中考数学模拟试题四答案
黑龙江省重点中学2024届中考数学全真模拟试题含解析
黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。
中考数学模拟试卷(4)含答案解析
中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。
2021年蚌埠市五河县中考数学模拟试卷(四)(有答案)
2021年安徽省蚌埠市五河县中考数学模拟试卷(四)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣2.(4分)新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10﹣5 B.5×10﹣6 C.5×10﹣5 D.2×10﹣63.(4分)计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x44.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(4分)如图,下列图形从正面看是三角形的是()A.B.C.D.6.(4分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A.B.C.D.7.(4分)某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A. =1 B. =1C. =1 D. =18.(4分)如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.49.(4分)如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个10.(4分)如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD :S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)函数y=+的自变量x的取值范围是.12.(5分)因式分解:x3﹣x2+= .13.(5分)如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.14.(5分)如图,用完全相同的两个矩形纸片交叉叠合得到四边形ABCD,则四边形ABCD的形状是.三、(本大题共2小题,每小题8分,满分16分)15.(8分),并求出它的所有整数解的和.16.(8分)解方程:①的解x= .②的解x= .③的解x= .④的解x= .…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2.18.(8分)计算:(1)(2)五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,矩形OABC的顶点C、A分别在x轴和y轴上,点B的坐标为(4,3),双曲线y=(x>0)的图象经过AB的中点D,且与BC交于点E,连接DE.(1)求双曲线的解析式;(2)求tan∠BDE的值;(3)在第一象限内存在点P,使△OPA与△BDE相似,请直接写出满足条件的P点的坐标.20.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.六、(本题满分12分)21.(12分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).七、(本题满分12分)22.(12分)某批发中心销售品牌计算器,成本价12元/个,零售价20元/个,批发优惠规定:一次购买10个以上的,每多买一个,售价降低0.10元(假如某人要买20个计算器,每个降价0.1×(20﹣10)=1元,该人就可以按19元/个进行购买),但批发中心规定最低出售价不得低于16元/个.(1)小李到批发中心购买此计算器然后转卖,问他如何批发购买才能使自己获利多?(2)写出一次购买量x个与批发中心利润y的函数关系式.(3)某天总部询查人员小王从乙那里赚的钱反而比从甲那儿赚的少,问账目有问题吗?八、(本题满分14分)23.(14分)已知∠AOB=45°,P是边OA上一点,OP=4,以点P为圆心画圆,圆P交OA于点C(点P在O、C之间,如图).点Q是直线OB上的一个动点,连PQ,交圆P于点D,已知,当OQ=7时, =.(1)求圆P半径长;(2)当点Q在射线OB上运动时,以点Q为圆心,OQ为半径作圆Q,若圆Q与圆P相切,试求OQ的长度;(3)连CD并延长交直线OB于点E,是否存在这样的点Q,使得以O、C、E为顶点的三角形与△OPQ相似?若存在,试确定Q点的位置;若不存在,试说明理由.2021年安徽省蚌埠市五河县中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣【解答】解:∵﹣2<0,∴|﹣2|=2.故选:B.2.(4分)新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10﹣5 B.5×10﹣6 C.5×10﹣5 D.2×10﹣6【解答】解:20万分之一=0.000 005=5×10﹣6.故选:B.3.(4分)计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x4【解答】解:x4÷x+x3=x3+x3=2x3,故x4÷x+x3的结果是2x3.故选:C.4.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x≥﹣2;由②得,x<1,故此不等式组的解集为:﹣2≤x<1.在数轴上表示为:故选:C.5.(4分)如图,下列图形从正面看是三角形的是()A.B.C.D.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.6.(4分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A.B.C.D.【解答】解:P(得到梅花或者K)=.故选:B.7.(4分)某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A. =1 B. =1C. =1 D. =1【解答】解:设甲、乙共用x天完成,则甲单独干了(x﹣22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的,乙每天完成全部工作的.根据等量关系列方程得: =1,故选:A.8.(4分)如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4【解答】解:设E点坐标为(x,y),则AO+DE=x,AB﹣BD=y,∵△ABO和△BED都是等腰直角三角形,∴EB=BD,OB=AB,BD=DE,OA=AB,∵OB2﹣EB2=10,∴2AB2﹣2BD2=10,即AB2﹣BD2=5,∴(AB+BD)(AB﹣BD)=5,∴(AO+DE)(AB﹣BD)=5,∴xy=5,∴k=5.故选:C.9.(4分)如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DFA,∵AB=BP,∴∠1=∠BPA,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.10.(4分)如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD :S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个【解答】解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△E DO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项①正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项⑤正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)函数y=+的自变量x的取值范围是x≥1且x≠3 .【解答】解:由题意,∴x≥1且x≠3,故答案为∴x≥1且x≠312.(5分)因式分解:x3﹣x2+= x(x﹣)2.【解答】解:x3﹣x2+=x(x2﹣x+)(提取公因式)=x(x﹣)2(完全平方公式).13.(5分)如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为17a2.【解答】解:设直线l与BC相交于点G在Rt△CDF中,CF⊥DG∴∠DCF=∠CGF∵AD∥BC∴∠CGF=∠ADE∴∠DCF=∠ADE∵AE⊥DG,∴∠AED=∠DFC=90°∵AD=CD∴△AED≌△DFC∴DE=CF=a在Rt△AED中,AD2=17a2,即正方形的面积为17a2.故答案为:17a2.14.(5分)如图,用完全相同的两个矩形纸片交叉叠合得到四边形ABCD,则四边形ABCD的形状是菱形.【解答】解:∵两张纸条都是长方形,∴AB∥CD,BC∥AD,∴四边形ABCD为平行四边形.过点A作AE⊥DC于E,AF⊥BC于F.∵两张长方形纸条的宽度相等,∴AE=AF.又∵▱ABCD的面积=DC•AE=BC•AF,∴DC=BC,∴▱ABCD为菱形.故答案是:菱形.三、(本大题共2小题,每小题8分,满分16分)15.(8分),并求出它的所有整数解的和.【解答】解:,解不等式①得x≥﹣1,解不等式②得x≤3,∴原不等式组的解集是﹣1≤x≤3,∴原不等式组的整数解是﹣1,0,1,2,∴所有整数解的和﹣1+0+1+2=2.16.(8分)解方程:①的解x= 0 .②的解x= 1 .③的解x= 2 .④的解x= 3 .…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.【解答】解:①x=0②x=1③x=2④x=3.(1)第⑤个方程:解为x=4.第⑥个方程:解为x=5.(2)第n个方程:解为x=n﹣1.方程两边都乘x+1,得n=2n﹣(x+1).解得x=n﹣1.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求.18.(8分)计算:(1)(2)【解答】解:(1)原式=×=1;(2)原式=++=+=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,矩形OABC的顶点C、A分别在x轴和y轴上,点B的坐标为(4,3),双曲线y=(x>0)的图象经过AB的中点D,且与BC交于点E,连接DE.(1)求双曲线的解析式;(2)求tan∠BDE的值;(3)在第一象限内存在点P,使△OPA与△BDE相似,请直接写出满足条件的P点的坐标.【解答】解:(1)∵B(4,3),四边形OABC为矩形,∴OA=BC=3,AB=OC=4,∵D为AB的中点,∴D(2,3),∵双曲线y=(x>0)的图象经过AB的中点D,∴k=2×3=6,∴双曲线解析式为y=;(2)∵点E在BC边上,且在双曲线上,∴点E横坐标为4,代入双曲线解析式可得y==,∴BE=3﹣=,且DE=2,∴tan∠BDE===;(3)在Rt△BDE中,BE=,BD=2,∵△OPA与△BDE相似,且点P在第一象限,∴有∠PAO=∠B=90°或∠APO=90°两种情况,①当∠PAO=90°时,此时点P在直线AB上,则有=或=两种情况,当=时,即=,解得PA=4,此时P点坐标为(4,3);当=时,即=,解得PA=,此时P点坐标为(,3);②当∠PAO=90°时,此时AO为Rt△PAO的斜边,在Rt△BDE中,由勾股定理可求得DE=,∴有=或=,当=时,即=,解得PA=,此时∠PAO=∠BDE=∠BAC,即点P在线段AC上,过P作PF⊥OA于点F,如图1,∴△APF∽△ACO,∴==,即==,解得AF=,PF=,∴OF=3﹣=,∴P(,),当=时,即=,解得PA=,在Rt△PAO中,由勾股定理可求得OP==,过P作PM⊥AO于点M,如图2,则AO•PM=PA•PO,解得PM=,在Rt△OMP中,由勾股定理可得OM==,∴P(,);综上可知P点坐标为此时P点坐标为(4,3)或(,3)或(,)或P(,).20.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.六、(本题满分12分)21.(12分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B 题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= 或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= b或 b (用含m, n,b的式子表示).【解答】解:(1)∵点H 是AD 的中点,∴AH=AD ,∵正方形AEOH ∽正方形ABCD ,∴相似比为: ==;故答案为:;(2)在Rt △ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为: =,故答案为:;(3)A 、①∵矩形ABEF ∽矩形FECD ,∴AF :AB=AB :AD ,即a :b=b :a ,∴a=b ;故答案为:②每个小矩形都是全等的,则其边长为b 和a ,则b : a=a :b ,∴a=b ;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b或b.七、(本题满分12分)22.(12分)某批发中心销售品牌计算器,成本价12元/个,零售价20元/个,批发优惠规定:一次购买10个以上的,每多买一个,售价降低0.10元(假如某人要买20个计算器,每个降价0.1×(20﹣10)=1元,该人就可以按19元/个进行购买),但批发中心规定最低出售价不得低于16元/个.(1)小李到批发中心购买此计算器然后转卖,问他如何批发购买才能使自己获利多?(2)写出一次购买量x个与批发中心利润y的函数关系式.(3)某天总部询查人员小王从乙那里赚的钱反而比从甲那儿赚的少,问账目有问题吗?【解答】解:(1)设一次购买x只,才能以最低价购买,则有:0.1(x﹣10)=20﹣16,解这个方程得x=50;答一次至少买50只,才能以最低价购买.(2)y=20x﹣12x=8x(0<x<10),y=(20﹣12)x﹣0.1(x﹣10)x=﹣x2+9x(10<x≤50),y=16x﹣12x=4x(x>50);.(3)y=﹣x2+9x=﹣(x﹣45)2+202.5.①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤90时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=42时,y1=201.6元,当x=52时,y2=197.6元.∴y1>y2.即出现了卖42只赚的钱比卖52只嫌的钱多的现象.八、(本题满分14分)23.(14分)已知∠AOB=45°,P是边OA上一点,OP=4,以点P为圆心画圆,圆P交OA于点C(点P在O、C之间,如图).点Q是直线OB上的一个动点,连PQ,交圆P于点D,已知,当OQ=7时, =.(1)求圆P半径长;(2)当点Q在射线OB上运动时,以点Q为圆心,OQ为半径作圆Q,若圆Q与圆P相切,试求OQ的长度;(3)连CD并延长交直线OB于点E,是否存在这样的点Q,使得以O、C、E为顶点的三角形与△OPQ相似?若存在,试确定Q点的位置;若不存在,试说明理由.【解答】解:(1)过点P作PG⊥OB,垂足为G,∵∠AOB=45°,OP=4,∴PG=OG=4.…(1分)又∵OQ=7,∴GQ=3.从而PQ=5,…(1分)∵,∴PD=2,即⊙的半径长为2.…(1分)(2)设OQ=x,则PQ==.(1分)当⊙P与⊙Q外切时,PQ=OQ+2,即=x+2,…(1分)解得:x=.经检验是方程的根,且符合题意,…(1分)当⊙P与⊙Q 内切时,PQ=OQ﹣2,即=x﹣2,…(1分)解得:x=7.经检验是方程的根,且符合题意,…(1分)所以,当OQ的长度为或7时,⊙P与⊙Q相切.(3)∵∠POQ=∠COE,∵PC=PD,∴∠PDC=∠PCD,从而∠OPQ=2∠OCE≠∠OCE,∴要使△OPQ与△OCE相似,只可能∠OQP=∠OCE,…(1分)当点Q在射线OB上时,∠OQP=45°,∠OPQ=90°.∴OQ=8.…(2分)当点Q在射线OB的反向延长线上时,∠OQP=15°,∠OPQ=30°.过点Q作QH⊥OP,垂足为H,则 PH=QH,设 QH=t,则t+4=t,解得:t=2+2,∴OQ=t=4+4.…(2分)综上,点Q在射线OB上,且OQ=8时,以O、C、E为顶点的三角形与△OPQ相似;或者点Q在射线OB的反向延长线上,且OQ=4+4时,以O、C、E为顶点的三角形与△OPQ相似.。
2024年陕西省西安市新城区中考模拟数学试题(解析版)
2024年陕西省西安市新城区中考数学模拟试卷一.选择题1. 下列各数中,最小的数是( )A. B. C. 0 D. 【答案】A【解析】【分析】本题主要考查了实数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大,其值越小进行求解即可.【详解】解:∵,∴∴四个数中,最小的数是,故选:A .2. 如图,直线,含有角的三角板的直角顶点O 在直线m 上,点A 在直线n 上,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查平行线的性质,过B 作,推出,由平行线的性质得到,,求出,即可得到.【详解】解:过B 作,∵,∴,∴,,∵,∴,5-3-5533-=>-=530-<-<<5-m n ∥45︒120∠=︒2∠15︒25︒35︒45︒BK m ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠25ABK ABO OBK ∠=∠-∠=︒225∠=︒BK m ∥m n ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠45ABO ∠=︒452025ABK ABO OBK ∠=∠-∠=︒-︒=︒∴.故选:B .3. 下列计算正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查积的乘方,合并同类项,同底数幂的乘法.利用积的乘方的法则,合并同类项的法则,同底数幂的乘法的法则对各项进行运算即可.【详解】解:A 、与不属于同类项,不能合并,故A 不符合题意;B 、,故B 符合题意;C 、,故C 不符合题意;D 、,故D 不符合题意;故选:B .4. 在平面直角坐标系中,点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据点A 横纵坐标符号判定即可.【详解】解:∵A (-2,3),-2<0,3>0,∴点A (-2,3)在第二象限,故选:B .【点睛】本题考查点所在象限,熟练掌握平面直角坐标系各象限内事业的坐标符号:第一象限(+,+),第二225ABK ∠=∠=︒235x x x +=2222x x x -=236()x x x⋅-=3251128x x ⎛⎫= ⎪⎝⎭2x 3x 2222x x x -=235()x x x ⋅-=-3261128x x ⎛⎫= ⎪⎝⎭()2,3A -象限(-,+),第三象限(-,-),第四象限(+,-)是解题的关键.5. 下列平面直角坐标系内的曲线中,既是中心对称图形,也是轴对称图形的是( )A. 三叶玫瑰线B. 四叶玫瑰线C. 心形线D. 笛卡尔叶形线【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意;故选B.【点睛】本题主要考查了轴对称图形和中心对称图形的识别,熟知二者的定义是解题的关键.6. 如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 经过两点有且只有一条直线D. 两点之间,线段最短【答案】C【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选:C .【点睛】本题考查是直线的性质,即两点确定一条直线.7. 茅洲河的治理,实现了水清、岸绿、景美.某工程队承担茅洲河某段3000米河道的清淤任务,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,,结果提前30天完成这一任务.设原计划每天完成x 米的清淤任务,则所列方程正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了分式方程的应用,找出等量关系是解答本题的关键.根据提前30天完成这一任务列方程即可.【详解】解:由题意,得.故选D .8. 如图,内接于,,的长为( )A. B. C. D. 【答案】B【解析】【分析】作的直径,连接,利用圆内接四边形的性质求得,得到,在中,求得半径,再根据弧长公式可得结论.的25%()3000300030125%x x +=+()3000300030125%x x +=-()3000300030125%x x =+-()3000300030125%x x =++()3000300030125%x x =++ABC O 120ABC ∠=︒AC =AC 43π83πO AD DC OC 、60D ∠=︒120AOC ∠=︒Rt ACD △【详解】解:作的直径,连接,如图,∵是的直径,∴.∵四边形内接于,,∴,∴,,∴,则,∵∴,∴,∴,∴劣弧的长为,故选:B .【点睛】此题主要考查了圆弧长公式,圆内接四边形、圆周角定理等知识,求出圆的半径是解答此题的关键.9. 已知点,在函数的图象上,当且时,都有,则的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】先画出图像,根据图像可知当、时, ,则要想、则必有,求解即可.O AD DC OC 、AD O =90ACD ∠︒DABC O 120ABC ∠=︒18060D ABC ∠=︒-∠=︒30A ∠=︒120AOC ∠=︒2AD CD =222AD CD AC =+AC =(22212AD AD ⎛⎫=+ ⎪⎝⎭4=AD 122OA OC AD ===AC 120241803ππ⨯=()11M x y ,()22N x y ,|2|y x b =+123x x +>12x x <12y y <b 3b >-30b -<≤3b <03b ≤<1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-【详解】当时,当时,当在左侧时,画出图象如上图由题意可知当、时, 要想、则必有∵∴∴当在右侧时,函数为增函数满足即可∵且∴即∴故选A .