专题13 概率-2019年高考理科数学易错题训练

合集下载

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题)一、单选题1.(2019•浙江)设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大2.(2019•全国Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.3.(2019•全国Ⅲ)(1+2x2)(1+x)2的展开式中x3的系数为()A. 12B. 16C. 20D. 244.(2019•卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标。

若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.5.(2019•卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差6.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。

从这些新生中用系统抽样方法等距抽取1000名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.(2019•卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--",下图就是一重卦。

在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.二、填空题8.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.9.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.10.(2019•卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.11.(2019•卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。

《高考真题》专题13 概率与统计-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

《高考真题》专题13 概率与统计-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

专题13 概率与统计【母题来源一】【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.【母题来源二】【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法, 故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.【命题意图】本类问题主要涉及古典概型、对立事件概率的计算及概率与统计的综合,要求掌握利用古典概型求概率的方法,掌握利用互斥事件概率的加法公式及对立事件的概率公式求概率的方法.【命题规律】古典概型是高考命题的重点,题目难度中等,要求考生通过阅读提取信息,并掌握必要的计数方法:枚举法,树状图或者排列组合知识等.【答题模板】解答本类题目,以2018年高考这题试题为例,一般考虑如下三步:第一步:分析已知条件选择古典概型模型;第二步:找基本事件总数以及事件包含的基本事件数;第三步:带入古典概型的计算公式求解.【方法总结】1.古典概型是概率论中最简单而又直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.求古典概型的概率(1)对于事件A的概率的计算,关键是要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式()mP An求出事件A的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.(3)如果基本事件个数比较多,列举有一定困难时,可以用树状图法,树状图法适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.(4)较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:①转化为几个互斥事件的和,利用互斥事件的加法公式求解;学科.网②采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.1.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A.19B.318C.29D.518【答案】C【解析】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:021,001,031,130共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为42189=,故选C.【名师点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式mPn=求得概率.2.【辽宁省沈阳市2019届高三上学期一模数学试题】某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”、“e”、“k”三个字母组成并且字母“k”只可能在最后两个位置中的某一个位置上.如果该同学根据已有信息填入上述三个字母,那么他拼写正确的概率为A .16 B .14 C .13D .12【答案】B【解析】因为某英语初学者在拼写单词“steak ”时, 对后三个字母的记忆有些模糊,他只记得由“a ”、“e ”、“k ”三个字母组成,并且字母“k ”只可能在最后两个位置中的某一个位置上. 该同学根据已有信息填入上述三个字母,满足题意的字母组合有四种,分别是eka,ake,eak,aek , 拼写正确的组合只有一种eak , 所以他拼写正确的概率为14P =.故选B . 【名师点睛】本题主要考查概率的求法,考查古典概型、列举法等基础知识,是基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率. 3.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是A .101B .103C .35D .25【答案】C【解析】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故选C.【名师点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.4.【吉林省实验中学2019届高三下学期第八次月考数学试题】从1,2,3,4,5中任取5个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是A .23 B .35C .12D .25【答案】D【解析】从1,2,3,4,5这5个数字中任取5个数字组成没有重复数字的五位数, 基本事件总数n =55A =120,这个五位数是偶数包含的基本事件个数m =1424C A =48, ∴这个五位数是偶数的概率P =4821205m n ==. 故选D .【名师点睛】本题考查古典概型概率的求法,是基础题.5.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考数学试题】已知函数()322113fx x a x b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为A .79 B .13 C .59D .23【答案】D【解析】将a 记为横坐标,将b 记为纵坐标,可知总共有()()()()()()()()()1,0,1,1,1,2,2,0,2,1,2,2,3,0,3,1,3,2共9个的结果,而函数有两个极值点的条件为其导函数有两个不相等的实根,22()2f 'x x ax b =++,满足题中条件为22440a b ∆=->,即a b >,所以满足条件的基本事件有()()()()()()1,0,2,0,2,1,3,0,3,1,3,2共6个基本事件,所以所求的概率为6293P ==,故选D .6.