹣4≤t<﹣3 或0<t≤5.【点评】本题考查待定系数法求二次函数解析式及二次函数的图象与性质,待定系数求解析式是解题的根本、前提,将抛物线与线段AB 有一个公共点转化为方程问题是解题关键.14.在平面直角坐标系xOy 中,抛物线y=ax2+bx﹣与y 轴交于点A,将点A 向右平移2个单位长度,得到点B,点B 在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a 的取值范围.【分析】(1)A(0,﹣)向右平移2个单位长度,得到点B(2,﹣);(2)A 与B 关于对称轴x=1 对称;(3)①a>0 时,当x=2 时,y=﹣<2,当y=﹣时,x=0 或x=2,所以函数与AB 无交点;②a<0 时,当y=2 时,ax2﹣2ax﹣=2,x=或x=当≤2 时,a≤﹣;【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A 与B 关于对称轴x=1 对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=﹣2a,∴y=ax2﹣2ax﹣,①a>0 时,当x=2 时,y=﹣<2,当y=﹣时,x=0 或x=2,∴函数与PQ 无交点;②a<0 时,当y=2 时,ax2﹣2ax﹣=2,x=或x=当≤2 时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ 恰有一个公共点;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.15.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a 经过点A,将点B 向右平移5 个单位长度,得到点C.(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【分析】(1)根据坐标轴上点的坐标特征可求点B 的坐标,根据平移的性质可求点C 的坐标;(2)根据坐标轴上点的坐标特征可求点A 的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC 上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B 向右平移 5 个单位长度,得到点C,∴C(5,4);(2)与x 轴交点:令y=0 代入直线y=4x+4 得x=﹣1,∴A(﹣1,0),∵点B 向右平移 5 个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a 中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a 经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0 时,如图1,将x=0 代入抛物线得y=﹣3a,∵抛物线与线段BC 恰有一个公共点,∴﹣3a<4,a>﹣,将x=5 代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0 时,如图2,将x=0 代入抛物线得y=﹣3a,∵抛物线与线段BC 恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥ 或a<﹣或a=﹣1.。

最新初中数学代数式综合练习(2)

最新初中数学代数式综合练习(2)

最新初中数学代数式综合练习(2)一、选择题1.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18 B .p =-5,q =18 C .p =-5,q =-18 D .p =5,q =-18【答案】A 【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项, ∴p-5=0,7-5p+q=0, 解得p=5,q=18. 故选A .2.计算3x 2﹣x 2的结果是( ) A .2 B .2x 2 C .2x D .4x 2 【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得. 【详解】3x 2﹣x 2 =(3-1)x 2 =2x 2, 故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.3.下列各式中,运算正确的是( ) A .632a a a ÷= B .325()a a =C .=D =【答案】D 【解析】 【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算. 【详解】解:A 、a 6÷a 3=a 3,故不对; B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确. 故选D .4.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x4+ 4x2+8x3=(2x2+2x)2,∴A=8x3,不符合题意.故选B.【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.下列运算错误的是()A .()326m m = B .109a a a ÷= C .358⋅=x x x D .437a a a +=【答案】D 【解析】 【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可. 【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误; 故选:D . 【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.7.下列运算正确的是( ) A .2m 2+m 2=3m 4 B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D 【解析】 【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答. 【详解】选项A ,2m 2+m 2=3m 2,故此选项错误; 选项B ,(mn 2)2=m 2n 4,故此选项错误; 选项C ,2m •4m 2=8m 3,故此选项错误; 选项D ,m 5÷m 3=m 2,正确. 故选D . 【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.8.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定【答案】A【解析】【分析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a )·a+(CD-b )(AD-a ) =(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a ) ∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b ) =(AB-a )(AD-a-b) ∵AD <a+b , ∴-<0,故选A. 【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b - B .29bC .29aD .22a b -【答案】B 【解析】 【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b + ∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b =∴阴影部分的面积为:222(2)()39b b a b -=-=故选:B . 【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A 【解析】 【分析】分别计算出两个图形中阴影部分的面积即可. 【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ), 由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2, 故选:A . 【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.下列计算正确的是( ) A .2571aa a -÷=B .()222a b a b +=+ C .2222+=D .()235a a =【答案】A 【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得详解:A 、2571aa a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误; 故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.13.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】根据同类项的概念求解. 【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=, n 2∴=,m 2=. 则m n 4+=. 故选D . 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.下列运算中正确的是( ) A .2235a a a += B .222(2)4a b a b +=+ C .236236a a a ⋅= D .()()22224a b a b a b -+=-【答案】D 【解析】 【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案. 【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.15.下列运算正确的是( ) A .2352x x x += B .()-=g 23524x xx C .()222x y x y +=-D .3223x y x y xy ÷=【答案】B 【解析】 【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式. 【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1. 故选:B . 【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.16.下列算式能用平方差公式计算的是( ) A .(2)(2)a b b a +- B .11(1)(1)22x x +--C .(3)(3)x y x y --+D .()()m n m n ---+【答案】D 【解析】 【分析】利用平方差公式的结构特征判断即可. 【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2, 故选D . 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.。

小学数学四年级数学下册数与代数(二)期末综合复习 人教版(含答案)

小学数学四年级数学下册数与代数(二)期末综合复习 人教版(含答案)

四年级下册数与代数(二)期末综合复习-人教版一、单选题1.(·蓬江月考)23.008的计数单位是()。

A.0.1B.0.01C.0.001D.12.(·兴义月考)一个数先扩大到它的100倍,再将小数点向左移动三位,结果是20.96,这个数原来是()。

A.2096B.209.6C.2.096D.0.20963.(·兴义月考)按照体重从小到大给他们排序正确的是()。

①38.5kg ②43.6kg ③35.8kg ④43.9kgA.④②①③B.④①②③C.③①②④D.④①②4.(·祁东期中)800□200000≈80.0亿(用四舍五入法),□里能填的数字是()。

A.0~5B.0~4C.0~95.(播州期末)小米用计算器计算25.19+5.85时,错误地输入了25.91+5.85,要改正这个错误需要再输入()A.-0.88B.+0.88C.-0.72D.-0.86.(·播州期末)下列各数中,与10最接近的是()A.9.8B.10.102C.9.98D.9.9987.(·沭阳期中)下面的说法中,正确的有()句。

