中职数学直线与圆的方程教案讲课教案

合集下载

《直线和圆的方程》单元教学设计

《直线和圆的方程》单元教学设计

《直线和圆的方程》单元教学设计一、教学目标:1.理解直线和圆的概念及特征。

2.掌握直线和圆的标准方程和一般方程的求解方法。

3.能够通过已知条件列出直线和圆的方程并解决相关问题。

4.进一步拓展学生的数学思维和解题能力。

二、教学重难点:1.掌握直线和圆的标准方程和一般方程的应用。

2.解决一般情况下的直线和圆的方程的问题。

三、教学内容和步骤:1.直线的方程(1)回顾直线的一般方程Ax+By+C=0,其中A、B、C为常数。

(2)讲解直线的斜率和截距的概念,以及与一般方程的关系。

(3)通过示例演示如何根据直线上的已知点和斜率确定直线的方程。

(4)讲解直线的点斜式方程和两点式方程的求解方法,并通过例题进行练习。

2.圆的方程(1)讲解圆的概念、圆心和半径的关系。

(2)介绍圆的标准方程和一般方程的表达形式。

(3)通过相应的示意图让学生理解标准方程(x-a)^2+(y-b)^2=r^2和(x-a)^2+(y-b)^2=r^2的特点。

(4)通过例题和实际问题引导学生运用标准方程求解圆的方程。

3.直线和圆的方程应用问题解决(1)通过实例演示如何根据已知条件列出直线和圆的方程。

(2)讲解如何解决直线和圆相交和相切的问题,并通过例题进行讲解和练习。

四、教学方法:1.归纳法:通过比较不同形式的直线和圆的方程,归纳出直线和圆的标准方程和一般方程。

2.演绎法:通过具体实例和推导过程让学生理解和掌握直线和圆的方程的求解方法。

3.实践法:通过实际问题的解决让学生将直线和圆的方程运用到实际生活中。

五、教学资源和工具:1.教科书教材。

2. PowerPoint课件。

3.讲台、黑板和粉笔。

六、教学评估和反思:1.教师在课堂上通过练习题、思考题等形式对学生进行提问和检测,以便及时发现学生的问题并进行纠正。

2.教师在课后对学生的作业进行批改,评估学生的掌握程度,并根据学生的表现调整教学内容和方法。

3.教师在教学过程中应及时总结经验,改进教学方法和手段,提高教学效果,使学生能够更好地理解和应用直线和圆的方程。

中职数学第八章《直线和圆的方程》全部教学设计7份教案(高教版)

中职数学第八章《直线和圆的方程》全部教学设计7份教案(高教版)

【课题】8.1 两点间的距离与线段中点的坐标【教学目标】知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.【教学重点】两点间的距离公式与线段中点的坐标公式的运用【教学难点】两点间的距离公式的理解【教学设计】两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.例1是巩固性练习题.题目中,两个点的坐标既有正数,又有负数.讲授时,要强调两点间的距离公式的特点特别是坐标为负数的情况.例2是中点公式的知识巩固题目.通过连续使用公式(8.2),强化学生对公式的理解与运用.例3是本节两个公式的综合性题目,是知识的简单综合应用.要突出“解析法”,进行数学思维培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】212(==P P P P x、N、P、Q、R各点的坐标.在平面直角坐标系内,描出下列各点:(1,1)A、(3,4)B .并计算每两点之间的距离.第1题图12)(=-x x 01012-=⎧⎨-=-⎩x x y y y y图8-2【教师教学后记】【课题】8.2 直线的方程【教学目标】知识目标:(1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.【教学重点】直线的斜率公式的应用.【教学难点】直线的斜率概念和公式的理解.【教学设计】本教材采用的定义是:“当直线与x 轴相交于点P 时,以点P 为顶点,始边指向x 轴正方向,终边落在直线上的最小正角叫做直线的倾角.当直线与x 轴不相交(或重合)时,规定倾角为零角”.这样就使得关于角的概念一致起来.结合图形,让学生观察倾角的取值范围,要注意倾角的取值范围是[0,180) 而非 [0,180].教材中的“试一试”有助于巩固学生对倾角概念的理解.教材采用“数形结合”的方法,分成两种情况来研究斜率公式.教学中要注意这种分类讨论问题的思考方法的教育,培养学生有条理的思考问题.要强调应用斜率公式的条件12x x .例1是斜率概念及公式的巩固题目,属于简单题.通过例题加强对概念和公式的理解.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图8-3动脑思考探索新知【新知识】为了确定直线对x轴的倾斜程度,我们引入直线的倾角的概念.轴垂直(如图8−5()3=.31,2)与点B上的任意两点,则直线此节的书面作业习题里没有【课题】8.2 直线的方程(二)【教学目标】知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能力与计算能力.【教学重点】直线方程的点斜式、斜截式方程.【教学难点】根据已知条件,选择直线方程的适当形式求直线方程.【教学设计】采用“问题——分析——联系方程”的步骤,从学生熟知的一次函数图像入手,分析图像上的坐标与函数解析式的关系,把函数的解析式看作方程,图像是具有某种特征的平面点集(轨迹).很自然地建立直线和方程的关系,把函数的解析式看作方程是理解概念的关键.导出直线的点斜式方程过程,是从直线与方程的关系中的两个方面进行的.首先是直线上的任意一点的坐标都是方程的解,然后是以方程的解为坐标的点一定在这条直线上.直线的斜截式方程是直线的点斜式方程的特例.直线的斜截式方程与一次函数的解析式具有相同的形式.要强调公式中b的意义.直线的一般式方程的介绍,分两个层次来处理也是唯一的.首先,以问题的形式提出前面介绍的两种直线方程都可以化成一般的二元一次方程的形式.然后按照二元一次方程Ax By C++=的系数的不同取值,进行讨论.对CyB=-与CxA=-只是数形结合的进行说明.这种方式比较适合学生的认知特征.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】)y 为直线-x 11,)x y 在经过点图8-7上任取点(,)P x y (不同于0P 点) 0y y k x x -=-,1).αtan=,所以直线方程为图8-8B b,且斜即直线经过点(0,)3=.,由公式(8.4)【课题】8.3 两条直线的位置关系(一)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线平行的条件.【教学难点】两条直线平行的判断及应用.【教学设计】从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:.两条直线平行⇔同位角相等⇔倾斜角相等⇔9090⎧≠⇔⎨=⇔⎩αα倾斜角斜率相等;倾斜角斜率都不存在.教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系.例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】当直线1l 、2l 的斜率都是与x 轴平行,所以1l 当两条直线1l 、直线1l 与直线2l 都与图8-11-11(1)【课题】8.3 两条直线的位置关系(二)【教学目标】知识目标:(1)掌握两条直线平行的条件; (2)能应用点到直线的距离公式解题. 能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线的位置关系,点到直线的距离公式.【教学难点】两条直线的位置关系的判断及应用.【教学设计】与倾角的定义相类似,本教材将两条直线夹角的定义建立在任意角定义的基础上.两条直线相交所形成的最小正角叫做这两条直线的夹角.同时规定,两条直线平行或重合时两条直线的夹角为零角,这样两条直线的夹角的范围是0,90⎡⎤⎣⎦.教材采用“数形结合”、“看图说话”的方法,导入两条直线垂直的条件,过程简单易懂.两条直线垂直的实质就是这两条直线的夹角为90.运用垂直条件时,要注意斜率不存在的情况.例4是巩固性题目.属于基础性题.首先将直线的方程化为斜截式方程,再根据斜率判断两条直线垂直是本套教材判断两条直线垂直的主要方法.例5是利用垂直条件求直线的方程的题目,属于基础性题.首先利用垂直条件求出直线的斜率,然后写出直线的点斜式方程,最后将方程化为一般式方程.这一系列解题程序,蕴含着“解析法”的思想方法.需要强调,点到直线的距离公式中的直线方程必须是一般式方程.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图8-12探索新知图8-13我们把两条直线相交所成的最小正角叫做这)是直线图8-148-1511tan BCk ABα==, 233tan tan()tan ==-=-=-AB BCααα180 121k k ⋅=-.上面的过程可以逆推,即若121k k ⋅=-,则1l ⊥由此得到结论(两条直线垂直的条件):2l1l【课题】8.4 圆(一)【教学目标】知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程. 能力目标:培养学生解决问题的能力与计算能力.【教学重点】圆的标准方程和一般方程的理解与应用.【教学难点】对圆的标准方程和一般方程的正确认识.【教学设计】用“解析法”推导圆的标准方程的过程,学生比较容易掌握,可以引导学生自己完成.要强化对圆的标准方程()()222x a y b r -+-=的认识,其中半径为r ,圆心坐标为(),O a b '.经常容易发生错误的地方是认为半径是2r ,圆心坐标为(),O a b '--.教学中应予以强调,反复强化.例1和例2是圆的标准方程的知识巩固性题目,属于基础性题目.可以由学生自己完成.通过例题,进一步熟悉圆的标准方程.再介绍圆的一般方程时,教材首先将圆的标准方程展开,分析系数特点,然后将方程配方成圆的标准方程.这一系列的过程,不但介绍圆的一般方程及其与标准方程的联系,还显示出用代数的方法研究几何问题的魅力.例3是圆的方程巩固性题目.题中的两种解法,都是经常使用的方法.特别是解法1,通常采用配方法,将方程化为标准方程,求出圆心坐标与半径.这类题目的训练,有助于学生数学运算能力的提高.求圆的方程,基本有两种基本方法.一种是根据已知条件求出圆心和半径,然后写出圆的标准方程,例4就是这种类型的基础性题目;另一种是,设出圆的方程,然后,利用待定系数法确定相应的常数,例5就是这种类型的基础性题目.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】8.4 圆(二)【教学目标】知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】直线与圆的位置关系的理解和掌握.【教学难点】直线与圆的位置关系的判定.【教学设计】直线与圆的位置关系的判定是本节的难点,将直线的方程与圆的方程联立组成方程组,通过对方程组的解的讨论,来研究直线和圆的位置关系,理论上讲是很简单的,但是,实际操作的运算过程很麻烦.教材采用“数”“形”结合的方式,利用比较半径与圆心到直线的距离大小的关系来讨论的方法,相对比较简单.平面几何中,学生对这样判断直线与圆的位置关系比较熟悉,现在通过比较半径与圆心到直线的距离的大小,来判定直线与圆的位置关系,学生容易接受,例6就是采用这种方法进行讨论的.经过一点求圆的切线方程,通常作法是设出点斜式方程,利用圆心到切线的距离与半径相等来确定斜率,从而得到切线方程,其中蕴含着“待定系数法”和“解析法”等数学方法.例8是直线在科技领域中的应用知识,根据光学原理,反射角等于入射角,利用直线的斜率公式可以求得反射点P的坐标.例9是圆在生产实践中的应用知识.解决这类实际问题首先要选择直角坐标系.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】动脑思考 探索新知 【新知识】图8-21图8-22。

