酚氯仿法提取DNA的原理
酚氯仿法提取DNA的原理
作者: 渭水凡夫(站内联系TA)发布: 2013-04-06最近在博客上看到的一篇可以作为入门级《分子生物学十万个为什么》和大家分享一下用酚抽提细胞DNA时,有什么作用?使蛋白质变性,同时抑制了DNase的降解作用。
用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。
蛋白分子溶于酚相,而DNA 溶于水相。
使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。
缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。
2. 不能完全抑制RNase的活性。
氯仿的作用?氯仿:克服酚的缺点;加速有机相与液相分层。
最后用氯仿抽提:去除核酸溶液中的迹量酚。
(酚易溶于氯仿中)用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么?异戊醇:减少蛋白质变性操作过程中产生的气泡。
异戊醇可以降低表面张力,从而减少气泡产生。
另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。
用乙醇沉淀DNA时,为什么加入单价的阳离子?用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或 NaAc,Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。
原理:动物和植物组织的脱氧核糖核蛋白(DNP)可溶于水或浓盐溶液(如1mol/L氯化钠),但在L氯化钠盐溶液中溶解度最低,而核酸核蛋白(RNP)则在L氯化钠中溶解度最大,利用这一性质可将其分开。
将沉淀物溶解于生理盐水,加入去污剂十二烷基硫酸钠(SDS)溶液,使DNA与蛋白质分离开。
加入固体氯化钠使其浓度达到1mol/L,使DNA溶解。
加氯仿-异戊醇去除蛋白质,也可重复该步操作得较纯DNA。
最后用95%乙醇沉淀DNA。
溶解:将离心后除去RNA的沉淀,用30ml生理盐水溶解,充分搅拌后,匀浆一次。
加4毫升10%SDS溶液,使溶液的SDS浓度达到1%左右,边加边搅拌,放置60 ℃水浴保温10分钟(不停搅拌),冷却。
提取dna的方法及原理
提取dna的方法及原理提取DNA的方法及原理DNA提取是生物学和遗传学研究中的一项基础操作,它是获取DNA样本的过程。
DNA提取的方法有很多种,下面将介绍几种常用的DNA提取方法及其原理。
1. 高盐法高盐法是一种简单且常用的DNA提取方法。
其原理是利用高盐溶液中DNA与其他细胞组分(如蛋白质)之间的亲和性差异。
在高盐环境下,DNA更容易溶解而不与蛋白质结合,从而实现DNA的提取。
具体步骤包括细胞破碎、加入高盐溶液、离心分离DNA和去除蛋白质等。
2. 酚/氯仿法酚/氯仿法是一种经典的DNA提取方法。
其原理是利用酚和氯仿两种溶剂的密度差异,将DNA从细胞中分离出来。
具体步骤包括细胞破碎、加入酚/氯仿混合液、离心分离DNA和去除蛋白质等。
3. 硅胶柱法硅胶柱法是一种高纯度DNA提取方法。
其原理是利用硅胶柱上的硅胶颗粒与DNA之间的亲和性差异。
DNA样本在经过一系列处理后,通过硅胶柱,DNA能够与硅胶颗粒结合,而杂质则被洗脱。
最后,通过洗脱DNA,即可获得高纯度的DNA。
硅胶柱法的优点是提取纯度高、操作简单,适用于分子生物学研究和临床诊断。
4. 磁珠法磁珠法是一种高效、快速的DNA提取方法。
其原理是利用带有亲和基团的磁珠与DNA之间的亲和性,实现DNA的选择性吸附和洗脱。
具体步骤包括磁珠悬浮液制备、样本加入、磁珠与DNA结合、磁珠分离、洗脱DNA等。
除了上述常用的DNA提取方法外,还有其他一些特殊的DNA提取方法,如酶解法、离心法、凝胶切割法等。
这些方法在不同的实验和应用中具有各自的特点和优势。
总结起来,DNA提取的方法多种多样,选择适合的方法取决于实验目的、样本类型和实验条件等。
无论采用哪种方法,都需要严格控制实验操作,以确保提取到高质量的DNA样本。
DNA提取的成功与否直接影响到后续的实验结果,因此在进行DNA提取时,需要注意样本的保存、细胞破碎的方式、溶解液的选择等因素,以获得可靠且高纯度的DNA。
酚氯仿法提取DNA实验报告
酚氯仿法和试剂盒法提取DNA实验报告一、实验目的实验原理:酚氯仿法:先从全血中分离白细胞,再通过蛋白酶K 消化,通过酚、氯仿的抽提,使DNA进入水相与蛋白质成分分开,在RNase作用下,降解RNA以纯化DNA。
蛋白酶K的重要特性是能在SDS和EDTA乙二胺四乙酸二钠存在下保持很高的活性。
在匀浆后提取DNA的反应体系中晶SDS可破坏细胞膜、核膜晶并使组织蛋白与DNA分离晶EDTA则抑制细胞中Dnase的活性 而蛋白酶K可将蛋白质降解成小肽或氨基酸晶使DNA分子完整地分离出来。
氯仿-异戊醇溶液可以使核蛋白变性沉淀晶将核酸物质萃取出来 再向萃取液中加入适量乙醇晶可使DNA析出。
氯仿异戊醇抽提和乙醇沉淀方法在DNA纯化研究中非常常用晶氯仿-异戊醇抽提的原理是晶氯仿可使蛋白质变性并加速有机相与液相分层 异戊醇有助于消除抽提过程中产生的气泡。
而DNA不溶于乙醇等有机溶剂晶因此可以通过乙醇沉淀来纯化和浓缩DNA二、实验用品试剂:1mol/L(M)Tris-Cl(pH8.0),0.5M EDTA(pH8.0),5M NaClTES(15mM Tris,15mM EDTA,15mM NaCl)Tris饱和酚(PH8.0)氯仿/异戊醇(V/V=24/1)10%SDS5mg/ml Protease K70%乙醇、无水乙醇TE缓冲液(pH8.0):10mM T ris-Cl(PH8.0)1mM E DTA(PH8.0)10mg/mL 溴化乙锭(EB)耗材:仪器:低温离心机、移液枪一套,低温冰箱,恒温水浴锅、紫外分光光度计(Eppendorf)。