①最大的三位数除以最大的两位数,商11余9。

②如果被除数的末尾有0,那么商的末尾也一定有0。

③某篮球队队员平均身高是160厘米,小华是该篮球队队员,他的身高可能是158厘米。

A.1B.2C.38.(·南郑期末)在献爱心捐助活动中,笑笑和淘气平均每人捐助了49元,奇思捐了55元。

他们三人平均每人捐助了()元。

A.49B.51C.55二、填空题9.(·兴义月考)看图写数这个数写作,它的计数单位是。

10.(·兴义月考)用1千克的小麦可以磨0.85千克的面粉,用1吨这样的小麦可以磨千克的面粉。

11.(·兴义月考)0.584里面有个千分之一;2.8里面有个0.1;5个百分之一写成小数是。

12.(·微山期末)甲数是32.78,比乙数少1.8,乙数是。

代数式的综合应用教案二2

代数式的综合应用教案二2

代数式的综合应用教案二2。

代数式作为数学中的常见概念,具有广泛的应用价值。

本教案将引导学生在代数式的学习过程中掌握其综合应用技巧,包括利用代数式进行实际问题的建模、简化和求解等步骤。

通过教学实践,旨在使学生在掌握代数式基础知识的同时,培养其综合应用代数式解决问题的能力。

一、教学目标1.知识与技能:掌握代数式的建模、简化和求解方法,能够应用代数式解决实际问题。

2.过程与方法:培养学生逐步深化问题、逐步抽象提炼问题的能力,能够理解建立模型的过程及其应用价值。

3.情感态度:激发学生对数学的学习兴趣和探究欲望,培养他们从数学中感受美感和体验数学思维的快感。

二、教学内容1.代数式的建模1.1 代数式的概念和性质要理解代数式的建模,首先要明确代数式的概念和性质。

代数式是由变量、常数和运算符号组成的符号语言,表达了不同的数学关系。

代数式的性质包括可加性、可乘性、可分配性、交换律、结合律和分配律等,这些性质都是代数式建模的基础。

1.2 代数式的应用代数式的应用包括二元一次方程组、解析几何、概率统计等多个方面。

在本教案中,我们将更加注重代数式在实际问题建模以及模型的简化和求解方面的应用,这是代数式应用的重点。

2.代数式的简化2.1 代数式的化简方法去括号、合并同类项、化简分式、提公因式、因式分解、乘法公式等是代数式化简的基本方法,学生需要掌握这些方法以便在应用代数式解决问题时能够更高效地进行简化。

2.2 代数式的化简应用代数式简化的应用包括解方程、求极值、化简与展开等多个方面。

在本教案中,我们将更加注重代数式在实际问题建模和求解之前的化简过程,这是应用代数式的前提条件。

3.代数式的求解3.1.代数式的求解方法代数式的求解方法包括难度不同的线性方程组的解法、二次方程的求解、函数两个不同输入值的输出值的差等。

学生需要掌握代数式求解的基本方法,并能够应用不同的方法解决实际问题。

3.2.代数式的求解应用代数式求解的应用包括诸如三级精简、让x开单方程、掏根儿、解方程等多个方面。

(王云松)北京市2012年中考数学二模代数几何综合题分类汇2

(王云松)北京市2012年中考数学二模代数几何综合题分类汇2

北京市2012年中考数学二模代数几何综合题分类汇编整理 北京市二十中学 王云松2012-6-7代几综合题,往往是在二次函数背景下的对动点、动直线的位置及数量关系以及常见几何图形的存在性的研究,对学生的思维水平提出了更高的要求,要求学生具有较强的运算能力、作图能力、方程思想、数形结合思想、分类讨论思想等综合能力。

其掌握程度的高低直接决定学生能否达优。

【海淀】24. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图【参考答案】24.解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =. ∵ 抛物线x x my 222-=与x 轴负半轴交于点A ,∴ A (m , 0), 且m <0. …………………………………………………2分过点D 作DF ⊥x 轴于F .由 D 为BO 中点,DF //BC , 可得CF =FO =1.2CO∴ DF =1.2BC由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO , ∴ △AFD ∽△AOE . ∴.FD AFOE AO= 由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y . 由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G , 过P 1作P1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分 如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分 (ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t . 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P-.[注]在确定平行四边形时,如果知一边的两点坐标,可以用平移的方法,得到其对边的点的坐标,可使解答简捷。

二次函数代数综合题

二次函数代数综合题

二次函数代数综合题1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式;(2) 结合函数图象,求不等式m x c bx x +>++2的解集(直接写出答案).2.如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标.3.已知抛物线2442y ax ax a=-+-,其中a是常数.(1)求抛物线的顶点坐标;(2)若25a>,且抛物线与x轴交于整数点(坐标为整数的点),求此抛物线的解析式.4.在平面直角坐标系xOy中,抛物线2y mx n=++经过P,A(0,2)两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB、OC、BC距离相等的点的坐标.5.一次函数y=2x+3与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大.(4)当x为何值时,一次函数值大于二次函数值?6.已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图象与y轴的交点在原点下方,与x轴交于A,B两点,点A在点B的左边,且A,B两点到原点的距离AO、OB•满足3(•OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图象的一个交点为P,且锐角∠POB•的正切值4.(1)求m的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.7.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次 函数2241y x x k =++-的图象向下平移8个单位,求平移 后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1(2y x b b k =+<)与此图象有两个公共点时,b 的取值范围.8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点;(2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.9.已知二次函数y=x2-x+c.(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>n)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当22≤OP≤2+2时,试求直线DE的解析式,并判断直线DE与抛物线y=x2-x+c+38的交点个数,并说明理由.10.已知抛物线y=x²—4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.(1)求平移后的抛物线解析式;=,即为过点(m,0)平行于y (2)由抛物线对称轴知识我们已经知道:直线x m轴的直线,类似地,直线y m=,即为过点(0,m)平行于x轴的直线.请结合图象回答:当直线y=m与这两条抛物线有且只有四个交点,实数m的取值范围;(3)若将已知的抛物线解析式改为y=x²+bx+c(b<0),并将此抛物线沿x轴向左平移-b个单位长度,试回答(2)中的问题.11.已知关于x 的一元二次方程022=++x ax(1)求证:当0<a 时,方程022=++x ax 一定有两个不等的实数根; (2)若代数式22++-x x 的值为正整数,且x 为整数时,求x 的值;(3)当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(m M ;当2a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(n N ;若点M 在点N 的左边,试比较1a 与2a 的大小.12.已知:关于x 的一元二次方程063)2(22=-+-+m x m x . (1)求证:x 无论为任何实数,方程总有实数根;(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA =3OB ,请确定抛物线的解析式;(3)将(2)中的抛物线沿x 轴方向向右平移2个单位长度,得到一个新的抛物线,请结合函数图象回答:当直线y =m 与这两条抛物线有且只有四个交点时,实数m 的取值范围.13.阅读:对于二次函数2y ax bx c=++,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:222y x x=++).回答问题:(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式:.(2)请探索:是否存在二次项系数的绝对值小于12的整点抛物线?若存在,请写出其中一条抛物线的解析式;若不存在,请说明理由.14.已知抛物线c bx ax y ++=232,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知抛物线C1:22=-的图象如图所示,把C1的图象沿y轴翻折,得y x x到抛物线C2的图象,抛物线C1与抛物线C2 Array C3.(1)求抛物线C1的顶点A坐标,并画出抛物线C2图象;(2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值;(3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.16.已知关于x 的方程032)1(32=-+--m x m mx .(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称.①求这个二次函数的解析式;②已知一次函数222-=x y ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 1≥y 2均成立;(3)在(2)的条件下,若二次函数y 3=ax 2+bx +c 的图象经过点(-5,0),且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值y 1≥y 3≥y 2均成立.求二次函数y 3=ax 2+bx +c 的解析式.17.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.18.已知直线y =kx -3与x 轴交于点A (4,0),与y 轴交于点C ,抛物线234y x mx n =-++经过点A 和点C ,动点P 在x 轴上以每秒1个长度单位的速度由抛物线与x 轴的另一个交点B 向点A 运动,点Q 由点C 沿线段CA 向点A 运动且速度是点P 运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P 和点Q 同时出发,运动时间为t (秒),试问当t 为何值时,△PQA 是直角三角形;(3)在直线CA 上方的抛物线上是否存在一点D ,使得△ACD 的面积最大,若 存在,求出点D 坐标;若不存在,请说明理由.。

