风管内风量测定实验

合集下载

管道风压、风速、风量测定

管道风压、风速、风量测定
仪器的测量部分采用电子放大线路和运算放大器,并用 数字显示测量结果。测量的范围为0.05~19.0m/s(必要时 可扩大至40m/s)
仪器中还设有P-N结温度测头,可以在测量风速的同时, 测定气流的温度。这种仪器适用于气流稳定输送清洁空 气,流速小于4m/s的场合。
管道风压、风速、风量测定
四、风道内流量的计算
天竹夭的店
2020年6月27日
管道风压、风速、风量测定
管道风压、风速、风量测定
一、测定位置和测定点
(一) 通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的
真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对 测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形 部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
1 在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同 心环。 对于圆形风道,测点越多,测量精度越高。
2 矩形风道 可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小 矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
管道风压、风速、风量测定
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。 当测试现场难于满足要求时,为减少误差可适当增加测点。 但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5
管道风压、风速、风量测定
一、测定位置和测定点
(一)
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面 不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面 (检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这

管道内风速及风量的测定

管道内风速及风量的测定
管道内风速及风量的测定 (测压法)
在通风管道内测定风速及风量的方法 很多,有直接测定的,有间接测定的,本 部分主要介绍测压法。
一、实验目的
学习用测压法测定管道内风速风量的 几种方法并加以比较。
二、实验原理
将几种流量计都接入同一通风系统 中,当管道连接严密时系统各断面上的 流量应相同,各流量计的流量测定值也 应当是相等的。但是由于这些流量计的 原理各不相同,又因设计、制作、安装 等原因也都会产生误差.
2.测点布置 (1)矩形管道 (2)圆形管道
3.管道内压力的测定 静压Pj,动压Pd,全压Pq
2
Pd 2
式中: Pd——测点的动压值, Pa;
ρ ——空气密度,㎏/m3;
图3 测压管与微压计的连接
ν ——空气流速,m/s.
在测定断面上测得各点的压力值后, 计算其平均值.
4.管道内速度的计算
二.笛形流量计
笛形流量计多用于实验室需要监
测流量的实验台上。分全压测管和静 压测管,将平均全压测管和平均静压 测管接在微压计上,其差值即为该断 面处的平均动压。其测定原理同比托 管法相同。
1.风管 2.全压测管 3.静压测管
图4 笛形流量计
三.双纽线集流器
多用于实验室测定中,是管道 进口处的一种差压式流量测定 装置。
1)在实验室里,管道内风速及风量的测定有哪 些必要的条件?在实际工程中又将如何?
2)用比托管法测定风速时,使用比托管和倾斜 式微压计有哪些注意事项?它们应如何连接?
3)请你对实验中几种流量计的适用性,精确性 给予评价?
4)你还了解到有什么仪器可以做管道内风速和 风量的测定,请给予简单地介绍。
1.测定断面选择一.比托管法
Pdp

风管风量计算方法与设计步骤

风管风量计算方法与设计步骤

风机盘管主要由风机,换热盘管和机壳组成,按风机盘管机外静压可分为标准型和高静压型、按换热盘管排数可分为两排和三排,换热盘管一般是采用铜管串铝翅片,铜管外径为10~16mm,翅片厚度约0.15~0.2mm,间距2.0~3.0mm,风机一般采用双进风前弯形叶片离心风机,电机采用电容式4极单相电机、三档转速、机壳和凝水盘隔热。

借助风机盘管机组不断地循环室内空气,使之通过盘管而被冷却或加热,以保持房间要求的温度和一定的相对湿度。

盘管使用的冷水或热水,由集中冷源和热源供应,与此同时,由新风空调机房集中处理后的新风,通过专门的新风管道分别送人各空调房间,以满足空调房间的卫生要求。

风机盘管空调系统与集中式系统相比,没有大风道,只有水管和较小的新风管,具有布置和安装方便、占用建筑空间小、单独调节好等优点,广泛用于温、湿度精度要求不高、房间数多、房间较小、需要单独控制的舒适性空调中。

风机盘管工作原理没有中央空调复杂,其实我们可以把风机盘管形象的看做是一台电扇,只是这台电扇吹出来的风是我们需要的温度。

风机盘管的结构风机:由单向多速低噪声感应系统电动机带动,通过调节输入电压改变风机转速,使风机风量分为高、中、低三档,由电器开关控制,相应调节风机盘管的供冷(热)量。