【点睛】本题考查了一次函数的图象及绝对值等知识点,熟练掌握上述知识点是解答本题的关键.10. 如图,菱形中,点E 是边的中点,垂直交的延长线于点F ,若,则菱形的边长是( )20x b +>2y x b=+20x b +<2y x b=--()11M x y ,2b x =-1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-123x x +>322b-<3b >-()11M x y ,2b x =-12b x -<123x x +>12x x <132x ≥322b-<3b >-ABCD CD EF AB AB :1:2,BF CE EF ==ABCDA. 3B. 4C. 5D. 【答案】B【解析】【分析】过C 作CM ⊥AB 延长线于M ,根据设,由菱形的性质表示出BC =4x ,BM =3x ,根据勾股定理列方程计算即可.【详解】过C 作CM ⊥AB 延长线于M ,∵∴设∵点E 是边的中点∴∵菱形∴,CE ∥AB∵⊥,CM ⊥AB∴四边形EFMC 是矩形∴,∴BM =3x在Rt △BCM 中,∴,解得或(舍去)∴故选:B.:1:2BF CE =,2BF x CE x ==:1:2BF CE =,2BF x CE x==CD 24CD CE x==ABCD4CD BC x ==EFAB CM EF ==2MF CE x==222BM CM BC +=222(3)(4)x x +=1x ==1x -44CD x ==【点睛】本题考查了菱形的性质、矩形的判定与性质、勾股定理,关键在于熟悉各个知识点在本题的灵活运用.属于拔高题.11. 如图,扇形的圆心角是直角,半径为,C 为边上一点,将沿边折叠,圆心O 恰好落在弧上,则阴影部分面积为( )A. B. C. D. 【答案】A【解析】【分析】根据题意和折叠的性质,可以得到OA =AD ,∠OAC =∠DAC ,然后根据OA =OD ,即可得到∠OAC 和∠DAC 的度数,再根据扇形AOB 的圆心角是直角,半径为OC 的长,结合图形,可知阴影部分的面积就是扇形AOB 的面积减△AOC 和△ADC 的面积.【详解】解:连接OD ,∵△AOC 沿AC 边折叠得到△ADC ,∴OA =AD ,∠OAC =∠DAC ,又∵OA =OD ,∴OA =AD =OD ,∴△OAD 是等边三角形,∴∠OAC =∠DAC =30°,∵扇形AOB 圆心角是直角,半径为,∴OC =2,的AOB OB AOC AC AB 3π-3π-34π-2π∴阴影部分的面积.故选:A .【点睛】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,推出△OAD 是等边三角形,利用数形结合的思想解答.12. 如图,在中,,,是的中点,连接,过点作,分别交于点,与过点且垂直于的直线相交于点,连接.以下四个结论:;点是的中点;;,其中正确的结论序号是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,证明即可判断;设,则,由勾股定理得到,由得到,证明,得到,进而得到,即可判断;由得到,结合即可判断;过点作于,由得到,进而可得,即可判断;掌握相似三角形的判定和性质是解题的关键.【详解】解:∵,,∴,,23π⎫-=-⎪⎪⎭Rt ABC △90ABC ∠=︒BA BC =D AB CD B BG CD ⊥CD CA 、E F 、A AB G DF ①AG FG AB FB =②F GE ③AF AB =④5ABC BDF S S =△△①④①③①②③②③④AFG CFB ∽①2AB BC x ==AD BD AG x ===BG DC ==AFG CFB ∽FG =CDB BDE ∽BE x =FE x =②AFG CFB ∽13AF AC =AC =③F MF AB ⊥M FM CB ∥13AF FM AC BC ==16BDF ABC S S = ④90ABC ∠=︒BG CD ⊥90ABG CBG ∠+∠=︒90BCD CBG ∠+∠=︒∴,在和中,,∴,∴,∵点是的中点,∴,∴在中,,∴,∵,∴,∴, ∴,∵,∴,故正确;设,∵点是的中点,∴,在中, ,∴,∵,∴,∴ ∵,,ABG BCD ∠=∠ABC BCD △90ABGBCD AB BCBAG CBD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()ASA ABG BCD ≌AG BD =D AB 12BD AB =12AG BC =Rt ABC △90ABC ∠=︒AB BC ⊥AG AB ⊥AG BC ∥AFG CFB ∽AG FG CB FB=BA BC =AG FG AB FB =①2AB BC x ==D AB AD BD AG x ===Rt DBC △DC ==BG DC ==AFG CFB ∽12GF AG BF BC ==1123FG FB BG x ===90DBE DCB BDC ∠=∠=︒-∠BED CBD ∠=∠∴,∴,∴,∴,∴,故错误;∵,∴,∴,∵,∴,故正确;过点作于,如图,∵,∴,∴,∵,∴,即,故错误;CDB BDE ∽CD CB BD BE=·BD CB BE x CD ==FE BG GF BE x =--=FG FE ≠②AFG CFB ∽12AF AG CF AC ==13AF AC =AC =AF AB =③F MF AB ⊥M BC AB ⊥FM CB ∥13AF FM AC BC ==12BD BA =1·11121236·2BDF ABC BD FM S BD FM S AB BC AB BC ==⨯=⨯= 6ABC BDF S S = ④∴正确的结论是,故选:.二、填空题13.的平方根是______.【答案】【解析】【分析】根据求一个数的平方根的计算方法即可求解.【详解】解:的平方根表示为,故答案:.【点睛】本题主要考查平方根的计算方法,掌握求一个数的平方根的运算是解题的关键.14. 若点P 在线段的延长线上,,,则的长为______.【答案】5【解析】【分析】本题主要考查了线段的和差计算,根据线段的和差关系进行求解即可.【详解】解:∵点P 在线段的延长线上,,,∴,故答案为:5.15. 如图,在中,,是的内切圆,M ,N ,K 是切点,连接,.交于E ,D 两点.点F 是上的一点,连接,,则的度数是______.【答案】##62.5度【解析】【分析】本题主要考查了圆周角定理,三角形内心性质,三角形内角和定理,先根据三角形内心的性质为的①③B 9432±9432=±32±AB 8AP =3BP =AB AB 8AP =3BP =5AB AP BP =-=ABC 70B ∠=︒O ABC OA OC O MNDF EF EFD ∠62.5︒得,,进而求出,即可求出,然后根据圆周角定理得出答案.【详解】∵是的内切圆,∴,是的角平分线,∴,.∵,∴,∴,∴,∴.故答案:.16. 我们定义:如果一个函数图象上存在纵坐标是横坐标6倍的点,则把该函数称为“行知函数”,该点称为“行知点”,例如:“行知函数”,其“行知点”为.(1)直接写出函数图象上的“行知点”是__________;(2)若二次函数的图象上只有一个“行知点”,则的值为__________.【答案】①. 或 ②. 【解析】【分析】本题考查二次函数的综合应用,理解新定义,将新定义与所学二次函数,一元二次方程的知识相结合,熟练掌握跟与系数关系是解题关键.(1)根据题目所给“行知点”的定义,列出方程求解即可;(2)根据题目所给“行知点”的定义,列出方程,根据只有一个“行知点”得出该方程只有一个实数根,再根据一元二次方程根的判别式,即可解答.【详解】解:(1)根据题意可得:,整理得:,为12OAC BAC ∠=∠12OCA BCA ∠=∠∠+∠OAC OCA AOC ∠O ABC OA OC ABC 12OAC BAC ∠=∠12OCA BCA ∠=∠70B ∠=︒110BAC BCA ∠+∠=︒1()552OAC OCA BAC BCA ∠+∠=∠+∠=︒18055125AOC ∠=︒-︒=︒162.52EFD EOD ∠=∠=︒62.5︒20y x =+()424,24y x=()()21332y a x a x a =-+++a ()212,()212--,3-246x x=24x =解得:,经检验,是原分式方程的解;∴函数图象上的“行知点”是或;故答案为:或.(2)∵二次函数的图象上只有一个“行知点”,∴方程有两个相等的实数根,且,整理得:,∴,解得:,综上:a 的值为.故答案为:.17. 如图,折叠边长为4cm 的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm .【答案】##【解析】【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明,利用相似三角形对应边成比例可求出FG .【详解】解:连接如图,122,2x x ==-122,2x x ==-24y x=()212,()212--,()212,()212--,()()21332y a x a x a=-+++()()216332x a x a x a=-+++30a -≠()()213302a x a x a -+-+=()()2134302a a a --⨯⨯-=123,3x x ==-3-3-ABCD DM C E ME DE AB F G M BC FG =53213FEG FBM ∆∆ ,DF∵四边形ABCD 是正方形,∴∵点M 为BC 的中点,∴由折叠得,∠∴∠,设则有∴又在中,,∵∴∴在中,∴解得,(舍去)∴∴∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=114222BM CM BC ===⨯=2,4,ME CM DE DC ====90,DEM C ︒=∠=90DEF ︒=90,FEG ∠=︒,FE x =222DF DE EF =+2224DF x =+Rt FMB ∆2,2FM x BM =+=222FM FB BM =+FB ==4AF AB FB =-=-Rt DAF ∆222,DA AF DF +=2222444,x ⎛+=+ ⎝124,83x x ==-4,3FE =410233FM FE ME =+=+=83FB ==∵∠∴∠∴∠又∠∴△∴即∴故答案为:【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题18. 解不等式:【答案】【解析】【分析】本题主要考查解一元一次不等式,根据去分母,移项,合并同类项,求出不等式的解集即可【详解】解:,去分母得,,移项得,,合并得,19. 如图,在由边长为1个单位的小正方形组成的网格中,点、、均为格点(网格线的交点),、、.90DEM ︒=90FEG ︒=,FEG B =∠.GFE MFB =∠FEG FBM∆ ,FG FE FM FB=4310833FG =5,3FG =53322x +>1x >322x +>34x +>43x >-1x >A B C ()23A ,()32B ,()10C ,(1)将向下平移3个单位,再向左平移4个单位,得到,请画出;(2)将绕点逆时针旋转,得到,请画出.(3)在(2)的旋转过程中,点经过的路径长为【答案】(1)答案见解析(2)答案见解析(3【解析】【分析】本题主要考查三角形的平移以及旋转作图,弧长公式,掌握作图方法是解题的关键.(1)先画出三角形各顶点平移后的位置,再用线段依次连接各顶点,得到平移后的三角形;(2)先画出三角形各顶点绕着点逆时针旋转后的位置,再用线段依次连接各顶点,得到旋转后的三角形;(3)根据弧长计算公式进行计算,求得旋转过程中点所经过的路径长.【小问1详解】解:如图所示, 【小问2详解】解:如图所示ABC 111A B C △111A B C △111A B C △O 90︒222A B C △222A B C △1C O 90︒1C【小问3详解】解:旋转过程中,点所经过的路径长为以为半径,为圆心角的弧长,,.20. 将字母“”,“”按照如图所示的规律摆放,其中第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;……根据此规律解答下面的问题:(1)第个图形中有______个字母,有______个字母;(2)第个图形中有______个字母,有______个字母(用含的式子表示);(3)第个图形中有______个字母,有______个字母.【答案】(1);(2);(3);【解析】【分析】根据图中信息找规律即可:(1)根据规律作答即可;(2)根据规律找到个数与的关系即可;(3)代入(2)中的关系式计算即可.【小问1详解】1C 1OC 90︒ 1290180C C π∴=⨯=C H 11C 4H 22C 6H 33C 8H 4C H n C H n 2024C H 410n 22n +20244050n第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母,依此类推,第个图形中有个字母,有个字母【小问2详解】观察规律:第个图形中有个字母,第个图形中有个字母,第个图形中有个字母……因为字母的数量等于所以第个图形中有个字母同理观察规律:第个图形中有个字母,第个图形中有个字母;第个图形中有个字母……因为字母的个数是字母的个数的2倍多2,字母的数量等于则字母的个数是即第个图形中有个字母【小问3详解】根据第(2)问,将数字代入即可因为字母的数量等于所以第个图形中有个字母因为字母的个数是所以第个图形中有个字母【点睛】本题考查了图形类的规律,解题的关键在于找到规律.21. 如图,四边形是一个零件的截面图,,,,,,求这个零件截面的面积.(精确到,,,,)【答案】这个零件的截面面积约为【解析】【分析】本题考查了矩形的判定与性质,解直角三角形,正确作出辅助线是解答本题的关键.作于E ,于F ,则四边形为矩形,在中,求出、的值,在11C 4H 22C 6H 33C 8H 44C 10H11C 22C 33C C nn n C14H 26H 38H H C C nH 22n +n 22n +HC n20242024CH 22n +20244050HABCD (2AB =+4cm CD =AB BC ⊥74BAD ∠=︒60BCD ∠=︒21cm 1.41≈1.73≈sin 740.96︒≈cos 740.28︒≈tan 74 3.49︒≈235cm DE AB ⊥DF BC ⊥DEBF Rt CDF △DF FC Rt ADE △中,求出的值,进而可求出这个零件截面的面积.【详解】解:作于E ,于F ,连接,则四边形为矩形,∴,,在中, ,,∴,,.在中,,,∴,四边形的面积的面积的面积答:这个零件的截面面积约为.22. 如图,在中,,D 为边上的点,以为直径作,连接并延长交于点E ,连接,.(1)求证:是的切线.(2)若,求的长.【答案】(1)证明见解析(2).【解析】【分析】本题考查的是切线的判定、等腰三角形的性质、勾股定理.DE DE AB ⊥DF BC ⊥BD DEBF DE FB =DF EB =Rt CDF △4cm CD =60BCD ∠=︒sin 60BE DF DC ==⨯︒=cos 602(cm)FC DC ⨯︒==22(cm)AE AB BE ∴=-=+-=Rt ADE △2AE =74DAE ∠=︒tan 742 3.49 6.98(cm)DE AE =⨯︒=⨯=∴ABCD ABD =△BCD +△1122AB DE BC DF =⨯+⨯11(2 6.98(6.982)22=⨯+⨯+⨯+⨯215.96 1.73 6.9835(cm )≈⨯+≈235cm Rt ABC △90ACB ∠=︒AC AD O BD O CE CE BC =CE O 24CD BC ==,AC 8AC =(1)连接,根据等腰三角形的性质得到,由得到,得,于是得到结论;(2)设的半径为r ,则,由得到关于r 的方程,即可求出半径,进而求出的长.【小问1详解】证明:如图所示,连接,∵,∴.∵,∴.∵,∴.又∵,∴,∴,即,∴.∵是的半径,∴是的切线.【小问2详解】解:在中,,由题意得,,设的半径为r ,则,在中,,∴,OE 1234∠=∠∠=∠,1590∠+∠=︒2390∠+∠=︒90OEC ∠=︒O 2OD OE r OC r ===+,222OE CE OC +=AC OE 90ACB ∠=︒1590∠+∠=︒CE BC =12∠=∠OE OD =34∠∠=45∠=∠35∠=∠2390∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt BCD 9024DCB CD BC ∠=︒==,,4BC CE ==O 2OD OE r OC r ===+,Rt OEC △90OEC ∠=︒222OE CE OC +=∴,解得,∴,∴.23. A 、B 、C 三个电冰箱厂家在广告中都声称,他们的电冰箱在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,,,;乙厂:6,6,8,8,8,9,,,,15;丙厂:4,4,4,6,7,9,,,,;根据以上数据,绘制了下面不完整的表格:平均数众数中位数甲厂856乙厂a 丙厂4b根据以上信息解答下列问题:(1)表格中______,______;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果这三个家电厂家的电子产品的售价相同,则顾客购买哪一家的电子产品更合适,并说明理由.【答案】(1)8,8;(2)见详解;(3)选乙厂的电子产品更合适;【解析】【分析】本题考查了求众数,中位数,平均数及根据众数,中位数,平均数做决策:(1)根据出现次数最多的是众数,最中间的数是中位数直接求解即可得到答案;(2)根据表格及(1)直接判断即可得到答案;(3)根据三个数据大小比较直接判断即可得到答案;【小问1详解】解:由题意可得,∵乙中8出现次数最多,∴,丙中第5,6个数是7,9,()22242r r +=+3r =26AD r ==8AC AD CD =+=121315101214131516169.68.59.4=a b =8a =∴,故答案为:8,8;【小问2详解】解:由(1)及表格得,甲平均数是8,乙众数是8,丙中位数是8,∴甲厂的销售广告利用了平均数8表示集中趋势的特征数;乙厂的销售广告利用了众数8表示集中趋势的特征数;丙厂的销售广告利用了中位数8表示集中趋势的特征数;【小问3详解】解:由题意可得,平均数:乙大于丙大于甲,众数:乙大于甲大于丙,中位数:乙大于丙大于甲,∴应选乙厂的电子产品更合适.24. 如图,在四边形是正方形,点E 为边的中点,对角线与交于点F ,连接,,且与交于点G ,连接.(1)求证:;(2)求的值;(3)求证:.【答案】(1)证明见详解;(2); (3)证明见详解;【解析】7982b +==ABCD CD BD AE BE CF BE CF DG BE CF ⊥FG EG2DG CG BG =⋅43【分析】本题考查正方形的性质,全等三角形判定与性质,相似三角形的判定与性质:(1)根据正方形的性质得到,,,根据中点得到,即可得到与即可得到证明;(2)设正方形边长为a ,根据表示出、,设,表示出,在根据勾股定理求解得到即可得到答案;(3)过G 作,根据等积法求出,在根据勾股定理求出即可得到答案;【小问1详解】证明:∵四边形是正方形,∴,,,∵点E 为边的中点,∴,在与中,∵,∴,∴,在与中,∵,∴,∴,∴,∵,∴,∴;【小问2详解】解:设正方形边长为a ,由(1)得,,,,45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==DE CE =ADE BCD △≌△ADF CDF △≌△CEG CBG BEC ∽∽CG EG EF x =FE Rt FEG △FG GH BC ⊥GH BG ABCD 45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==CD DE CE =ADE V BCE AD BC ADE BCE DE CE =⎧⎪∠=∠⎨⎪=⎩()SAS ADE BCE ≌DAE CBE ∠=∠ADF △CDF AD CD ADB CDB DF DF =⎧⎪∠=∠⎨⎪=⎩(SAS)ADF CDF ≌DAE FCD ∠=∠FCD CBE ∠=∠90FCD FCB ∠+∠=︒90CBE FCB BGF ∠+∠=∠=︒BE CF ⊥FCD CBE ∠=∠90BGC BCE EGC ∠=∠=∠=︒AE BE ===∴,∴,,∴,,设,∴,∴,在中,,解得:,∴,∴;【小问3详解】证明:过G 作,,CEG CBG BEC ∽∽EC EG CG BE EC BC==2EG CG a a ==CG =EG =EF x =CF AF a x ==-GF x x =-=-Rt FEG △222x x ⎫⎫-+=⎪⎪⎪⎪⎭⎭x a =GF a ==43FG EG ==GH BC ⊥∵,∴,∴,∴,∴,∴,,∴.25. 如图,二次函数,与时的函数值相等,其图象与x 轴交于A 、B 两点,与y轴正半轴交于C 点.(1)求二次函数的解析式.(2)在第一象限的抛物线上求点P ,使得最大.(3)点Q 是抛物线上x 轴上方一点,若,求Q 点坐标.【答案】(1) (2) (3)【解析】【分析】(1)把与代入,求出t 的值,即可;1122CE GH GE GC ⨯⨯=⨯⨯15GE GC GH a CE ⨯===25CHa ==2355DHa a a =-=DG a ==2222)5DG a ==22)5C a BG G ⨯==⋅2DG CG BG =⋅()()()21121y t x t x t -++=+≠0x =3x =PBC S 45CAQ ∠=︒213222y x x =-++()2,31013,39⎛⎫ ⎪⎝⎭0x =3x =()()()21121y t x t x t -++=+≠(2)过点P 作轴,交于点D .先求出直线的解析式为,设点,则点D 的坐标为,可得,再由,得到S 关于a 的函数关系式,即可求解;(3)将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,求出直线的解析式,即可求解.