数学中考冲刺:代数综合问题--知识讲解(提高)

数学中考冲刺:代数综合问题--知识讲解(提高)

中考冲刺:代数综合问题—知识讲解(提高)【中考展望】初中代数综合题,主要以方程、函数这两部分为重点,因此牢固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数的解析式的确定及函数性质等重要基础知识,是解好代数综合题的关键.在许多问题中,代数和几何问题交织在一起,就要沟通这些知识之间的内在联系,以数形结合的方法找到解决问题的突破口.通过解综合题有利于透彻和熟练地掌握基础知识和基本技能,更深刻地领悟数学思想方法,提高分析问题和解决问题的能力.【方法点拨】(1)对“数学概念”的深刻理解是解综合题的基础;(2)认识综合题的结构是解综合题的前提;(3)灵活运用数学思想方法是解综合题的关键;(4)帮助学生建立思维程序是解综合题的核心.* 审题(读题、断句、找关键);* 先宏观(题型、知识块、方法);后微观(具体条件,具体定理、公式)* 由已知,想可知(联想知识);由未知,想须知(应具备的条件),注意知识的结合;* 观察——挖掘题目结构特征;联想——联系相关知识网络;突破——抓往关键实现突破;寻求——学会寻求解题思路.(5)准确计算,严密推理是解综合题的保证.【典型例题】类型一、函数综合1.已知函数2yx=和y=kx+1(k≠0).(1)若这两个函数的图象都经过点(1,a),求a和k的值;(2)当k取何值时,这两个函数的图象总有公共点?【思路点拨】本题是一次函数,反比例函数的综合题.本题考查了函数解析式的求法和利用判别式判断函数图象交点个数.【答案与解析】解:(1)∵两函数的图象都经过点(1,a),∴2,11.aa k⎧=⎪⎨⎪=+⎩解得2,1.ak=⎧⎨=⎩(2)将2yx=代入y=kx+1,消去y,得220kx x+-=.∵k ≠0,∴要使得两函数的图象总有公共点,只要△≥0即可.∵△=1+8k .∴1+8k ≥0,解得k ≥18-. ∴k ≥18-且k ≠0时这两个函数的图象总有公共点. 【总结升华】两图象交点的个数常常通过建立方程组,进而转化为一元二次方程,利用根的判别式来判断.若△>0,两图象有两个公共点;若△=0,两图象有一个公共点;若△<0,两图象没有公共点. 举一反三:【变式】如图,一元二次方程0322=-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标; (3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标.【答案】解:(1)解方程0322=-+x x ,得1x =-3,2x =1.∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0).将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得⎪⎩⎪⎨⎧=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ⎪⎪⎩⎪⎪⎨⎧-===.23,1,21c b a∴抛物线解析式为23212-+=x x y . (2)由2)1(21232122-+=-+=x x x y ,得抛物线顶点P 的坐标为(-1,-2),对称轴为直线x=-1. 设直线AC 的函数关系式为y=kx+b,将A (3,6),C (-3,0)代入,得⎩⎨⎧=+-=+.03,63b k b k 解这个方程组,得 ⎩⎨⎧==.1,3k b∴直线AC 的函数关系式为y=x+3.由于Q 点是抛物线的对称轴与直线AC 的交点,故解方程组⎩⎨⎧+=-=.3,1x y x 得⎩⎨⎧=-=.2,1y x ∴点Q 坐标为(-1,2).(3)作A 点关于x 轴的对称点)6,3(/-A ,连接Q A /,Q A /与x 轴交点M 即为所求的点.设直线Q A /的函数关系式为y=kx+b.∴⎩⎨⎧=+--=+.2,63b k b k 解这个方程组,得⎩⎨⎧-==.2,0k b ∴直线Q A /的函数关系式为y=-2x.令x=0,则y=0.∴点M 的坐标为(0,0).类型二、函数与方程综合2.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--,这两个二次函数的图象中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图象经过A ,B 两点;(2)若A 点坐标为(-1,0),试求B 点坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x 值的增大而减小?【思路点拨】本题是二次函数与一元二次方程的综合题.本题考查了利用一元二次方程根的判别式判断二次函数图象,与x 轴的交点个数及二次函数的性质.【答案与解析】解:(1)对于关于x 的二次函数2212m y x mx +=-+, 由于△=(-m)2-4×1×221202m m ⎛⎫+=--< ⎪⎝⎭,所以此函数的图象与x 轴没有交点.对于关于x 的二次函数2222m y x mx +=--, 由于△=2222()413402m m m ⎛⎫+--⨯⨯-=+> ⎪⎝⎭, 所以此函数的图象与x 轴有两个不同的交点.故图象经过A ,B 两点的二次函数为22202m y x mx +=--=. (2)将A(-1,0)代入2222m y x mx +=--,得22102m m ++-=. 整理,得220m m -=.解之,得m =0,或m =2.①当m =0时,21y x =-.令y =0,得210x -=. 解这个方程,得11x =-,21x =.此时,B 点的坐标是B(1,0).②当m =2时,223y x x =--.令y =0,得2230x x --=. 解这个方程,得x 3=-1,x 4=3.此时,B 点的坐标是B(3,0).(3)当m =0时,二次函数为21y x =-,此函数的图象开口向上,对称轴为x =0,所以当x <0时,函数值y 随x 的增大而减小.当m =2时,二次函数为2223(1)4y x x x =--=--,此函数的图象开口向上,对称轴为x =1,所以当x <1时,函数值y 随x 的增大而减小.【总结升华】从题目的结构来看,二次函数与一元二次方程有着密切的联系,函数思想是变量思想,变量也可用常量来求解.举一反三:【高清课堂:代数综合问题 例3】【变式】(2016·门头沟一模)已知关于x 的一元二次方程mx 2+(3m +1)x +3=0.(1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B 两个整数点(点A 在点B 左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设xy O 此抛物线在-3≤x ≤12-之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.【答案】 (1)证明:∵ △= (3m +1)2-4×m ×3 =(3m -1)2.∵ (3m -1)2≥0,∴ △≥0,∴ 原方程有两个实数根.(2)解:令y =0,那么 mx 2+(3m +1)x +3=0.解得 13x =-,21x m=-. ∵抛物线与x 轴交于两个不同的整数点,且m 为正整数,∴m =1.∴抛物线的表达式为243y x x =++.(3)解:∵当x =0时,y =3,∴C (0,3).∵当y =0时,x 1=-3,x 2=-1.又∵点A 在点B 左侧,∴A (-3,0),B (-1,0).∵点D 与点B 关于y 轴对称,∴D (1,0).设直线CD 的表达式为y =kx +b .∴03k b b ⎧+=⎪⎨=⎪⎩, 解得33.k b =-⎧⎨=⎩, ∴直线CD 的表达式为y =-3x +3. 又∵当12x =-时,211543224y ⎛⎫⎛⎫=-+⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴A (-3,0),E (12-,54), ∴平移后,点A ,E 的对应点分别为A'(-3+n ,0),E'(12n -+,54). 当直线y =-3x +3过点A'(-3+n ,0)时,∴-3(-3+n )+3=0,∴n =4.当直线y =-3x +3过点E'(12n -+,54)时,∴153324n ⎛⎫--++= ⎪⎝⎭, ∴n =1312. ∴n 的取值范围是1312≤n ≤4. 类型三、以代数为主的综合题3.如图所示,在直角坐标系中,点A 的坐标为(-2,0),将线段OA 绕原点O 顺时针旋转120°得到线段OB .(1)求点B 的坐标;(2)求经过A ,O ,B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.【思路点拨】(1)由∠AOB =120°可得OB 与x 轴正半轴的夹角为60°,利用OB =2及三角函数可求得点B 的坐标;(2)利用待定系数法可求出解析式;(3)OB 为定值,即求BC+CO 最小.利用二次函数的对称性可知点C 为直线AB 与对称轴的交点;(4)利用转化的方法列出PAB S △关于点P 的横坐标x 的函数关系式求解.【答案与解析】解:(1)B(1,3).(2)设抛物线的解析式为(2)y ax x =+,代入点B(1,3),得33a =.所以232333y x x =+. (3)如图所示,抛物线的对称轴是直线x =-1,因为A ,O 关于抛物线的对称轴对称,所以当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 的解析式为(0)y kx b k =+≠,则 3,20.k b k b ⎧+=⎪⎨-+=⎪⎩ 解得3,323.k b ⎧=⎪⎪⎨⎪=⎪⎩因此直线AB 的解析式为323y x =+. 当1x =-时,33y =. 因此点C 的坐标为31,3⎛⎫- ⎪ ⎪⎝⎭. (4)如图所示,过P 作y 轴的平行线交AB 于D ,设其交x 轴于E ,交过点B 与x 轴平行的直线于F .设点P 的横坐标为x .则PAB PAD PBD S S S =+△△△ 1122PD AE PD BF =⨯+⨯ 1()2PD AE BF =⨯⨯+ 1()()2D P B A y y x x =-- 2132332332x x ⎡⎤⎫=-+⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦2233319332x x ⎫==+⎪⎝⎭ 当12x =-时,△PAB 的面积的最大值为938,此时13,24⎛-- ⎝⎭. 【总结升华】本题为二次函数的综合题,综合程度较高,要掌握利用点的坐标表示坐标轴上线段的方法.因为线段的长度为正数,所以在用点的坐标表示线段长度时,我们用“右边点的横坐标减左边点的横坐标,上边点的纵坐标减下边点的纵坐标”,从而不用加绝对值号,本题中线段PD 的长为D P y y -就是利用了这一规律.4.(2015.北京东城一模)在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)已知点坐标代入函数解析式即可求得解析式;(2)利用轴对称知识求三角形周长最小值;(3)注意分类讨论满足条件的直角三角形,不要漏解.【答案与解析】解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数关系式为211122y x x =-++. (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形. 【总结升华】求最值问题,在几何和函数类题目中经常考查,通常利用轴对称知识来解答此类题型;点的存在性也是常考点,注意解的多样性,从而分类讨论,不要出现漏解情况.举一反三:【变式】如图所示,抛物线23y ax bx =++与y 轴交于点C ,与x 轴交于A ,B 两点,1tan 3OCA ∠=,6ABC S =△.(1)求点B 的坐标;(2)求抛物线的解析式及顶点坐标;(3)若E 点在x 轴上,F 点在抛物线上,如果A ,C ,E ,F 构成平行四边形,直接写出点E 的坐标.【答案】解:(1)∵23y ax bx =++,∴C(0,3).又∵1tan 3OCA ∠=,∴A(1,0). 又∵6ABC S =△,∴1362AB ⨯⨯=, ∴AB =4。