风机是输送空气的动力源,又是强化空气侧对流换热(盘管外表面)的扰动源,与电动机一起又是机组的主要噪声源。

盘管:是一种采用肋片管制成的空气-水热交换器。

冷媒水(热水)在管内流动,因冷媒水温度低于空气的露点温度,所以管外表面上有凝结水,呈现湿工况下的换热,兼有热交换和质交换,提高了换热效果。

盘管承担房间空调负荷的大部或全部,管排一般为3-4排。

凝水盘:与泄水接管置于盘管底下,作用是接纳盘管上不断凝结出来的水滴,由泄水接管排出室外。

空气过滤器:与泄水接管置于盘管底下,作用是接纳盘管上不断凝结出来的水滴,由泄水接管排出室外。

风机盘管工作原理与制冷运行过程风机盘管机组可分为水路和气路。

排油烟风管漏风量测试方法与措施

排油烟风管漏风量测试方法与措施

机电工程技术第50卷第01期MECHANICAL&ELECTRICAL ENGINEERING TECHNOLOGY Vol.50No.01 DOI:10.3969/j.issn.1009-9492.2021.01.055徐杰俊•排油烟风管漏风量测试方法与措施[J].机电工程技术,2021,50(01):194-196.排油烟风管漏风量测试方法与措施徐杰俊(中建二局安装工程有限公司,北京100070)摘要:排油烟风管的日常使用非常广泛,但由于风管的制作材料不同,以及制作工艺的差异,排油烟风管漏风是一个非常普遍的问题。

通过科学的方法查找排油烟风管漏风的主要原因,依据国家规定的漏风量测试标准以及专属公式,制定风管漏风量测试的方法。

探究排油烟风管漏风量测试中的注意事项,得出排油烟风管漏风的解决措施和方法,为更多从业者提供可行的排油烟风管漏风管理方法。

关键词:排油烟风管;漏风量;风管检测;措施中图分类号:TU83文献标志码:A文章编号:1009-9492(2021)01-0194-03Methods and Measures for Measuring Air Leakage Rate of Oil Fume Exhaust DuctXu Jiejun(China Construction Second Bureau Installation Engineering Co.,Ltd.,Beijing100070,China)Abstract:The daily use of oil fume exhaust duct is very extensive,but due to the different materials and manufacturing process,the air leakage of oil fume exhaust duct is a very common problem.Through scientific methods to find out the main causes of exhaust fume duct air leakage,according to the national air leakage test standard and exclusive formula,the air leakage test method was formulated.To explore the matters needing attention in the air leakage test of oilfume exhaust duct,the solutions and methods for the air leakage of oil fume management methods for the air leakage of oil fume exhaust duct.Key words:fume exhaust duct;air leakage;duct inspection;measures0引言随着通风风管无法兰连接技术的应用,风管漏风问题越来越严重。

风量、风速测定及换气次数计算规程

风量、风速测定及换气次数计算规程

1. 目的:制订本标准的目的是建立洁净室风速、风量测定及换气次数的规程。

2. 范围:本标准适用于洁净室风速、风量测定及换气次数的计算。

3. 责任:工程部及操作人员对本标准的实施负责。

4. 内容:4.1. 在对洁净室进行的各项检测中,风量、风速检测必须首先进行,空气净化调节系统的各项效果必须是在设计的风量、风速条件下获得的。

4.2. 风量检测前,必须首先检查风机运行是否正常,系统中各部件安装是否正确,有无障碍(如过滤器有无被堵、挡),所有阀门应固定在一定的开启位置上,并且必须实际测量被测风口、风管尺寸。

4.3. 对于单向流(层流)洁净室采用室截面平均风速和截面积乘积的方法确定送风量。

其中垂直单向流(层流)洁净室的测定截面取距地面0.8m的水平截面;水平单向流(层流)洁净室取距送风面0.5m的垂直截面。

截面上测点间距不应大于2m,测点数应不少于10个,均匀布置。

检测仪器可选用热球风速仪。

4.4. 对于乱流洁净室,采用风口法或风管法确定送风量。

4.5. 对于安装过滤器的风口,根据风口形式可选用辅助风管,即用硬质板材做成与风口内截面相同、长度等于2倍风口边长的直管段,连接于过滤器风口外部,在辅助风管出口平面上,按最少测点数不少于6点均匀布置测点,用热球风速仪测定各点风速。

以风口截面平均风速乘以风口净截面积确定风量。

4.6对于安有同类扩散板的风口,可以根据扩散板的风量阻力曲线和实测扩散板阻力(孔板内静压与室内压力之差),查出风量。

测定时用微压计和细毕托管,或用细橡胶管代替毕托管,但都必须使测孔平面与气流方向平行。

也可用经专业检测部门认可的其它方法。

4.6. 对于风口上风侧有较长的支管段且已经或可以打孔时,可以用风管法测量风量。

测定端面距局部阻力部件距离,在局部阻力部件前者不少于3倍管径或3倍大边长度,在局部阻力部件后者不少于5倍管径或5倍大边长度。

4.7. 对于矩形风管,将测定截面分成若干个相等的小截面,每个截面应尽可能接近正方形,边长最好不大于200mm,测点设于小截面中心,但整个截面上的测点数不宜少于3个。

通风管道风压、风速、风量测定(精)

通风管道风压、风速、风量测定(精)