【山东省青岛市2019届高三9月期初调研检测数学试题】已知某运动员每次投篮命中的概率是40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.该运动员三次投篮恰有两次命中的概率为A .15 B .35C .310D .910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数, 故所求概率为310. 故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.7.【宁夏银川市2019届高三下学期质量检测数学试题】根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为A .16B .14C .13D .12【答案】A【解析】派四位专家对三个县区进行调研,每个县区至少派一位专家,基本事件总数:2343C A 36n ==,甲,乙两位专家派遣至同一县区包含的基本事件个数:212232C C A 6m ==,∴甲,乙两位专家派遣至同一县区的概率为:61366m p n ===, 故选A.【名师点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 8.【2019年甘肃省兰州市高考数学一诊试卷】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A 或B 被选中的概率是A .15 B .25C .35D .710【答案】D【解析】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人, 赴区属的某贫困村进行驻村扶贫工作,基本事件总数n =25C =10, A 或B 被选中的对立事件是A 和B 都没有被选中,则A 或B 被选中的概率是P =1-2325C 7C 10=.故选D .【名师点睛】本题主要考查古典概型的求解,侧重考查数学建模和数学运算的核心素养.9.【甘肃省天水市第一中学2019届高三一轮复习第六次质量检测数学试题】为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是 A .0.3 B .0.4 C .0.6D .0.7【答案】D【解析】由题意得,从五个节日中随机选取两个节日的所有情况有25C 10=种,设“春节和端午节至少有一个被选中”为事件A ,则事件A 包含的基本事件的个数为12322C C 7+=. 由古典概型概率公式可得()1232252C C 70.7C 10P A +===. 故选D .【名师点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题.10.【新疆2019届高三第三次诊断性测试数学试题】将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是A.29B.827C.49D.1627【答案】C【解析】由题可得:大正方体的最上层有4个恰好是两面涂色的小正方体,大正方体的中间一层及最底层都有4个恰好是两面涂色的小正方体,所以恰好是两面涂色的小正方体个数为4312⨯=个,所以从这些小正方体中任取一个,恰好是两面涂色的概率是124279p==,故选C.【名师点睛】本题主要考查了古典概型概率计算,考查空间思维能力,属于基础题.11.【内蒙古2019年呼和浩特市高三年级第二次质量普查调研考试数学试题】一个盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,其余两个是黄球,若从中任取两个球,则取的两个球颜色不同,且恰有1个球的号码是偶数的概率是A.115B.215C.315D.415【答案】D【解析】盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,5,6号是黄球,从中任取两个球,有12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15种情况,恰有1个球的号码是偶数有16,25,36,45共有4种情况,故所求概率P=4 15.故选D.【名师点睛】本题考查古典概型的概率公式的应用,属于基础题.12.【内蒙古赤峰市2019届高三4月模拟考试数学试题】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是A .23B .35C .59D .34【答案】A【解析】因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种, 满足“齐王获胜”的这一条件的情况为: 齐王派出上等马,则获胜的事件数为3; 齐王派出中等马,则获胜的事件数为2; 齐王派出下等马,则获胜的事件数为1; 故满足“齐王获胜”这一条件的事件数为6种, 根据古典概型公式可得,齐王获胜的概率6293P ==,故选A. 【名师点睛】本题考查了古典概型问题,解题的关键是求出满足条件的事件数,再根据古典概型的计算公式求解问题,属于基础题.13.【陕西省咸阳市2019届高三高考模拟检测(二)数学试题】一个三位数的百位,十位,个位上的数字依次是a ,b ,c ,当且仅当a b <且b c >时称为“凸数”.现从1,2,3,4中任取三个组成一个三位数,则它为“凸数”的概率是______. 【答案】13【解析】从1,2,3,4中任取三个组成一个三位数,有34A 24=种排法,满足凸数的个数为:当b =4时,有23A 6=种排法;当b =3时,有2种排法,共8种.概率为81.243= 故答案为13. 【名师点睛】解排列组合问题要遵循两个原则: ①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).14.【陕西省榆林市2019届高三第二次模拟试题数学试题】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,则摸到同色球的概率为________. 【答案】25【解析】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,基本事件总数n 25C ==10,摸到同色球包含的基本事件个数m 2232C C =+=4,∴摸到同色球的概率42105m P n ===. 故答案为25. 【名师点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15.【广西南宁市2019届高三毕业班第一次适应性测试数学】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.【答案】516【解析】5个格子用0与1两个数字随机填入共有5232=种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有14510++=种基本方法,那么概率1053216P ==. 故答案为516. 【名师点睛】本题主要考查了古典概型的求解,解题的关键是采用分类的方式计算满足条件的基本事件数,属于中档题.16.【辽宁省辽阳市2019届高三上学期期末考试数学试题】现有两对情侣都打算从巴黎、厦门、马尔代夫、三亚、泰国这五个地方选取一个地方拍婚纱照,且这两对情侣选择的地方不同,则这两对情侣都选在国外拍婚纱照的概率为_______. 【答案】310【解析】两对情侣所有选择方案为(巴黎,厦门),(巴黎,马尔代夫)(巴黎,三亚),(巴黎,泰国),11 (厦门,马尔代夫),(厦门,三亚),(厦门,泰国),(马尔代夫,三亚),(马尔代夫,泰国),(三亚,泰国),共有10种,其中有3种满足题意,故所求概率为310, 故答案为310. 【名师点睛】本题考查了古典概型,考查了利用列举法解决排列组合的问题,属于基础题.17.【河北省省级示范性高中联合体2019届高三3月联考数学试题】小张要从5种水果中任选2种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________. 【答案】3(0.6)5或【解析】由题从5种水果中任选2种的事件总数为25C 10,= 小张送的水果既有热带水果又有温带水果的基本事件总数为1123C C 6,=∴小张送的水果既有热带水果又有温带水果的概率为63105=. 故答案为35.。