三、实验步骤4.1取血样:实验人员相互取血样5ml.(用品:采血管、采血针、无水乙醇、棉签、橡皮管、废液缸)4.2血液样品的预处理:分取2ml 血样加入到离心管A中用于酚氯仿法提取DNA。
1) 破除RBC:用移液器将采血管中剩余的3ml血样中的血凝块取出转移到组织匀浆器中研磨粉碎,再移入50ml 离心管B 中,再加入5倍体积无菌水,颠倒混匀,冰上静置十分钟,用于试剂盒法提取DNA。
DNA和RNA提取方法及原理
DNA和RNA提取方法及原理DNA提取方法及原理:1.酚/氯仿法:酚/氯仿法是最常用的DNA提取方法之一、其原理是通过酚类物质将细胞质膜破坏,使DNA从细胞内溶解出来,然后利用氯仿的重度稠化剂作用,将DNA上层的蛋白质、脂类等杂质与下层的DNA分离。
2.盐溶液法:盐溶液法是一种温和的DNA提取方法,适用于多种植物和动物样品。
其原理是将样品细胞裂解后,加入高浓度盐溶液中,通过离心分离出DNA上层液相。
3.硅胶柱法:硅胶柱法是一种高效纯化DNA的方法,可去除杂质并提高DNA的纯度。
该方法利用硅胶柱对DNA进行吸附,去除杂质,然后通过洗脱得到纯净的DNA。
这种方法常用于分离较小的DNA片段。
4.酶解法:酶解法是一种特异性较高的DNA提取方法,通过特定的酶切酶对细胞膜进行消化,将DNA释放出来。
常用的酶解酶有蛋白酶K和蛋白酶E等。
RNA提取方法及原理:1.酚酸法:酚酸法是最常用的RNA提取方法之一、它基于RNA和DNA的相对稳定性差异,利用酚酸破坏细胞膜、沉淀RNA,然后利用酚酸与蛋白质和DNA 形成复合物,分离RNA。
2.硅胶柱法:硅胶柱法也适用于RNA提取。
与DNA的硅胶柱法不同的是,RNA在硅胶柱上结合后会进行一系列的洗脱步骤,除去污染物。
该方法能有效去除DNA、蛋白质、盐和其他杂质。
3.离心收集法:离心收集法是一种简便、快速的RNA提取方法。
根据RNA在水相中的溶解性,通过离心将细胞裂解液中的RNA分离出来,然后加入酒精沉淀纯化。
4.硅酸盐法:硅酸盐法是一种特异性较高的RNA提取方法,通过利用试剂中的硅酸盐吸附RNA,并在洗涤步骤中去除杂质,从而得到纯净的RNA。
酚氯仿抽提原理
酚氯仿抽提原理
酚氯仿抽提原理是一种常见的有机物提取方法,该方法通过酚氯仿与样品中的目标化合物发生化学反应,将目标化合物从样品中分离出来。
下面将详细介绍酚氯仿抽提原理:
1.溶剂选择:酚氯仿是一种有机溶剂,对许多有机物具有良好
的溶解能力,因此在酚氯仿抽提过程中常常选择酚氯仿作为抽提溶剂。
2.抽提原理:酚氯仿可以与目标化合物发生亲油性反应,形成
可溶于酚氯仿的复合物,并从样品中抽提出来。
这是因为酚氯仿的化学性质使其能够与许多有机物形成相互作用,例如氢键、氧化还原反应等。
3.抽提条件:酚氯仿抽提的条件包括温度、pH值、搅拌速度等。
适当的条件可以促进酚氯仿与目标化合物的反应,并提高抽提效果。
4.抽提步骤:酚氯仿抽提的步骤通常包括样品制备、酚氯仿溶
液制备、抽提过程和目标化合物的分离。
其中,在样品制备过程中需要将样品研磨或者加入适当的溶剂溶解,以便更好地与酚氯仿反应。
5.分离纯化:一般情况下,酚氯仿抽提得到的溶液中还包含有
一些杂质。
为了得到纯净的目标化合物,需要进行进一步的分离纯化步骤,例如溶剂挥发、晶体生长等。
总之,酚氯仿抽提原理通过酚氯仿与目标化合物的化学反应来分离目标化合物。
通过优化溶剂的选择、抽提条件的控制以及后续的分离纯化步骤,可以得到纯净的目标化合物。
酚氯仿法提取DNA原理及方法
酚氯仿法提取DNA原理及方法酚氯仿法是一种常用的DNA提取方法,其原理是利用酚氯仿溶液对细胞和细胞碎片进行破碎,然后通过离心分离DNA。
以下是详细的步骤:1.细胞裂解:将待提取DNA的样本(细胞、组织等)加入含有酚氯仿的裂解缓冲液中,将溶液均匀混合。
酚氯仿是一种有机溶剂,能够破坏细胞膜和核膜,使细胞释放出DNA。
2.蛋白质沉淀:加入混合溶液中的蛋白质会和酚氯仿相互分离,形成一个物理屏障。
离心沉淀后,由于DNA密度比蛋白质低,DNA会上浮到上层,而蛋白质则沉淀在下层。
3.DNA沉淀:将上层液体转移到新的离心管中,加入同等体积的冷乙醇或异丙醇,然后轻轻振荡以促使DNA沉淀。
酒精能够与DNA相互作用,使DNA分子变得更加疏水,从而沉淀下来。
4.清洗:离心沉淀后,将上清液倒掉,加入70%乙醇洗涤沉淀。
乙醇通过去除残留的酚氯仿和其他杂质,使沉淀的DNA纯化。
5. 溶解:将洗涤后的DNA沉淀干燥或用适量的缓冲液溶解,最常用的是TE缓冲液(含有10 mM Tris-HCl和1 mM EDTA),以便后续的DNA浓度测定和实验操作。
总结来说,酚氯仿法利用酚氯仿溶液破坏细胞膜和核膜,将DNA从细胞中释放出来。
离心分离蛋白质和DNA,然后通过酒精沉淀和乙醇洗涤纯化提取的DNA。
这种方法简单快速,并且能够获得较纯的DNA样品。
不过,酚氯仿法在提取DNA时会同时提取到RNA和蛋白质,因此在一些需要高纯度DNA的实验中可能不适用。
在使用酚氯仿法提取DNA时,还需要注意避免DNA的降解,避免污染和交叉污染,以及正确保存提取的DNA样品。
DNA苯酚氯仿提取法和试剂盒纯化有什么区别
DNA苯酚氯仿提取法和试剂盒纯化有什么区别
酚氯仿⽅法是提取核酸的⽅法,主要原理是利⽤核酸、蛋⽩等杂质在⽔相和有机相中溶解度不同⽽重新分配。
试剂盒原理是在特定溶液环境下(⾼盐、低pH)使核酸吸附在固相介质(⼀般是硅胶膜)上,洗涤去除杂质后,再改变溶液环境使DNA溶解到纯⽔或TE中。
酚氯仿⽅法:便宜,⽤的都是实验室常⽤试剂,提纯效率和纯度都很⾼,但缺点是费时费⼒,苯酚和氯仿还有⼀定毒性,我见过的实验室很少有⽤这种⽅法的。
试剂盒严格来说也分好多种,常⽤的是离⼼柱的,就是把硅胶膜固定在离⼼管中,类似于超滤膜,⽤离⼼⼒或者负压让液体通过硅胶膜,核酸就留在膜上。
在经过洗涤、洗脱的步骤得到核酸。
这种⽅法的优点是操作简单、时间短,现在也能达到很⾼的质量,价格也不贵。