第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。

当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。

测量断面位置示意图见p235图2.8-1。

当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。

测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。

如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。

选择测量断面,还应考虑测定操作的方便和安全。

(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值。

1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。

对于圆形风道,同心环上各测点距风道内壁距离列于表2.8—2。

测点越多,测量精度越高。

图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。

2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示。

圆风管测点与管壁距离系数(以管径为基数表2.8-2 二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行。

通风管道风压风速风量测定DOC

通风管道风压风速风量测定DOC

通风管道风压风速风量测定通风管道在工业生产和建筑物中起着重要的作用。

为确保通风管道的安全和有效,需要对通风管道进行风压、风速、风量测定。

以下是一些测量通风管道的基本方法。

一、风压测量仪器•喜马拉雅差压计•数字多功能仪表步骤1.在通风管道的两边墙壁上钻孔,使孔之间的距离相等。

2.将差压计连接在通风管道上,调整读数到设置零点。

3.打开通风机,记录差压计的读数。

如果差压计涉及到密封效应,需要进行更多调整以得到更准确的读数。

如果机器噪音太大,可以考虑将差压计放置在远离机器的地方。

计算通风管道的压强等于差压计的读数。

使用以下公式计算通风管道的风速: •风速(m/s)= 差压计的读数 * (角度系数 / 因素系数)•风速(英尺/分钟)= 差压计的读数 * (角度系数 / 因素系数) * 196.85其中,角度系数和因素系数根据差压计的型号而异。

二、风速测量仪器•热线风速仪•热膜风速仪步骤1.在通风管道上安装风速仪器。

尽量远离通风系统的进口和出口,以避免干扰。

2.打开通风机,等待五到十分钟,直到温度和湿度稳定。

3.风速仪器将记录并显示当前风速。

计算通风管道的风量等于风速和扇叶面积的乘积。

使用以下公式计算通风管道的风速:•风量(立方米/小时)= 风速 (米/秒) × 扇叶面积 (平方米) × 3600•风量(立方英尺/分钟)= 风速 (英尺/分钟) × 扇叶面积 (平方英尺) ×60三、风量测量仪器•平衡法风量计•流量计步骤1.在通风管道上安装风量计。

平衡法风量计需要根据通风管道的直径进行调整。

2.打开通风机,将通风管道进行平衡,直到读数稳定。

3.查看风量计上的读数。

计算无需计算。

风量计上的读数已经是通风管道的实际风量。

四、对于工业生产和建筑物中的通风管道,测量其风压、风速、风量是十分重要的。

使用合适的仪器和正确的测量方法,可确保通风管道的安全和有效。

不同的测量方法有不同的精度和调整要求,需要选择合适的测量方法和仪器。

风管风压风速风量测定实验报告册

风管风压风速风量测定实验报告册

学生实验报告实验课程名称:风管风压、风速、风量测定开课实验室:建筑设备与环境工程实验研究中心学院年级专业、班级学生姓名学号开课时间至学年第学期风管中风压、风速、风量的测定一.实验目的及任务风管/水管内压力、流速、流量量的测定是建筑环境与设备工程专业学生应该掌握的基本技能之一。

通过本实验要求:1) 掌握用毕托管及微压计测定风管中流动参数的方法。

2) 学会应用工程中常见的测定风管中流量的仪表。

3) 将同一工况下的各种流量测定方法的结果进行比较、分析。

4) 学习管网阻力平衡调节的方法二:测定原理及装置系统的测试拟采用毕托管和微压计测压法进行。

1- 集流器 2-静压环 3-整流器 4-风量测定仪 5电加热器 6流行测压器 7-热电偶 8-均衡器 9-压力测量器 10-实验试件 11-调节阀 12- 风机 13-电机图1:管道内风速测量装置三:实验测试装置及仪器1) 毕托管加微压计测压法测试原理测试过程中,首先选定管内气流比较平稳的断面作为测定界面,为了测断面的静压、全压,经断面划分为若干个等面积圆环或小矩形(本实验为获取较高精度的测试结果,将等面积小矩形设定为100x100mm ),然后用毕托管和微压计测得断面上个测点的静压和风管中心的全压,并计算平均动压P jp 、平均全压P qp ,由此计算P dp 及管中风量L : 静压的测量平均值:j1j2jnj p p p p P n++⋅⋅⋅=;全压的测量平均值q1q2qnq p p p p P n++⋅⋅⋅=qp jp dp P P P =+管内平均流速:dp V ==风管总风量:P L F V =⋅ 式中:n-----------断面上测点数 F ——— 断面面积㎡适用毕托管及微压计测量管内风量是基本方法,精度较高。