易错题库-(精校版)2019年全国卷Ⅱ理数高考试题文档版(有答案)

易错题库-(精校版)2019年全国卷Ⅱ理数高考试题文档版(有答案)

合题目要求的。
1.设集合 A={ x|x2–5x+6>0} , B={ x|x–1<0} ,则 A∩B=
A . (–∞, 1)
B .( –2, 1)
C. (–3, –1)
D .(3, +∞ )
2.设 z=–3+2i ,则在复平面内 z 对应的点位于
A .第一象限 C.第三象限
B .第二象限 D .第四象限
2
42
A . f(x)= │ cosx2│
B .f (x)= │sin2x│
C. f(x)=cos │x│
D .f (x)=sin│x│
10.已知 α∈(0 , ),2sin2 α=cos2α+1,则 sin α= 2
1 A.
5
B. 5 5
C. 3 3
2 D.
5
5
x2 y2 11.设 F 为双曲线 C: a 2 b2 1(a 0, b 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与
2 ( 1)求 C 的方程,并说明 C 是什么曲线; ( 2)过坐标原点的直线交 C 于 P, Q 两点,点 P 在第一象限, PE ⊥x 轴,垂足为 E,连结 QE 并
延长交 C 于点 G.
( i )证明: △ PQG 是直角三角形;
( ii )求 △ PQG 面积的最大值 .
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计
1.则该半正多面体共有
________个面,其棱长为 _________.(本题第一空 2 分,第二空 3 分.)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第

2019高考数学备考冲刺之易错点点睛系列专题 概率与统计(理科)(学生版)

2019高考数学备考冲刺之易错点点睛系列专题 概率与统计(理科)(学生版)

概率与统计一、高考预测计数原理、概率统计部分是高中数学中使用课时最多的一个知识板块,高考对该部分的考查分值也较多.从近几年的情况看,该部分考查的主要问题是排列组合应用问题,二项式定理及其简单应用,随机抽样,样本估计总体,线性回归分析,独立性检验,古典概型,几何概型,事件的独立性,随机变量的分布、期望和方差,正态分布的简单应用,在试卷中一般是2~3个选择题、填空题,一个解答题,试题难度中等或者稍易.预计2019年该部分的基本考查方向还是这样,虽然可能出现一些适度创新,但考查的基本点不会发生大的变化.计数原理、概率统计部分的复习要从整体上,从知识的相互关系上进行.概率试题的核心是概率计算,其中事件之间的互斥、对立和独立性是概率计算的核心,排列组合是进行概率计算的工具,在复习概率时要抓住概率计算的核心和这个工具;统计问题的核心是样本数据的分布,反映样本数据的方法:样本频数表、样本频率分布表、频率分布直方图、频率折线图、茎叶图,得到样本数据的方法是随机抽样,在复习统计部分时,要紧紧抓住这些图表和方法,把图表的含义弄清楚,这样剩下的问题就是有关的计算和对统计思想的理解,如样本均值和方差的计算,用样本估计总体等.二、知识导学(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件n次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.(1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:ξ1… k… nPn n q p C 00111-n n q p C…k n k kn q p C -q p C n n n称这样随机变量服从二项分布,记作,其中、为参数,并记:),;(p n k b q p C kn k k n =-.(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生.随机变量ξ的概率分布为:要点要点4 抽样方法与总体分布的估计3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.要点5 正态分布与线性回归1.正态分布的概念及主要性质2.线性回归 简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法. 变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:ˆybx a =+.其中1221,,()ni ii nii x y nxyb a y b x xn x ==-==-⋅-∑∑,其中y x ,分别为|i x |、|i y |的平均数.三、易错点点睛【易错点2】二项式展开式中的项的系数与二项式系数的概念掌握不清,容易混淆,导致出错1、在5322x x ⎛⎫+ ⎪⎝⎭的展开式中,5x 的系数为 ,二项式系数为 。