缺点是不易放⼤,需要多次离⼼。
试剂盒基本步骤是先使样本裂解,在特定溶液中通过离⼼流过硅胶膜,再经过⼏次洗涤,最后加上洗脱液,离⼼后核酸就溶解到洗脱液中。
酚氯仿法提取DNA的原理
酚氯仿法提取DNA的原理用酚抽提细胞DNA时,有什么作用?使蛋白质变性,同时抑制了DNase的降解作用。
用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。
蛋白分子溶于酚相,而D NA溶于水相。
使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。
缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。
2. 不能完全抑制RNase 的活性。
氯仿的作用?氯仿:克服酚的缺点;加速有机相与液相分层。
最后用氯仿抽提:去除核酸溶液中的迹量酚。
(酚易溶于氯仿中)用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么?异戊醇:减少蛋白质变性操作过程中产生的气泡。
异戊醇可以降低表面张力,从而减少气泡产生。
另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。
用乙醇沉淀DNA时,为什么加入单价的阳离子?用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或NaAc,Na+中和DN A分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。
原理:动物和植物组织的脱氧核糖核蛋白(DNP)可溶于水或浓盐溶液(如1mol/L氯化钠),但在0.14mol/L氯化钠盐溶液中溶解度最低,而核酸核蛋白(RNP)则在0.14mol/L氯化钠中溶解度最大,利用这一性质可将其分开。
将沉淀物溶解于生理盐水,加入去污剂十二烷基硫酸钠(SDS)溶液,使DNA与蛋白质分离开。
加入固体氯化钠使其浓度达到1mol/L,使DNA溶解。
加氯仿-异戊醇去除蛋白质,也可重复该步操作得较纯DNA。
最后用95%乙醇沉淀DNA。
溶解:将离心后除去RNA的沉淀,用30ml生理盐水溶解,充分搅拌后,匀浆一次。
加4毫升10%SDS溶液,使溶液的SDS浓度达到1%左右,边加边搅拌,放置60 ℃水浴保温10分钟(不停搅拌),冷却。
酚氯仿抽提dna原理
酚氯仿抽提dna原理
酚氯仿(Phenol-Chloroform)抽提DNA是一种常用的DNA 提取方法。
其原理是基于酚在酸性条件下具有与DNA高度亲和性的特点,可以将DNA从细胞溶液中抽提出来。
具体的步骤如下:
1. 细胞溶解:首先将待提取DNA的细胞样品加入适量的细胞裂解缓冲液中,通过机械或化学方法使细胞壁破裂,释放出细胞内的DNA。
2. 酚抽提:加入相同体积的酚溶液,并进行充分混合。
酚能与DNA形成复合物,并与其他细胞组分(如蛋白质和脂质)发生分层,形成一个DNA上层和一个下层。
3. 脱水:将抽提产物转移至新管中,加入酒精或异丙醇,通过离心将DNA沉淀下来。
脱水过程可以去除溶液中的多余酚,提高DNA沉淀的纯度。
4. 酯化:将DNA沉淀物溶解在适量的TE缓冲液(含有EDTA和Tris)中,经过一定的时间酯化,使DNA变得更为稳定。
5. 沉淀:通过低温离心将DNA沉淀下来,去除上清液。
6. 洗涤:用70%的乙醇洗涤并去除残余的盐、酚和脏物质。
洗涤过程中,可以多次进行离心和上清液倒掉操作。
7. 干燥:最后,将DNA输送液置于干燥器中或者自然风干,以去除溶剂中的残留物质,得到纯度较高的DNA。
通过酚氯仿抽提DNA的方法,可以从复杂的细胞中提取出高质量、高纯度的DNA,以供后续分子生物学研究使用。
酚氯仿法提取DNA主要步骤和原理
酚氯仿法提取DNA主要步骤:1.将动物组织放在1.5ml的离心管中,分别用75%、50%酒精和纯水梯度脱酒精。
每个梯度脱水时间为5-10min2.将组织放入研钵中,加入适量DN A裂解液(300μl),研磨后再加入300μl DNA裂解液冲洗研磨棒。
3.将研磨好的组织液用移液枪加到1.5ml离心管,在管中加10μl蛋白酶K,用封口带将离心管封口,放入摇床(56℃,5h)。
4.加入等体积的Tris饱和酚(500μl),摇匀(10min)。
5.离心:12000R,7min,4℃。
离心后分成上中下三层,上层为DNA,中层为蛋白质,下层为有机质。
6.吸取上层液体加入新的离心管。
7.配制Tris饱和酚:氯仿:异戊醇=25:24:1。
8.在含有上清液的离心管中加入Tri s饱和酚、氯仿和异戊醇混合液450μl,摇匀10mi n。
9.离心:12000R,7min,4℃。
10.吸取上清液加到新的离心管,加入等体积的氯仿和异戊醇混合液400μl(氯仿:异戊醇=24:1)。
11.离心:12000R,7min,4℃。
12.吸取上清液加入新的离心管,加入2.5倍经过-20℃冷冻的100%的酒精。
-20℃过夜。
13.将样品取出,12000R,7min,4℃离心。
14.弃上清,留白色沉淀(DNA),加400μl的75%的经过-20℃冷冻的酒精,反复吹打溶解。
15.重复第14步骤2次(用75%酒精洗三次)。
16.提取DNA完成。
溴氯仿法提取DNA的原理:用酚抽提细胞DNA时,有什么作用?使蛋白质变性,同时抑制了D Nase的降解作用。
用苯酚处理匀浆液时,由于蛋白与D NA联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。
蛋白分子溶于酚相,而DNA 溶于水相。
提取dna的方法及原理
提取dna的方法及原理提取DNA的方法及原理DNA是生物体中的遗传物质,它携带着生物体的遗传信息。
提取DNA是研究基因组学、遗传学等领域的重要基础工作。
本文将介绍几种常用的DNA提取方法及其原理。