人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计 (一)

人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计 (一)

人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计 (一)人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计一、教学目标1.学习直线的一般式方程和圆的标准式方程。

2.掌握直线与圆的方程的应用。

3.加深对直线和圆的认识,提高解决实际问题的能力。

二、教学重点1.掌握直线的一般式方程和圆的标准式方程。

2.理解直线与圆的方程的应用。

三、教学难点1.理解和应用直线与圆的方程。

2.解决实际问题时的思维方法和技巧。

四、教学过程1.引入(1)出示一些图形,引导学生认识直线和圆。

(2)出示一些实际问题,引导学生思考如何应用直线和圆的方程来解决问题。

2.教学主体(1)直线的一般式方程①导入难点:由点斜式方程推导一般式方程。

②讲解一般式方程的含义和用法。

③练习:给出直线的两点坐标,求解一般式方程。

(2)圆的标准式方程①导入难点:先讲解圆的标准式方程含义及其由中心点和半径推导。

②讲解圆的标准式方程的应用:求解圆心、半径,求解圆与直线的交点。

③练习:给出圆的半径和截距,求解圆心坐标和圆的方程。

(3)直线与圆的方程的应用①导入难点:从实际问题入手,如两个圆相交,求解交点坐标。

②讲解直线与圆的应用技巧,如如何求解直线和圆的交点等。

③练习:出示一些实际问题,引导学生用直线和圆的方程来解决问题。

3.总结总结本课时所学到的知识点和技巧,并强调应用技能的重要性。

五、教学辅助1.多媒体设备:投影仪。

2.教学课件:制作直线方程,制作圆方程。

3.题目练习:编写题目练习和解答。

六、教学评估1.课堂练习:课上出题,学生现场解答。

2.作业考核:留作业,检查学生课下巩固情况。

七、教学反思本课时教学重点难点在于理解和应用直线与圆的方程,在教学过程中需要通过举实际问题来引导学生思考,从而更好地理解和掌握相关知识和技能。

同时还需注意给学生提供充足的练习和检查,以巩固和提高学习效果。

直线与圆的方程教学设计

直线与圆的方程教学设计

直线与圆的方程教学设计一、教学目标•理解直线与圆的定义及特性;•掌握直线的一般方程和点斜式方程的推导和运用;•掌握圆的标准方程和一般方程的推导和运用;•熟练运用直线和圆的方程求解相关问题。

二、教学内容1. 直线的方程(1)一般方程•定义一般式方程:Ax + By + C = 0;•解释A、B、C的物理意义和几何意义;•推导一般方程的标准式:y = kx + b。

(2)点斜式方程•定义点斜式方程:y - y1 = k(x - x1);•解释k和(x1, y1)的几何意义;•推导点斜式方程的一般式:Ax + By + C = 0。

2. 圆的方程(1)标准方程•定义标准方程:(x - a)² + (y - b)² = r²;•解释圆心坐标(a, b)和半径r的物理意义和几何意义;•推导标准方程的一般式:x² + y² + Dx + Ey + F = 0。

(2)一般方程•定义一般方程:x² + y² + Dx + Ey + F = 0;•解释D、E、F的物理意义和几何意义;•推导一般方程的标准式:(x - a)² + (y - b)² = r²。

三、教学过程1. 直线的方程(1)一般方程1.引导学生思考直线方程的表示方法;2.介绍直线的一般方程:Ax + By + C = 0;3.解释A、B、C的物理意义和几何意义;4.讲解一般方程的标准式:y = kx + b;5.给出一个具体的例子进行讲解和演示;6.练习一些示例题,加深理解。

(2)点斜式方程1.引导学生思考点斜式方程的表示方法;2.介绍点斜式方程:y - y1 = k(x - x1);3.解释k和(x1, y1)的几何意义;4.讲解点斜式方程的一般式:Ax + By + C = 0;5.给出一个具体的例子进行讲解和演示;6.练习一些示例题,加深理解。

中职数学教案:直线与圆的方程的实际应用(全2课时)

中职数学教案:直线与圆的方程的实际应用(全2课时)

江苏省XY中等专业学校2021-2022-2教案编号:
教学内容第三步:将代数运算结果“翻译”成几何结论
三、例题讲解
例1 如图所示是某圆拱桥一圆拱的示意图,该圆拱的跨度AB=20m,拱高OP=4m,在建造时,每隔4m需要一个支柱支撑,求支柱A
2
P
2
的长度。

(精确到0.01m)
解:以AB所在直线为x轴,O为原点,建立如上图直角坐标系,因为AB=20m,OP=4m,所以点A、B、P的坐标分别为(-10,0)、(10,0)、(0,4).
设圆的方程为,由于A、B、P三点在圆上,所以他们的坐标满足圆的方程,于是得到方程组:
解方程组得:D=0,E=21,F=-100
由此得到圆的方程为
由于每隔4m需要一个支柱支撑,则可算得支柱
P
江苏省XY中等专业学校2021-2022-2教案编号:
教学内容第三步:将代数运算结果“翻译”成几何结论
三、例题讲解
例2 画出方程表示的曲线。

解:由方程,得:
所以方程所表示的曲线段是如下图所示圆心为(3,0)、半径为2的右半圆。

(3,0)
1
-2
5
2
教学内容四、练习巩固
1.画出方程表示的曲线。

2.在直角坐标系中,设计一个由线段与圆组成的简单命名画,标出有关点的坐标,求圆或线段所在直线的方程。

直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计教学目标:1.知识目标:掌握直线与圆的方程的应用,能够正确推导出直线与圆的交点坐标和直线是否与圆相交的判断。

2.能力目标:培养学生运用直线与圆的方程解决实际问题的能力。

3.情感目标:培养学生合作探究、独立思考的态度和习惯。

教学重点:理解直线与圆交点坐标的推导过程,掌握对应方法与技巧。

教学难点:利用直线与圆的方程解决实际问题。

教学过程:一、导入(5分钟)通过展示一个例子,引出问题:“给定一个圆和一条直线,如何确定它们的交点的坐标?”二、知识讲解(15分钟)1.提要求:教师依次向学生提问,引导学生思考求解交点坐标的问题。

-如何找到直线与圆的交点?-如何确定直线与圆是否相交?2.教师讲解:教师介绍直线与圆的方程及其应用,并讲解求解直线与圆交点坐标的步骤。

- 直线方程:y = kx + b-圆方程:(x-a)²+(y-b)²=r²-求解交点坐标:联立直线方程和圆方程,解方程组得到交点坐标。

-判断直线与圆是否相交:将直线方程代入圆方程,判断是否有实数解,若有则相交,若无则不相交。

3.导入问题解决:教师给出具体的例题,引导学生利用所学知识求解交点坐标。

三、示范演练(20分钟)1.教师示范演练:教师选取一道典型的例题,结合黑板和投影仪,演示如何通过解方程组求解交点坐标。

2.学生模仿演练:学生在纸上模仿教师的示范演练,逐步求解其他例题。

教师及时指导和纠正。

四、合作探究(20分钟)1.学生小组活动:将学生分为小组,每个小组选择一道直线与圆的问题,并自主解决。

学生之间可以互相讨论、合作,但每个学生需独立写出解题过程和答案。

2.小组汇报:每个小组派一名代表进行汇报,其他小组可以提问和讨论。

教师在汇报过程中及时指导、点评和纠正,引导学生探讨和总结在实际问题中应用直线与圆方程的方法。

五、拓展延伸(15分钟)1.学生自主拓展:学生自选一个与直线与圆相关的问题,并通过求解方程组来解决问题。

公开课中职数学基础模块下册:8《直线和圆的方程》教案设计(全章)