2019数学(理科)高考题分类(高考真题+模拟题) 概率

2019数学(理科)高考题分类(高考真题+模拟题) 概率

K 单元 概率K1 随机事件的概率K2 古典概型6.J1,J2,K2[2019·全国卷Ⅰ] 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“- -”,图1-3就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )图1-3A .516B .1132C .2132D .11166.A [解析] 每一重卦由6个爻组成,每个爻可以是阳爻也可以是阴爻,所以共有26=64(种)重卦,恰有3个阳爻的情况有C 63=20(种),所以对应的概率为2064=516.17.I1,I2,K2,K6,K9[2019·北京卷] 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000] (1000,2000] 大于2000 仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率. (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.17.解:(1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为40100=0.4. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6. 所以P (X=2)=P (CD )=P (C )P (D )=0.24,P (X=1)=P (C ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,P (X=0)=P (C D )=P (C )P (D )=0.24.所以X 的分布列为 X0 1 2 P0.240.520.24故X 的数学期望E (X )=0×0.24+1×0.52+2×0.24=1.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P (E )=1C 303=14060.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.6.K2[2019·江苏卷]从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.6.7[解析]3名男同学记为A,B,C,2名女同学记为D,E.10基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个,其中至少.有1名女同学的基本事件有7个,故所求概率为710K3 几何概型K4 互斥事件有一个发生的概率15.K4,K5[2019·全国卷Ⅰ]甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是.15.0.18[解析]由题意可知,甲、乙两队共比赛了5场,前4场甲队只输了其中1场,且第5场甲队获胜.分两种情况:①甲在第1,2场的主场比赛中输了1场,由独立事件的概率计算公式得,其概率为C21×0.4×0.6×0.5×0.5×0.6=0.072;②甲在第3,4场的客场比赛中输了1场,同理可得其对应的概率为C21×0.6×0.6×0.5×0.5×0.6=0.108.所以由互斥事件的概率加法计算公式得所求的概率为0.072+0.108=0.18.18.K4,K5[2019·全国卷Ⅱ]11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.18.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分,因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.16.K4,K5,K6,K8[2019·天津卷]设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为2 3,故X~B(3,23),从而P(X=k)=C3k(23)k(13)3-k,k=0,1,2,3.所以,随机变量X的分布列为X0123P12729 49 827随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P (M )=P ({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243.K5 相互对立事件同时发生的概率15.K4,K5[2019·全国卷Ⅰ] 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是 .15.0.18 [解析] 由题意可知,甲、乙两队共比赛了5场,前4场甲队只输了其中1场,且第5场甲队获胜.分两种情况:①甲在第1,2场的主场比赛中输了1场,由独立事件的概率计算公式得,其概率为C 21×0.4×0.6×0.5×0.5×0.6=0.072;②甲在第3,4场的客场比赛中输了1场,同理可得其对应的概率为C 21×0.6×0.6×0.5×0.5×0.6=0.108.所以由互斥事件的概率加法计算公式得所求的概率为0.072+0.108=0.18.18.K4,K5[2019·全国卷Ⅱ] 11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X=2);(2)求事件“X=4且甲获胜”的概率.18.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分,因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.16.K4,K5,K6,K8[2019·天津卷]设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为2 3,故X~B(3,23),从而P(X=k)=C3k(23)k(13)3-k,k=0,1,2,3.所以,随机变量X的分布列为X0123P 1272949827随机变量X的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B(3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243.K6 离散型随机变量及其分布列21.D3,K6[2019·全国卷Ⅰ] 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X. (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i=0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i-1+bp i +cp i+1(i=1,2,…,7),其中a=P (X=-1),b=P (X=0),c=P (X=1).假设α=0.5,β=0.8.(i)证明{p i+1-p i }(i=0,1,2,…,7)为等比数列;(ii)求p 4,并根据p 4的值解释这种试验方案的合理性. 21.解:(1)X 的所有可能取值为-1,0,1.P (X=-1)=(1-α)β, P (X=0)=αβ+(1-α)(1-β), P (X=1)=α(1-β).