代数综合问题(含答案)

代数综合问题(含答案)

代数综合问题1、二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3、如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C (0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE 面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.4、如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交B,与二次函数的图象交另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx 经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.7、如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.8、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?参考答案1、方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).2、解:(1)依题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).3、解:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.∴OA=OC=3,∴A(﹣3,0),∵点A,B,C在抛物线上,∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,(2)设点P(x,0),则PB=1﹣x,∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,3),∴OC=3,∴S△ABC=AB×OC=6,∵PE∥AC,∴△BPE∽△BAC,∴,∴S△PBE=(1﹣x)2,∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x+1)2+,当x=﹣1时,S△PCE的最大值为.(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标(﹣1,4),∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,∴=,∴8x2+18x=7=0,∴x=,∴y=或y=,∴Q(,),或(,).4、方法一:解:(1)如图,过点C作CM∥OA交y轴于M.∵AC:BC=3:1,∴=.∵CM∥OA,∴△BCM∽△BAO,∴===,∴OA=4CM=4,∴点A的坐标为(﹣4,0);(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),∴16a﹣4b=0,∴b=4a,∴y=ax2+4ax,对称轴为直线x=﹣2,∴F点坐标为(﹣2,﹣4a).设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k,∴直线AB的解析式为y=kx+4k,∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.∵△AED中,∠AED=90°,∴若△FCD与△AED相似,则△FCD是直角三角形,∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°,∴△FCD∽△AED.∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,∴FC=CD,∴△FCD是等腰直角三角形,∴△AED是等腰直角三角形,∴∠DAE=45°,∴∠OBA=45°,∴OB=OA=4,∴4k=4,∴k=1,∴a=﹣1,∴此二次函数的关系式为y=﹣x2﹣4x.方法二:(1)略.(2)∵A(﹣4,0),x=﹣=﹣2,∴b=4a,∴抛物线:y=ax2+4ax,∴C(﹣1,﹣3a),F(﹣2,﹣4a),∵△FCD∽△AED,∠AED=90°,∴AC⊥FC,则K AC×K FC=﹣1,∵A(﹣4,0),C(﹣1,﹣3a),F(﹣2,﹣4a),∴=﹣1,∴a2=1,∴a1=1(舍),a2=﹣1,∴此时抛物线的解析式为:y=﹣x2﹣4x.5、解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点P(a,﹣2a2+6a),则OG=a,PG=﹣2a2+6a.∵S梯形DOGP=(OD+PG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGP=AG•PG=﹣a3+4a2﹣3a,∴S△PDA=S梯形DOGP﹣S△ODA﹣S△AGP=﹣a2+a﹣.∴当a=时,S△PDA的最大值为.∴点P的坐标为(,).6、解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).7、解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).8、解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17.∴P1(19,0),P2(﹣17,0).9、解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅰ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.。