公开课中职数学基础模块下册:8《直线和圆的方程》教案设计(全章)

教案【课题】8.1 两点间的距离与线段中点的坐标教学目标知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.情感目标:通过创设问题情景和多媒体教学,让学生在参与中感受和体验数学美,激发学生的学习兴趣和求知欲望。

教学重点掌握两点间的距离公式与线段中点的坐标公式的运用教学难点两点间的距离公式和线段中点的坐标公式的理解课型新授课教学方法讲授法,启发式教学,小组竞赛集体积分教具三角板多媒体课件学案实物投影教学过程师生互动*揭示课题8.1 两点间的距离与线段中点的坐标*创设情境兴趣导入观察课件上的图片,由平面几何问题引入用代数方法计算两点间的距离。

师:引入提问生:自由讨论后回答,为本组加分。

*动脑思考探究新知【知识回顾】平面直角坐标系中,设111(,)P x y ,222(,)P x y ,则122121(,)PP x x y y .计算向量12P P .【新知识】我们将向量12PP 的模,叫做点1P 、2P 之间的距离,记作12PP ,则22121212122121||()()P P P P P P P P x x y y 师:复习提问生:自由积极回答,为本组加分师:分析给出公式生:理解后识记*巩固知识典型例题师:讲解例题例1求A (-3,1)、B (2,-5)两点间的距离.解A 、B 两点间的距离为22||(32)1(5)61AB 生:听解并掌握公式,理解书写格式*运用知识强化练习练习:计算A (-1,1)B (-3,4)两点之间的距离生:学案上计算过程,实物投影学生学案的过程师:板书后点评*创设情境兴趣导入【观察】课件展示线段中点的的引例,引入用代数方法计算线段的中点坐标师:分析引入生:分组讨论后回答,为本组加分*动脑思考探索新知【新知识】设线段的两个端点分别为11(,)A x y 和22(,)B x y ,线段的中点为P(,)x y (如图8-1),则11P (,),A xx yy 22P (,),B x x y y 由于M 为线段AB 的中点,则,AM MB 即1122(,)(,)xx yy x x y y ,即1212,,x x x x yy y y 解得1212,22x x y y xy.一般地,设111(,)P x y 、222(,)P x y 为平面内任意两点,则线段1P 2P 中点000(,)P x y 的坐标为1212,.22x x y y x y 师:分步骤引导推理公式生:思考后自由回答,为本组加分,配合老师生:引入公式后识记公式*巩固知识典型例题例2已知点A (1,-2)、点B (3,5),求线段AB 的中点Q 的坐标.分析可以直接利用线段中点坐标公式计算。

中职数学直线与圆的方程教案

中职数学直线与圆的方程教案

x x 职业技术教育中心教案复习引入:新授:1.平面内两点间的距离设A ,B 为平面上两点.若A ,B 都在x 轴(数轴)上(见图7-3(1)),且坐标为A (x 1,0), B (x 2,0),初中我们已经学过,数轴上A ,B 两点的距离为 |AB |=|x 2-x 1|. 同理,若A ,B 都在y 轴上(见图7-3(2)),坐标为A (0,y 1), B (0,y 2),则A ,B 间的距离 |AB |=|y 2-y 1|.若A ,B 至少有一点不在坐标轴上,设 A , B 的坐标为A (x 1,y 1), B(x 2,y 2).过A ,B分别作x ,y 轴的垂线,垂线延长交于C (见图7-3(3)),不难看出C 点的坐标为(x 1,y 2), 则 |AC |=|y 2-y 1|,|BC |=|x 2-x 1|,由勾股定理 |AB |=22BC AC +=221221)()(y y x x -+-. 由此得平面内两点间的距离公式:已知平面内两点A (x 1,y 1), B (x 2,y 2),则|AB |=221221)()(y y x x -+-. (7-1-1)例1 求A (-4,4),B (8,10)间的距离|AB |.解 x 1=-4, y 1=4;x 2=8, y 2=10,应用公式(7-1-1),|AB |=)()(21221y y x x -+-=2210484)()(-+--=180=65. 例2 已知点A (-1,-1), B (b ,5),且|AB |=10,求b . 解:据两点间距离公式,|AB |=36)1()]1(5[)]1([222++=--+--b b =10,解得 b =7或b =-9.例3 站点P 在站点A 的正西9km 处,另一站点Q 位于P ,A 之间,距P 为5km ,且东西向距A 为6km ,问南北向距A 多少?解 以A 为原点、正东方向为x 轴正向建立坐标系如图7-4,则P 的坐标为(-9,0),|PQ |=9.设Q 坐标为(x ,y ), 图7-3(2)xy O y 1 y 2 • • B A 图7-3(1) x y O x 1 x 2•• B A 图7-3(3)则x =-6,据题意要求出y . 据两点间距离公式(7-1-1)|PQ |=22069)()(y -++-=5,解得 y =±4,即站点Q 在南北向距A 是4km .例4 如图7-5,点A ,B ,C ,D 构成一个平行四边形, 求点D 的横坐标x .解 因为ABCD 是平行四边形,所以对边相等, |AB |=|CD |, |AC |=|BD |. 由距离公式(7-1-1)|AB |=5311222=-++-)()(; |AC |=17212222=-+--)()(;|CD |=42242222+-=-+-)()()(x x|BD |=11341222++=-++)()()(x x 由|AC |=|BD |得11172++=)(x ,x =-1±4;由|AB |=|CD |,知x 只能取-1+4=3.所以当点A ,B ,C ,D 构成一个平行四边形时,点D 的横坐标x =3,即D 的坐标为(3,4). 课内练习1 1. 求|AB |:(1)A (8,6),B (2,1);(2)A (-2,4),B (-2,-2).2. 已知A (a ,-5),B (0,10)间的距离为17,求a .3. 已知A (2,1),B (-1,2),C (5,y ),且∆ABC 为等腰三角形,求y 。