1. CTAB法CTAB法是一种经典的DNA提取方法。
其原理是利用CTAB(十六烷基三甲基溴化铵)与DNA结合形成离子对,然后通过盐溶液的浓度差异,使DNA从溶液中沉淀出来。
该方法适用于提取植物细胞中的DNA。
2. 酚/氯仿法酚/氯仿法是一种常用的DNA提取方法。
其原理是利用DNA在酚相中溶解,而其他细胞组分则在氯仿相中溶解,通过酚/氯仿两相的分离,从而将DNA分离出来。
该方法适用于提取动物细胞和细菌等样品中的DNA。
3. 硅胶柱法硅胶柱法是一种高效、纯化度较高的DNA提取方法。
其原理是利用硅胶柱上的硅胶颗粒与DNA之间的亲和性,将DNA吸附在硅胶颗粒上,然后通过洗涤、离心等步骤,将DNA从硅胶颗粒上洗脱下来。
该方法适用于提取各种样品中的DNA。
4. 磁珠法磁珠法是一种基于磁性颗粒的DNA提取方法。
其原理是将带有亲和基团的磁性颗粒与DNA结合,然后通过磁力的作用,将颗粒和DNA一起沉淀下来,最后通过洗涤等步骤,将DNA从颗粒上洗脱下来。
该方法具有快速、高效的特点,适用于高通量的DNA提取。
以上是几种常用的DNA提取方法及其原理。
不同的方法适用于不同类型的样品和实验需求。
在实际操作中,可以根据具体情况选择合适的方法进行DNA提取。
同时,为了保证提取到的DNA质量和纯度,还需要注意提取过程中的一些关键步骤,如细胞破碎、蛋白质酶处理、DNA沉淀等。
DNA的提取是基因研究和遗传学研究的重要步骤,通过合适的提取方法可以获取到高质量的DNA样品,为后续的实验和分析提供可靠的基础。
随着技术的不断进步,提取方法也在不断改进和优化,为科学研究提供更多的可能性。
dna分离纯化方法及原理
dna分离纯化方法及原理
1. 酚-氯仿抽提法:这是一种传统的 DNA 提取方法。
原理是利用酚和氯仿的混合物来溶解细胞膜和蛋白质,使 DNA 与其他细胞成分分离开来。
然后通过离心和有机溶剂的萃取,将 DNA 从混合物中提取出来。
2. 硅胶柱层析法:该方法基于 DNA 与硅胶柱子之间的吸附和解吸作用。
将待提取的样本加载到硅胶柱上,通过柱子的吸附作用,使 DNA 与其他杂质分离开来。
然后用适当的洗脱缓冲液将 DNA 从柱子上洗脱下来。
3. 磁珠法:这是一种利用磁性颗粒结合 DNA 的方法。
将磁珠与样本混合,使 DNA 与磁珠结合。
通过外部磁场的作用,可以将磁珠与结合的 DNA 分离开来,从而实现 DNA 的纯化。
4. 质粒抽提法:这种方法适用于提取质粒 DNA。
通过碱处理破坏细菌细胞壁和细胞膜,使质粒 DNA 从细菌细胞中释放出来。
然后通过离心和沉淀等步骤,将质粒 DNA 与其他杂质分离开来。
5. 超声波法:利用超声波的能量,将细胞破碎,使 DNA 释放到溶液中。
然后通过离心和沉淀等步骤,将 DNA 与其他杂质分离开来。
这些方法的原理基于不同的物理、化学或生物学原理,旨在从复杂的生物样本中选择性地分离和纯化 DNA。
选择合适的方法取决于样本类型、纯度要求和实验目的等因素。
在 DNA 分离纯化过程中,还需要注意操作规范、防止污染,并进行质量控制和检测,以确保获得高质量的 DNA 用于后续的分析和实验。
酚氯仿法提取DNA主要步骤和原理
酚氯仿法提取DNA主要步骤:1.将动物组织放在1.5ml的离心管中,分别用75%、50%酒精和纯水梯度脱酒精。
每个梯度脱水时间为5-10min2.将组织放入研钵中,加入适量DNA裂解液(300μl),研磨后再加入300μlDNA裂解液冲洗研磨棒。
3.将研磨好的组织液用移液枪加到1.5ml离心管,在管中加10μl蛋白酶K,用封口带将离心管封口,放入摇床(56℃,5h)。
4.加入等体积的Tris饱和酚(500μl),摇匀(10min)。
5.离心:12000R,7min,4℃。
离心后分成上中下三层,上层为DNA,中层为蛋白质,下层为有机质。
6.吸取上层液体加入新的离心管。
7.配制Tris饱和酚:氯仿:异戊醇=25:24:1。
8.在含有上清液的离心管中加入Tris饱和酚、氯仿和异戊醇混合液450μl,摇匀10min。
9.离心:12000R,7min,4℃。
10.吸取上清液加到新的离心管,加入等体积的氯仿和异戊醇混合液400μl(氯仿:异戊醇=24:1)。
11.离心:12000R,7min,4℃。
12.吸取上清液加入新的离心管,加入2.5倍经过-20℃冷冻的100%的酒精。
-20℃过夜。
13.将样品取出,12000R,7min,4℃离心。
14.弃上清,留白色沉淀(DNA),加400μl的75%的经过-20℃冷冻的酒精,反复吹打溶解。
15.重复第14步骤2次(用75%酒精洗三次)。
16.提取DNA完成。
溴氯仿法提取DNA的原理:用酚抽提细胞DNA时,有什么作用?使蛋白质变性,同时抑制了DNase的降解作用。
用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。
蛋白分子溶于酚相,而DNA 溶于水相。
使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。
缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。
2. 不能完全抑制RNase 的活性。
DNA和RNA提取方法及原理
DNA和RNA提取方法及原理DNA提取方法:1.酚/氯仿方法:这是最早应用的DNA提取方法之一,适用于绝大多数生物样本。
原理是利用酚酸抽提DNA,酚酸能溶解细胞膜和蛋白质,而DNA在酚相沉淀。
然后用氯仿提取,分离DNA与酚相中的蛋白质和RNA。
最后通过乙醇沉淀纯化DNA。
这种方法可以得到高质量的DNA,但操作过程相对繁琐。
2.硅胶基质法:硅胶基质可吸附DNA,该方法使用硅胶膜或硅胶粉末来固定DNA,通过洗涤去除杂质,最后用洗脱液从硅胶上洗脱DNA。
这种方法具有简便和高纯度的优点,适用于大规模提取DNA。