初中代数综合题(精选)

初中代数综合题(精选)

代数综合题代数综合题 解题点拨解题点拨例1 二次函数b ax x y ++=22的图象经过)3,2(点,并且其顶点在直线23-=x y 上,求b a 、.例2在平面直角坐标系内,一次函数)0,0(<>+=b kb b kx y 的图象分别与x 轴、y 轴和直线4=x 交于点C B A 、、,直线x x 与4=轴交于点D ,四边形OBCD 的面积是10,若A 点横坐标是21-,求这个一次函数的解析式.,求这个一次函数的解析式. 例3 如图,已知直线P A 是一次函数)0(>+=n n x y 的图象,直线PB 是一次函数)(2n m m x y >+-=的图象.(1)用n m 、表示出P B A 、、点的坐标;(2)若点Q 是P A 与y 轴的交点,且四边形PQOB 的面积是2,65=AB ,试求P 点的坐标,并写出直线PB PA 与的解析式.的解析式.例4已知:如图,直线133+=x y 和x 轴、y 轴分别交于点A 和点B ,以线段AB 为边在第一象限内作等边三角形ABC .如果在第一象限内有一点)21,(m P ,且△ABP 的面积与△ABC 的面积相等,求m 的值.的值.例5已知:如图,直线l 经过)0,4(A 和)4,0(B 两点,它与抛物线2ax y =在第一象限内交于点P ,又知△AOP 的面积为29,求a 的值.的值.xyQ OP BA 第3题图题图xyCOP B A第4题图题图lxyOP BA5例6如图,直线AB 过x 轴上的)0,2(A 点,且与抛物线2ax y =相交于C B 、两点,已知B 点坐标是)1,1(.(1)求直线和抛物线所表示的函数的解析式;(2)如果抛物线上有一点D ,使得OBCOADSSD D =,求这时D 点的坐标.点的坐标.例7在直角坐标系中,直线l 经过)0,4(A 点,且与两条坐标轴围成的直角三角形面积等于8.有一个二次函数的图象经过l 与两坐标轴的交点,且以3=x 为对称轴,开口向下.求这个二次函数的解析式.向下.求这个二次函数的解析式.例8如图,已知在同一坐系标系中中,直线22kkx y -+=与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,()0,(21x B x A 、两点,C 是抛物线顶点.(1)求此二次函数的最小值(用含k 的代数式表示);(2)若点A 在点B 的左侧,且021<x x ,①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S D D =如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由.如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由.xyDCOB A第6题图题图lxy l 'B'O B A第7题图题图xy CO P BA第8题图题图模拟训练模拟训练 1、 已知关于x 的二次函数34)2(2---=nx x m y 的图象的对称轴是2=x ,且顶点在反比例函数x y 2=的图象上,求此二次函数的解析式.的图象上,求此二次函数的解析式.2、 已知抛物线c bx ax y ++=2与x 轴交于)0,1(-A 和)0,3(B ,它的顶点到x 轴的距离等于4;直线m kx y +=经过抛物线与y 轴的交点和抛物线的顶点,求抛物线和直线的解析式.析式. 3、 已知以次函数b kx y +=的图象经过点)1,0(A 和点)3,(a a B -,0<a ,且点B 在反比例函数xy 3-=的图象上.(1)求a 的值;(2)求一次函数的解析式,并画出其图象;(3)利用画出的图象,求当这个一次函数的y 值在31££-y 范围内,相应的x 值的范围;(4)如果),1(),(21y m Q y m P +、是这个一次函数图象上的两个点,试比较1y 与2y 的大小.的大小.4、 如图,Rt △ABO 的顶点A 是双曲线xk y =与直线)1(++-=k x y 在第四象限的交点,x AB ^轴于B ,且23=D ABO S .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点C A 、的坐标和△AOC 的面积.的面积.5、 如图,反比例函数)0(<=k xky 的图象经过点),3(m A -,过A 作x AB ^轴于点B ,△AOB 的面积为3.(1)求k 和m 的值;(2)若过A 点的直线b ax y +=与x 轴交于C 点,且30=ÐACO °,求此直线的解析式.°,求此直线的解析式.6、 已知:如图,直线3+-=x y 与x 轴、y 轴分别交于点C B 、,抛物线c bx x y ++-=2经过点C B 、,点A 是抛物线与x 轴的另一外交点.(1)求抛物线的解析式;(2)若点P 在直线BC 上,且PAB PAC S S D D =21,求点P 的坐标.的坐标.x y C O B A 第4题图题图 x y O B A 第5题图题图 xy COPBA 第6题图题图,3x=的图象与一次函数y C O B A 第8题图题图 x y C O B A第9题图题图 xy Q O P 第12题图13、已知二次函数的图象过点121),1,0()0,()0,(x C x B x A -、、和2x 是方程0322=--x x 的两根,切21x x >.(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数顶点D 的坐标;(3)在抛物线上求D ¢点,使ABCD D AB S S 四边形=¢D .14、如图,抛物线q px x y ++-=2的顶点M 在第一象限,它与y 轴正半轴相交于点B ,与x 轴相交于)0,2(A ,并且四边形AMBO 的面积是411,求q p 、的值.的值.15、已知平行四边形ABCD 在直角坐标系中的位置如图,O 是坐标原点,12,5:3:1::==ABCD S OA OC OB 平行四边形.抛物线经过B A D 、、三点.(1)求C A 、两点的坐标;(2)求抛物线的解析式;(3)E 是抛物线与DC 交点,以DE 为边的平行四边形,它的面积与平行四边形ABCD 的面积相等,且另两顶点中有一个顶点P 在抛物线上,求P 点的坐标.点的坐标.16、已知二次函数图象与x 轴交于)0,3()0,1(B A 、-,与y 轴交于点C ,顶点P 到x 轴距离为4.(1)写出这个二次函数的解析式;(2)在这个二次函数的图象上是否存在点M ,使△MAB 的面积等于四边形ACPB 面积的32如果存在,写出所有点M 的坐标;如果不存在,请说明理由.的坐标;如果不存在,请说明理由.17、抛物线的解析式c bx ax y ++=2满足四个条件:c b a ca bc ab c b a abc <<-=++=++=,4,3,0.(1)求这条抛物线的解析式;(2)设该抛物线与x 轴的两交点分别为B A 、(A 在B 的左边),与y 轴的交点为P C ,是抛物线上第一象限内的点,AP 交y 轴于点5.1,=OD D ,试比较DPC AO AOD D SS D D 与的大小.的大小.x y M O B A 第14题图题图 xy E D C O B A 第15题图题图。