[精品]人教版中职数学教案第八章直线和圆的方程[份教案]DOC

[精品]人教版中职数学教案第八章直线和圆的方程[份教案]DOC

8.1.1 数轴上的距离公式与中点公式【教学目标】1. 理解数轴上的点与实数之间的一一对应关系,会表示数轴上某一点的坐标.2. 掌握数轴上的距离公式和中点公式,并能用这两个公式解决有关问题.3. 培养学生勇于发现、勇于探索的精神;培养学生合作交流等良好品质.【教学重点】数轴上的距离公式、中点公式.【教学难点】距离公式与中点公式的应用.【教学方法】这节课主要采用问题解决法和分组教学法.先从数轴入手,在使学生进一步明确了数与数轴上的点的一一对应关系后,给出数轴上点的坐标的定义及记法,在此基础上进一步学习数轴上距离公式及中点公式.本节教学中,始终要坚持数形结合的思想和方法,让学生积极大胆的猜想,在探索过程中发现和归纳两个公式,以此增强学生的参与意识,提高学生的学习兴趣.8.1.2 平面直角坐标系中的距离公式和中点公式【教学目标】1. 了解平面直角坐标系中的距离公式和中点公式的推导过程.2. 掌握平面直角坐标系中的距离公式和中点公式,并能熟练应用这两个公式解决有关问题.3. 培养学生勇于发现、勇于探索的精神以及合作交流等良好品质.【教学重点】平面直角坐标系中的距离公式、中点公式.【教学难点】距离公式与中点公式的应用.【教学方法】这节课主要采用问题解决法和分组教学法.本节教学中,将平面(二维)的数量关系转化为轴(一维)上的数量关系是关键.先从复习上节内容入手,通过构建直角三角形,将两点间的距离转化为直角三角形的斜边长,从而利用勾股定理求出两点间的距离.最后讨论了平面直角坐标系中的中点公式.教学过程中,通过分组抢答的形式,充分调动学生的积极性.8.2.1 直线与方程【教学目标】1. 理解直线的方程的概念,会判断一个点是否在一条直线上.2. 培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.【教学重点】直线的特征性质,直线的方程的概念.【教学难点】直线的方程的概念.【教学方法】这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.【教学过程】8.2.2 直线的倾斜角与斜率【教学目标】1. 掌握直线的倾斜角的概念,知道直线的倾斜角的范围.2. 理解直线的斜率,掌握过两点的直线的斜率公式,了解倾斜角与斜率之间的关系.3. 让学生从学习中体会到用代数方法解决几何问题的优点,能够从不同角度去分析问题,体会代数与几何结合的数学魅力.【教学重点】直线的倾斜角和斜率.【教学难点】直线的斜率.【教学方法】这节课主要采用讲练结合的教学法.本节首先通过观察同一坐标系中的两条直线引入了直线倾斜角的定义,在明确了倾斜角范围后,定义了直线的斜率,最后讨论了直线斜率与直线上两个不同点坐标之间的关系.直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要引导学生正确理解概念.8.2.3 直线方程的几种形式(二)【教学目标】1. 掌握直线的一般式,理解二元一次方程与直线的对应关系.2. 了解直线的方向向量和法向量的概念,了解直线的方向向量、法向量及斜率之间的关系.3. 培养学生事物之间的普遍联系与互相转化的辩证唯物主义观点.【教学重点】直线的一般式方程,直线的方向向量和法向量.【教学难点】二元一次方法与直线的对应关系,直线的方向向量、法向量与斜率的关系.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.首先从所学的直线方程入手,揭示所学过的直线方程都可以表示成Ax+By+C=0的形式,引入了直线的一般方程的概念.在引入直线方程的一般式后,介绍了直线的方向向量和法向量的概念,进而讨论了方向向量与斜率的关系、法向量与一般式方程中一次项系数之间的关系,为以后进一步讨论两条直线的位置关系等内容打下基础.8.2.3 直线方程的几种形式(一)【教学目标】1. 掌握直线的点斜式、斜截式,能根据条件熟练地求出直线的点斜式和斜截式方程.2. 了解根据直线上两点坐标求直线方程的方法.3. 让学生从学习中进一步体会用代数方法解决几何问题的优点,体会用数形结合的方法解决问题的魅力.【教学重点】直线的点斜式与斜截式方程.【教学难点】理解直线的点斜式方程的推导过程.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.引导学生理解推导直线方程的点斜式的过程,认识到点斜式直线方程与斜率坐标公式之间的关系.对于直线方程的斜截式,要使学生认识到斜截式是点斜式的特殊情形.教材在例2中给出了已知两点求直线方程的方法,教师可针对学生的实际情况补充直线方程的两点式,但要求不宜过高.【教学过程】8.2.4 直线与直线的位置关系(二)【教学目标】1. 掌握两条直线垂直的条件,能利用直线的斜率或法向量来判断两条直线是否垂直.2. 会求过已知点且与已知直线垂直的直线.3. 让学生从学习中体会到用代数方法研究几何图形性质的思想,体会代数与几何结合的数学魅力.【教学重点】两条直线垂直的条件.【教学难点】两条直线垂直的条件的应用.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.本节课从直线斜截式和一般式两个方向讨论了两直线垂直的条件:先由直线的斜截式方程,讨论了两条直线垂直时的斜率之间的关系,即l1⊥l2⇔k1k2=-1;再由直线的一般式方程讨论了两条直线垂直时的条件,即l1⊥l2⇔A1A2+B1B2=0.8.2.4 直线与直线的位置关系(一)【教学目标】1. 会求两条直线的交点,理解两条直线的三种位置关系(平行、相交、重合)与相应的直线方程所组成的二元一次方程组的解(无解、有唯一解、有无数个解)的关系.2. 掌握用直线的斜率来判断两直线位置关系的方法.3. 让学生从学习中体会到用代数方法研究几何图形性质的思想,体会代数与几何结合的数学魅力.【教学重点】两条直线平行或相交的条件.【教学难点】求两条直线的交点.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.本节课首先通过问题引入本节要研究的内容,在讨论了两条直线的位置关系与相应的直线所组成的二元一次方程组解的对应关系后,进一步研究了用直线的斜率来判断两条直线位置关系的方法.8.2.5 点到直线的距离【教学目标】1. 掌握点到直线距离公式,会运用公式解决有关点到直线距离的简单问题,会求两条平行线之间的距离.2. 培养学生数形结合的能力,综合应用知识解决问题的能力,类比思维能力.训练学生由特殊到一般的思想方法.【教学重点】点到直线的距离公式.【教学难点】点到直线的距离公式的应用.【教学方法】这节课主要采用讲练结合的方法.首先复习了点到直线的距离的概念,在解决一个特例后,给出了点到直线的距离公式,再通过例题讲解了公式的一般用法,最后通过例题解决了两平行线间的距离.教学过程中,教师可以结合学生的实际情况,同学生一起推导点到直线的距离公式,及两条平行线间的距离公式.8.3.1 圆的标准方程【教学目标】1.掌握圆的标准方程,并能根据圆的方程写出圆心坐标和半径.2.会根据已知条件求圆的标准方程.3.进一步培养学生数形结合能力,综合应用知识解决问题的能力.【教学重点】圆的标准方程,根据已知条件求圆的标准方程.【教学难点】圆的标准方程的推导.【教学方法】这节课主要采用讲练结合的方法.首先复习圆的定义,在定义的基础上,推导了圆的标准方程.最后通过例题,学习了圆的标准方程的应用.【教学过程】8.3.2 圆的一般方程【教学目标】1.掌握圆的一般方程,能判断一个二元二次方程是否是圆的方程.2.能根据圆的一般方程求出圆心坐标和半径,会用待定系数法求圆的方程.3.进一步培养学生数形结合的能力,综合应用知识解决问题的能力.【教学重点】圆的一般方程.【教学难点】二元二次方程与圆的一般方程的关系.【教学方法】这节课主要采用讲练结合的方法.首先由圆的标准方程展开得到圆的一般方程,然后讨论一个二元二次方程满足什么样的条件才能表示圆.最后通过例题,让学生初步感悟待定系数法和求曲线方程的一般步骤.8. 4 直线与圆的位置关系【教学目标】1. 依据直线与圆的方程,能熟练求出它们的交点坐标.2. 能通过比较圆心到直线的距离和半径之间的大小关系来判断直线和圆的位置关系.3. 理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组成的二元二次方程组解(无解、有惟一解、有两组解)的对应关系.【教学重点】直线与圆的位置关系.【教学难点】直线与圆的位置关系的判断及应用.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.本节之前,学生已学习了如何利用方程来研究两直线的位置关系.根据初中所学知识,可以利用圆心到直线的距离与半径的大小关系研究直线与圆的位置关系.教材在处理直线与圆的位置关系时,从“形”和“数”两个方面进行了分析.8.5 直线与圆的方程的应用【教学目标】1. 能根据实际问题中的数形关系,运用直线和圆的方程解决问题.2. 通过本节例题教学,让学生认识数学与人类生活的密切联系,培养学生应用所学的数学知识解决实际问题的意识.【教学重点】直线和圆的方程在解决实际问题中的应用.【教学难点】根据实际问题中的数量关系列出直线和圆的方程.【教学方法】这节课主要采用讲练结合的教学法.本节课紧密联系学生熟悉的生产和生活背景,有针对性地选择了可以利用直线方程和圆的方程解决的实际问题,通过师生共同研究,不仅可以巩固直线与圆的有关内容,并且提高了学生运用所学数学知识解决实际问题的意识和能力.。