【小问1详解】解:∵与时的函数值相等,∴,解方程,得,把代入二次函数,∴二次函数的解析式为:.【小问2详解】解:如图,过点P 作轴,交于点D .把代入,得:,解得,∴点A ,∴,当时,,PD y ∥BC BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2221a PD a -=+12PBC S PD OB =⋅△AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH 0x =3x =()()()()221010213132t t t t =++-⨯+⨯+-⨯+⨯+12t =12t =()()()21121y t x t x t -++=+≠213222y x x =-++PD y ∥BC 0y =213222y x x =-++2132022x x -++=121,4x x =-=()()1,0,4,0B -4OB =0x =2y =∴,设直线的解析式为,把点,代入得:,解得:,∴直线的解析式为,设点,则点D 的坐标为,∴,∴,当时,有最大值,最大值为4,所以点P 的坐标;【小问3详解】解:如图,将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,设直线的解析式为,把代入得:()0,2C BC y kx b =+()4,0B ()0,2C 240b k b =⎧⎨+=⎩122k b ⎧=-⎪⎨⎪=⎩BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2211312222222a a PD a a a ⎛⎫-+=+ ⎭=-++-⎝-⎪()22211244241222PBC PD OB a S a a a a ⎛⎫⋅=+⨯=-+=--- ⎪⎝=+⎭ 2a =PBC S ()2,3AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH ()1110y k x b k =+≠()21,02,11,A H -⎛⎫ ⎪⎝⎭,解得:,∴直线的解析式为,联立得,解得或,∴.【点睛】本题主要考查了二次函数的综合题,涉及了二次函数的图象和性质,求一次函数解析式,利用数形结合思想解答是解题的关键.26. 在中,.将绕点A 顺时针旋转得到,旋转角小于,点B 的对应点为点D ,点C 的对应点为点E ,交于点O ,延长交于点P .(1)如图1,求证:;(2)当时,①如图2,若,求线段的长;②如图3,连接,延长交于点F ,判断F 是否为线段的中点,并说明理由.【答案】(1)见解析(2)①;②F 是线段的中点.理由见解析【解析】【分析】(1)由旋转的性质得到,,,根据证明,即可证明;(2)①连接,由勾股定理求得,利用全等三角形的性质和平行线的性质求得,推出,据此求解即可;②连接,延长和交于点G ,证明,求得,得到,再证明,据此即可证明F 是线段的中点.111101122k b k b -+=⎧⎪⎨+=⎪⎩111313k b ⎧=⎪⎪⎨⎪=⎪⎩AH 1133y x =+2113313222y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩10x y =-⎧⎨=⎩103139x y ⎧=⎪⎪⎨⎪=⎪⎩1013,39Q ⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒ABC ADE V CAB ∠DE AB DE BC PC PE =AD BC ∥68CA CB ==,BP BD CE ,CE BD BD 6BP =BD AC AE =90C AEP ∠=∠=︒HL Rt Rt APE APC ≌△△PC PE =AP 10AB =DAP APD ∠=∠10DP AD ==AP AD CE Rt Rt ACP GAC ∽△△18AG =8GD BC ==GDF CBF ≌△△BD【小问1详解】证明:连接,由旋转的性质知,,,∵,∴,∴;【小问2详解】解:①连接,∵,,∴,由旋转的性质知,,, 由(1)知,∴,,∵,∴,∴,∴,∴,∴;②F 是线段的中点.理由如下,连接,延长和交于点G,如图,AP AC AE =90AED C AEP ∠=∠=∠=︒AP AP =()Rt Rt HL APE APC ≌PC PE =AP 90C ∠=︒68CA CB ==,10AB ==10AD AB ==8DE BC ==Rt Rt APE APC ≌△△PC PE =APE APC ∠=∠AD BC ∥DAP APC ∠=∠DAP APD ∠=∠10DP AD ==1082PC PE ==-=826BP BC PC =-=-=BD AP AD CE由(1)知,,∴是的垂直平分线,∴,∵,∴,∴, ∵,,∴,∴,∵,∴,,∴,∴,即F 是线段的中点.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,正确引出辅助线解决问题是解题的关键.AE AC =PE PC =PA CE PA CG ⊥90PAC ACG G ∠=︒-∠=∠Rt Rt ACP GAC ∽△△AC AG PC AC=2PC =6CA =18AG =18108GD BC =-==AD BC ∥G BCF ∠=∠GDF CBF ∠=∠GDF CBF ≌△△DF BF =BD。
2024年北京市三帆中学中考模拟数学试题(解析版)
2024年北京市三帆中学中考模拟数学试题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 下列几何体的三视图之一是长方形的是( )A B. C. D.【答案】B【解析】【分析】分别写出各个立体图形的三视图,判断即可.【详解】解:A 、圆锥的主视图、左视图都是三角形,俯视图是圆形,故本选项不合题意;B 、圆柱的左视图和主视图是长方形,俯视图是圆,故本选项符合题意;C 、球体的主视图、左视图、俯视图都是圆形,故本选项不合题意;D 、三棱锥的三视图都不是长方形,故本选项不合题意.故选:B .【点睛】此题考查了简单几何体的三视图,熟练掌握简单几何体的三视图是解本题的关键.2. 某种新冠病毒的直径约为120纳米,已知1纳米=0.000001毫米,120纳米用科学记数法表示为( )A. 毫米B. 毫米C. 毫米D. 毫米【答案】A【解析】【分析】将其化为的形式,其中满足,为整数即可求解.【详解】120纳米=毫米=0.00012毫米=毫米,故选:A【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.3. 如图,直线,直线EF 分别与直线AB ,CD 交于点E ,F ,点G 在直线CD 上,GE ⊥EF .若.41.210-⨯51.210-⨯51210-⨯612010-⨯10n a ⨯a 110a ≤∣∣<n 120×0.00000141.210-⨯10n a ⨯110a ≤∣∣<n //AB CD,则∠2的大小为( )A. 145°B. 135°C. 125°D. 120°【答案】A【解析】【分析】根据,由两直线平行同位角相等可推导;根据GE ⊥EF ,可知;然后借助三角形外角的性质“三角形外角等于不相邻的两个内角和”,利用()计算∠2即可.【详解】解:∵,∴,∵GE ⊥EF ,∴,∴.故选:A .【点睛】本题主要考查了平行线的性质及三角形外角的定义和性质,解题关键是熟练掌握相关性质并灵活运用.4. 有理数a ,b 在数轴上的表示如图所示,则下列结论正确的是( )甲:;乙:;丙:A. 只有甲正确B. 只有甲、乙正确C. 只有甲、丙正确D. 只有丙正确【答案】C【解析】【分析】根据数轴上点的位置关系,可得、的大小,根据绝对值的意义,判断即可.【详解】解:由数轴上点的位置关系,得,.∴,故甲正确;,故乙错误;,故丙正确;155∠=︒//AB CD 1EFG =∠∠90FEG ∠=︒EFG FEG +∠∠//AB CD 155EFG ==︒∠∠90FEG ∠=︒25590145EFG FEG =+=︒+︒=︒∠∠∠b a -<0ab >b a a b-=-a b 0a b >>||||a b >b a -<0ab <()b a b a a b -=--=-故选:C .【点睛】本题考查了有理数的大小比较,利用数轴确定、的大小即与的大小是解题关键.5. 在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A. -3B. -2C. -1D. 1【答案】A【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a=-2-1=-3.【详解】解:∵点C 在原点的左侧,且CO=BO ,∴点C 表示的数为-2,∴a=-2-1=-3.故选A .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.6. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.a b ||a ||b PQPQ【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B 选项正确;∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM= ,∴∠MCD=,又∠CMN=∠AON=∠COD ,∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7. 已知,,,,精确到的近似值是()A. B. C. D. 【答案】B【解析】的取值范围,再利用四舍五入找出近似值即可.13180-COD2︒∠180-COD ︒∠1223.512.25=23.612.96=23.713.69=23.814.44=0.13.5 3.6 3.7 3.8【详解】解:,,,,精确到的近似值是,故选B .【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8. 下面三个问题中都有两个变量:①如图1,货车匀速通过隧道(隧道长大于货车长),货车在隧道内的长度y 与从车头进入隧道至车尾离开隧道的时间x ;②如图2,实线是王大爷从家出发匀速散步行走的路线(圆心O 表示王大爷家的位置),他离家的距离y 与散步的时间x ;③如图3,往空杯中匀速倒水,倒满后停止,一段时间后,再匀速倒出杯中的水,杯中水的体积y 与所用时间x其中,变量y 与x 之间的函数关系大致符合下图的是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】根据y 值随x 的变化情况,逐一判断.【详解】解:①当货车开始进入隧道时y 逐渐变大,当货车完全进入隧道,由于隧道长大于货车长,此时y 不变且最大,当货车开始离开隧道时y 逐渐变小.故①正确;②王大爷距离家先y 逐渐变大,他走的是一段弧线时,此时y不变且最大,之后逐渐离家越来越近直至回223.612.961313.69 3.7=<<=3.6 3.7∴<<23.612.9613=≈ 23.713.6914=≈0.1 3.6家,即y 逐渐变小,故②正确;③往空杯中匀速倒水,倒满后停止,水的体积逐渐增加,一段时间后,再匀速倒出杯中的水,这期间,水量先保持不变,然后逐渐减少,杯中水的体积y 与所用时间x ,变量y 与x 之间的函数关系符合图象,故③正确;故选:D .【点睛】本题主要考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则的取值范围是______.【答案】【解析】【分析】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式被开方数为非负数.据此即可解答.【详解】解:在实数范围内有意义,∴,解得:,故答案:.10. 因式分解:3a 2-12a +12=______.【答案】【解析】【分析】直接提取公因式3,再利用完全平方公式分解因式即可.【详解】解:==故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.11. 分式方程的解是______.【答案】【解析】为x 3x ≥-30x +≥3x ≥-3x ≥-()232a -231212a a -+()2344a a -+()232a -()232a -422x x=-2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:,解得:,检验:当时,,∴原方程解为.故答案为:【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.12. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】##【解析】【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =,∠FAB =180°-∠GAB =180°-60°=120°,的()224x x -=2x =-2x =-()20x x -≠2x =-2x =-43π43π360606︒=︒360606︒=︒∴,故答案为.【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.13. 如图,在中,,过点B 作,交于点D ,若,则的长度为_________.【答案】2【解析】【分析】过点B 作BE ⊥AC 于点E ,设DE=x ,然后通过直角三角形30°角的性质求得BD=2x ,CD=4x ,CE=3x ,再运用由等腰三角形的性质得到AE=CE ,列方程求解x ,即可求出CD 的长.【详解】解:如图,过点B 作BE ⊥AC 于点E ,设DE=x ,则AE=AD+DE=1+x .∵AB=BC ,∠ABC=120°,∴∠A=∠C=30°∵,∴∠DBC=90°∴∠EDB=60°,∠DBE=30°∴BD=2DE=2x ,DC=2DB=4x∴CE=DC-DE=3x∵AB=BC , BE ⊥AC ,∴AE=CE∴1+x=3x ,解得x=∴CD=4x=2.2120443603603FABn r S πππ⨯⨯===扇形43πABC ,120AB BC ABC =∠=︒BD BC ⊥AC 1AD =CD BD BC ⊥12【点睛】本题考查等腰三角形的性质和直角三角形30°所对的边等于斜边的一般,需要熟练运用考查的性质进行解题.14. 如图,在平面直角坐标系中,已知点,将关于直线对称,得到,则点C 的对应点的坐标为___________;再将向上平移一个单位长度,得到,则点的对应点的坐标为_________.【答案】①. ②. 【解析】【分析】根据对称点的性质可知,对应点的纵坐标与点C 的纵坐标相同,然后利用中点坐标公式计算出点C 的横坐标即可解决;点是由点向上平移一个单位长度得到,根据平移规律解决即可.【详解】解:根据对称的性质可知,点的纵坐标为2,设点的横坐标为m ,∵两点关于直线x=4对称∴,∴m=5,∴的坐标为(5,2)根据平移的规律可知,点是由点向上平移一个单位长度得到,故的横坐标不变为5,的纵坐标为:2+1=3.故点的坐标.xOy ()3,2C ABC 4x =111A B C △1C 111A B C △222A B C △1C 2C ()5,2()5,31C 2C 1C 1C 1C 3+m 42=1C 2C 1C 2C 2C 2C ()5,3故答案是:;【点睛】本题考查了对称的性质以及点的平移规律,解决本题的关键是正确理解题意,熟练掌握点的坐标平移规律和计算方法.15. 一组学生春游,预计共需要费用120元,后来又有2人参加进来,总费用不变,于是每人可少摊3元,若设原来这组学生人数为x ,那么可列方程为_____.【答案】【解析】【分析】理解题意找出题意中存在的等量关系,未增加人前每人摊的费用增加人后每人摊的费用,列出方程即可.【详解】解:解:设原来这组学生人数为x ,则原来每人摊的费用为,又有2人参加进来,此时每人摊的费用为,根据题意可列方程为,故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键在于找出题中的等量关系.16. 如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在上,边AB 、AC 分别交于D 、E 两点﹐点B 是的中点,则∠ABE =__________.【答案】【解析】【分析】如图,连接 先证明再证明利用三角形的外角可得:再利用直角三角形中两锐角互余可得:再解方程可得答案.()5,2()5,312012032x x -=+-3=120x 1202x +12012032x x -=+12012032x x -=+O O CD13︒,DC ,BDC BCD ∠=∠,ABE ACD ∠=∠,BDC A ACD A ABE ∠=∠+∠=∠+∠()2902,BDC A ABE ∠=︒-∠+∠【详解】解:如图,连接是的中点,故答案为:【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.三、解答题(本大题共11小题,共63分)17. 计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.,DC B CD,,BDBC BDC BCD ∴=∠=∠ ,DEDE = ,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒ ()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒13.︒113tan 302|3-⎛⎫︒+ ⎪⎝⎭5-332-++5=-18. 解不等式组:.【答案】【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由,得:,由,得:此不等式解集为所有实数,不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 已知:如图,为锐角三角形,.求作:点P ,使得,且.作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点D (异于点C );③连接并延长交于点P .所以点P 就是所求作的点.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):(2)完成下面的证明.证明:连接∵,∴点C 在上.又∵,()312,1122x x x x ⎧-<⎪⎨+-<⎪⎩3x <()312x x -<3x <1122x x +-<∴3x <ABC AB AC =AP AB =APC BAC ∠=∠AB BC A DA A PCAB AC =A DC DC =∴(________________________)(填推理的依据),由作图可知,,∴(________________________)(填推理的依据)________.∴.【答案】(1)见解析(2)同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.【解析】【分析】(1)根据题意画出图形即可;(2)利用圆周角定理解决问题即可.【小问1详解】解:图形如图所示:【小问2详解】证明:连接.,点在上.,(同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半),由作图可知,,∴(同弧或等弧所对的圆心角相等)..故答案为:同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.12DPC DAC =∠∠BD BC =DAB CAB ∠=∠12=∠APC BAC ∠=∠DAC PC AB AC = ∴C A DC DC =12DPC DAC ∴∠=∠BD BC =DAB CAB ∠=∠12DAC =∠APC BAC ∴∠=∠DAC【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 已知关于x 的一元二次方程.(1)不解方程,判断此方程根的情况;(2)若是该方程的一个根,求代数式的值.【答案】(1)见解析(2)【解析】【分析】(1)利用根的判别式判断即可.(2)将代入一元二次方程,整理得,再将变形为,代入求值即可.【小问1详解】解:∵,∴此一元二次方程有两个不相等的实数根;【小问2详解】解:将代入一元二次方程,整理得,即,∴.【点睛】本题考查一元二次方程根的判别式、一元二次方程的解,求代数式的值,牢记:当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程无实数根.21. 已知:如图,菱形,分别延长,到点F ,E ,使得,,连接,,,.-()22210x k x k k +-+-=2x =2265k k ---1-24b ac ∆=-2x =22210x kx k -+-=232k k +=-2265k k ---()2235k k -+-24b ac∆=-()()22214k k k =---2244144k k k k=-+-+10=>2x =()22210x k x k k +-+-=2320k k ++=232k k +=-()()222652352251k k k k ---=-+-=-⨯--=-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-ABCD AB CB BF BA =BE BC =AE EF FC CA(1)求证:四边形为矩形;(2)连接交于点O ,如果,,求的长.【答案】(1)证明见解析;(2)【解析】【分析】本题考查了矩形的性质与判定、菱形的性质、勾股定理等知识.根据菱形的判定和性质以及直角三角形的性质解答是关键.(1)根据菱形的性质以及矩形的判定证明即可;(2)连接,根据菱形的判定和性质以及直角三角形的性质解答即可.【小问1详解】证明:∵,,∴四边形为平行四边形,∵四边形为菱形,∴,∴,∴,即,∴四边形为矩形;【小问2详解】连接,,与交于点G ,由(1)可知,,且,∴四边形为平行四边形,AEFC DE AB DE AB ⊥4AB =DE ED =DB BF BA =BE BC =AEFC ABCD BA BC =BE BF =BA BF BC BE +=+AF EC =AEFC DB DE DE AB AD EB ∥AD EB =AEBD∵,∴四边形为菱形,∴,,,∵矩形中,,,∴,,∴在中,∴22. 