本测定装置多功能实验装置,除可测定风管内气流的压力、流速及流量外,还设有电加热器、换热器来测定换热量、空气阻力等。

2) 毕托管、微压计测压适用方法1- 准备好毕托管、微压计和连接胶管,并对微压计进行水平校正和倾斜管中的液面凋零。

风量、风速测定及换气次数计算规程

风量、风速测定及换气次数计算规程

1. 目的:制订本标准的目的是建立洁净室风速、风量测定及换气次数的规程。

2. 范围:本标准适用于洁净室风速、风量测定及换气次数的计算。

3. 责任:工程部及操作人员对本标准的实施负责。

4. 内容:4.1. 在对洁净室进行的各项检测中,风量、风速检测必须首先进行,空气净化调节系统的各项效果必须是在设计的风量、风速条件下获得的。

4.2. 风量检测前,必须首先检查风机运行是否正常,系统中各部件安装是否正确,有无障碍(如过滤器有无被堵、挡),所有阀门应固定在一定的开启位置上,并且必须实际测量被测风口、风管尺寸。

4.3. 对于单向流(层流)洁净室采用室截面平均风速和截面积乘积的方法确定送风量。

其中垂直单向流(层流)洁净室的测定截面取距地面0.8m的水平截面;水平单向流(层流)洁净室取距送风面0.5m的垂直截面。

截面上测点间距不应大于2m,测点数应不少于10个,均匀布置。

检测仪器可选用热球风速仪。

4.4. 对于乱流洁净室,采用风口法或风管法确定送风量。

4.5. 对于安装过滤器的风口,根据风口形式可选用辅助风管,即用硬质板材做成与风口内截面相同、长度等于2倍风口边长的直管段,连接于过滤器风口外部,在辅助风管出口平面上,按最少测点数不少于6点均匀布置测点,用热球风速仪测定各点风速。

以风口截面平均风速乘以风口净截面积确定风量。

4.6对于安有同类扩散板的风口,可以根据扩散板的风量阻力曲线和实测扩散板阻力(孔板内静压与室内压力之差),查出风量。

测定时用微压计和细毕托管,或用细橡胶管代替毕托管,但都必须使测孔平面与气流方向平行。

也可用经专业检测部门认可的其它方法。

4.6. 对于风口上风侧有较长的支管段且已经或可以打孔时,可以用风管法测量风量。

测定端面距局部阻力部件距离,在局部阻力部件前者不少于3倍管径或3倍大边长度,在局部阻力部件后者不少于5倍管径或5倍大边长度。

4.7. 对于矩形风管,将测定截面分成若干个相等的小截面,每个截面应尽可能接近正方形,边长最好不大于200mm,测点设于小截面中心,但整个截面上的测点数不宜少于3个。

风管漏风量测试方案

风管漏风量测试方案

洁净风管漏风量测试漏风量测试专项方案编制:李欣忠审核:周红波施工单位:中国电子系统工程第四建设有限公司一、目的漏风量测试是检验风管制作和安装质量的重要手段,是检验空调通风系统能否达到设计效果的关键环节。

本工程共涉及2个单体,分别为实验室及固体车间,所有空调系统均为中压系统,按洁净级别分为6-9级。

二、引用标准及编制依据1、国标GB50591-2010《洁净室施工及验收规范》第条规定咬接和法兰连接的金属风管,应在胶封缝隙以后和绝热之前,按附录A的方法进行分段漏风检测检测或按现行国家标准《通风与空调工程施工质量验收规范》GB50243的方法进行干管和主管系统的漏风检测。

1-5级洁净度环境的风管应全部进行漏风检测,6-9级洁净度环境的风管应对30%的风管并不少于1个系统进行漏风检测。

2、检测结果应同时符合下列两项严密性指标:单位风管展开面积漏风量应符合表的规定。

表金属咬接矩形风管单位展开面积最大漏风量[m3/]注:圆形金属咬接和法兰连接风管以及非咬接、非法兰连接风管的漏风量按表中数值的50%计算。

由本条第1款得出的漏风量计算得到的系统允许漏风率应符合表的规定。

表系统允许漏风率ε(漏风量/设计风量)三、试用范围洁净通风管道四、准备工作1、漏风量测试仪2、卷尺:用于测试风管的表面积;3、手电钻:用于在测试风管上开测压孔和进气孔。