直线与圆的方程教案

直线与圆的方程教案

直线与圆的方程教案教案标题:直线与圆的方程教案教案目标:1. 学生能够理解直线和圆的基本概念。

2. 学生能够掌握直线和圆的方程表示方法。

3. 学生能够应用直线和圆的方程解决相关问题。

教案大纲:一、引入(5分钟)1. 引导学生回顾直线和圆的定义,并提问相关问题激发学生思考。

2. 展示一些直线和圆的图形,让学生观察并描述它们的特点。

二、直线的方程(15分钟)1. 介绍直线的一般方程形式:Ax + By + C = 0,并解释各项的含义。

2. 借助实例,演示如何由给定条件确定直线的方程。

3. 给学生一些练习题,让他们通过观察图形、计算斜率等方法确定直线的方程。

三、圆的方程(15分钟)1. 介绍圆的标准方程形式:(x - a)² + (y - b)² = r²,并解释各项的含义。

2. 借助实例,演示如何由给定条件确定圆的方程。

3. 给学生一些练习题,让他们通过观察图形、计算半径等方法确定圆的方程。

四、直线与圆的关系(15分钟)1. 讲解直线与圆的位置关系:相离、相切、相交。

2. 介绍直线与圆的方程联立求解的方法。

3. 给学生一些练习题,让他们通过联立方程解决直线与圆的位置关系问题。

五、综合应用(15分钟)1. 给学生一些综合性的问题,让他们综合运用直线和圆的方程解决问题。

2. 引导学生思考,让他们举一反三,将所学知识应用到实际生活中。

六、总结与拓展(5分钟)1. 总结直线和圆的方程表示方法及应用。

2. 提出一些拓展问题,鼓励学生深入思考和探索。

教案评估:1. 课堂练习题,检查学生对直线和圆的方程的掌握情况。

2. 综合应用问题,评估学生将所学知识应用到实际问题解决的能力。

教学资源:1. 直线和圆的示意图。

2. 相关练习题和答案。

3. 拓展问题的参考资料。

教学方法:1. 提问与讨论:激发学生思考,培养他们的观察能力和分析能力。

2. 演示与实例:通过具体的实例演示方程的确定过程,帮助学生理解和掌握知识。

中等职业教育直线与圆的位置关系教案

中等职业教育直线与圆的位置关系教案

直线与圆的位置关系课题:直线与圆的位置关系教学目标:1、掌握直线与圆的位置关系,会判断一条直线与圆的位置关系。

2、让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。

通过对直线与圆的位置关系的探究,向学生渗透类比、分类、数形结合的思想,培养学生观察、分析、和发现问题的能力。

3、通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点。

重点与难点:1、重点:直线与圆的位置关系,会判断一条直线与圆的位置关系2、难点:判断一条直线与圆的位置关系教学方法:探究法、归纳法、练习法教具:多媒体教学过程:【一】复习回顾:1、直线的一般式方程:Ax+By+C=0(A、B不全为0)2、圆的一般式方程和标准方程:标准方程:222()()x a y b r-+-=圆心:(a,b),半径为r一般式方程:22220(40)x y D x E y F D E F++++=+->圆心:)2,2(ED--,半径:FED42122-+3、点到直线的距离公式:d=【二】1、探究思考:在平面内,直线和圆的位置关系有哪些?2、设直线l 方程为:Ax+By+C=0, 圆C 的方程为: x2+y2+Dx+Ey+F=0在平面直角坐标系中,怎样根据方程来判断直线与圆的位置关系?设圆的方程为x2+y2+Dx+Ey+F=0,直线方程为Ax+By+C=0将圆的方程用配方法或公式法化标准方程为:(x-x0)2+(y-y0)2=r2,则圆心为(x0,y0),半径为r ,圆心到直线l 的距离为:d =例1 判断直线l :x -y +1 = 0和圆x2 + y2 =5的位置关系.解:圆x2 + y2 =5的圆心坐标为C (0,0),半径长为 ,点C 到直线l 的距离:=<所以,直线l 与圆相交,有两个公共点.练一练 判断下列各直线与圆的位置关系:直线与圆的位置关系还可以用什么方法来判断呢?设圆的方程为x2+y2+Dx+Ey+F=0,直线方程为Ax+By+C=0 2200Ax By C x y Dx Ey F ++=⎧⎨++++=⎩练一练:【三】小结:【四】作业及课后练习:1、判断下列直线l与圆C的位置关系:(1)l:x+y-1=0,C :x2+y2=4(2)l:4x-3y-8=0,C:x2+(y+1)2=12、已知圆C:(x+1)2+y2=m与直线l:x-y+5=0相切,求m的值。

直线和圆的方程教案

直线和圆的方程教案

直线和圆的方程教案一、教学目标1. 知识与技能:(1)理解直线和圆的方程的基本概念;(2)掌握直线的斜截式、截距式和一般式方程的求法;(3)掌握圆的标准方程和一般方程的求法。

2. 过程与方法:(1)通过实例引导学生认识直线和圆的方程;(2)利用数形结合的方法,理解直线和圆的方程之间的关系;(3)培养学生的运算能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生克服困难的意志和合作精神;(3)引导学生认识到数学在实际生活中的应用。

二、教学内容1. 直线的方程(1)直线方程的基本概念;(2)直线的斜截式方程;(3)直线的截距式方程;(4)直线的一般式方程。

2. 圆的方程(1)圆的方程的基本概念;(2)圆的标准方程;(3)圆的一般方程。

三、教学重点与难点1. 教学重点:(1)直线和圆的方程的基本概念;(2)直线的斜截式、截距式和一般式方程的求法;(3)圆的标准方程和一般方程的求法。

2. 教学难点:(1)直线和圆的方程的求法;(2)直线和圆的位置关系的理解。

四、教学过程1. 导入:通过实例引导学生认识直线和圆的方程,激发学生的兴趣和好奇心。

2. 教学新课:(1)讲解直线方程的基本概念,引导学生理解直线的斜截式、截距式和一般式方程的求法;(2)讲解圆的方程的基本概念,引导学生掌握圆的标准方程和一般方程的求法。

3. 巩固练习:布置一些有关直线和圆的方程的练习题,帮助学生巩固所学知识。

4. 课堂小结:五、课后作业1. 完成教材上的相关练习题;2. 查找生活中与直线和圆相关的实例,分析其方程的应用。

教学评价:通过课后作业的完成情况、课堂练习和学生的参与程度,评价学生对直线和圆的方程的理解和应用能力。

六、教学策略1. 数形结合:通过图形展示直线和圆的方程,使学生更直观地理解方程的含义和应用。

2. 实例分析:通过生活中的实例,引导学生认识直线和圆的方程,提高学生的学习兴趣。

中等职业教育规划教材第九章《直线与圆的方程》教案

中等职业教育规划教材第九章《直线与圆的方程》教案

中等职业教育规划教材数学(第二册)第九章直线与圆的方程教案目录1 9.1.1 直线的方向向量与点向式方程第1课时 (1)2 9.1.1 直线的方向向量与点向式方程第2课时 (5)3 9.1.2 直线的斜率与点斜式方程 (9)4 9.1.3 直线的法向量与点法式方程第1课时 (16)5 9.1.3 直线的法向量与点法式方程第2课时 (20)6 9.1.4 直线的一般式方程 (24)7 9.2.1 两条直线的平行 (29)8 9.2.2 两条直线的交点与垂直 (35)9 9.3 点到直线的距离 (42)10 9.4.1 圆的标准方程第1课时 (51)11 9.4.1 圆的标准方程第2课时 (55)12 9.4.2 圆的一般方程第1课时 (59)13 9.4.2 圆的一般方程第2课时 (63)1.学生自主学习雨课堂推送的课前微课,并完成以下任务。

(1)填写导学案的知识点;①向量:既有大小又有方向的量。

零向量:长度为零,方向是不确定的 ②平行向量:两个向量方向相同或相反 零向量与任意向量平行。

③已知点A (x 1 , y 1),B(x 2 , y 2),则→AB =( , ),→OA =( , ) ④平行向量的坐标表示:12121200//a a b b a b b b ≠≠⇔=特别地,当,,则(2)在学习平台“评论”处回复学习疑难点。

2.学生完成雨课堂推送的课前检测。

一个点和一个非零向量可以确定一条直线方向向量定义:与一条直线平行的非零向量叫做这条直线Y.p(x,y)P 0 (x 0,y 0) v⃗⃗ 0 X直线的点向式方程:由直线上的一个点 和直线的一个方向向量确定。

(,)P x y 设是直线上任意一个点, P l ⇔则点在直线上0//P P v 00012(,)(,),P P x x y y v v v =--=又,由向量平行的坐标表示得:例1、求通过点A(1,-2),且一个方向向量为 v ⃗ =(−1,3) 的直线的方程。

第八章 直线和圆的方程 说课稿

第八章 直线和圆的方程 说课稿

第八章直线和圆的方程说课稿《直线和圆的方程》教学设计说课稿各位尊敬的专家、评委老师好:今天我说课的内容是高等教育出版社中职数学基础模块下册第8章《直线和圆的方程》的教学内容,对于这章我尝试以“教什么,怎么教,为什么这样教”为思路,从教材分析、学情分析、教学目标分析、重难点分析、教法学法分析、课时安排、教学过程分析和教学反思8个方面对本单元进行说课。

教材分析《直线和圆的方程》是中职数学基础模块的第八章,它是众多知识的汇合点,两点间的距离与线段中点坐标,直线方程,两条直线的位置关系,圆等等。

是对口单招考试的必考点,考试题型主要以选择题和填空题的形式出现,分值维持在10分左右,一方面,本章培养学生数学思维能力和分析解决问题能力,使学生体验解析几何的应用;另一方面,又为今后学习解析几何的奠定了基础。

因此,我认为,本章本为以后的学习起到了铺垫的作用,它在整个教材中起到了承上启下的作用。

二.学情分析我所任教的是18级护理专业学生,在此之前学生已经学习了点、直线方程的一些基础知识,对基本概念具有初步认识,已具备基础知识,也具有了一定分析问题和解决问题的能力。

但是女生较多,普遍缺乏学习自信心,缺乏学习主动性和独立思考的习惯,没有良好的学习习惯和学习方法,考虑问题不全面,知识运用不灵活,学生层次参次不齐,个体差异比较明显。

三、教学目标分析根据教材结构内容,结合高一学生的认知水平以及心理特征,我从以下三个维度制定了三维目标:知识与技能:形成并掌握了直线与圆概念,理解圆的方程,通过对圆与直线的学习加深对解析几何的认识。