3.盐酸法:盐酸法以酸性条件下使DNA变为不溶性沉淀物的原理,通过加入盐酸将DNA沉淀下来,然后经过洗涤和乙醇沉淀纯化。
这种方法适用于提取纯度要求不高的DNA。
RNA提取方法:1.酚酸提取法:这是最常用的RNA提取方法之一、原理类似于DNA的酚/氯仿法,通过酚酸将核酸与蛋白质和其他杂质分离。
然后通过氯仿脱脂,去除酚相中的蛋白质,并且获得RNA水相。
最后通过乙醇沉淀纯化RNA。
这种方法适用于大多数样品,得到的RNA纯度较高。
2.硅胶基质法:与DNA提取类似,它也适用于RNA的提取。
通过硅胶膜或硅胶粉末结合RNA并洗脱,用洗脱液分离RNA与杂质。
这种方法适用于大规模提取RNA。
3.氯仿法:这是一种较为简便的RNA提取方法,它通过氯仿脱脂去除脂质和其他杂质,并且能够同时去除DNA。
最后用乙醇沉淀纯化RNA。
这种方法适用于需要较快速提取RNA的情况。
DNA和RNA提取的基本原理都是通过分离和纯化DNA或RNA与其他杂质的物质。
酚酸提取法和硅胶基质法同属于酚酸法,都是通过酚酸和氯仿来分离DNA或RNA与蛋白质和其他杂质。
其中酚酸能溶解细胞膜和蛋白质,并且DNA或RNA在酚相中沉淀,而蛋白质和RNA在氯仿相中溶解。
然后通过洗脱和纯化步骤,从酚酸相中提取DNA或RNA。
盐酸法与酚酸法不同,它是通过酸性条件下使DNA变为不溶性沉淀物来分离DNA与其他杂质。
DNA提取方法原理简介
DNA提取方法原理简介DNA是脱氧核糖核酸,是绝大多数生物的最主要的遗传物质。
随着生命科学技术的发展,从生物样本中提取DNA的方法也日益多样、成熟。
下面就几种常见的DNA提取方法的原理作个简介。
1 酚氯仿法酚氯仿法为DNA提取的经典方法,价格较低。
加入Tris饱和酚能使蛋白质变性,令DNA与组织蛋白质分开,同时抑制DNase的作用,保护DNA免于降解。
随后加入的氯仿/异戊醇经过混匀和离心后,能使溶液分为上层水相和下层有机相。
由于DNA存在于水相,蛋白质等杂质存在于有机相,这样就能使DNA与其他杂质分开。
吸取上层水相后,加入无水乙醇能使DNA从溶液中沉淀下来,经过离心去除上清液就能得到DNA沉淀了。
可以再使用75%乙醇洗涤一次,去除残留的一些有机物,使DNA更纯。
最后等乙醇挥发干燥后,加入TE缓冲液就能得到理想的DNA样本。
2 Chelex-100法Chelex-100是一种由苯乙烯、二乙烯苯共聚体组成的化学树脂,可以螯合多价离子。
Chelex-100法提取DNA是一种快速方便的方法,但DNA模板的纯度比较低,不适合长期保存。
Chelex-100溶液与血液样品等混匀后,通过煮沸、离心等步骤,可以使样品中大部分蛋白质变性,金属离子被Chelex-100螯合,从而使样品上清液的DNA模板能用于后续反应。
3 膜吸附法常用硅胶膜作为吸附DNA的载体。
部分的商品化DNA提取试剂盒会采用这种方法。
提取的DNA纯度高,效果好,但试剂盒成本较高。
其原理是在高盐缓冲液条件下,硅胶膜会吸附DNA,经过数次缓冲液洗涤离心后,吸附在膜上的DNA已经很纯,这时再用适当体积的低盐TE缓冲液进行洗脱。
4 磁珠法经过特殊表面处理的磁珠,在缓冲液条件下对DNA有很强的吸附力。
部分的商品化DNA提取试剂盒会采用这种方法。
提取的DNA纯度高,效果好,但试剂盒成本较高。
其原理是在缓冲液条件下,磁珠能吸附DNA,通过使用磁力棒能使磁珠聚集,去除含杂质的上清液。
tris-saturated phenol method dna
tris-saturated phenol method dnaDNA分离是分子生物学实验的常见操作,其中一种常用的方法是Tris-饱和酚法。
该方法通过沉淀DNA蛋白质复合物,将DNA从蛋白质和其他杂质中分离出来。
以下是关于Tris-饱和酚法的相关参考内容:1. 方法原理:Tris-饱和酚法利用酚和氯仿两性溶剂的不相容性来沉淀DNA。
酚能够与DNA形成络合物,而氯仿则与酚不相溶。
这样当样品中加入饱和盐溶液和酚后,DNA将从其他细胞组分中分离出来形成沉淀。
通过离心,可以将DNA沉淀物从上清液中分离出来。
2. 实验步骤:- 将样品细胞裂解,并加入含有盐和洗涤缓冲液的混合物。
- 加入等体积的饱和酚,轻轻混合,使酚和样品溶液充分接触。
- 离心,分离上清液和DNA沉淀。
- 将上清液中的蛋白质和其他杂质移除。
- 加入冷酒精,使DNA沉淀。
- 用冷酒精洗涤和干燥DNA沉淀物。
- 重溶DNA沉淀物,用于后续的实验。
3. 实验应用:Tris-饱和酚法是许多分子生物学实验的关键步骤,包括:- DNA提取:该方法可以从细胞或组织样品中提取DNA,用于进一步的分析,如PCR、限制性酶切等。
- 基因库构建:通过分离和提纯DNA,可以构建基因库,用于克隆、表达和研究特定的基因。
- DNA纯化:该方法可以将DNA从复杂的样品中纯化出来,以进行下游实验,如测序、Southern blot等。
4. 实验优缺点:- 优点:该方法操作简单、成本低,适用于大规模的DNA提取和纯化。
同时,该方法适用于各种样品类型,包括细胞、组织和血液等。
- 缺点:该方法对样品中其他细胞组分的污染比较敏感,特别是蛋白质。
此外,该方法不能分离RNA和DNA。
5. 注意事项:- 实验过程中应注意生物安全,避免接触有害的细胞或样品。
- 严格按照实验步骤进行操作,以避免DNA沉淀的损失或污染。
- 使用酚和氯仿时应注意防护,避免吸入和皮肤接触。
以上是关于Tris-饱和酚法的相关参考内容,介绍了该方法的原理、实验步骤、应用、优缺点以及注意事项。
[方案]酚氯仿法提取DNA主要步骤和原理
[方案]酚氯仿法提取DNA主要步骤和原理酚氯仿法提取DNA主要步骤:1.将动物组织放在1.5ml的离心管中,分别用75%、50%酒精和纯水梯度脱酒精。
每个梯度脱水时间为5-10min2.将组织放入研钵中,加入适量DNA裂解液(300μl),研磨后再加入300μlDNA裂解液冲洗研磨棒。