在平面直角坐标系xOy 中,函数y=(x>0)的图象与直线y=x+1交于点A (2,m ).(1)求k 、m 的值;(2)已知点P (n ,0),过点P 作平行于 y 轴的直线,交直线y=x+1于点B ,交函数y=(x>0)的图象于点C .若y=(x>0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(不包括边界),记作图形G .横、纵坐标都是整数的点叫做整点.①当n=4时,直接写出图形G 的整点坐标;②若图形G 恰有2 个整点,直接写出n 的取值范围.【答案】(1)k =4,m =2;(2)①(3,2),②0<n <1或4<n ≤5.【解析】【分析】(1)将A 点代入直线解析式可求m ,再代入y =,可求k .(2)①根据题意先求B ,C 两点,可得图形G 的整点的横坐标的范围2<x <4,且x 为整数,所以x 取3.再代入可求整点的纵坐标的范围,即求出整点坐标.②根据图象可以直接判断2≤n <3.【详解】解:(1)∵点A (2,m )在y =x +1上,∴m =×2+1=2.∴A (2,2).∵点A (2,2)在函数y =的图象上,∴k =4.故答案为:k =4,m =2.(2)①当n =4时,B 、C 两点的坐标为B (4,3)、C (4,1).DE AB ⊥AEBD AE EB =2AB AG =2ED EG =AEFC EB AB =4AB =2AG =4AE =Rt AEG △EG =ED =k x 1212k x k xk x1212k x∵整点在图形G 的内部,∴2<x <4且x 为整数∴x =3∴将x =3代入y =x +1得y =2.5,将x =3代入y =得y =,∴<y <2.5,∵y 为整数,∴y =2,∴图形G 的整点坐标为(3,2).②当x =3时,<y <2.5,此时的整点有(3,2)共1个;当x =4时,1<y <3,此时的整点有(4,2)共1个;当x =5时,<y <3.5,此时的整点有(5,1),(5,2),(5,3)共3个;∵图形G 恰有2 个整点,∴4<n ≤5,当x =1时,1.5<y <4,此时的整点有(1,2),(1,3)共2个;∵图形G 恰有2 个整点,∴0<n <1,综上所述,n 的取值范围为:0<n <1或4<n ≤5.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.23. 为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,分为良好,分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:124x 434343458089~6079~65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:,,,,)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81八年级82请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【解析】【分析】(1)根据题意可得七年级成绩位于的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100)x ≤≤m 167.979.5108.3m 82m =6070x ≤<(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【小问1详解】解:根据题意得:七年级成绩位于的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数;【小问2详解】解:根据题意得:八年级成绩良好的所占的百分比为∴八年级成绩优秀的所占的百分比为,∴八年级成绩达到优秀的学生有(人),七年级成绩达到优秀的学生有人,(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.【小问3详解】解:八年级获得参加挑战赛的机会的学生人数约为:(人),七年级获得参加挑战赛机会的学生人数约为:(人),∵,∴七年级获得参加挑战赛的机会的学生人数更多.的6070x ≤<8183822m +==72100%20%360︒⨯=︒120%45%5%30%---=30030%90⨯=53007520⨯=9075165+=()30020%30%150⨯+=1130016520⨯=150165<【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.24. 如图,在中,,,点是线段上的动点,将线段绕点 顺时针度转至,连接.已知,设为,为.小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)请利用直尺和量角器,在草稿纸上根据题意画出准确的图形,并确定自变量的取值范围是________;(2)通过取点、画图、测量,得到了与的几组值,如下表:则表中的值为__________;(3)建立平面直角坐标系,通过描点、连线,画出该函数的完整图象.(4)结合画出的函数图象,解决问题:① 线段长度的最小值为__________;② 当,,三点共线时,线段的长为__________.【答案】(1)(2)(3)函数图象见解析(4);【解析】【分析】(1)利用直尺和量角器,根据,,画出准确的图形,从而得到的长度,即可得到自变量的取值范围;ABC 90ABC ∠=︒40C ∠=︒D BC AD A 50︒AD 'BD '2cm AB =BD cm x BD 'cm y y x x x y /cm x 00.50.7 1.0 1.5 2.0/cm y 1.7 1.3 1.1m0.70.9m BD 'cm D B D ¢BD cm 0 2.5x <<0.90.70.990ABC ∠=︒40C ∠=︒2cm AB =BC x(2)根据表格内的数据在时,的值逐渐减小,在时,的值逐渐增大,可得该函数是以为对称轴的抛物线,则和为对称点,故两点的值相等,即可得到的值;(3)根据(2)中的数据描点,连线即可得到该函数的完整图象;(4)①结合(2)(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,结合表格中的数据可知,最小值为,即线段的最小值为.②当,,三点共线时,则在中,由于,可得到,即,由(3)中图象可得的值,即的长.【小问1详解】解:由题可得,利用直尺和量角器画出准确的图形如下:则用直尺量得,∵点是线段上的动点,为,∴自变量的取值范围为:,故答案为:.【小问2详解】解:由表格中的数据可得:在时,的值逐渐减小;在时,的值逐渐增大,∴该函数是以为对称轴的抛物线,∴和为对称点,∴当和时,值相等,∴当时,,即.【小问3详解】解:由(2)表格中的数据可得到该函数的完整图象如下:【小问4详解】解:①结合(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,0 1.5x <≤y 1.52x ≤<y 1.5x = 1.0x = 2.0x =y m 1.5x =y 0.7BD '0.7cm D B D ¢ADD ' AD AD ='AB DD '⊥BD BD '=x y =x BD 2.5cm BC =D BC BD cm x x 0 2.5x <<0 2.5x <<0 1.5x <≤y 1.52x ≤<y 1.5x =1.0x = 2.0x =1.0x = 2.0x =y 1.0x =0.9y =0.9m = 1.5x =结合(2)中表格的数据可知,最小值为,∴线段的最小值为.②如图所示:当,,三点共线时,∵,∴为等腰三角形,∵,∴,即,由(2)得,∴.【点睛】本题考查函数图象实际应用问题,能根据数据画出函数图象是解题的关键.25. 某校为了更好地开展阳光体育二小时活动,对本校学生进行了“写出你最喜欢的体育活动项目”(只写一项)的随机抽样调查,如图是根据得到的相关数据绘制的统计图的一部分.请根据以上信息解答下列问题:(1)该校对 名学生进行了抽样调查;(2)通过计算请将图1和图2补充完整;(3)图2中跳绳所在的扇形对应的圆心角的度数是 ;(4)若该校共有2400名同学,请利用样本数据估计全校学生中最喜欢跳绳运动的人数约为多少?【答案】(1)200;(2)补全图形见解析;(3)144°;(4)估计全校学生中最喜欢跳绳运动的人数约为960人.【解析】的y 0.7BD '0.7cm D B D ¢AD AD ='ADD ' AB DD '⊥BD BD '=x y =0.9x y ==0.9BD =【分析】(1)由最喜欢跳绳运动的人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得最喜欢投篮运动的人数,再除以总人数可得其对应百分比,从而补全图1和图2;(3)用360°乘以最喜欢跳绳运动的人数所占百分比可得跳绳所在的扇形圆心角的度数;(4)总人数乘以样本中最喜欢跳绳运动的人数所占百分比即可得.【详解】(1)被调查的学生总人数为80÷40%=200(人),故答案为:200;(2)最喜欢投篮运动的人数为200﹣(40+80+20)=60(人),最喜欢投篮运动的人数所占百分比为×100%=30%, 补全图形如下:(3)图2中跳绳所在的扇形对应的圆心角的度数是为360°×40%=144°.故答案为144°;(4)2400×40%=960(人).答:估计全校学生中最喜欢跳绳运动的人数约为960人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.26. 二次函数(1)写出函数图象的开口方向、顶点坐标和对称轴.(2)判断点是否在该函数图象上,并说明理由.(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.【答案】(1)开口向下,对称轴为直线,顶点为;(2)不在函数图象上,理由详见解析;(3) 12.602002642y x x =--()3, 4-=1x -(1,8)-【解析】【分析】(1)先把抛物线解析式配成顶点式得到,然后根据二次函数的性质写出开口方向,对称轴方程,顶点坐标;(2)将代入函数解析式求出对应的y 即可判断;(3)确定抛物线与轴的交点坐标为,然后根据三角形面积公式求解.【详解】解:(1)解:(1),抛物线开口向下;,抛物线对称轴方程为,顶点坐标;开口向下,对称轴为直线,顶点为;(2)不在函数图象上.理由:当时,所以点不在函数图象上.(3)令,得,解得,,所以抛物线与轴的交点坐标为,,当x =0时,y =6.抛物线与轴交于点,.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线;对称轴为直线;抛物线与轴的交点坐标为.27. 在中,,,是边上一点,点与关于直线对称,过点作交于,交于.22(1)8y x =-++3x =y (0,6)226422(1)8y x x x =--=-++ 20a =-< ∴22(1)8y x =-++ ∴=1x -(1,8)-=1x -1,8-()3x =29436244y =-⨯-⨯+=-≠-4-(3,)0y =26420x x --=13x =-21x =x (3,0)-(1,0)y 0,6A ()()1136122ABC S ∆=⨯+⨯=2(0)y ax bx c a =++≠2b x a=-y (0,)c ABC 90BAC ∠=︒AB AC =D AB D E AC E EF CD ⊥CD G BC F(1)补全图形;(2)探究线段和的数量关系,并证明;(3)直接写出线段的的数量关系______.【答案】(1)见详解(2),证明见详解 (3)【解析】【分析】(1)先根据点对称的性质作出点E ,再根据垂直平分线的性质作,通过尺规作图过点E 作即可;(2)先通过直角三角形的性质证明,再根据等腰直角三角形的性质和三角形外角的性质证明,从而,最终证得;(3)过点F 作,垂足为P ,先证明得到,再根据是等腰直角三角形得到,从而得到答案.【小问1详解】延长,以点A 为圆心,以为半径画圆弧交延长线于点E ,以点E 为圆心作圆弧,和分别相交于点M 、点N ,再分别以点M 、点N为圆心,大于为半径画圆弧,相交于点Q ,连接,分别于、相交于点G 和点F ;图形补全如下: 【小问2详解】解:,证明如下,如下图所示,连接,交于点O ,CD EF BF DE CD EF =BF DE =EF CD ⊥AEO ACE ∠=∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥()PEF ACD ASA ≌12PF DA DE ==BPF △BF =DA DA DA CD 2MN EQ CD BC CD EF =EC AC EF∵点与关于直线对称,∴是的垂直平分线,∴,,∴,∵,∴,∵,∴,∴,∵,,∴,∴,,∴,∴,∴;【小问3详解】解:如下图所示,过点F 作,垂足为P ,∵,D E AC AC DE DC EC ==90EAC ∠︒DCA ACE∠=∠90EOA AEO ∠+∠=︒EF CD ⊥90GOC GCO ∠+∠=︒GOC AOE ∠=∠OEA GCO ∠=∠AEO ACE ∠=∠90BAC ∠=︒AB AC =45B BCA ∠=∠=︒45EFC B BEF AEO ∠=∠+∠=︒+∠45FCE BCA ACE AEO ∠=∠+∠=︒+∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥90EPF CAD CD EF PEF DAC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴,∴,∵,∴,∴,∵,∴,∵,∴.【点睛】本题考查垂直平分线的性质、等腰直角三角形的性质、等腰三角形的性质和全等三角形的性质,解题的关键是添加正确的辅助线构造出等腰三角形.28. 平面直角坐标系中,点和图形,若上存在点与点对应,则称是图形的“呼应点”.(1)点的“呼应点”的坐标为_______;(2)是否存在点是直线的“呼应点”,若存在,求的值;若不存在,说明理由;(3)直线上存在以为半径的的“呼应点”,直接写出的取值范围______.【答案】(1)(2)存在, (3)【解析】【分析】(1)根据“呼应点”的含义即可完成;(2)由题意可得P 的“呼应点”,把此点坐标代入直线中,即可求得t 的值;(3)设是上的“呼应点”,点N 是直线上点M 的对应点,则可得,从()PEF ACD ASA ≌12PF DA DE ==45B ∠=︒90BPF ∠=︒45B BFP ∠=∠=︒BP PF =222BF BP PF =+BF =12PF DE =BF =xoy (),M a b W W (),N b a --M M W )1Q -(),P t t 3y =+t 2y mx =-()0,4T T e m (1,t =117m -≤≤-3y =+(),M a b T e 2y mx =-(,)N b a --。
中考仿真模拟考试 数学试题 附答案解析
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4
人教版2020年中考数学模拟试题及答案(含详解) (4)
中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
2019-2020年中考数学模拟试卷(四)(I)
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4
数学模拟试卷(四)(满分:120分,时间:90分钟)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·云南)某地区2021年元旦的最高气温为9 ℃,最低气温为-2 ℃,那么该地区这天的最低气温比最高气温低()A .7 ℃B .-7 ℃C .11 ℃D .-11 ℃2.(2022·安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A .B .C .D .3.(2022·安徽)据统计,2021年我省出版期刊总印数3 400万册,其中3 400万用科学记数法表示为()A .3.4×108B .0.34×108C .3.4×107D .34×1064.下列说法正确的是()A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是s 2甲=0.4,s 2乙=0.6,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨D .了解一批电视机的使用寿命,适合用普查的方式5.(2022·吉林长春)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A .a >0B .a <bC .b -1<0D .ab >06. 二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位7.(2022·河池)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中错误的是()A .AB =AD B .AC ⊥BD C .AC =BD D .∠DAC = ∠BAC第7题图 第8题图 第9题图8.(2022·海南)如图,直线m ∥n ,△ABC 是等边三角形,顶点B 在直线n 上,直线m 交AB于点E ,交AC 于点F ,若∠1=140°,则∠2的度数是()A .80°B .100°C .120°D .140°9.(2022·海南)如图,在△ABC 中,AB =AC ,以点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠ABC 的内部相交于点P ,画射线BP ,交AC 于点D ,若AD =BD ,则∠A 的度数是()A .36°B .54°C .72°D .108°10.(2022·陕西)在同一平面直角坐标系中,直线y =-x +4与y =2x +m 相交于点P (3,n ),则关于x ,y 的方程组⎩⎨⎧x +y -4=0,2x -y +m =0的解为() A .⎩⎨⎧x =-1,y =5 B .⎩⎨⎧x =1,y =3C .⎩⎨⎧x =3,y =1 D .⎩⎨⎧x =9,y =-5二、填空题:本大题共5小题,每小题3分,共15分.11.(2022·河池)若二次根式a -1有意义,则a 的取值范围是____.12.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要_____元.(用含m 的代数式表示)13.(2022·长春)若关于x 的方程x 2+x +c =0有两个相等的实数根,则实数c 的值为____.14.(2022·海南)如图,射线AB 与⊙O 相切于点B ,经过圆心O 的射线AC 与⊙O 相交于点D ,C ,连接BC ,若∠A =40°,则∠ACB =____°.第14题图 第15题图15.(2022·陕西)如图,在菱形ABCD 中,AB =4,BD =7.若M ,N 分别是边AD ,BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E ,F ,则ME +NF 的值为______.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(1)计算:(-3)2×3-1+(-5+2)+||-2;(2)解方程组:⎩⎨⎧2x -y =3, ①x +y =6. ②17.(2022·吉林)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.18.(原创)解方程:(1)x(x-2)=2x-4; (2)x-2 0232-1=0.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(2022·江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.20.(2022·河池)为喜迎中国共产党第二十次全国代表大会的召开,某中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是____,圆心角β=____度;(2)补全条形统计图;(3)已知红星中学共有1 200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A ,B ,C ,D 四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A ,C 两人同时参赛的概率.21.(2022·滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(2021·湘潭)如图,四边形ABCD 为矩形,E 为BC 边中点,连接AE ,以AD 为直径的⊙O交AE 于点F ,连接OC ,FC ,OC 交⊙O 于点G .(1)若∠COD =60°,AD =6,求DG ︵的长;(2)求证:四边形AOCE 是平行四边形;(3)求证:CF 是⊙O 的切线.23.(2022·牡丹江、鸡西)如图,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题:①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.。
2020年山西省百校大联考中考数学模拟试卷(四) 解析版
2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。
2024年重庆市中考数学预测模拟试题及答案