(2)过程与方法:通过观察、探索、讨论、合作等过程,培养学生数形结合的思维习惯,并结合实例了解这些知识在实际应用中的应用,以培养职业能力为目标。

(3)情感、态度与价值观:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的严谨性,使学生养成积极思考,独立思考的好习惯。

四、重难点分析本着中职数学教学大纲,我确定了以下教学重点和难点。

中职数学教学设计——直线与圆的方程应用举例

中职数学教学设计——直线与圆的方程应用举例

提出 思考 问题
引发 分析 思考 讨论
展示 知识 解决 问题 的一 般策 略和 基本 步骤 关注 数学 知识 在实 际中 的应 用
1
分析 这个实际问题可转化为数学问题:若轮船不改变 航线,则需考虑轮船航线所在直线与以台风中心为圆心、影 响范围为半径的圆的位置关系,相交或相切会受到影响,相 离则不会受到影响.
所在直线 PQ 的斜率为 k,则 k = 12 − 0 = − 1 , 0 − 24 2
由直线的斜截式方程得 1
y=-2x+12,即 x+2y-24=0. 台风影响的区域是以 O(0,0)为圆心, r=9 为半径的圆形 区域. 因为圆心 O(0,0)到直线 PQ 的距离为
=d
1× 0 + 2 × 0 − 24 =
探索 新知
情境 导入
解 根据光的反射定律可知,点 Q 关于 x 轴的对称点 讲解 Q’、反射点 M、发光点 P 三点共线,所以点 M 为直线 PQ’ 与 x 轴的交点.
点 Q(-3,2)关于 x 轴的对称点 Q’的坐标为 (-3,-2),故直 说明 线 PQ’的斜率为
=k 3= − (−2) 1, 2 − (−3)
授课 题目 授课 时长
教学 提示
教学 目标 教学 重点 教学 难点 教学 环节
情境 导入
6.6 直线与圆的方程应用举例 选用教材
高等教育出版社《数学》 (基础模块下册)
1 课时
授课类型
新授课
本课通过数学建模,借助光线反射和台风区域的实际问题,学习解决与直线 方程和圆的方程有关的实际问题,同时帮助学生体会直线和圆的方程在科技和 生产实践等方面的应用.
3.某圆拱桥的跨度是 20m,圆拱高 4m,现有宽 10m 的