4、玻璃缴枪、玻璃胶:用于风管与测压孔和进气孔的密封及风管两端封板的漏气孔的封堵。

五、工艺流程1、确定测试压力:依据图纸、规范要求,确定测试风管段和测试压力,结合现场环境编制检测方案。

2、封口:对被测试风管系统的所有开口用钢板进行封闭处理,并在封闭接缝处涂密封胶,确保封口质量。

3、测压孔和进气管接口:在测试风管选择测压孔和进气管接口的适当位置开孔,其孔洞尺寸应与漏风量测试仪的接口配合。

4、表面积测量:用卷尺测量对被测试风管的表面积进行测量(或根据图纸计算)。

5、将漏风量测试仪按要求连接并连接好电源。

风管内风量测定实验

风管内风量测定实验

实验三风管内风量测定实验一、实验目的1.了解流量测量装置,学会采用椭圆喷嘴流量测量;2.学会使用斜管微压计;二、实验装置简图实验采用国际流行的空调系统椭圆喷嘴测流量装置,本装置是93年承接省教委课题可调式复合流送风分布器而自行设计制作安装的,该装置分为风量测量段、风机段和标准实验管段三部分,如上图所示;本实验为测量风量段的风量;1.测量段:接收室、流量喷嘴、排放室:为了使得测量段内气流均匀,流量喷嘴前后加装了孔径Φ25,穿孔率为%的均流板;喷嘴尺寸:Φ150,3个;Φ100,2个;Φ70,1个,共6个;本次实验开三个:Φ150、Φ100、Φ70各一个;测量室断面为:1230mm12302.风机段:风机型号为4-72 NO-5A离心式风机,最大风量12720/hm3是目前国内最大,采用最先进的变频调速器SVF113-80A,对风机风量实行无级调速;3.标准实验管段:采用管径Φ600的镀锌铁皮,加装整流装置,以保证气流均匀;整个装置经过打压实验,漏风率不足1%,保证测试准确性;三、实验原理:系统风量:P A C Q n n ∆=ρ2其中,C n ——椭圆喷嘴流量系数,98.0=n Cn A ——喷嘴喉部流通面积2mP ∆——喷嘴两端压差;Paρ——空气密度Kg/m 3j ρ——酒精密度Kg/m 3L ——斜管压力计读数mm四、实验步骤1.调整斜管式微压计调水平、调零点,用橡胶管将喷嘴前后静压环接口与已调整好的斜管微压计相连接;2.合上实验装置电源3.慢慢调整变频调速器旋扭,使频率值从小到大变化,一般频率间隔5HZ,记下在不同频率下的斜管式微压计读数;4.反复调节变频调速器频率一般5次,并记录斜管式微压计读数;5.关闭实验装置电源;五、实验数据和实验结果要求在f-Qn图上绘制变频器读数f与相对应的风量Qn之间的关系曲线;。

通风系统风量测试调整方法

通风系统风量测试调整方法

通风系统风量测试调整方法探讨前言:通风系统风量测试,为通风空调工程中的重要环节,本文从测量仪器的选用、风量测量相关参数的确定、到实际测量操作方法等方面进行探讨,具有一定的现场指导作用。

一、适用范围本方案适用于建筑工程通风于空调系统中,使用的金属风管系统的风量检测调整。

二、作业条件及要求1、风机单机试运转合格2、风管系统的严密性和漏风量检测试验合格3、风量检测调试的方法确定,调试方案经过审批三、主要机具1、施工机具:人字木梯、毛刷、红油漆、扳手等2、测量工具:热球风速仪(一般民用建筑选用测定风速范围为10-30m/s的型号)、比托管、倾斜式微压计,监测仪器应在有效校验期内,确保测量有效准确。

四、操作流程及工序绘制系统草图—→确定测试参数—→确定测试位置—→测量孔设置—→现场检测—→与设计要求值比较(确定风量平衡、调整方法)—→调整阀门开启程度—→风量细调符合设计要求—→确定阀门开启程度并标识—→调试报告五、作业方法:1、测试的系统一般包括空调送回风系统、新风系统。

2、测定调整的参数包括:对于一般空调送风系统测试的参数包括,新风量q新、总送风量q总、各支管段的送风量、各风口的送风量,如含回风系统时,还应包括回风量q回等。

3、测试位置的确定确定系统测试位置时,应根据系统的实际情况,参考设计图纸,绘制出系统的单线草图供测试使用,在草图上注明风管尺寸、测试位置、风阀的位置、送(回)风口的位置等,在测定截面处,应说明截面的设计风量、面积。

测试位置的一般选择在气流较均匀的平直管段处,若遇到有三通、弯头、变径等产生涡流的构件时,测定位置与其距离架下图一。

图一测试位置确定方法4、测量孔的设置测试位置处测点的位置和数目,主要根据风管形状而定。

对于矩形风管,应将截面划分为若干相等的小截面,并使各小截面尽可能接近于正方形,测点位于小截面的中心处,小截面的面积不得大于0.05m2。

测试孔设置见图二。

圆形风管应根据管径大小,将截面分成若干个面积相等的同心圆环,每个圆环上测点设4个点,且这4个点必须位于互相垂直的两个直径上,所划分的圆环数目,可按下表一选用。

实验指导书

实验指导书

空调工程实验指导书广东技术师范学院天河学院建筑工程系2011.9目录实验一风管的流速和流量测定 (3)实验二循环式空调过程试验装置 (10)实验一风管的流速和流量测定一、实验目的:1、了解各种风速风量测量装置的结构与特点。

2、掌握风速风量测量装置的测量方法与计算。

3、学习用多种测压方法测定管道内风量风速的方法,并加以比较。

二、实验原理:将集中流量计都接入连接严密的同意通风系统中,流过系统各断面上的流量应该是相等的,因此有各种流量计测定的流量值也应该是相等的。

但是由于这些流量计的原理各不相同,又因为设计、制造、安装等原因,也都会使测量产生误差。

由国际标准ISO-3966中建议的基本型皮托管的校准系数为1,因此我们可以以毕托管法为基准,测出通风系统的风速、风量,与其它几种流量计所测得流量相比较,测算出各自的流量系数或者校准系数。