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析
二次函数(Quadratic Functions)最基础水平的代数推理问题之一,可以
用来解决各种给定一些参数的情况下,求出另一个参数或参数值之类的问题。

这类函数由俩参数组成,称为x、y,x为自变量,y为因变量。

在一般的情况下,这两
个参数可以满足以下数学关系:y=ax^2+bx+c。

总而言之,可以用二次函数来描述
在x和y两个参数间二次关系的简单函数。

比如说,假如我们知道了x以及y的值,就可以通过反推,求出这个函数的系
数a、b、c,至于求解的过程,可以使用高等数学中的一些解决方法,比如求根公式、全局最小值法等等。

然后,在得出了三个系数之后,就可以计算出当x变化之后y的大致变化情况了。

二次函数的应用不仅仅限于数学中,实际上,和复杂事物的表达和分析有着极
大的关联,比如弹道运动、地理范围等等,都可以使用这类数学关系很好地建模。

不仅如此,在许多工程之中,也都被广泛使用,比如电路的阻抗计算,金融市场的投资估算,航空机动控制等等。

二次函数的应该特别强调的是,首先,我们要有一定的解析技能去解决复杂问题,而这类问题居然还是可以用简单的二次方程来解决,这就引发了一种我们可以解决更大更复杂性问题的想法。

其次,这类函数本身具有极大的可编程性,根据需求改变,可以随意地变化它的特性,解决各种任务。

总之,二次函数的实用性是极为强大的,可以说无所不能。

而它的数学表现力,则可以为不同的问题提供最准确的解决方案,可以说把许多场景中的复杂系统,转换成简单的二次方程,才让解决问题变得简单。

代数综合问题(2)

代数综合问题(2)

1 代数综合问题(2)【学习目标】1. 提高运用所学的知识和技能分析问题、解决问题的能力;2. 加强数学思想和方法的训练,增强探究能力,培养创新意识.【巩固练习】1.(10盐城)填在下面各正方形中的四个数之间都有相同的规律,据此规律,m 的值是( )A .38B .52C .66D .742.(09北京)如图,在平面直角坐标系xOy 中,△ABC 三个点的坐标分别为()6,0A -,()6,0B,(0,C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E . (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B点 的直线y k x b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3.已二次函数2123y x x =--及一次函数2y x m =+.(1)求该二次函数图象的顶点坐标以及它与x 轴的交点坐标;(2)将该二次函数图象在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分不变,得到一个新图象,请你在图中画出这个新图象,并求出新图象与直线2y x m =+有三个不同公共点时m 的值.4.(10盐城)如图,A 、B 是双曲线 y= k x (k>0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,0 2 8 4 2 4 6 22 4 6 8 442 A B C D A BC D (备用图)若S △AOC =6.则k= .5.(10扬州)在△ABC 中,∠C =90°,AC =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .(1)求线段AD 的长;(2)若EF ⊥AB ,当点E 在线段AB 上移动时,①求y 与x 的函数关系式(写出自变量x 的取值范围)②当x 取何值时,y 有最大值?并求其最大值;(3)若F 在直角边AC 上(点F 与A 、C 两点均不重合),点E 在斜边AB 上移动,试问:是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数综合问题(二)数学竞赛也就是解题的竞赛,只有通过问题才能学会解题。

要提高解题能力,必须反复练习,在解各类题中,善于总结,不仅要寻找各种不同的解法,更要找出最佳的方法,应当注意数学的思想与数学的美,不断提高我们的鉴赏能力,注意简捷明快,一针见血。

本讲中,我们选编了国内外一些值得欣赏的竞赛题,有些题多给几种解法,灵活运用数学基础知识去进行探索与尝试,以展现思维的过程,并且以资比较,尽力寻求完美的解法。

希望参加数学竞赛的学生们多掌握些解题的思考方法,对数学的认识深度就会有所提高,随之而来,解题能力的增强就会有所突破,也就可能在各类数学竞赛中大显身手。

以下是典型例题解析:例1 已知函数= cue2 +&r +c(G> A > c)的图象上有两点BQm2 ,/(wi2)> 满足 / + [/Si)+ /(皿2)]a+ /(^1 )/(^2)= 0»/(l) = O t(1)求fCr)的取值范围,(2)问能否得出fbn. +3) J(g+3)中至少有一个数为正数?证明你的结论.分析由条件确定sb、c的取值符号,结合函数图象显示函数性质以使问题求解.解因为满足a z + Lf(g) + f(.m2)]a + ) f(m2 )=0.BP [a + /(加i )][a + /〈加2〉] = 0.因此fSJ =—a或f(7刃2)=—a、即m\ 或加2是方程工)= — ci的一个实根,故△△ 0.即夕豪4a(a + c),而由/(I) = 0知丄= —(a + C),则(a + c)2— 4a(a + c)=—3/ —Zac + c $ 0 *即(3a — c) (a + c) W 0.又因为a + b + c = 0,而aA b> c,可知a>0,c<0,3a-c>0,因此a + c £0,即6^0.设/(工〉=ar2+6^+c = 0的两根为吗、氐,因为/(I) = a +b+ c = 0,所以方程/(JT)= 0的一个根为1,另一根为三,又因为a>0,c<0,所以三<0.a a由于b> c且5 =—a— c 0 ,则—”可知2十7因此2丢丨4一工2 |<3.所以fCz)的图象被工轴所截线段长的取值范围为[2.3).⑵设/o)=冰工一m〉(工一工2)=U ( X — 1)(工-- )9a由于/(ZM1 ) =—u或/*(加2〉= —3.不妨设fSl》=—U ,则c— 1)(/??1 - ) =— a V 0»a.因此—V l.m + 3>三>3> 1.a a因为f (工)—ax2 -\-bx + c的对称轴为x=—}、Q〉、所以 <—纟£0,则La L La/(x>在[1,+s)上为增函数J(g+3) > /(I) =0,因此/(g +3) > 0.同理当/(n?2)==— a 时9 有f(m2 + 3) >0.因此/(% +3〉、/(w +3〉中至少有一个为正数. 例2 设"为大于或等于3的整数,证明:在平面上存在一个由n个点组成的集合. 集合中任两点的距离为无理数,任三点组成一个非退化的面积为有理数的三角形.分析在平面上由兀个点组成的集合无限多,我们可以考虑一类特殊的点集——由整数点(纵坐标与横坐标均为整数〉构成的集合,只要在其中构成满足题目条件的点集,也就解答了此题.进一步特殊化,考虑无穷点集S = {(碌。