中职数学基础模块下册第八单元《直线与圆的方程》word教案

中职数学基础模块下册第八单元《直线与圆的方程》word教案

中职数学基础模块下册第⼋单元《直线与圆的⽅程》word教案第⼋章直线与圆的⽅程教学设计课题1 直线的斜截式⽅程【教学⽬标】1.进⼀步复习斜率的概念,了解直线在y 轴上的截距的概念;2.理解直线的斜截式⽅程与点斜式⽅程的关系;3.初步掌握直线的斜截式⽅程及其简单应⽤;4.培养学⽣应⽤公式的能⼒.【教学重点】直线的斜截式⽅程.【教学难点】直线的斜截式⽅程及其应⽤.【教学过程】(⼀)复习引⼊(1)提问:请同学们写出直线的点斜式⽅程,并说明(x ,y ),(x1,y1),k 的⼏何意义.(答案:直线的点斜式⽅程是y -y1=k (x -x1);(x ,y )是已知直线上的任意⼀点的坐标,(x1,y1)是直线上⼀个已知点的坐标,k 是直线的斜率.)(2)已知直线l 的斜率为k ,与y 轴的交点是(0,b ),求直线l 的⽅程.(答案:y =kx +b. )(⼆)讲解新课(1)直线在y 轴上的截距⼀条直线与y 轴交点的纵坐标,叫做这条直线在y 轴上的截距.例如,引例中直线l 与y 轴交于点(0,b ),则b 就是直线l 在y 轴上的截距.在这⾥特别要注意:截距是坐标的概念,⽽不是距离的概念.(2)直线的斜截式⽅程如果已知直线l 的斜率是k ,在y 轴上的截距是b ,那么直线l 的⽅程是y =kx +b . 由于这个⽅程是由直线的斜率和直线在y 轴上的截距确定的,所以叫做直线⽅程的斜截式.这个⽅程的导出过程就是引例的解题过程.这是我们同学⾃⼰推导出来的.(3)我们来认识⼀下这个⽅程①它和⼀次函数的解析式相似⽽不相同在⼀次函数的解析式中,k 不能得0,⽽直线的斜截式⽅程没有这个限制.②练⼀练根据直线l 的斜截式⽅程,写出它们的斜率和在y 轴上的截距:(1)y =3x -2, k =________,b =________;(2)y =23x +13, k =________,b =________;(3)y =-x -1, k =________,b =________;(4)y =3x -2, k =________,b =________.⼩结:通过练⼀练中的这些题⽬,告诉我们:掌握斜截式⽅程的第⼀个要求是要能够根据直线的斜截式⽅程写出直线的斜率和在y 轴上的截距.(4)直线的斜截式⽅程的应⽤例1 求与y 轴交于点(0,-4),且倾斜⾓为150°的直线⽅程.解:∵直线与y 轴交于点(0,-4),∴直线在y 轴上的截距是-4.⼜∵直线的倾斜⾓为150°,∴直线的斜率k =tan150°=-33. 将它们代⼊斜截式⽅程,得y =-33x -4,化简,得 3x +2y +12=0. 这就是与y 轴交于点(0,-4),且倾斜⾓为150°的直线⽅程.例2 已知直线l 过点(3,0),在y 轴上的截距是-2,求直线l 的⽅程.解:∵直线过点(3,0),且在y 轴上的截距是-2,∴直线l 过点(3,0)和(0,-2).将它们代⼊斜率公式,得k =-2-00-3=23. ⼜知,直线l 在y 轴上的截距是-2,即b =-2.将它们代⼊斜截式⽅程,得y =23x -2,化简,得2x -3y -6=0.这就是所求直线l 的⽅程.⼩结:通过这两个例题,告诉我们:如果知道了直线的斜率和在y 轴上的截距就可以直接写出直线的斜截式⽅程,如果题⽬没有直接给出这两个条件,那么就必须利⽤已知,找到这两个条件,然后再利⽤斜截式求直线⽅程.讲评:⽼师在带领学⽣做过练⼀练之后和讲解了两个例题之后所做的⼩结很好,它点明了直线的斜截式⽅程应⽤的要点,同时也明确了这⼀节课的重点内容.(5)练习教材 P 76练习1—3.(三)布置作业学⽣学习指导⽤书直线的斜截式⽅程【教学设计说明】本教案的前⼀课时学习了直线的点斜式⽅程,本节开始直接利⽤点斜式⽅程引出斜截式⽅程,这种引⼊⽅法,既复习了前⼀节学习的知识,⼜引出了新课,直截了当并且显得很⾃然,同时还讲清了直线的斜截式⽅程与点斜式⽅程的关系.因为学⽣常常误认为截距是距离,实际上,截距是坐标的概念,是⼀个可正,可负,可零的实数,教案对此专门进⾏了提醒,⼗分必要.教案还在练⼀练与例题之后分别给出了⼩结,这对学⽣掌握直线的斜截式⽅程及其应⽤很有帮助.课题2 直线的⼀般式⽅程【教学⽬标】1.使学⽣了解直线与⼆元⼀次⽅程的关系;2.初步掌握各种⽅程之间的互化⽅法;3.初步了解分类讨论问题的思想.【教学重点】直线的⼀般式⽅程与直线各种⽅程之间的互化⽅法.【教学难点】分类讨论问题的思想.【教学过程】(⼀)复习引⼊(1)写出直线的斜截式⽅程和斜率不存在的直线⽅程.(答案:直线的斜截式⽅程是y =kx +b ,斜率不存在的直线⽅程是x =x1. )(2)求斜率为2,在y 轴上的截距为1的斜截式⽅程,并将其化简整理.(答案:斜截式⽅程是y =2x +1,化简得2x -y +1=0. )(3)能通过上⾯⼀道题就说所有的直线⽅程都能化简为⼆元⼀次⽅程吗?(答案:不能.)(⼆)讲解新课(1)所有的直线⽅程都能化简为Ax +By +C =0 (A ,B 不同时为零)的形式 . 通过下⾯五个层次完成教学:①所有的直线都有倾斜⾓,但不是所有的直线都有斜率.②将所有的直线分为两类:有斜率和没斜率,即α=90°和α≠90°.③α=90°时,直线都有斜率,其⽅程可以写成下⾯的形式:y =kx +b ,这是⼀个⼆元⼀次⽅程;④当α=90°时,直线没有斜率,其⽅程可以写成下⾯的形式x =x 1,这也是⼀个⼆元⼀次⽅程,其中y 的系数是0.⑤结论:在平⾯直⾓坐标系中,任何直线都可以求得它的⽅程,⽽且都是⼆元⼀次⽅程.也就是说任何直线的⽅程都可以写成关于x ,y 的⼀次⽅程Ax +By +C =0 (A ,B 不同时为零) .(2)⽅程Ax +By +C =0 (A ,B 不同时为零)总表⽰直线.通过下⾯四个层次完成教学:①⽅程Ax +By +C =0(A ,B 不同时为零)可根据B ≠0和B =0⽽分成两种情况.②当B ≠0时,⽅程可以化为y =-A B x -C B.这是直线⽅程的斜截式,它表⽰斜率k =-A B ,在y 轴上的截距b =-C B的直线.③当B =0时,必有A ≠0,⽅程可以化为x =-C A. 它表⽰⼀条与y 轴平⾏(C ≠0)或重合(C =0)的直线.④结论:关于x ,y 的⼀次⽅程总表⽰直线.(3)直线⽅程的⼀般式根据(1)(2)两⽅⾯的结论,我们称⽅程Ax +By +C =0为直线⽅程的⼀般形式(其中A ,B 不同时为零) .直线l 的⽅程是Ax +By +C =0,可以简称为直线Ax +By +C =0,记作l :Ax +By +C =0.(4)直线⽅程⼀般式的应⽤例1 求直线l :2x -3y +6=0的斜率和在y 轴上的截距.解法1:(将直线l 的⽅程化为斜截式)将原⽅程移项,得3y =2x +6.⽅程两边同被3除,得 y =23x +2. 这是直线l 的斜截式⽅程,可以看出其斜率为23,在y 轴上的截距为2. 解法2:(利⽤k =-A B ,b =-C B,求k ,b . )在⽅程2x -3y +6=0中,∵A =2,B =-3,C =6,∴k =-A B =23,b =-C B=2.故直线l 的斜率为23,在y 轴上的截距为2. 例2 画出⽅程4x -3y -12=0表⽰的直线.解:在⽅程4x -3y -12=0中,令x =0,得y =-4,令y =0,得x =3,可知,直线过点A (0,-4),B (3,0).如图,在平⾯直⾓坐标系中,做出A (0,-4),B (3,0)两点,并过A ,B 做直线,则直线AB 就是⽅程4x -3y -12=0表⽰的直线.(5)练习教材 P 82练习1、2.【教学设计说明】本节课是在学⽣学习了直线⽅程的点斜式和斜截式的基础上引⼊直线⼀般式⽅程的,本节课理论性较强,是教学中的难点,教案针对难点采取了分层次讲解的⽅法,层层推进,步步为营,⼒图起到分散难点的作⽤.由于教材中涉及分类讨论的思想,所以要让学⽣通过本节课的学习,初步了解分类讨论的⽅法.直线的⼀般式⽅程与其他形式⽅程的互化是这节课教学的重点,但根据⽅程画直线也是直线⽅程教学的重要内容.教案中的两个例题突出强调了这⼀点,并在练习及作业中进⼀步作了强调.课题3 直线与圆的位置关系(⼀)【教学⽬标】1.了解直线与圆的位置关系的两种判定⽅法;2.了解平⾯⼏何知识在解析⼏何中的作⽤;3.会⽤两种判定⽅法解决⼀些简单数学问题.【教学重点】直线与圆的位置关系的两种判定⽅法.【教学难点】⽤两种判定⽅法解决⼀些简单数学问题.【教学过程】(⼀)复习引⼊(1)在平⾯⼏何中,直线与圆有哪⼏种位置关系?(答案:相交,相切,相离.)(2)在圆的⼀般⽅程x2+y2+Dx +Ey +F =0(D2+E2-4F >0)中,如何确定圆⼼坐标?[答案:圆⼼坐标是-D 2,-E 2. ] (3)点到直线的距离如何计算?[答案:如果点P (x0,y0)为直线l :Ax +By +C =0外⼀点,则点到直线的距离为 d =|Ax0+By0+C|A2+B2. ] (⼆)讲解新课(1)判断直线与圆的位置关系的第⼀种⽅法在平⾯⼏何中,我们已经学习过直线与圆的三种不同位置关系及它们的判断⽅法.已知圆C 的半径为r ,设圆⼼C 到直线l 的距离为d. 如图①直线与圆有两个公共点时,称直线与圆相交,并有d <r ?直线l 与圆C 相交;②直线与圆有唯⼀公共点时,称直线与圆相切,并有d =r ?直线l 与圆C 相切;③直线与圆没有公共点时,称直线与圆相离,并有d >r ?直线l 与圆C 相离.在解析⼏何中,我们可以直接利⽤这个⽅法判定直线与圆的位置关系.例1 判定直线l :3x -4y -1=0与圆C :(x -1)2+(y +2)2=9的位置关系.解:根据圆C 的⽅程(x -1)2+(y +2)2=9,我们知道,圆的半径r =3,圆⼼为C (1,-2),则圆⼼到直线3x -4y -1=0的距离为d =|3-(-8)-1|32+(-4)2=2. 显然,有2<3,即d <r .故直线l :3x -4y -1=0与圆C :(x -1)2+(y +2)2=9相交.(2)判断直线与圆的位置关系的第⼆种⽅法设直线⽅程为Ax +By +C =0(A ,B 不全为0),圆C 的⽅程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),⽅程组Ax +By +C =0x 2+y 2+Dx +Ey +F =0经消元后得到⼀元⼆次⽅程,设判别式为Δ,则有Δ>0?直线l 与圆C 相交;Δ=0?线l 与圆C 相切;Δ<0?直线l 与圆C 相离.例2 判定直线l :3x +4y -25=0与圆C :x 2+y 2=25的位置关系.解:由直线与圆的⽅程组成的⽅程组为3x +4y -25=0,x 2+y 2=25. 由直线⽅程得y =-34x +254,代⼊圆的⽅程,得 x 2+-34x +2542=25,整理,得x 2-6x +9=0.因为 Δ=(-6)2-4×1×9=0,所以直线l 与圆C 相切.(3)练习教材 P 105练习1—3.(三)布置作业学⽣学习指导⽤书直线与圆的位置关系(⼀)【教学设计说明】在分别学习了直线⽅程和圆的⽅程之后,教材安排了直线与圆的位置关系⼀节,作为直线⽅程和圆的⽅程的直接应⽤,同时,也突出体现了解析法的特点,即利⽤代数知识解决⼏何问题.为了减少教学过程中的障碍,教案⾸先对⼀些相关知识做了复习,然后分别介绍了判断直线与圆的位置关系的两种⽅法,第⼀种⽅法是结合平⾯⼏何知识,只适⽤于直线与圆的关系的特殊⽅法;第⼆种⽅法则是适⽤于直线与所有⼆次曲线关系的⼀般⽅法.对于圆来讲,第⼀种⽅法相对简单⼀些,第⼆种⽅法则计算量⼤⼀些.。

中职直线方程与圆的方程教学设计

中职直线方程与圆的方程教学设计

中职直线方程与圆的方程教学设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 导入环节。

1.1 引入相关背景知识。

东莞威远职中文化课数学教案:直线与圆的方程

东莞威远职中文化课数学教案:直线与圆的方程

东莞威远职中文化课数学教案:直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。

解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。

如x 2+y 2=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。

规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。

根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式:1=+b y a x ;(5)两点式:121121y y y y x x x x --=--;(6)法线式方程:xcos θ+ysin θ=p (其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:⎪⎩⎪⎨⎧+=+=θθsin cos 00t y y t x x (其中θ为该直线倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。