2024年重庆中考数学预测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.62.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.767.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是.13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积cm2.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=,∴四边形ABCD是.∴.∵,∴OB=.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=,b=,c=.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A 出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.2024年重庆中考数学预测模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.6【答案】A2.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.【答案】A3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【答案】C4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)【答案】B5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°【答案】B6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.76【答案】D7.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间【答案】C8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.【答案】B9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α【答案】C10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.【答案】见试题解答内容12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是18.【答案】见试题解答内容13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.【答案】.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=﹣20.【答案】﹣20.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积2πcm2.【答案】2π.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为8.【答案】8.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.【答案】见试题解答内容18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为15;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是1125.【答案】15,1125.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).【答案】(1)2xy;(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=OC.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=90° ,∴四边形ABCD是矩形.∴AC=BD.∵,∴OB=AC.【答案】OC,90°,矩形,AC=BD,AC.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=48,b=49,c=45%.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.【答案】(1)48,49,45%;(2)乙班的学生测试成绩较好,理由:乙班的优秀率大于甲班;(3)580人.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?【答案】(1)这个服务区的充电桩有12个,加油枪有8个;(2)新能源汽车在高速路上行驶时平均每公里费用为0.15元.23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.【答案】(1)y=;(2)图象见解析过程,该函数的性质:函数值的最大值为8;(3)x的值为2或5.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?【答案】(1)米;(2)选择路线①所用时间少.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.【答案】(1)y=﹣x2+x+2;(2)PE+CF的最大值为:4.5,此时点P(3,2);(3)点M的横坐标为.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】(1)△ADE的周长为2+2+2;(2)FD=CG+FG,证明见解答;(3)的值为.。
2020年天津市中考数学模拟试题(含答案) (4)
2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。
2024年黑龙江中考数学模拟试题及参考答案
2024年黑龙江中考数学模拟试题及参考答案注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨−=⎩的解也是二元一次方程236x y+=的解,则k的值为()A.34−B.34C.43D.43−2.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x3.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π−B.2233π−C.233π−D.233π−4.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒5.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的6.下列计算,正确的是()A.222()−=−B.(2)(2)2−⨯−=C.3223−=D.8210+=7.计算-5x2-3x2的结果是( )A.2x2B.3x2C.-8x2D.8x28.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.下列计算正确的是()A.x2x3=x6B.(m+3)2=m2+9C.a10÷a5=a5D.(xy2)3=xy610.下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷12mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+4二、填空题(共7小题,每小题3分,满分21分)11.因式分解:-3x2+3x=________.12.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.14.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.15.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.16.点C 在射线AB上,若AB=3,BC=2,则AC为_____.17.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.三、解答题(共7小题,满分69分)18.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m=,n=;扇形统计图中机器人项目所对应扇形的圆心角度数为°;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.19.(5分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF的长.20.(8分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=13,求a的值.21.(10分)如图1所示,点E 在弦AB 所对的优弧上,且为半圆,C 是上的动点,连接CA 、CB ,已知AB =4cm ,设B 、C 间的距离为xcm ,点C 到弦AB 所在直线的距离为y 1cm ,A 、C 两点间的距离为y 2cm .小明根据学习函数的经验,分别对函数y 1、y 2岁自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1、y 2与x 的几组对应值: x /cm 0 1 2 3 4 5 6 y 1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47 y 2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1、y 2的图象;结合函数图象,解决问题: ①连接BE ,则BE 的长约为 cm .②当以A 、B 、C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .22.(10分)如图,在ABCD 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF −的值最大?并求此时sin B 的值.23.(12分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A :很好,95分;B :较好75分;C :一般,60分;D :较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为 ,图②中的m 值为 ; (Ⅱ)求样本中分数值的平均数、众数和中位数.24.(14分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率. 九宫格参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、B 【解题分析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值. 【题目详解】解:59x y k x y k +=⎧⎨−=⎩①②,①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =−, 将7x k =,2y k =−代入236x y +=得:1466k k −=, 解得:34k =. 故选:B . 【题目点拨】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值. 2、C 【解题分析】根据合并同类项法则和去括号法则逐一判断即可得. 【题目详解】解:A .2x 2-3x 2=-x 2,故此选项错误; B .x+x=2x ,故此选项错误; C .-(x-1)=-x+1,故此选项正确; D .3与x 不能合并,此选项错误; 故选C . 【题目点拨】本题考查了整式的加减,熟练掌握运算法则是解题的关键. 3、B 【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可. 【题目详解】 由旋转可知AD=BD ,∵∠ACB=90° ∴CD=BD , ∵CB=CD ,∴△BCD 是等边三角形, ∴∠BCD=∠CBD=60°,∴BC=23π3AC=2,∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π.故答案选:B.【题目点拨】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.4、B【解题分析】如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【题目详解】如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B【题目点拨】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.5、C【解题分析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.6、B 【解题分析】根据二次根式的加减法则,以及二次根式的性质逐项判断即可. 【题目详解】解:,∴选项A 不正确;,∴选项B 正确;∵∴选项C 不正确;,∴选项D 不正确. 故选B . 【题目点拨】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 7、C 【解题分析】利用合并同类项法则直接合并得出即可. 【题目详解】解:222538.x x x −−=− 故选C. 【题目点拨】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键. 8、C 【解题分析】根据线段上的等量关系逐一判断即可. 【题目详解】 A 、∵AD-CD=AC , ∴此选项表示正确; B 、∵AB+BC=AC , ∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【题目点拨】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9、C【解题分析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.【题目详解】x2•x3=x5,故选项A不合题意;(m+3)2=m2+6m+9,故选项B不合题意;a10÷a5=a5,故选项C符合题意;(xy2)3=x3y6,故选项D不合题意.故选:C.【题目点拨】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.10、B【解题分析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【题目详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷12mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误. 故答案选:B.【题目点拨】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.二、填空题(共7小题,每小题3分,满分21分)11、-3x(x-1)【解题分析】原式提取公因式即可得到结果.【题目详解】解:原式=-3x(x-1),故答案为-3x(x-1)【题目点拨】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.12、1.【解题分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=12AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得8CD==.故答案是:1.13、1.【解题分析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【题目详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【题目点拨】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.14、k<2且k≠1【解题分析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.15、y=x+1 2【解题分析】已知直线y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.【题目详解】∵直线y=x 沿y轴向上平移1个单位长度,∴所得直线的函数关系式为:y=x+1.∴A(0,1),B(1,0),∴AB=12,过点O 作OF⊥AB 于点F,则12AB•OF=12OA•OB,∴OF=22222OA OBAB⋅⨯==,即这两条直线间的距离为2.故答案为y=x+1,2.【题目点拨】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k 不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16、2或2.【解题分析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.17、x<1【解题分析】根据一次函数的性质得出不等式解答即可.【题目详解】因为一次函数y=﹣2(x+1)+4的值是正数,可得:﹣2(x+1)+4>0,解得:x<1,故答案为x<1.【题目点拨】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.三、解答题(共7小题,满分69分)18、(1)8,3;(2)144;(3)2 3 .【解题分析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.19、(1)证明见解析;(2)1.【解题分析】(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【题目详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF 是平行四边形.(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC=42, ∴1222BE BC ==,DF=2DE . 在Rt △EMB 中,EM=BE •sin ∠ABC=2, 在Rt △EMD 中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【题目点拨】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.20、(1)710;(2)2222ab a b a b++;(3)101−. 【解题分析】(1)求出BE ,BD 即可解决问题.(2)利用勾股定理,面积法求高CD 即可.(3)根据CD =3DE ,构建方程即可解决问题.【题目详解】解:(1)在Rt △ABC 中,∵∠ACB =91°,a =3,b =4,∴2235,cos 5BC AB a b B AC ∴=+===. ∵CD ,CE 是斜边AB 上的高,中线,∴∠BDC =91°,15BE AB 22==. ∴在Rt △BCD 中, 39cos 355BD BC B =⋅=⨯=5972510DE BE BD ∴=−=−=(2)在Rt △ABC 中,∵∠ACB =91°,BC =a ,AC =b , 2222AB BC AC a b ∴=+=+ABC11S AB CD AC BC 22=⋅=⋅ 222222AC BC ab ab a b CD AB a b a b⋅+∴===++故答案为:2222ab a b a b ++. (3)在Rt △BCD 中,22222cos aa BD BC B a ab a b =⋅=⋅=++,∴222222222122a b a DE BE BD a b a b a b−=−=+−=++, 又1tan 3DE DCE CD ∠==, ∴CD =3DE ,即22222232ab b a a b a b −=⨯++.∵b =3, ∴2a =9﹣a 2,即a 2+2a ﹣9=1.由求根公式得110a =−±(负值舍去),即所求a 的值是101−.【题目点拨】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.【解题分析】(1)由题意得出BC =3cm 时,CD =2.85cm ,从点C 与点B 重合开始,一直到BC =4,CD 、AC 随着BC 的增大而增大,则CD 一直与AB 的延长线相交,由勾股定理得出BD =,得出AD =AB +BD =4.9367(cm ),再由勾股定理求出AC 即可;(2)描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),画出函数y 1、y 2的图象即可;(3)①∵BC =6时,CD =AC =4.1,即点C 与点E 重合,CD 与AC 重合,BC 为直径,得出BE =BC =6即可; ②分两种情况:当∠CAB =90°时,AC =CD ,即图象y 1与y 2的交点,由图象可得:BC =6;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.【题目详解】(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:∵CD⊥AB,∴(cm),∴AD=AB+BD=4+0.9367=4.9367(cm),∴(cm);补充完整如下表:(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,∴BE=BC=6cm,故答案为:6;②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;综上所述:BC的长度约为6cm或4.1cm;故答案为:6或4.1.【题目点拨】本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.22、(1)见解析;(2)1BE =时,22CE CF −的值最大,15sin 4∠=B 【解题分析】 (1)延长BA 、CF 交于点G ,利用可证△AFG ≌△DFC 得出CF GF =,AG DC =,根据CE AB ⊥,可证出12EF GC GF ==,得出AEF G ∠=∠,利用2AB =,4BC =,点F 是AD 的中点,得出2AG =,11222AF AD BC ===,则有AG AF =,可得出AFG AEF ∠=∠,得出2EFC AEF G AEF ∠=∠+∠=∠,即可得出结论;(2)设BE=x ,则2AE x =−,4EG x =−,由勾股定理得出222216CE BC BE x =−=−,222328CG EG CE x =+=−,得出282CF x =−,求出222(1)9CE CF x −=−−+,由二次函数的性质得出当x=1,即BE=1时,CE 2-CF 2有最大值,21615CE x =−=,由三角函数定义即可得出结果.【题目详解】解:(1)证明:如图,延长CF 交BA 的延长线于点G ,∵F 为AD 的中点,∴AF FD =.在ABCD 中,AB CD ∥,∴G DCF ∠=∠.在AFG 和DFC △中,,,,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFG DFC AAS △≌△,∴CF GF =,AG DC =,∵CE AB ⊥.∴12EF GC GF ==, ∴AEF G ∠=∠,∵2AB =,4BC =,点F 是AD 的中点,∴2AG =,11222AF AD BC ===. ∴AG AF =.∴AFG G ∠=∠.∴AFG AEF ∠=∠.在EFG 中,2EFC AEF G AEF ∠=∠+∠=∠,又∵CFD AFG ∠=∠,∴CFD AEF ∠=∠.∴23EFD EFC CFD AEF AEF AEF ∠=∠+∠=∠+∠=∠(2)设BE x =,则2AE x =−,∵2AG CD AB ===,∴224EG AE AG x x =+=−+=−,在Rt CEG △中,222216CE BC BE x =−=−,在Rt CEG △中,22222(4)16328CG EG CE x x x =+=−+−=−, ∵CF GF =, ∴222111(328)82244CF CG CG x x ⎛⎫===−=− ⎪⎝⎭, ∴22222168228(1)9CE CF x x x x x −=−−+=−++=−−+, ∴当1x =,即1BE =时,22CE CF −的值最大,∴CE ==在Rt BEC 中,sin CE B BC ∠==【题目点拨】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.23、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解题分析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m 的值;(2)根据平均数、众数和中位数的定义求解即可.【题目详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分.【题目点拨】理解两幅统计图中各数据的含义及其对应关系是解题关键.24、(1)12;(2)14【解题分析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.。