下面分别说明各种流量计的测量原理:1、毕托管测流速及流量的方法:毕托管又叫动压管,它的作用是把流体的动能转变为位能来进行测量,由于流量与管道的横截面积以及流速有关,流速越大,流量也越大,因此只要用毕托管测量出流速也就相当于测量出了流量。

但是实际传送到毕托管中去的不是全压力,因为全压力只是在毕托管前端开孔处的某一点存在,而这个孔无论多么小,它总会占据一定的面积,所以也就不只是一点了。

因而传送到差压计里去的必然是这部分横截面上的平均压力。

并且利用毕托管测静压力的地方并不完全与测全压力的地方在同一点。

因此,实际传到差压计的压差与毕托管的大小和形状有关,而不是真正等于动压力和全压力之差。

为了校正流速计算的结果,我们引进了一个系数ξ,称为毕托管系数。

常见的基本型毕托管 =1。

在进行现场测定时,测量断面的选择应在气流比较平直扰动较少的直段上。

由于气流在管道断面上的分布不均匀,因此在同一断面上必须进行多点测量然后求出该断面的平均流速。

对圆形管道,可将管道断面划分为若干个等面积的同心环,然后在环上的水平及垂直两轴向布置测点。

系统风量的测试与平衡

系统风量的测试与平衡

系统风量的测试与平衡1)系统风量的测试:①按工程实际情况绘制系统单线透视图,并标明风管尺寸、测点位置以及截面积大小、送(回)风口位置,同时标明设计风量、风速等参数,对测点进行编号。

②开启风机进行风量测定与调整,先测总风量是否满足设计风量要求,做到心中有数,如达不到要求则分析原因并制定解决办法。

系统总风量以风机的出风量或总风管的风量为准,系统总风压以测量风机前后的全压差为准。

③系统风量的测试可用两种方法进行:方法一是用皮托管和微压计测量风管内的风量,方法二是用叶轮风速仪测量送回、风口或新风进风风量。

④方法一:用皮托管和微压计测量干、支管风量。

a、测量截面积的位置选择在气流均匀处。

按气流方向,应选择在产生局部阻力之后大于或等于4 倍的管径及局部阻力之前大于或等于1.5 倍矩形风管长边尺寸的直管段上。

如难以找到符合上述条件的截面,可将测定截面的位置进行灵活变动:一是所选截面保证是平直管段,二是该截面距前面局部阻力的距离比距后面局部阻力的距离适当长一些。

当测量截面上的气流不均匀时,应增加测量截面上的测点数量。

为了检验测定截面选择的正确性,可在开始测量时,同时测出所在截面的全压、静压和动压,并用全压=静压+动压的关系来检验测定结果是否基本吻合,如发现三者关系不符,如操作无误,则说明该截面的气流极不稳定,需要重新选择。

b、在风管内测定平均风速时,将风管测定截面划分为若干个相等的小截面使之尽量接近正方形(圆形风管则根据管径大小,将截面分成若干个同心圆,每个圆环测量四个点),以测得较匀风速,其面积不大于0.05 m 2(每个小截面的边长为200~250 mm,小于220 mm 则所测得数据更为精确)。

测点位于各小截面的中心处,测孔位置根据现场情况以方便操作为原则确定开在大边或小边。

测出风管内的送风速度之后,将该值乘以风管该处的截面积再乘以3600即可得出该风管的出风量,如下式所示。

Q=V.S.3600Q——出风量,m3 /hV——平均风速,m/sS——风管截面积,m 2c、平均风速的计算采用皮托管和微压计测量风管内的风量时,直接测得的是风管截面上的平均动压值,需要通过计算方可求出平均风速。

中学化学实验室排风标准及性能测试分析

中学化学实验室排风标准及性能测试分析

实验室安全专栏中学化学实验室排风标准及性能测试分析冯 伟摘 要:中学化学实验室是学生进行科学实践活动和探究性学习的主要场所,学生通过接触实验设备有助于掌握基本的技能。

但化学药品的储存、实验教学的准备与操作过程会不可避免地使有毒物质散逸在室内,造成污染。

中学化学实验室排风系统是化学实验室建设的重要组成部分,如果实验室的排风不良,将会使室内空气质量恶化,影响师生的身体健康及学习效率。

关键词:化学实验室;排风标准;性能测试作者简介:冯伟,本科,工程师。

北京市教育技术设备中心,100034一、国内化学实验室通风换气相关的现行标准我国目前涉及中学化学实验室的通风换气标准主要有GB 50099—2011《中小学校设计规范》,GB/T 17226—2017《中小学校教室换气卫生要求》,JY/T 0385—2006《中小学理科实验室装备规范》。