5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。

若记到角为θ,夹角为α,则tan θ=21121k k k k +-,tan α=21121k k k k +-. 6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学直线与圆的方程教案x x 职业技术教育中心教案收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除复习引入:新授:1.平面内两点间的距离设A ,B 为平面上两点.若A ,B 都在x 轴(数轴)上(见图7-3(1)),且坐标为A (x 1,0), B (x 2,0),初中我们已经学过,数轴上A ,B 两点的距离为 |AB |=|x 2-x 1|.同理,若A ,B 都在y 轴上(见图7-3(2)), 坐标为A (0,y 1), B (0,y 2),则A ,B 间的距离|AB |=|y 2-y 1|.若A ,B 至少有一点不在坐标轴上,设 A , B 的坐标为A (x 1,y 1), B (x 2,y 2).过A ,B 分别作x ,y 轴的垂线,垂线延长交于C (见 图7-3(3)),不难看出C 点的坐标为(x 1,y 2), 则 |AC |=|y 2-y 1|,|BC |=|x 2-x 1|,由勾股定理|AB |=22BC AC +=221221)()(y y x x -+-.由此得平面内两点间的距离公式:已知平面内两点A (x 1,y 1), B (x 2,y 2),则图7-xyO y y • • B A 图7-x y O x 1 x 2• • BA 图7-3(3)|AB |=221221)()(y y x x -+-. (7-1-1)例1 求A (-4,4),B (8,10)间的距离|AB |.解 x 1=-4, y 1=4;x 2=8, y 2=10,应用公式(7-1-1),|AB |=)()(21221y y x x -+-=2210484)()(-+--=180=65. 例2 已知点A (-1,-1), B (b ,5),且|AB |=10,求b . 解:据两点间距离公式,|AB |=36)1()]1(5[)]1([222++=--+--b b =10, 解得 b =7或b =-9.例3 站点P 在站点A 的正西9km 处,另一站点Q 位于P ,A 之间,距P 为5km ,且东西向距A 为6km ,问南北向距A 多少?解 以A 为原点、正东方向为x 轴正向建立坐标系如 图7-4,则P 的坐标为(-9,0),|PQ |=9.设Q 坐标为(x ,则x =-6,据题意要求出y . 据两点间距离公式(7-1-1) |PQ |=22069)()(y -++-=5, 解得 y =±4,即站点Q 在南北向距A 是4km .例4 如图7-5,点A ,B ,C ,D 构成一个平行四边形, 求点D 的横坐标x .解 因为ABCD 是平行四边形,所以对边相等,|AB |=|CD |, |AC |=|BD |. 图7-4收集于网络,如有侵权请联系管理员删除由距离公式(7-1-1)|AB |=5311222=-++-)()(; |AC |=17212222=-+--)()(; |CD |=42242222+-=-+-)()()(x x |BD |=11341222++=-++)()()(x x 由|AC |=|BD |得11172++=)(x ,x =-1±4; 由|AB |=|CD |,知x 只能取-1+4=3.所以当点A ,B ,C ,D 构成一个平行四边形时,点D 的横坐标x =3,即D 的坐标为(3,4). 课内练习1 1. 求|AB |:(1)A (8,6),B (2,1);(2)A (-2,4),B (-2,-2). 2. 已知A (a ,-5),B (0,10)间的距离为17,求a .3. 已知A (2,1),B (-1,2),C (5,y ),且∆ABC 为等腰三角形,求y 。

线段中点的坐标2.中点坐标公式设P 1(x 1,y 1),P 2(x 2,y 2)为平面直角坐标系内的任意两点,P(x,y)为线段P 1P 2的中点坐标,则2,22121y y y x x x +=+=例5求连结下列两点线段的中点坐标.(1)P1(6,-4),P2(-2,5);(2)A(a,0) , B(0,b)例6已知线段P1P2中点M的坐标为(2,3),P1的坐标为(5,6),求另一端点P2的坐标。

例7已知A(5,0) ,B(2,1) ,C(4,7),求三角形ABC中AC边上的中线长。

小结作业收集于网络,如有侵权请联系管理员删除x x 职业技术教育中心教案收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除复习引入:新授:(1)确定平面直线的要素我们知道平面上两点能唯一确定直线l定l 的两个要素.如果直线仅过一个已知点A 点A ,但因为倾斜程度不同,拉索所在的直线也不同(见图7-6). 如果再给定了它的倾斜程度,那么直线l 就被唯一确定了. (2)直线的倾斜角和斜率直线的倾斜程度应该怎样表示呢?设l 是直角坐标系中一条与x 轴相交的直线, x 轴绕着交点按逆时针方向旋转到与直线重合时所转的最小正角α可以很好地反映直线l 的倾斜程度,这样的角α叫做直线l 的倾斜角(见图7-7);直线与x 轴平行时,倾斜角规定为0.由定义可知,直线的倾斜角的范围是0≤α<π.除了α=2π(此时l 垂直于x 轴)之外,角α与其正切tan 一对应的,因此也可以用tan α来表示l 的倾斜程度.我们线倾斜角α(α≠2π)的正切tan α叫做直线的斜率.通常用k 表示,即k =tan α.任何一条直线都有倾斜角;但不是所有的直线都有 斜率.不难看出,倾斜角α与斜率k 之间的关系为图7-6A图7-7当0<α<2π,即直线l 的倾斜角为锐角时,k >0;当α=0,即直线l 平行于x 轴时,k=0; 当2π<α<π,即直线l 的倾斜角为钝角时,k <0;当α=2π,即直线l 平行于y 轴时,k 不存在,反之亦然.例5 设直线l 过点A (3,-1),B (-1,-4),试求出l解 如图7-8,作过A 、B 的直线l ,tan α=431341=-----)()(,所以直线l 的斜率k =tan α=43.例6 设直线l 过点A (-2,4),B (3,2),求直线l 的斜 率k .解 如图7-9倾斜角为α,C 点的坐标为 tan α=523224-=---)(.总结例5例6,无论直线的倾斜角α是钝角,我们都不难得到如下结论:平面上的过两点A (x 1,y 1),B (x 2,y 2) (x 1≠x 2)的直 线l 的斜率k 为k =1212x x y y --, (x 1≠x 2). (7-1-2)当x 2=x 1时,直线l 垂直于x 轴(平行于y 轴),直线l 的斜率不存在.例7 直线l 1过点A 1(-5,-2), B 1(1,4);直线l 2过点A 2(3,2),B 2(4,-2),试分别求出它们的斜率k 1,k 2.解 根据已知条件,由公式(7-1-2)得图7-8图7-9k 1=1212x x y y --=)()(5124----=1.同理 k 2=3422---=-4.例8 直线l 1由点A 1(-3,2), B 1(3,2)确定,l 2由点A 2(3,-2), B 2(3,2)确定,l 3由点A 3(4,-2), B 3(3,2)确定,试判断它们的倾斜角为何. 解 据公式(7-1-2),l 1的斜率k 1=)(3322---=0,所以l 1的倾斜角α1=0,即l 1平行于x 轴.l 2上点A 2(3,-2), B 2(3,2)的横坐标相同,l 2垂直于x 轴,所以l 2的倾斜角α2=2π.l 3的斜率k 3=4322---)(=-4,所以l 3的倾斜角α3为钝角,即2π<α<π.课内练习21. 直线l 过点A ,B ,求其斜率:(1) A (3,-1),B (6,-2);(2)A (-3,0),B (2,6);(3)A (5,-2),B (5,3). 2. 判断下列过A ,B 的直线l 的倾斜角的范围:(1)A (3,4),B (-1,2);(2)A (-2,-3),B (-8,6);(3) A (-2,-1),B (4,-1).小结: 作业:x x 职业技术教育中心教案复习引入:新授: (1)点斜式方程设已知直线l 的斜率为k ,且过已知点A (x 0,y 0),即所给要素是定点和斜率,如何求直线l 的方程呢?求直线的方程就是要足的关系式.设P (x ,y )为直线l 上任意异于A 的一点(见图7-10). 由已知直线l 的斜率为k , 则 k =00x x y y --,即 y -y 0=k (x -x 0), (1)这表示直线l 上任意异于点A 的点的坐标必须满足关系式(1).反之,若点P 的坐标(x ,y )满足1),可以验证P 必是直线l 上的点.关系(1)是表示由定点和斜率所确定的直线的方程,我们就把(1)叫做直线的点斜式方程或直线方程的点斜式.即已知直线l 过点A (x 0,y 0),且斜率为k ,则直线的点斜式方程为 y -y 0=k (x -x 0) (7-1-3)例9 求满足下列条件的直线l 的方程: (1)过点A(3,-1),斜率为21;(2)过原点、斜率为k ;(3)过点A (x 0,y 0)且平行于x 轴;(4)过点A (x 0,y 0)且平行于y 轴.图7-10 图8-y 0例10 已知直线l过两点A(2,1), B(3,-1),求其方程.课内练习31. 写出满足下列条件的直线的点斜式方程:(1)经过点A(3,-1),斜率为4; (2)经过点B(2,-2),斜率为-2;π; (4)经过点D(3,-1),倾斜角为0.(3)经过点C(-4,2),倾斜角为232. 求满足下列条件的直线l的方程:(1)过点A(0,0),斜率为-2; (2)过点A(-6,2)且平行于x轴;(3)过点A(2,-3)且平行于y轴.3. 求满足下列条件的直线l的方程:(1)过点A(0,0), B(-3,1);(2)过点C(-6,2), D(-4,-2);(2)过点A(6,2), D(-4,2).4. 已知直线的点斜式方程是y-1=x-2,则直线的斜率是( ),倾斜角是( ).(2)斜截式方程在点斜式方程中,如果点A在y斜式方程可化为y=kx+b.点A是直线与y轴的交点(见图7-13), b我们把b叫做直线在y轴上的截距.由直线的斜率及在y图8-13的截距,而导出的方程,叫做直线的斜截式方程.(8-1-4)式是否似曾相识?的确,它就是我们已经学过的一次函数.以前曾说一次函数的图象是一条直线,现在不过从另一个角度予以验证,并且还得到了一次函数中参数的几何意义:一次项系数k是直线的斜率,常数项b是直线在y轴上的截距.例11 求满足下列条件的直线l的方程:(1)倾斜角为32π,在y轴的截距为3;(2)与y轴相交于点(0,-4),斜率为-1.例12 已知直线l过点A(3,0)且在y轴上的截距是-2,求l的方程.例13若直线过点A(a,0), B(0,b)(a,b≠0),求直线方程。

相关文档
最新文档