【浙教版】初三数学下期中第一次模拟试题含答案 (4)
一、选择题1.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( ) A .16B .19C .118D .2152.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P ,则P 的值为( ) A .13B .12C .13或12D .13或233.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率( ) A .12B .13C .14D .164.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有( ) A .12个 B .14个C .18个D .20个5.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 6.若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( ) A .1m <- B .1m >-且0m ≠ C .1m >-D .1m ≥-且0m ≠7.方程220x x -=的根是( ) A .120x x ==B .122x x ==C .120,2x x ==D .120,2x x ==- 8.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( ) A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+9.下列说法中正确的是( ) A .对角线互相垂直的四边形是菱形 B .有一个角是直角的平行四边形是正方形 C .有两个角相等的四边形是平行四边形 D .平移和旋转都不改变图形的形状和大小10.如图,正方形ABCD 中,6AB =,G 是BC 的中点.将ABG 沿AG 对折至AFG ,延长GF 交DC 于点E ,则DE 的长是( )A.2 B.2.5 C.3.5 D.411.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形12.如图,菱形ABCD的边长是5,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为()A.221B.421C.12 D.24二、填空题13.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.14.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____15.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程__________________________.16.若x=2是一元二次方程x2+x+c=0的一个解,则c2=__.17.已知﹣2是关于x的方程x2﹣4x﹣m2=0的一个根,则m=______.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(13,则点C的坐标为______.19.如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动 ,则△OFF周长的最小值是________________;点,且OE OF20.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠BEC的度数是_____度.三、解答题21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数).(1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.22.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为 ;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).23.龙岩市某村2017年的人均收入为7500元,落实精准扶贫工作后,2019年人均收入为14700元.求人均收入的年平均增长率.24.文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适? (2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支? 25.如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .(1)如图1,求证:∠BAF =∠DAE ;(2)如图2,若∠ABC =45°,AE ⊥BC ,连接BD 分别交AE ,AF 于G ,H ,在不添加任何辅助线的情况下,直接写出图中所有的只含有一个3∠ABD 的三角形. 26.某数学活动小组在一次活动中,对一个数学问题作如下研究: (问题呈现)(1)如图1,ABC 中分别以,AB AC 为边向外作等腰ABE △和等腰ACD △,使AE AB =,AD AC =,BAE CAD ∠=∠,连结,BD CE ,试猜想BD 与CE 的大小关系,并说明理由. (问题再探)(2)如图2,ABC 中分别以,AB AC 为边向外作等腰Rt ABE △和等腰Rt ACD △,90EAB CAD ∠=∠=︒,连结,BD CE ,若4,2,45AB BC ABC ==∠=︒,求BD 的长. (问题拓展)(3)如图3,四边形ABCD 中,连结AC ,CD BC =,60BCD ∠=︒,30BAD ∠=︒,15AB =,25AC =,请直接写出AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:123456 1234567 2345678 3456789 45678910 567891011 6789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,∴掷得面朝上的点数之和是5的概率是:41 369.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.2.D解析:D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=2 3当白球2个,红球1个时:摸到的红球的概率为:P=1 3故摸到的红球的概率为:13或23故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.3.B解析:B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】列表得:∴恰好是一双的概率41123.故选B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:设盒子中有红球x 个, 由题意可得:66x +=0.3, 解得:x=14,经检验,x=14是分式方程的解. 估计口袋中红球约有14个. 故选:B 【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.5.D解析:D 【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可; 【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意; B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意; C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意. 故选:D . 【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.6.B解析:B 【分析】利用判别式大于零和二次项系数不为零求解即可. 【详解】∵方程2210mx x +-=有两个不相等的实数根, ∴m≠0,且△>0, ∴m≠0,且224m +>0, ∴1m >-且0m ≠, 故选B . 【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.7.C【分析】本题可用因式分解法,提取x后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x.【详解】解:∵x2-2x=0∴x(x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C.【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用8.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()2+人;21x∴()2=+,21y x故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D、平移和旋转都不改变图形的形状和大小,正确,故选:D.【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt △AFE ≌Rt △ADE 是解答本题的关键.11.C解析:C 【分析】根据正方形、菱形、矩形的判定分别判断得出即可. 【详解】A 、对角线互相垂直平分且相等的四边形是正方形,故原命题是假命题;B 、对角线垂直平分的四边形是菱形,故原命题是假命题;C 、对角线相等且互相平分的四边形是矩形,故原命题是真命题;D 、四边都相等的四边形是菱形,故原命题是假命题; 故选:C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、矩形的判定定理、菱形的判定定理.12.A解析:A 【分析】连接AC 、BD ,由菱形的性质得出5AB =,122OB OD BD ===,OA OC =,AC BD ⊥,由勾股定理求出OA ,得出221AC =,求出菱形的面积,再由中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答. 【详解】解:连接AC 、BD ,如图所示:菱形ABCD 的边长是5,O 是两条对角线的交点,4BD =,5AB ∴=,122OB OD BD ===,OA OC =,AC BD ⊥,22225221OA AB OB ∴=-- 2221AC OA ∴==∴菱形ABCD 的面积11221442122AC BD =⨯=⨯=O 是菱形两条对角线的交点,∴阴影部分的面积12=菱形ABCD 的面积221;故选:A . 【点睛】本题考查了菱形的性质,中心对称,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.二、填空题13.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126=,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.14.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164=故答案为:14. 【点睛】 本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.15.【分析】设道路的宽为将6块草地平移为一个长方形长为宽为根据长方形面积公式即可列方程【详解】设道路的宽为由题意得:故答案为:【点睛】本题主要考查了一元二次方程的应用掌握长方形的面积公式求得6块草地平移 解析:(302)(20)786x x --=⨯【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为()302-x m ,宽为()20x m -.根据长方形面积公式即可列方程(302)(20)786x x --=⨯.【详解】设道路的宽为xm ,由题意得:(302)(20)786x x --=⨯,故答案为:(302)(20)786x x --=⨯.【点睛】本题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.16.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【分析】利用方程的根的性质把x=-2代入方程得到关于m 的方程解这个方程即可【详解】解:∵是方程的一个根∴有解得:故答案为:【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造参解析:23±【分析】利用方程的根的性质把x=-2代入方程得到关于m的方程,解这个方程即可.【详解】解:∵2x=-是方程2240x x m--=的一个根,∴有()()222420m--⨯--=,解得:23m=±,故答案为:23±.【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键.18.【分析】如图作AF⊥x轴于FCE⊥x轴于E先证明△COE≌△OAF推出CE=OFOE=AF由此即可解决问题【详解】解:如图作AF⊥x轴于FCE⊥x轴于E∵四边形ABCO是正方形∴OA=OC∠AOC=解析:()3,1-【分析】如图作AF⊥x轴于F,CE⊥x轴于E,先证明△COE≌△OAF,推出CE=OF,OE=AF,由此即可解决问题.【详解】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,CEO AFOCOE OAFOC OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COE≌△OAF,∴CE =OF ,OE =AF ,∵A (1∴CE =OF =1,OE =AF∴点C坐标(),故答案为:().【点睛】 本题考查全等三角形的判定与性质,作出辅助线构造全等三角形是解题的关键. 19.2+【分析】根据正方形的对角线互相平分且相等可得AO=BO ∠AOB=90°对角线平分一组对角可得∠OAE=∠OBF 再根据AE=BF 然后利用SAS 证明△AOE 和△BOF 全等根据全等三角形对应角相等可得解析:【分析】根据正方形的对角线互相平分且相等可得AO=BO ,∠AOB=90°,对角线平分一组对角可得∠OAE=∠OBF ,再根据AE=BF ,然后利用“SAS”证明△AOE 和△BOF 全等,根据全等三角形对应角相等可得∠AOE=∠BOF ,可得∠EOF=90°,然后利用勾股定理列式计算即可得解.【详解】解:在正方形ABCD 中,AO=BO ,∠AOB=90°,∠OAE=∠OBF=45°,∵点E 、F 的速度相等,∴AE=BF ,在△AOE 和△BOF 中,OA BO OAE OBF AE BF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△BOF (SAS ),∴∠AOE=∠BOF ,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt △BEF 中,设AE=x ,则BF=x ,BE=2-x ,∴,∴当x=1时,EF .由勾股定理得,OE=OF=2EF =1. ∴△OEF 周长的最小值.故答案为:.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,以及勾股定理等知识,熟记正方形的性质,找出三角形全等的条件是解题的关键.20.5【分析】根据正方形的性质AC 平分∠BAD 可得∠BAE =45°再根据AB =AE 由等腰三角形的性质即可求出∠BEC 的度数【详解】解:在正方形ABCD 中AC 平分∠BAD ∴∠BAE =45°而AB =AE ∴∠解析:5.【分析】根据正方形的性质,AC 平分∠BAD ,可得∠BAE =45°,再根据AB =AE ,由等腰三角形的性质即可求出∠BEC 的度数.【详解】解:在正方形ABCD 中,AC 平分∠BAD ,∴∠BAE =45°,而AB =AE ,∴∠ABE =∠AEB =180452︒-︒=67.5°, 又∵∠AEB +∠BEC =180°,∴∠BEC =180°﹣67.5°=112.5°,故答案为112.5.【点睛】 本题考查正方形的性质,等腰三角形的性质.熟记正方形的对角线平分线一组对角,并且将这组对角分成四个45°的角是解决此题的关键.三、解答题21.(1)13;(2)29 【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13, 故答案为:13; (2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.22.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.23.40%【分析】设人均收入的年平均增长率为x ,结合题意,通过列一元二次方程并求解,即可得到答案.【详解】解:设人均收入的年平均增长率为x根据题意得:()275001+14700x =解得:0.4x =或 2.4x =-(舍去)∴人均收入的年平均增长率为40% .【点睛】本题考查了一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)0.3元;(2)2600支【分析】(1)首先求出原利润,再由现在利润=销量×(销售单价-批发价),进而得出等式方程即可解答.(2)利用(1)中所求得出单价,进而求出销量,即可得出总销量.【详解】解:(1)设铅笔的单价降了x 元,则 ()()0.40.2400200.40.240075%0.01x x ⎛⎫--+⨯=-⨯⨯ ⎪⎝⎭ 解之,得:1110x =,2110x =-(舍去), ∴定价:0.40.10.3-=(元);(2)0.14002400203800180026000.01⎛⎫⨯++⨯⨯=+= ⎪⎝⎭(支). 答:这批铅笔有2600支.【点睛】此题主要考查了一元二次方程的应用,利用利润=销量×(销售单价-批发价)得出是解题关键.25.(1)见解析;(2)△BEG ,△ADG ,△DFH, △ABH【分析】(1)根据菱形的性质可得∠B=∠D ,AB=AD ,再证明△ABE ≌△ADF ,得∠BAE=∠DAF ,从而得出结论;(2)根据菱形的性质和∠ABC =45°,得出∠ABD=22.5°,则3∠ABD=67.5°,找出含有67.5°的角的三角形即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴∠B=∠D ,AB=AD ,在△ABE 和△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ADF (SAS ),∴∠BAE=∠DAF .∴∠BAF =∠DAE ;(2)∵四边形ABCD 是菱形,∠ABC =45°,∴∠ABD=∠CBD= 22.5°,∴3∠ABD=67.5°,∵AE ⊥BC ,∴∠AEB= 90°,∴∠BGE=67.5°,∵△ABE ≌△ADF∴∠AFD= 90°,∴△BEG 只含有一个3∠ABD ;同理可得:∠DHF=67.5°,△DFH 只含有一个3∠ABD ;∵四边形ABCD 是菱形,∴AD//BC ,AB//CD∵AE ⊥BC ,∠AFD= 90°,∴∠DAG=∠BAH= 90°,∵∠DHF=∠AH B=67.5°,∠BGE=∠ AGD=67.5°,∴△ADG 只含有一个3∠ABD ;△ABH 只含有一个3∠ABD ;【点睛】本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质. 26.(1)BD CE =,理由见解析;(2)6;(3)20【分析】(1)首先证明EAC BAD ∠=∠,再证明()AEC ABD SAS △≌△,然后根据全等三角形的性质即可证明;(2)根据等腰直角三角形的性质可得到AE AB =,AC AD =,BAE CAD ∠=∠,证明()EAC BAD SAS △≌△,得到CE BD =,再根据勾股定理计算即可;(3)连接BD ,把△ABD 绕点D 逆时针旋转60︒得到△ECD ,连接AE ,由旋转的性质得到EC=AB=15,△ADE 是等边三角形,由勾股定理可求得AE 的长,即可得解;【详解】解:(1)BD CE =,理由如下:∵BAE CAD ∠=∠,∴EAC BAD ∠=∠,又∵AB AE =,AD AC =,∴()AEC ABD SAS △≌△,∴BD CE =;(2)∵等腰Rt ABE 和等腰Rt ACD ,∴AE AB =,AC AD =,BAE CAD ∠=∠, ∴EAC BAD ∠=∠,∴()EAC BAD SAS △≌△,∴CE BD =,∵45ABC EBA ∠=∠=︒,∴90EBC ∠=︒,∵4AB AE ==, ∴224432EB =+=在Rt EBC 中,22(32)26EC =+=,∴6BD =;(3)∵CD BC =,60BCD ∠=︒, ∴△BCD 是等边三角形,连接BD ,把△ABD 绕点D 逆时针旋转60°得到△ECD ,连接AE ,则EC=AB=15,△ADE 是等边三角形,∴AE AD =,60DEA ∠=︒,∵30BAD ∠=︒,∴306090CEA ∠=︒+︒=︒,在Rt △AEC 中,2222251540020AE AC CE =--==, ∴20AD AE ==.【点睛】本题主要考查了四边形综合,准确结合勾股定理和旋转的性质计算是解题的关键.。