GB 50099—2011《中小学校设计规范》是住房和城乡建设部颁布的强制性标准,其通风换气部分的制定原则是依据GB/T 18883—2002《室内空气质量标准》与GB 50325—2010《民用建筑工程室内环境污染控制规范》的有关规定。

该标准主要针对中小学基础建筑设施进行基础性规范要求,其中规定中小学实验室的换气次数最小不低于3次/小时。

GB/T 17226—2017《中小学校教室换气卫生要求》是由国家卫生和计划生育委员会提出的针对中小学生学习场所的推荐性标准,该标准对中小学内的各种教室场景分别提出了换气的不同指标,规定小学不宜低于3次/小时,中学不宜低于4次/小时。

JY/T 0385—2006《中小学理科实验室装备规范》是由教育部基础教育司提出的推荐性标准,参考引用了GB/T 17226—1998《中小学校教室换气卫生标准》中的相关规定。

提出中学实验室、准备室的换气次数应不低于4次/小时,对通风柜与药品柜也提出了相关基本要求。

同时建议规划化学学科采用桌面排风装置,风速应连续可调,各风罩风口应基本一致,最大风速下可实现换气次数不低于10次/小时。

7、风速风量测定及换气次数计算规程

7、风速风量测定及换气次数计算规程

一、目的:建立洁净区风速、风量测定及换气次数计算的规程。

二、范围:适用于洁净区风速、风量测定及换气次数的计算。

三、责任人:质量管理部长、生产技术部长、车间主任、质量控制室主任。

三、内容:1.在对洁净区进行的各项检测中,风量、风速检测必须首先进行,空气净化调节系统的各项效果必须是在设计的风量、风速条件下获得的。

2.风量检测前,必须检查风机运行是否正常,系统中各部件安装是否正确,有无障碍(如过滤器有无被堵挡),所有阀门应固定在一定的开启位置上,并且必须实际测量被测风口、风管尺寸。

3.对于单向流(层流)洁净区采用截面平均风速和截面积乘积的方法确定送风量。

其中垂直单向流(层流)洁净区的测定截面取距地面0.8m的水平截面;水平单向流(层流)洁净区取距送风面0.5m的垂直截面。

截面上测点间距不应大于2m,测点数应不少于5个均匀布置。

检测仪器可选用热球风速仪。

4.对于乱流洁净区,采用风口法或风管法确定送风量。

5.对于安装过滤器的风口,根据风口形式或选用辅助风管,即用硬质板材做成与风口内截面相同,长度等于2倍风口连长的直管段。

连接于过滤器风口外部,在辅助风管出口平面上,按最少测点数不少于5点均匀布置测点,用热球风速仪测定各点风速。

以风口截面平均风速乘以风口净截面积确定风量。

送风口平均风速=各测量点风速之和÷测量点数送风口风量(m3/h)=平均风速(m/s)×风口截面积(m2)×36006.对于矩形风管,将测定截面分成若干个相等的小截面,每个截面应尽可能接近正方形,边长最好不大于200mm,测点设于小截面中心,但整个截面上的测点数不宜小于3个。

对于圆形风管,应按等面积圆环法划分测定截面和确定测定点数。

在风管外壁上开孔,以便插入热球风速仪测杆或毕托管,用毕托管时先测定动压,然后由上式确定风量。

7.换气次数的计算换气次数的计算是将每小时的总送风量除以房间的空间体积,计算公式为换气次数(次/h )=高度)房间面积()各送风口风量之和( 23m h /m。

实验指导书

实验指导书

热电偶的标定与校验一、实验目的1.掌握热电偶的温度标定与校验方法,初步了解铜――康铜热电偶的特性;掌握热电偶测温的基本原理;2.掌握单支热电偶采用冰浴法的连接线路;3.掌握电位差计的使用;4.学会制作热电偶丝;5.能利用误差理论对所得的数据进行处理。

二、实验内容1.对单支热电偶进行温度校验(或标定);2.绘制铜-康铜热电偶的热电势――温度特性曲线。

三、实验仪器、设备及材料1.UJ33d数字式直流电位差计;2.DHT-2型热学实验仪;3.铜-康铜热电偶丝;4.0~50℃二级标准水银温度计;5.电冰箱;6.保温杯;7.手锤;8.塑料杯;9.调压器;10.砂纸。

四、实验原理将A、B两种不同材质的金属丝的两端点焊接成一个闭合回路。

当两个接点处于不同温度时(如图1),在闭合回路中就会产生热电势,这种现象称为热电效应。

图1图2 为了测量温差电动势,就需要在图1的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质。

根据中间导体定则,在热电偶回路中接入第三种导体,只要与第三种导体相连接的两端温度相同,接入第三导体后,对热电偶回路中的总电势没有影响。

在A、B两种金属之间接入第三种金属C时,若它与A、B的两连接点处于同一温度T0(图2),则该闭合回路的温差电动势与上述只有A、B两种金属组成回路时的数值完全相同。