3.将研磨好的组织液用移液枪加到1.5ml离心管,在管中加10μl蛋白酶K,用封口带将离心管封口,放入摇床(56?,5h)。
4.加入等体积的Tris饱和酚(500μl),摇匀(10min)。
5.离心:12000R,7min,4?。
离心后分成上中下三层,上层为DNA,中层为蛋白质,下层为有机质。
6.吸取上层液体加入新的离心管。
7.配制Tris饱和酚:氯仿:异戊醇=25:24:1。
8.在含有上清液的离心管中加入Tris饱和酚、氯仿和异戊醇混合液450μl,摇匀10min。
9.离心:12000R,7min,4?。
10.吸取上清液加到新的离心管,加入等体积的氯仿和异戊醇混合液400μl(氯仿:异戊醇=24:1)。
11.离心:12000R,7min,4?。
12.吸取上清液加入新的离心管,加入2.5倍经过-20?冷冻的100%的酒精。
-20?过夜。
13.将样品取出,12000R,7min,4?离心。
14.弃上清,留白色沉淀(DNA),加400μl的75%的经过-20?冷冻的酒精,反复吹打溶解。
15.重复第14步骤2次(用75%酒精洗三次)。
16.提取DNA完成。
溴氯仿法提取DNA的原理:用酚抽提细胞DNA时,有什么作用,使蛋白质变性,同时抑制了DNase的降解作用。
用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。
蛋白分子溶于酚相,而DNA溶于水相。
使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。
缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。
氯仿法提取DNA
试验原理:苯酚/氯仿提取DNA是利用酚是蛋白质的变性剂,反复抽提,使蛋白质变性,SDS(十二烷基磺酸钠)将细胞膜裂解,在蛋白酶K、EDTA的存在下消化蛋白质或多肽或小肽分子,核蛋白变性降解,使DNA从核蛋白中游离出来。
DNA易溶于水,不溶于有机溶剂。
蛋白质分子表面带有亲水基团,也容易进行水合作用,并在表面形成一层水化层,使蛋白质分子能顺利地进入到水溶液中形成稳定的胶体溶液。
当有机溶液存在时,蛋白质的这种胶体稳定性遭到破坏,变性沉淀。
离心后有机溶剂在试管底层(有机相),DNA存在于上层水相中,蛋白质则沉淀于两相之间。
酚-氯仿抽提的作用是除去未消化的蛋白质。
氯仿的作用是有助于水相与有机相分离和除去DNA溶液中的酚。
抽提后的DNA溶液用2倍体积的无水乙醇在1/103mol/LNaCl存在下沉淀DNA,回收DNA用70%乙醇洗去DNA沉淀中的盐,真空干燥,用TE缓冲液溶解DNA备用。
试验步骤:1、将1mlEDTA抗凝贮冻血液于室温解冻后移入5ml离心管中,加入1ml磷酸缓冲盐溶液(PBS),混匀,3500rpm离心15min,倾去含裂解红细胞的上清。
重复一次。
用0.7mlDNA 提取液混悬白细胞沉淀,37℃水浴温育1h。
2、将上述DNA提取液混悬白细胞,37℃水浴温育1h后,加入1mg/ml蛋白酶K0.2ml,至终浓度为100-200ug/ml,上下转动混匀,液体变粘稠。
50℃水浴保温3h,裂解细胞,消化蛋白。
保温过程中,应不时上下转动几次,混匀反应液。
3、反应液冷却至室温后,加入等体积的饱和酚溶液,温和地上下转动离心管5-10min,直至水相与酚相混匀成乳状液。
5000rpm离心15min,用大口吸管小心吸取上层粘稠水相,移至另一离心管中。
重复酚抽提一次。
加等体积的氯仿﹕异戊醇(24﹕1),上下转动混匀,5000rpm离心15min,用大口吸管小心吸取上层粘稠水相,移至另一离心管中。
重复一次。
4、加入1/5体积的3mol/LNaAc及2倍体积的预冷的无水乙醇,室温下慢慢摇动离心管,即有乳白色云絮状DNA出现。
酚氯仿抽提dna原理
酚氯仿抽提dna原理
酚氯仿抽提DNA原理是一种常用的DNA提取方法,通过该
方法可以从复杂的生物样品中高效地提取纯度较高的DNA样本。
其原理主要包括以下几个步骤:
1. 细胞破碎:首先将待提取的生物样品经过离心等操作,去除无关细胞和组织,然后使用细胞裂解缓冲液将目标细胞破碎,使细胞内部的DNA释放出来。
2. 蛋白酶处理:在细胞裂解的过程中,蛋白酶会释放出来,为了去除其对DNA的影响,可以加入蛋白酶抑制剂来保护DNA。
此步骤的目的是降解蛋白质,同时保持DNA的完整性。
3. 混合酚氯仿:将细胞裂解液与等体积的氯仿混合,产生两相体系。
氯仿主要用来分离DNA和其他细胞成分,如脂质、蛋
白质等。
在混合过程中,DNA溶于水相,而其他成分溶于有
机相。
这样,通过离心使两相分离。
DNA会聚集在水相中。
4. DNA沉淀:将水相转移到新的离心管中,加入冷酒精或异
丙醇,使DNA沉淀出来。
酒精或异丙醇中的离子会中和
DNA上的电荷,从而使DNA不溶于水,形成可见的白色沉淀。
5. 洗涤与溶解:将DNA沉淀用无菌蒸馏水洗涤去除酒精或异
丙醇的残余,并用TE缓冲液溶解DNA,使其得以储存和进
一步应用。
通过酚氯仿抽提DNA,可以将DNA从细胞中高效地提取出
来,纯度较高,适用于许多分子生物学实验和技术的应用,如PCR、酶切、测序等。
酚氯仿法提取DNA的原理
酚氯仿法提取DNA的原理酚氯仿法是一种用于提取DNA的常见方法,它基于DNA与酚氯仿在两相溶液中由于密度差异而发生分离的原理。
下面将详细介绍酚氯仿法提取DNA的原理及步骤。
DNA是一个带有负电荷的双链分子,其溶解度与其环境的离子力有关。
酚氯仿可以形成无水酚、蛋白质和DNA、RNA在其中既不溶于水又不溶于酚氯仿的界面。
当DNA溶液与酚氯仿混合时,DNA会从水相转移到有机相(酚氯仿相)中,实现分离。
1.细胞裂解:将待提取DNA的细胞加入缓冲液中,并通过机械、热力或化学方法使细胞裂解,释放DNA。
2.去除蛋白质:加入蛋白酶K等蛋白酶使蛋白质降解,形成胶冻样物质。
3.DNA溶解:加入盐酸溶解胶冻样物质,使DNA溶于溶液中。