中考模拟检测《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016 B. ﹣2016 C. 12016 D. -120162.下列各式化简后的结果为32 的是( )A. 6B. 12C. 18D. 363.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 4.不等式组-32-13x x <⎧⎨≤⎩,的解集在数轴上表示正确的是( ) A. B. C. D. 5.下列判断错误的是( )A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67 7.关于x 一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°9.关于抛物线y =x 2﹣2x +1,下列说法错误是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小10.如图,小明利用测角仪和旗杆拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A.11sinα-m B.11sinα+m C.11cosα-m D.11cosα+m二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上.11.将正比例函数y=2x的图象向左平移3个单位,所得的直线不经过第____象限.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____.13.如图,AB∥CD,CB平分∠ACD,若∠BCD = 28°,则∠A的度数为_________.14.某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=_____.x …﹣2﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 …y … 2 0.75 0﹣0.25 0﹣0.250 m 2 …15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 20.先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人? (3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生概率是多少?23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD周长最小,求出P点的坐标.26.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD 的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos 的值.答案与解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016B. ﹣2016C. 12016D. -12016【答案】C【解析】【分析】 直接利用相反数的定义分析得出答案. 【详解】12016-的相反数是-(1)2016-=1 2016. 故答案是:C.【点睛】此题主要考查了相反数的定义,正确把握定义是解题关键.2.下列各式化简后的结果为 的是( )【答案】C【解析】A 不能化简;B ;C ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.3.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 【答案】B【解析】分析:直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.详解:A 、2x+y 无法计算,故此选项错误;B 、x•2y 2=2xy 2,正确;C 、2x÷x 2=2x,故此选项错误;D、4x-5x=-x,故此选项错误;故选B.点睛:此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.不等式组-32-13xx<⎧⎨≤⎩,的解集在数轴上表示正确的是( )A. B. C. D. 【答案】A【解析】【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【详解】解:3213xx-<⎧⎨-≤⎩①②,由①得,x>-3,由②得,x≤2,故不等式组解集为:-3<x≤2,在数轴上表示为:.故选A.点睛:本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B 、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C 、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D 、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D .【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67【答案】C【解析】【分析】根据次数出现最多的数是众数,根据中位数的定义即可解决问题.【详解】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68. 故选C .【点睛】本题考查众数、中位数定义,记住众数、中位数的定义是解决问题的关键,属于中考常考题型. 7.关于x 的一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 【答案】A【解析】【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°【答案】D【解析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:180°+540°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°,故选D.9.关于抛物线y=x2﹣2x+1,下列说法错误的是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小【答案】D【解析】【分析】利用二次函数的性质来解题即可.【详解】解:抛物线y=x2﹣2x+1,对称轴是直线21221bxa-=-=-=⨯,故A选项内容正确,不符合题意;△=b2﹣4ac=(﹣2)2﹣4×1×1=0,所以抛物线与x轴只有一个交点,故B选项内容正确,不符合题意; 抛物线a=1>0,所以开口向上,故C选项内容正确,不符合题意;因为抛物线开口向上,所以在对称轴右侧,即x>1时,y随x的增大而增大,所以D选项错误.符合题意,故选D.【点睛】此题考察二次函数的性质,熟记性质才能熟练运用.10.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A. 11sin α-mB. 11sin α+mC. 11cos α- mD. 11cos α+ m 【答案】A【解析】【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PC PB ',列出方程即可解决问题. 【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PC PB ', ∴1x x-=sinα, ∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-. 故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.将正比例函数y =2x 的图象向左平移3个单位,所得的直线不经过第____象限.【答案】四【解析】【详解】根据上加下减自变量,得:2(+3)2+6y x x == ,过一、二、三象限. 即所得的直线不经过第四象限.故答案:四.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____. 【答案】23 【解析】【分析】列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.【详解】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间, 所以甲没排在中间的概率是42=63. 故答案为:23. 【点睛】本题考查列举法求概率,正确理解题意列举出所有的情况是解题关键.13.如图,AB ∥CD ,CB 平分∠ACD ,若∠BCD = 28°,则∠A 的度数为_________.【答案】124°【解析】试题分析:根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到∠A=180°﹣∠ABC ﹣∠ACB=124°,故答案为124°.考点:平行线的性质14.某学习小组为了探究函数y =x 2﹣|x |的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =_____. x … ﹣2 ﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 … y … 2 0.75 0 ﹣0.25﹣0.25 0 m 2 …【答案】0.75【解析】当x >0时,函数2y x x =-=2x x -,当x =1.5时,y =21.5 1.5-=0.75,则m =0.75.故答案为0.75.点睛:本题考查了二次函数图象上点的坐标特征以及绝对值,解题的关键是找出当x >0时,函数的关系式.本题属于基础题,难度不大,解决该题型题目时,根据绝对值的性质找出当x >0时y 关于x 的函数关系式是关键.15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.【答案】(答案不唯一)如(1,-3)等【解析】【详解】解:根据整点的定义可得x、y均为整数,即x是3的约数,当x=3时,y=-13、-1均为整数,故3yx=-图象上的整点为(3,-1),故答案为:(答案不唯一)如(1,-3)等16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)【答案】24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P =40°,则∠ADC=____°.【答案】115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决. 【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.【答案】13【解析】设第n 个图形有a n 个旗子,观察,发现规律:a 1=1,a 2=1+2=3,a 3=3+1=4,a 4=4+2=6,a 5=6+1=7,…,a 2n+1=3n+1,a 2n+2=3(n+1)(n 为自然数),当n=4时,a 9=3×4+1=13, 故答案13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 【答案】16【解析】分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.详解:原式=121123⎛⎫-+-⨯- ⎪⎝⎭=1223-+=16. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:2211()111x x x x-÷+--,其中12x =-. 【答案】2x-,4. 【解析】【分析】 先括号内通分,然后计算除法,最后代入化简即可.【详解】原式=()2221112=-1x x x x x x--+-⨯- . 当12x =-时,原式=4. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.【答案】见解析【解析】试题分析:首先证明AE ∥CF ,△ABE ≌△CDF ,再根据全等三角形的性质可得AE =CF ,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF 是平行四边形,根据平行四边形的性质可得AF =CE .试题解析:证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .又∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°,AE ∥CF .在△ABE 和△CDF 中,{ABE CDFAEB CFDAB CD∠∠∠∠===,∴△ABE ≌△CDF (AAS),∴AE =CF .∵AE ∥CF ,∴四边形AECF 是平行四边形,∴AF =CE . 22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-015-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生? 【答案】(1)女生15人,男生27人;(2)至少派22人【解析】【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设派m名男学生,则派的女生为(30-m)名,根据”每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】(1)设该班男生有x人,女生有y人,依题意得:4223 x yx y⎨⎩+-⎧==,解得:2715xy⎧⎨⎩==.∴该班男生有27人,女生有15人.(2)设派m名男学生,则派的女生为(30-m)名,依题意得:50m+45(30-m)≥1460,即5m+1350≥1460,解得:m≥22,答:至少需要派22名男学生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.24.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【答案】84.【解析】试题分析:根据题意利用勾股定理表示出AD 2的值,进而得出等式求出答案.试题解析:作AD ⊥BC 于D ,如图所示:设BD = x ,则14CD x =-.在Rt △ABD 中,由勾股定理得:2222215AD AB BD x =-=-,在Rt △ACD 中,由勾股定理得:()222221314AD AC CD x =-=--,∴2215x -= ()221314x --,解之得:9x =.∴12AD =. ∴1·2ABC S BC AD ∆= 11412842=⨯⨯=. 25.如图,顶点为A 31)的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ;(3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.【答案】(1)y=﹣13x2+33x;(2)证明见解析;(3)P(﹣35,0).【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先求出直线OA对应的一次函数的表达式为y 3.再求出直线BD的表达式为y3﹣2.最后求出交点坐标C,D即可;(3)先判断出C'D与x轴的交点即为点P,它使得△PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ即可.【详解】解:(1)∵抛物线顶点为A31),设抛物线解析式为y=a(x32+1,将原点坐标(0,0)在抛物线上,∴0=a3)2+1∴a=﹣13,∴抛物线的表达式为:y=﹣13x223x.(2)令y=0,得0=﹣13x2+23x,∴x=0(舍),或x3∴B点坐标为:(3,0),设直线OA的表达式为y=kx.∵A31)在直线OA上,3=1,∴k3∴直线OA 对应的一次函数的表达式为y =33x . ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b .∵B (23,0)在直线BD 上,∴0=33×23+b ,∴b =﹣2, ∴直线BD 的表达式为y =33x ﹣2. 由2321233y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(33),令x =0得,y =﹣2,∴C 点的坐标为(0,﹣2),由勾股定理,得:OA =2=OC ,AB =2=CD ,OB 3OD .在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩,∴△OAB ≌△OCD .(3)点C 关于x 轴的对称点C '的坐标为(0,2),∴C 'D 与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,∴PO ∥DQ ,∴△C 'PO ∽△C 'DQ ,∴''PO C O DQ C Q =253=,∴PO 23, ∴点P 的坐标为(23,0). 【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,全等三角形的性质和判定,相似三角形的性质和全等,解答本题的关键是确定函数解析式.26.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos α的值.【答案】3矩形移动距离为38时,矩形与△CBD 3313+ 【解析】 分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD ,CD ,利用中位线的性质可得EF ,DF ,利用三角函数可得GF ,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与△CBD 重叠部分为三角形时(0<x ≤14),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD 重叠部分为直角梯形时(14<x ≤12),列出方程解得x; (3)作H 2Q ⊥AB 于Q ,设DQ=m ,则H 2Q 3m ,又DG 1=14,H 2G 1=12,利用勾股定理可得m ,在Rt △QH 2G 1中,利用三角函数解得cosα.详解:(1)如图①,在ABC ∆中,∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==. 又∵EF 是ACD ∆的中位线,∴12EF DF ==, 在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°.在FGD ∆中,sin GF DF =⋅60°34=, ∴矩形EFGH 的面积133248S EF GF =⋅=⨯=. (2)如图②,设矩形移动的距离为则102x <≤,当矩形与△CBD 重叠部分为三角形时,则104x <≤, 1332S x x ==, ∴214x =>.(舍去). 当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤, 重叠部分的面积3113324x -⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316. (3)如图③,作2H Q AB ⊥于Q .设DQ m =,则23H Q m =,又114DG =,2112H G =. 在Rt △H 2QG 1中,)22211342m m ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭ , 解之得113m -±=负的舍去). ∴1211131313164cos 12QG H G α-+++===. 点睛:本题主要考查了直角三角形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键.。
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵
∴
∵
∴
∴
∴
在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式
;
【小问2详解】
原式
.