| k = 0,1,2,-}.证明考虑无穷点集S = { (k9k2 ) I k = Or 1 f 2 »•••}♦S中任两点的距离为:d(A.B) = VU-b)2 (a2 -b2Y=\ a — b \丿1 十(a 十b)?.由于a+厶>0.1 +(a+6严不是完全平方数,从而c/(A,E)为无理数.即S中任两点的距离为无理数.另一方面•由于点集S中的点都在拋物线y = 土上,又直线与抛物线的交点不多于两个,故S中任意三点不共线,而对于S中任意三点A(a9a2)9B(5f b2)f C(c9c2)(不妨设a <h<c)所形成三角形的面积1 a a zS A ABC =寺 1 b b21 c c2=寺(b ——“),为非零有理数.所以,S中任意n个点所成集合即为所求点集,问题得证.说明本问题的解决过程中运用了构造特殊集合转化问題,将''在平面内存在某种点集"的问題特殊化为“在它的某个子集S中存在这种点集"的问题,后者的解决使原问题获证.这种解决策略常称为特殊化策略.即视原问题为一般问題,构遥其特殊问题,通过对特殊问題的解决而获得原问题的解决.特妹化作为化归策略•基本思想是很简单的:相对于“一般”而言,“特殊”问逆往往显得简单、直观和具体,容易解决.并且在特殊问题的解决过程中,常常孕育着一般问题的解决思路.因此,当我们在对某个一般性的数学问题解决有困难时,常常会想到先解决它的特殊情况,然后再把解决特殊情况的方法或结果应用或推广到一般问题中■而获得一般性问题的解决.特殊化策略的关键是能否找到一个最佳的特殊化问题.例3设锐角满足cos 2a + cos 2X = 1,求证:tanatan/9tany 2 V2. 分析与解 由已知COS 2a + cos 2/? 4- /= 1,立即联想到长方体的对角线公式«2 + 62 + c 2 =厂.■j -»COs/3 = -J-,COS/ = y- l = Va 2 +b 2 +c 2.以a 4c 为棱构造长方体,则易知. + ¥、72ZTtana = -------- 三 ------ *a atan/ =运王邑 > 血致 c c二 tanartan^3tanyy y/2bc • \/2ca • V2ab=2 y/2.cos 2cos 2 令 cosa = g + /b上面是从条件中隐含的数形关系中探索思考解题的途径•那么,从结论不等式中观察到什么呢?由tanatan^tan/ 2 罷=即是三个不等式相乘的结果,就可以再变化为:sintfsin/Jsiny cosacos^cosy.这样,也就无需构造长方体模型,而采用下面的证法:由cos2cr+ cos2/?H- cos2 / = 1 ■知sin2a = 1 — cos2a = cos2/? + cos272cos/?cos7,I a加都是锐角, /. sin住 $ J2cos/3cosy,同理:sin/9 %/2cos/cosaisin? A \/2cosacosj3<三个不等式两边分别相乘,即得待证不等式.通过上例的求解分析过程,我们看到问题的实质,就可以求解"问题链例4 设ci、b,c,d > 0,且n^+TT6+i4^ + m求证’同加鼻81.分析与解一看见结论中cdjcd 81,联想到上例,即想到可否令a = “ns再看条件中必须转化吕一,想到三角中的有关公1 + U 式,于是有如下证法;令a = tan2«,6 = = tan211d = tanM.a/*” € (0,善〉.化为cos 2 a + cos 2/3 + cos 2 / + cos 25 = 1. ・;sin 2 a = 1 — cos 2 a =cos 2 0 + cos 2 X + cos 25$ 3 cos s /3cos 5 /cos ft ^写出另外三个不等式,两边分别相乘,得 sin 2asin 2j9s in? /sin 2 53 3斗 7COS %COS &/3COS ° 7COS &5=81 cos 2 arco s 2/9cos 2 7cos 2<5.两边除以cos 2acos ? j9cos 2 /cos 2d,注意代换式9 即得欲证不等式.反思上例,所给条件式等价于 ] . ] ] 1 + tan 2a 1 + tan 2^9 1 + tan 27 丁— 1=1,1 + tan" 3我们可把问题推广:由于 ]= 1 1 + a 1 + tan 2 a=cos 2 a,则条件同理:sin/9 %/2cos/cosai例$ 已知正数"e R*仃=1,2,…,72), p>2且p G N,并满足----- 1 I 1 ... -I__ —— = 11 + 1 + 加$ 1 + 吨•证明令mF = tan2 a;»a f- E (0,守),f—1 ?2 > ••• 9n.由已知条件应有cos%】+cos%2 + …+ cos2a n = 1, 于是cos2a x十cos2a2 + …+ cOs%—=1 — cos2a n =sin%” »cos2a} + cos2a2 + ・•• + co^a^2 + cos2a n=sin%i,cos2a2 + cos2a3+ …+ co/% = siriT.把以上诸等式利用均值不等式,得O — 1) \ycos2a1cos5a p2• ••• • cos^a^i < sin? a(M — 1) ^ycos2^! .. COS^a^COS^r,w sir? a— 9• • • • • ♦5 — 1) ^ycos^azCOsT .…■ cos’a”W sin2ai •再把上述”个不等式两边相乘,得(刃——D^cos2^! cos2a2■ ••• • cos2a ri]£ sinTsin%z •…• sin'%, 即tan2ffitan2a2..... tan2a n 2(n— l)n.由于rrii p = tan2<r f♦i = 1.2,…,川9故rn{m2m n N(九一l)d造出图形,借助于图形今找出a.b.k 之间的数 量关系.j 心的坐标为o m 则圆o 的方程为因为点(0,0)在圆①上•则a 2+ b 2=疋,于是方程①变为工2-2or 十,一2妙=0,a ©a 与抛物线.直线交于点人(4, >1),B (X 2 »>2),则有kx\ =虹| + 旅 kx\ = k^2 + b ② 代人①中,有— 2ozi + k 2x\ — 2 风才—0 ③因为工1工0口2工0。