4.全球胆碱设备实验室的志愿者在2024年完成了其中一个针对雌激素和其他抗生素的研究试验。
5.沉淀DNA:加入冰冷的异丙醇或乙醇,在DNA溶液中形成DNA沉淀。
6.制备DNA:将DNA沉淀转移到新的管中,并用乙醇洗涤去除杂质。
7.定量和存储:使用分光光度计测量DNA的浓度,然后将其保存在适当的条件下,以便后续实验中使用。
1.方法成本较低,步骤简单易行。
2.可以提取高纯度的DNA。
3.可以在较短时间内提取大量DNA。
1.操作要注意安全,避免酚氯仿的接触和吸入。
2.使用无菌技术和无菌材料,以避免外源性DNA的污染。
3.避免DNA溶液的过热和过长的暴露于空气中,以避免降解DNA。
总结:酚氯仿法提取DNA是一种常用的DNA提取方法,其原理是通过DNA与酚氯仿在两相溶液中的密度差异实现DNA的分离。
该方法简单易行,可以提取高纯度的DNA,适用于很多生物学实验和研究领域。
在进行实验时,需注意操作安全和避免DNA污染,以保证提取到高质量的DNA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荧光原位杂交(FISH)探针的制备及其应用概述1、克隆性染色体异常是肿瘤的特征2、染色体异常常见的类型3、染色体异常的检测方法二、荧光原位杂交及其探针1、荧光原位杂交的原理2、荧光原位杂交的探针三、荧光原位杂交探针的制备和荧光原位杂交(按试验流程介绍)一、概述1、克隆性染色体异常是肿瘤的特征1914年德国遗传学家Boveri就提出染色体畸变与肿瘤起源相关,然而这还仅仅只是一个假说;1960年Nowell和Hungerford在7例慢性髓系白血病(chronic myeloid leukemia,CML)的患者中发现后来被称为费城染色体(Philadelphia chromosome)的微小染色体;1973年Rowley证实了Ph染色体是9号和22号染色体易位所致,这是人们在肿瘤中认识到的第一个染色体易位;目前,已经有11,500篇文献报道了55,600多种克隆性细胞遗传学异常。
这些染色体畸变,尤其是染色体易位及其相应的融合基因在肿瘤致病的起始阶段有着重要的作用,无不说明克隆性细胞遗传学异常是肿瘤的特征,在肿瘤起源中起重要作用。
下图是各种疾病报告的克隆性染色体异常病例数2、染色体异常的常见类型染色体异常指数目异常和结构异常两类:前者包括整条染色体数目的扩增和缺失;后者包括染色体易位、插入、倒置、区带的缺失或扩增等。
下图是染色体数目异常染色体结构异常3、染色体异常的检测方法染色体异常的识别得益于二十世纪六十年代后发展起来的胰蛋白酶-姬姆萨染色和常规显带技术,使得常规筛查全基因组染色体异常和检测染色体核型改变成为可能。
染色体显带是细胞遗传学分析技术中标准和常用的方法,但耗时且依赖于获得良好的分裂相,还难于分析复杂和隐匿的异常。
PCR或荧光原位杂交(FISH,fluorescent in situ hybridization)对染色体异常的检出依赖于引物或探针与模板的结合,因此较常规显带具有更高的特异性,是高通量检测染色体异常的敏感和特异的方法。
荧光原位杂交及其探针1、荧光原位杂交的原理染色体荧光原位杂交始于传统的细胞遗传学和DNA技术的结合,这种结合开创了一门新的学科——分子细胞遗传学。
其基础是Southern blot原理,以半抗原如生物素、地高辛间接标记或以荧光素直接标记的已知核酸分子为探针,探针和靶序列双链DNA变性后杂交,互补的异源单链DNA分子在适宜的温度和离子强度下退火形成稳定的异源双链DNA,通过荧光标记的亲和素或抗地高辛抗体将半抗原显示出来,通过荧光显微镜观察杂交信号。
FISH具有快速灵敏、特异性好的特点,可同时分析分裂期和间期的多个细胞,并进行定量;可以检测隐匿或微小的染色体畸变以及复杂核型;还可以使用多种荧光标记,显示DNA片段及基因之间的相对位置与方向,空间定位精确。
2、荧光原位杂交探针的类型FISH技术种类甚多,发展迅速,其实现需要获得能与靶序列互补结合的探针。
常用的探针有以下三类:1、染色体重复序列探针,主要是指着丝粒α-卫星DNA重复序列探针和端粒重复序列探针,用以检测染色体数目异常,同时由于G显带时,端粒区是苍白的,因此涉及此区的易位常难以检测,而应用端粒探针则弥补了G显带的不足;2、染色体涂染探针,包括通过流式分选或显微切割获得的全染色体或染色体臂以及特异性区带的涂染探针,用以检测染色体数目或结构异常;3、染色体单一序列探针,包括各类人工染色体探针,如酵母人工染色体(yeast artificial chromosome, YAC)、细菌人工染色体(bacterial artificial chromosome, BAC)、P1人工染色体(P1 artificial chromosome, PAC)探针,主要用以识别染色体的易位、缺失和扩增。
α-卫星DNA(alpha satellite DNA)是唯一一个存在于所有人类染色体着丝粒区域的着丝粒DNA (centromere DNA,CEN-DNA)家族,由171bp的单体为单位组成的高度串联重复片段,重复数百次至数千次,跨越长达100kb的着丝粒DNA区域,其杂交将产生很强的杂交信号。
因此常被选为着丝粒探针的来源。
The Wellcome Trust Sanger Institute(Hinxton, Cambridge)由Wellcome Trust和British Medical Research Council联合建立,是世界上较早开展人类基因组大规模测序并具有相当实力的测序中心。
该中心利用能容纳大片段人类基因组DNA的高容量载体(如粘粒、BAC、PAC等)构建了大片段人类基因组DNA文库,通过文库中末端相互重叠的DNA片段连接成叠连群(contig)并与鸟枪法相结合,加快了基因组测序,实现了人类基因组计划(Human Genome Project,HGP)中人类基因组的物理作图(physical mapping)和基因组测序相结合的目标。