所以,我们把A、B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。

将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(T0)的冷端(自由端)。

铜引线与电位差计相连,这样就组成一个热电偶温度计。

如图3所示。

图 3当热电偶材料一定时,回路中的总电势E AB(T,T0)成为温度T和温度T0的函数差,即E AB(T,T0)=f(T)-f(T0)当热端温度T为测量点的实际温度时,若使冷端的温度T0不变,即f(T0)=C(常数),则E AB(T,T0)=f(T)-C回路中产生的热电势仅是热端温度T的单值函数。

空调系统风量平衡与检测

空调系统风量平衡与检测

空调系统风量平衡与检测发表时间:2017-12-11T12:02:09.540Z 来源:《基层建设》2017年第24期作者:黄铭华[导读] 摘要:本文介绍了全空气系统和新风系统运行中,出现风口风量偏小,风口风量分布不均等现象,所有我们在设计、选型、调试中注意风管系统的阻力平衡和实际运行中的偏差的问题,同时做好项目验收的检测工作,使空调系统更好地满足人们的热舒适性要求。

佛山市建筑工程质量检测站佛山 528000 摘要:本文介绍了全空气系统和新风系统运行中,出现风口风量偏小,风口风量分布不均等现象,所有我们在设计、选型、调试中注意风管系统的阻力平衡和实际运行中的偏差的问题,同时做好项目验收的检测工作,使空调系统更好地满足人们的热舒适性要求。

关键词:风机性能曲线;风管阻力平衡;风口风量检测引言:随着社会的发展,全空气空调系统在日常生活中的使用越来越广泛,它是通过送风来处理室内热负荷的空调系统。

它具有送风量大,换气充分,空气污染小等优点,但风管阻力不平衡,风口送风量偏差大,是我们经常遇到的问题。

1.风管系统的设计计算步骤 1)连接各风口与机组,绘制系统轴测图,标注各段长度和风量。

布置风管时,应考虑以下因素:尽量缩短管线,减少分支管线、避免复杂的局部构件、恰当的协调好空调水系统、消防水管系统以及其他管道系统的关系。

2)选择最不利环路(一般时指最长或者局部构件最多的分支管路) 3)选定流速,确定断面尺寸 4)计算各管段的局部阻力和沿程阻力,从最不利环路末端开始计算。

5)计算各管段总阻力,并检查并联管路的阻力平衡情况。

风管内空气流动的总阻力为局部阻力和沿程阻力之和。

其中均匀送风的措施为:(1)送风断面积F和孔口面f0不变时,管内静压不断增大,可以根据静压的变化,在孔口上设置不同的阻体,即改变流量系数。

(2)孔口面积fO和µ值不变时,可采用锥形风管改变送风面积,使管内的静压保持不变。

(3)送风管断面积F及孔口µ值不变时,可根据管内静压变化,改变孔口面积f0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 风管内风量测定实验
一、实验目的
1.了解流量测量装置,学会采用椭圆喷嘴流量测量。

2.学会使用斜管微压计。

二、实验装置简图
实验采用国际流行的空调系统椭圆喷嘴测流量装置,本装置是93年承接省教委课题《可调式复合流送风分布器》而自行设计制作安装的,该装置分为风量测量段、风机段和标准实验管段三部分,如上图所示。

本实验为测量风量段的风量。

1.测量段:接收室、流量喷嘴、排放室:为了使得测量段内气流均匀,流量喷嘴前后加装了孔径Φ25,穿孔率为39.8%的均流板。

喷嘴尺寸:Φ150,3个;Φ100,2个;Φ70,1个,共6个。

本次实验开三个:Φ150、Φ100、Φ70各一个。

测量室断面为:1230mm 1230⨯
2.风机段:风机型号为4-72 NO-5A 离心式风机,最大风量12720/h m 3(是目前国内最大),采用最先进的变频调速器SVF113-80A ,对风机风量实行无级调速。

3.标准实验管段:采用管径Φ600的镀锌铁皮,加装整流装置,以保证气流均匀。

整个装置经过打压实验,漏风率不足1%,保证测试准确性。

三、实验原理: 系统风量:P A C Q n n ∆=ρ2
其中,C n ——椭圆喷嘴流量系数,98.0=n C
A——喷嘴喉部流通面积(2m)
n
∆——喷嘴两端压差。

(Pa)
P
ρ——空气密度(Kg/m3)
ρ——酒精密度(Kg/m3)
j
L——斜管压力计读数(mm)
四、实验步骤
1.调整斜管式微压计(调水平、调零点),用橡胶管将喷嘴前后静压环接口与已调整好的斜管微压计相连接。

2.合上实验装置电源
3.慢慢调整变频调速器旋扭,使频率值从小到大变化,一般频率间隔5HZ,记下在不同频率下的斜管式微压计读数。

4.反复调节变频调速器频率(一般5次),并记录斜管式微压计读数。

5.关闭实验装置电源。

五、实验数据和实验结果
要求在f-Qn图上绘制变频器读数f与相对应的风量Qn之间的关系曲线。

相关文档
最新文档