于是9式③•④分别除以4,工2并相减得• k 2(龙一用)+ (1 — 2bk ) (q —工2)=0⑤而(4 *1)、(工2,力)是抛物线上的不同 点,所以4工工29于是由⑤,得例6 已知实数心为(a 4的圆至少与抛物线y = 2有三个 公共点,一个是原点 (0,0),另两个在直线 》=虹+ b 上,证明』$2.分析 本题属于构造性命题,按题意构Z2—2or 2 + k zxi — 2bkx22护(工f + 工1 広2 + /)+ 1 —2bk = 0⑥由式②知4皿是二次方程2 -kjC一6=0的两根,则有丄 1 bQ十工2 = I,工1 •工2 = - ・K由式⑥得2bk— 1 = k2(JC? +工[工2 +工;)=段[(4 +业)2 —工1比]=段(1 +刍),k从而』=“ J1 =怡+ £ 2 2・杞k例7 设A.B.C是抛物线y上不同的点,R是AABC外接的半径.(1)证明:/?>4;(2)是否存在常数c> *,使得对任何不同的点A,B,C,不等式R^c都成立?解如图7,设(«,«为ZSABC外接圆的圆心,点A(xi,甘)»B(X2占).C(工3 ♦xf)• 易知工1,工2,工3是方程(H —“严十(工2_6)2 _R2 =o的三个不同的实根,则有JT4—(2b— 1) X2— 2ar + a? + Z?2— R2 = 0 ① 因此,方程①的四个根都是实数.由韦达定理,得4 +乞+ ©十工4 = 0+於+云+乳十2工工.:巧=0 亠—(2b — 1) =< 0=>b > 寺.注意到2(26-1)==工:+云+工孑+云=4 /疋十,一疋|=>462 - 4方十1 工4 | / + F 一R2 | 豪4(疋+少一疋)=>7?2 — /++$〃>*=>R2>a2 + 1 14 4所以,R>芬<2)不存在.假设存在常数c > *・考虑圆心为(0.C、半径为R且使不等式C>R> Jc_t 成立的圆(这样的R存在,因为对于c>当, 有(c-4-)2 > 0?即c2 >1一£>0).2 4于是方程①变为x4-<2c-l)x2+c2-i?2 = 0 ②方程②是双二次方程,其判别式△ = (2c- IF —4(疋一疋)=4R2—4c十1 = 4[圧——(c——)]> 0, 所以,方程②有四个不同的实根,即圆与抛物线有四个不同的实根,即与抛物线有四个公共点.但选取的是c>R,与题设c WR矛盾.例8 已知△佃C的三边长分别为a、b、c,且满足abc =2(a-l)(6-l)(c-l).(1)是否存在边长均为整数的△ ABC? 若存在,求出三边长;若不存在,说明理由.(2)若a> l,6>l,c > 1,求出△/1BC 周长的最小值.解(1)不妨设am bMc •显然,cM2. 若cM5,此时,丄丄wg.a b c J由 abc = 2( a 一 1)( b - l)(c - 1),可得 討7)(74小附. 矛盾. 故C 只能取2、3、4・当(?二2 时 f ab = (a - l)(b - 1) 9 有a + 6 = 1.又aNbN2,故无解.当 c =3时,3afr = 4(a -1)(6 — 1),艮卩(a -4)( 6 - 4} = 12*又故<x-4=12,_^fa-4-6,_ixfa-4 = 4, "一4=1 ^1&-4 = 2 取(b-4 = 3・能构成三角形的只有a=8,6 = 7,c = 3. 当z4时,同理解得a==9,6==4 或 a = 6, & = 5 ・ 而能构成三角形的只有a =6,fe =5,c =4. 因此,存在三边长均为整数的厶ABC, 其解得"16,或{ a = 10, 6=6三边长分别为4、5、6或3、7、8・⑵由oAe -2(a - 1)( A - l)(c-l)^得MT)+(i_4)+( i_7)r故+ + + +齐3-寿又(a + b +(?)(丄+ + +丄)耳9,则二= 9a + A + ——•丁. i石+下+ :3込"^2-1 *故△磁的周长最小值为薯?当且仅当= d = 时,取得此最小值.*72 - 1例9 设正实数a、b、c 满足3 3 3a b c .证明••b2c26(c a)(c b)2 a证因为J+hc 3是齐次等式,所以,不 妨假设C = 1•则(? +卩=ln(a + 6)(『+『一必)=1. 设a + 6 = $仝必二仁则M a +62-c?>6(c-a)(c-b) <=>a 2+ 62- 1 >6(1 ■ a ■ b +ab)- 2/ -1 > 6 - 6s + 6toj + 6s - 8i - 7 >02] o 『+6$-8付-詁-7>0 o3s‘ + 18s~ -8s‘ + 8 -21s >0o5 J —18, + 21$ - 8 < 0O (S -1)2(5“8) <0.若5S -8M 0,即 a +6>y ,则3128 ( =125>l*矛盾.Q故$<专=>($-1)2(5$・8) <0.1 = a 3 4- b 3刁2原不等式得证.求正整数,k n 和n ,使得 k n 5n 41.k 2k n解 由 A- >0(i-l s 2r*\»),则I )当几二1时占=I,即A ;二1.k (2) 当 zi =4 时,& +k 7+k 3 +A 4 -16,1 1 1 1 IWVk解得何二為二他二仁二4.例10k i ,k 2,所以Q —4況 解得1SG由式①等号成立条件知,当n = l 或4 时,所有的免("1,2,…,町均相等.(3)当几二2时,尹二2H L昙甘吕瞬』舅于滾泮尸仝2小r g = -一 】一\31甘鬥『「溯若F』;6ilife叶 一u 32t * &k-^f i」/A k 3 *2 H 3*3M叭2(n 1)2kA n 1n 2n 1,2,求证:当n 1时,A为整数,且A为奇数当且仅当n 1 或2(mod 4).证注意到5 + 2)人+1 -nA* =2(n+l)a, (n+ l)A, -(n-pA,.! =2n a=*(n + l)(n+2)A-n(n + l)4rtfl=2( FI +1 )^+ltn(n + 1)4^ * (n - l)rtA n_}二2肆和二(讥1 )5+2)心i・5-1)询」=25 + 1)3+2 严I反复运用上式得255)4一厂讹+ 1),其中,55)二r +2’ + …+n f,t =2fc +l・由255)= £[(几")'+门二 £〔5十 1")'+门, i = l得 ”5 + 1)125(“)・ 因此,人(Q)是整数.(l)n = l 或2(mod4).由S5)有奇数个奇数项知55)为 奇数. 所以几为奇数.(2)n=0(m(xl 4),=0(mod n).所以,人为偶数.(3)几三3(mod 4).则(号丄)=0(mod(n + 1)).故 S5) = £[5 + 1 -以 +门 三0(mod (门 +1) )•所以,久为偶数'有三个正根沮卩(0)<0.求证:2F + 9『d-7gO. ①故S5)= 丫[5_疔+匚"0=0(mod®Cr) = ai3 + &r2 + cr+rf if明设实系数多项式卩(工)=ai? + &?+cr+d的三个正根分别为Q、E、Q,山韦达定理有J| +卫+工由卩(0)<馆可得rf<O t故Q〉0,不等式①两边同除以讥则不等式①等价于心)注2(£+化),忖"观+助+鬲)(王1王2 +助期+血工[)《2 @] +x:-Fx3)3 +9jSi^Xg?目#Q +#心 + 工;Q + 工彷+ ijjj£2(工;+£+£). ②因为大于山所以(⑥-劝)(£ -工$ 20*则^為+工;对< 4+i lt同理工鴛+£丑W龙+£,三个不等式相加可猖不等式②,当且仪当Q = Q二鬲时不等式等号竝因此原命题竝例13给定整数n 3 , 实数a i, a2, , a n满足m j n n|a a j | 1,求 n | a k |3的最小值。

相关文档
最新文档