因此,这些克隆文库为基因定位研究提供了丰富的DNA 序列资源,NCBI Clone Registry(/genome/clone/)、Ensembl Genome Browser(/index.html)和UCSC Genome Bioinformatics(/)提供的网络生物信息学资源也记载了许多克隆基因组定位的详细信息,为我们选择相应克隆为作为染色体单一序列和端粒探针的来源提供了便利。
大片段人类基因组DNA文库的构建过程常用的BAC、PAC文库人类基因组的鸟枪法测序和物理作图定位检索BAC、PAC克隆的常用数据库荧光原位杂交探针的制备和荧光原位杂交实验流程第一天缺口平移标记探针1.1 试剂准备(1)0.1mmol/L dNTP0.3mmol/L dATP、0.3mmol/L dCTP和0.3mmol/L dGTP等体积混合。
(2)0.1mmol/L dTTP1倍体积的0.3mmol/L dTTP和2倍体积的三蒸水混合。
1.2 缺口平移体系和反应条件0.1mmol/L dTTP 6.5μl0.1mmol/L dNTP 10μl10× Nick Translation buffer 5μl1mmol/L DIG-11-dUTP /Biotin-16-dUTP 0.5μlNick Translation Enzyme 10μlDNA (1μg) X μlH2O 18-X μlin total 50μl以上为标记1μg DNA的缺口平移体系,若标记更多量的DNA,则试剂量和反应体系相应等倍扩大。
各成分混匀后短时离心。
对于≤10kb的质粒,于15℃反应3.5小时;对于BAC/PAC,于15℃反应9小时。
1.3 凝胶电泳判断探针大小将EP管置于冰上,取其中5μl 于70℃加热5分钟后行2 %琼脂糖凝胶电泳以观察所标记探针的大小,单一序列探针合适大小为200~600bp;如片段大小偏大,则于15℃延长反应10~30分钟,再重复进行凝胶电泳,直至得到合适大小的探针。
1.4 终止反应向反应体系中加入1μl 0.5M EDTA和(或)70℃加热5分钟,以灭活酶。
探针于-20℃保存备用。
第二天1. 探针的沉淀和变性1.1 探针混合物的组成(1)对BAC/PAC探针DNA探针5ulHuman Cot-1 DNA 3ulSalmon Sperm DNA 0.5ulH2O 1.5ulin total 10ul(2)对着丝粒探针:DNA探针5ulSalmon Sperm DNA 0.5ulH2O 4.5ulin total 10ul1.2 DNA的沉淀将探针混合物与1ul(V/10)3M 醋酸钠(PH5.2)和27.5ul(2.5V)无水乙醇(-20℃冻存)混合,-80℃沉淀30min(或-20℃沉淀过夜),以14000g在4℃离心30min,以沉淀DNA。
1.3 清洗沉淀小心弃去上清,用70 %乙醇洗涤一次,再次以14000g在4℃离心15min;小心弃去上清,在45~50℃的中温水浴中风干DNA沉淀10~15min。
注:当大部分乙醇蒸发时,白色的DNA沉淀变为半透明状;一定要彻底清除乙醇,否则会在加入Master Mix后产生微小的沉淀,导致高背景。
1.4 溶解探针加入5μl 预热至37℃的去离子甲酰胺(PH 7.0),短时离心后在37℃振摇30min以充分溶解DNA;再加入预热至37℃的Master Mix 5μl,短时离心后在37℃振摇15~30min。
注:振摇时间尽可能延长;DNA沉淀亦可以TE缓冲液1.1μl溶解后加入Vysis探针缓冲液4.4μl稀释,混匀后瞬时离心,37℃振摇15~30min。
1.5 探针的变性和预杂交短时离心后于80℃水浴中变性探针10min,冰浴5分钟;短时离心,于37℃水浴中预杂交30~60min;独特序列探针(如cDNA)和重复序列探针(如α-卫星DNA)探针,无需预杂交。
2. 标本(染色体靶DNA)的处理和变性2.1 滴片和老化取出储存于-20℃的细胞悬液标本,以1100 rpm.离心10min沉淀细胞,换用适量体积的新鲜甲醇:冰乙醇(v/v)=3:1固定液重悬细胞并调整细胞密度,滴片,划出杂交区域,晾干;在预热到37℃的2×SSC中老化30min(也可实验前夜室温过夜老化再以2×SSC浸泡2分钟);依次于70 %、90 %和100 %的梯度乙醇中依次脱水,每缸2min,晾干(以下略作“梯度乙醇脱水后凉干”)。
2.2 RNase A消化每张玻片上加30μl 100μg/ml RNA酶(将10mg/ml的RNase A储存液稀释100倍),盖上22×22mm 盖玻片,置于37℃湿盒中孵育1小时;室温下2×SSC中振荡洗涤,5min/次×3次;梯度乙醇脱水后凉干。
2.3 靶DNA的变性将玻片放入预温至72℃(每增加一张玻片,温度要提高1℃)的70 %去离子甲酰胺/2×SSC中变性2分钟后,立即置入预冷至-20℃保存的梯度乙醇脱水晾干。
2.4 蛋白酶消化将50μl 100 mg/ml的胃蛋白酶(终浓度为0.01 %)加入预温至37℃的50ml蒸馏水(PH 2.0,以适量稀盐酸酸化)中,混匀;将变性后的玻片放入其中处理10分钟;室温下1×PBS中振荡洗涤,5min/次×2次;室温下梯度乙醇脱水后凉干。
注:靶DNA的变性和消化应与探针变性同步进行,完成后尽快进行杂交。
3. 杂交将变性后的DNA探针加于玻片杂交区域,盖上22mm×22mm盖玻片,封片后置于湿盒中,37℃杂交过夜。
第三天1. 杂交后洗涤和半抗原信号放大1.1 杂交后洗片小心揭去封片胶和盖玻片,将玻片置于预热至46℃的50 %甲酰胺/2×SSC中,5min×3缸;将玻片移入室温下4×SSC/0.1 % Tween-20中振荡洗涤5min×2缸;每张玻片滴加30 μl阻断液1,盖上22mm×22mm盖玻片,于37℃湿盒中孵育30min;再次将玻片移入室温下4×SSC/0.1 % Tween-20中振荡洗涤5min×2缸。