【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试题四一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.32的相反数是A .32-B .32C .23-D .232. 2012年第七届原创新春祝福短信微博大赛作品充满了对龙年浓浓的祝福, 主办方共收到原创祝福短信作品41 430条,将41 430用科学记数法表示应为A .41.43 ⨯ 103B .4.143 ⨯ 104C .0.4143 ⨯ 105D .4.143⨯ 1053. 如图, 点A 、B 、C 在⊙O 上, 若∠C =40︒, 则∠AOB 的度数为 A .20︒ B .40︒C .80︒D .100︒4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面 的点数为偶数的概率为 A .61 B .31 C .41 D .215.如图,在△ABC 中,∠C =90︒, 点D 在CB 上,DE ⊥AB 于E ,若DE=2, CA=4,则DBAB的值为A .41B .31C .12D .326.将代数式142-+x x 化为q p x ++2)(的形式, 正确的是A .3)2(2+-xB .5)2(2-+xC .4)2(2++xD .4)2(2-+x:A. 0.032, 0.0295B. 0.026, 0.0295C. 0.026, 0.032D. 0.032, 0.027 8.下列图形中,能通过折叠围成一个三棱柱的是A B C D二、填空题(本题共16分,每小题4分) 9.函数y =31-+x x 的自变量x 的取值范围是 . 10.分解因式:x 3 - 4x = .11. 右图是某超市一层到二层滚梯示意图.其中AB 、CD 分别 表示超市一层、二层滚梯口处地面的水平线, ∠ABC =150°,BC 的长约为12米,则乘滚梯从点B 到点C 上升的高度h 约为 米. 12. 在平面直角坐标系xOy 中, 正方形A 1B 1C 1O 、 A 2B 2C 2B 1、A 3B 3C 3B 2, …,按右图所示的方 式放置. 点A 1、A 2、A 3, …和 B 1、B 2、B 3, … 分别在直线y =kx +b 和x 轴上. 已知C 1(1, -1), C 2(23,27-), 则点A 3的坐标是 ;点A n 的坐标是 .三、解答题(本题共30分,每小题5分) 13.计算:10)31(45sin 28π)14.3(-+︒-+-.14.解不等式组: ()20213 1.x x x ->⎧⎨+≥-⎩,15. 如图,AC //FE , 点F 、C 在BD上,AC=DF , BC=EF . 求证:AB=DE .16.已知⎩⎨⎧==b y a x ,是方程组⎩⎨⎧=-=+12,32y x y x 的解, 求5)4()(4+-+-b a b b a a 的值.ABCDEFE DCA①②17.如图,在平面直角坐标系xOy 中,反比例函数xy 3=的图象与一次函数y =kx 的图象的一个交点为A (m , -3). (1)求一次函数y =kx 的解析式; (2)若点P 在直线OA 上,且满足PA=2OA ,直接 写出点P 的坐标. 18.列方程或方程组解应用题: 三月植树节期间,某园林公司增加了人力进行园林绿化,现在平均每天比原计划 多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,问现在平均每天植树多少棵? 四、解答题(本题共20分,每小题5分) 19.如图,在四边形ABCD 中,∠ABC =90︒,∠CAB =30︒, DE ⊥AC 于E ,且AE=CE ,若DE=5,EB=12,求四边形ABCD 的周长. 20.如图,△ABC 内接于⊙O , AD 是⊙O 直径, E 是CB 延长线上一点, 且∠BAE =∠C .(1)求证:直线AE 是⊙O 的切线;(2)若EB =AB , 54cos =E , AE =24,求EB 的长及⊙O 的半径.21. 以下是根据某手机店销售的相关数据绘制的统计图的一部分.图1 图2 请根据图1、图2解答下列问题: (1)来自该店财务部的数据报告表明,该手机店1~4月的手机销售总额一共是290万元,请将图1中的统计图补充完整; (2)该店1月份音乐手机的销售额约为多少万元(结果保留三个有效数字)?(3)小刚观察图2后认为,4月份音乐手机的销售额比3月份减少了,你同意他的看法吗?请你说明理由.某手机店今年1~4月 各月手机销售总额统计图 某手机店今年1~4月音乐手机销售额占该手机店当月手机销售总额的百分比统计图ED C B A22.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD =90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.图1 图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于 .请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC , 分别以AB 、AC 、BC 为边向外作正方形 ABDE 、AGFC 、BCHI , 连接EG 、FH 、ID .(1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以EG 、FH 、ID 的长度为三边长的三角形的面积等于 . 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程 03)13(2=+++x m mx .(1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P ),(11y x 与Q ),(21y n x +在(2)中抛物线上 (点P 、Q 不重合), 且y 1=y 2, 求代数式81651242121++++n n n x x 的值.B OCD A IG FABC D E24. 在□ABCD 中,∠A =∠DBC , 过点D 作DE =DF , 且∠EDF=∠ABD , 连接EF 、 EC ,N 、P 分别为EC 、BC 的中点,连接NP . (1)如图1,若点E 在DP 上, EF 与DC 交于点M , 试探究线段NP 与线段NM 的数量关系及∠ABD 与∠MNP 满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上, 当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.图1 图225. 已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .(1)如图1,若点P 的横坐标为1,点B 的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M 是直线AB 下方抛物线上的一点,且3ABM S ∆=, 求点M 的坐标;(3)如图2,若点P 在第一象限,且PA =PO ,过点P 作PD ⊥x 轴于点D . 将抛物线2y x bx c =++平移,平移后的抛物线经过点A 、D ,该抛物线与x 轴的另一个交点为C ,请探究四边形OABC 的形状,并说明理由.MB D CE A N PN A E FC D B中考数学模拟试题四答案一、选择题(本题共32分,每小题4分)1. A2. B3. C4. D5. C6. B7. A8. C 二、填空题(本题共16分,每小题4分)9.3x ≠ 10.)2)(2(-+x x x 11. 6 12.()1129933(,);5()4,()4422n n --⨯-三、解答题(本题共30分, 每小题5分)13.解:10)31(45sin 28π)14.3(-+︒-+-=123++=414.因此不等式组的解集为23x <≤. ……………………5分 15.证明:∵ AC //EF ,∴ ACB DFE ∠=∠. ………………………… 1分在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠=,,,EF BC DFE ACB DF AC ∴ △ABC ≌△DEF . ∴ AB=DE .16. 解: 法一:∵ ⎩⎨⎧==b y a x ,是方程组 ⎩⎨⎧=-=+12,32y x y x 的解, ∴ ⎩⎨⎧=-=+.12,32b a b a 解得 1,1.a b =⎧⎨=⎩∴ ()4()(4)541(11)141158a a b b a b -+-+=⨯⨯-+⨯⨯-+=.5分法二:∵ ⎩⎨⎧==b y a x ,是方程组 ⎩⎨⎧=-=+12,32y x y x 的解,∴ ⎩⎨⎧=-=+.12,32b a b a ……………………2分2222444545(2)(2)5a ab ab b a b a b a b =-+-+=-+=+-+原式. …4分 123,2=-=+b a b a 将代入上式, 得.85135)2)(2(=+⨯=+-+=b a b a 原式 ………………………5分17.解:(1)∵ 点A (,3m -)在反比例函数xy 3=的图象上,∴ m33=-. ∴ 1m =-. ∴ 点A 的坐标为A (-1, -3).∵ 点A 在一次函数y kx =的图象上, ∴ 3k =. ∴ 一次函数的解析式为y =3x .(2)点P 的坐标为P (1, 3) 或P (-3, -9). …… 5分 18.解:设现在平均每天植树x 棵.…………………… 1分依题意, 得60045050xx =-. ………… 2分解得:200x =. ……………… 3分经检验,200x =是原方程的解,且符合题意. ……4分 答:现在平均每天植树200棵. ……………………… 5分 四、解答题(本题共20分, 每小题5分) 19.解: ∵∠ABC =90︒,AE=CE ,EB =12, ∴ EB=AE=CE =12. ∴ AC =AE+CE =24.∵在Rt△ABC 中,∠CAB =30︒, ∴ BC=12, cos30AB AC =⋅︒=∵ DE AC ⊥,AE=CE , ∴ AD=DC .由勾股定理得AD13==.∴DC =13.∴ 四边形ABCD 的周长=AB +BC +CD +DA=38+ …… 5分20.(1)证明:连结BD .∵ AD 是⊙O 的直径, ∴∠ABD =90°. ∴∠1+∠D =90°. ∵∠C =∠D ,∠C =∠BAE , ∴∠D =∠BAE . ∴∠1+∠BAE =90°.即 ∠DAE =90°.∵AD 是⊙O 的直径,∴直线AE 是⊙O 的切.(2)解: 过点B 作BF ⊥AE 于点F , 则∠BFE =90︒.∵ EB =AB , ∴∠E =∠BAE , EF =12AE =12×24=12. ∵∠BFE =90︒, 4cos 5E =, ∴512cos 4EF EB E ==⨯=15. ∴ AB =15.由(1)∠D =∠BAE ,又∠E =∠BAE , ∴∠D=∠E .∵∠ABD =90︒, ∴ 54cos ==AD BD D . 设BD =4k ,则AD =5k .在Rt △ABD 中, 由勾股定理得AB=3k ,可求得k =5.∴.25=AD∴⊙O 的半径为252.21.解:(1)290-(85+80+65)=60 (万元) . 补图(略)(2)85⨯23%=19.55≈19.6 (万元).所以该店1月份音乐手机的销售额约为19.6万元. (3)不同意,理由如下:3月份音乐手机的销售额是 6018%10.8⨯=(万元),4月份音乐手机的销售额是 6517%11.05⨯=(万元).而 10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了. 22. 解:△BCE 的面积等于 2 . …………1分 (1)如图(答案不唯一):以EG 、FH 、ID 的长度为三边长的 一个三角形是△EGM . …………3分 (2) 以EG 、FH 、ID 的长度为三边长的三角形的面积等于 3 . …………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)当m =0时,原方程化为,03=+x 此时方程有实数根 x = -3.当m ≠0时,原方程为一元二次方程.∵()()222311296131m m m m m ∆=+-=-+=-≥0. ∴ 此时方程有两个实数根.综上, 不论m 为任何实数时, 方程 03)13(2=+++x m mx 总有实数根. (2)∵令y =0, 则 mx 2+(3m +1)x +3=0.解得 13x =-,21x m=-. ∵ 抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,∴1m =. ∴抛物线的解析式为243y x x =++.(3)法一:∵点P ),(11y x 与Q ),(21y n x +在抛物线上,∴2211121143,()4()3y x x y x n x n =++=++++. ∵,21y y =∴22111143()4()3x x x n x n ++=++++.可得 04221=++n n n x .即 0)42(1=++n x n . ∵ 点P , Q 不重合, ∴ n ≠0.∴ 124x n =--.∴ 222211114125168(2)265168x x n n n x x n n n ++++=+⋅+++22(4)6(4)516824.n n n n n =++--+++=………7分法二:∵ 243y x x =++=(x +2)2-1, ∴ 抛物线的对称轴为直线 x =-2.∵ 点P ),(11y x 与Q ),(21y n x +在抛物线上, 点P , Q 不重合, 且,21y y =∴ 点 P , Q 关于直线 x =-2对称.∴11 2.2x x n++=- ∴ 124x n =--.…………………5分下同法一.24. 解:(1) NP =MN , ∠ABD +∠MNP =180︒(2)点M 是线段EF 的中点(或其它等价写法). 证明:如图, 分别连接BE 、CF .∵ 四边形ABCD 是平行四边形,∴ AD ∥BC ,AB ∥DC ,∠A =∠DCB , ∴∠ABD =∠BDC . ∵ ∠A =∠DBC ,∴ ∠DBC =∠DCB .∴ DB =DC . ① …………3分∵∠EDF =∠ABD ,∴∠EDF =∠BDC .∴∠BDC-∠EDC =∠EDF-∠EDC .即∠BDE =∠CDF . ②又 DE =DF , ③由①②③得△BDE ≌△CDF . ∴ EB =FC , ∠1=∠2.∵ N 、P 分别为EC 、BC 的中点, ∴NP ∥EB , NP =EB 21. 同理可得 MN ∥FC ,MN =FC 21.∴ NP = NM .∵ NP ∥EB ,∴∠NPC =∠4.∴∠ENP =∠NCP +∠NPC =∠NCP +∠4. ∵MN ∥FC ,∴∠MNE =∠FCE =∠3+∠2=∠3+∠1.∴ ∠MNP =∠MNE +∠ENP =∠3+∠1+∠NCP +∠4=∠DBC +∠DCB =180︒-∠BDC =180︒-∠ABD .∴ ∠ABD +∠MNP =180︒.M 1 3 2 4 PN A EFCDBED CB AG25.解:(1)依题意, 112=⨯-b, 解得b =-2. 将b =-2及点B (3, 6)的坐标代入抛物线解析式2y x bx c =++得 26323c =-⨯+. 解得 c =3.所以抛物线的解析式为322+-=x x y .(2)∵抛物线 322+-=x x y 与y 轴交于点A ,∴ A (0, 3). ∵ B (3, 6),可得直线AB 的解析式为3y x =+.设直线AB 下方抛物线上的点M 坐标为(x ,322+-x x ),过作y 轴的平行线交直线AB 于点N , 则N (x , x +3). (如图 ∴ 132ABM AMN BMNB A S S S MN x x ∆∆∆=+=⋅-=()21323332x x x ⎡⎤+--+⨯=⎣⎦.解得 121,2x x == ∴点M 的坐标为(1, 2) 或 (2, 3).(3)如图2,由 PA =PO , OA =c , 可得2cPD =.∵抛物线c bx x y ++=2的顶点坐标为 )44,2(2b c bP --, 图1 ∴ 2442cb c =-.∴ 22b c =. ∴ 抛物线2221b bx x y ++=, A(0,212b ),P (12b -,214b ), D (12- 可得直线OP 的解析式为12y bx =- ∵ 点B 是抛物线2212y x bx b =++与直线12y bx =-的图象的交点,令 221122bx x bx b -=++.解得12,2bx b x =-=-. 图2可得点B 的坐标为(-b ,212b ). 由平移后的抛物线经过点A , 可设平移后的抛物线解析式为2212y x mx b =++.将点D (12b -,0)的坐标代入2212y x mx b =++,得32m b =. ∴ 平移后的抛物线解析式为223122y x bx b =++. 令y =0, 即2231022x bx b ++=. 解得121,2x b x b =-=-.依题意, 点C 的坐标为(-b ,0).∴ BC =212b .∴ BC = OA .又BC ∥OA ,∴ 四边形OABC 是平行四边形.∵ ∠AOC =90︒,∴ 四边形OABC 是矩形.。