所以X 的分布列为X-101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i)证明:由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ii)由(i)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=48-1p1.3,所以由于p8=1,故p1=348-1p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=44-1p13.=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为≈0.0039,此时得出错误结论的概率非常小,说明这种0.8时,认为甲药更有效的概率为p4=1257试验方案合理.17.I1,I2,K2,K6,K9[2019·北京卷]改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000] (1000,2000] 大于2000 仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率. (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.17.解:(1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为40100=0.4. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6. 所以P (X=2)=P (CD )=P (C )P (D )=0.24,P (X=1)=P (C D ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,P(X=0)=P(C D)=P(C)P(D)=0.24.所以X的分布列为X012P0.240.520.24故X的数学期望E(X)=0×0.24+1×0.52+2×0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E)=1C303=1 4060.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.16.K4,K5,K6,K8[2019·天津卷]设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为2 3,故X~B(3,23),从而P(X=k)=C3k(23)k(13)3-k,k=0,1,2,3.所以,随机变量X 的分布列为X 0123P12729 49 827随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P (M )=P ({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243. 7.B5,K6[2019·浙江卷] 设0<a<1,随机变量X 的分布列是则当a 在(0,1)内增大时, ( )A .D (X )增大B .D (X )减小C .D (X )先增大后减小 D .D (X )先减小后增大7.D [解析] 方法一:因为E (X )=0×13+a ×13+1×13=a+13, 所以D (X )=(0−a+13)2×13+(a −a+13)2×13+(1−a+13)2×13=29(a 2-a+1),其图像的对称轴为a=12,所以选D .方法二:因为E (X )=0×13+a ×13+1×13=a+13, 所以E (X 2)=0×13+a 2×13+1×13=a 2+13, 所以D (X )=E (X 2)-E 2(X )=29(a 2-a+1),其图像的对称轴为a=12, 所以选D .K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布23.K8[2019·江苏卷]在平面直角坐标系xOy 中,设点集A n ={(0,0),(1,0),(2,0),…,(n ,0)},B n ={(0,1),(n ,1)},C n ={(0,2),(1,2),(2,2),…,(n ,2)},n ∈N *.令M n =A n∪B n ∪C n .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n=1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示). 23.解:(1)当n=1时,X 的所有可能取值是1,√2,2,√5.X 的概率分布为P (X=1)=7C 62=715,P (X=√2)=4C 62=415,P (X=2)=2C 62=215,P (X=√5)=2C 62=215.(2)设A (a ,b )和B (c ,d )是从M n 中取出的两个点. 因为P (X ≤n )=1-P (X>n ),所以仅需考虑X>n 的情况.①若b=d ,则AB ≤n ,不存在X>n 的取法;②若b=0,d=1,则AB=√(a -c)2+1≤√n 2+1,所以X>n 当且仅当AB=√n 2+1,此时a=0,c=n 或a=n ,c=0,有2种取法;③若b=0,d=2,则AB=√(a -c)2+4≤√n 2+4.因为当n ≥3时,√(n -1)2+4≤n ,所以X>n 当且仅当AB=√n 2+4,此时a=0,c=n 或a=n ,c=0,有2种取法;④若b=1,d=2,则AB=√(a -c)2+1≤√n 2+1,所以X>n 当且仅当AB=√n 2+1,此时a=0,c=n 或a=n ,c=0,有2种取法.综上,当X>n时,X 的所有可能取值是√n 2+1和√n 2+4,且P (X=√n 2+1)=4C 2n+42,P (X=√n 2+4)=2C 2n+42.因此,P (X ≤n )=1-P (X=√n 2+1)-P (X=√n 2+4)=1-6C 2n+42.16.K4,K5,K6,K8[2019·天津卷] 设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.16.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B (3,23),从而P (X=k )=C 3k (23)k (13)3-k,k=0,1,2,3.所以,随机变量X 的分布列为X 0123P12729 49 827随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P (M )=P ({X=3,Y=1}∪{X=2,Y=0})=P (X=3,Y=1)+P (X=2,Y=0)=P (X=3)P (Y=1)+P (X=2)P (Y=0)=827×29+49×127=20243.K9 单元综合17.I1,I2,K2,K6,K9[2019·北京卷] 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率. (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.17.解:(1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为40100=0.4. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6. 所以P (X=2)=P (CD )=P (C )P (D )=0.24,P (X=1)=P (C D ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,P (X=0)=P (C D )=P (C )P (D )=0.24.所以X的分布列为X012P0.240.520.24故X的数学期望E(X)=0×0.24+1×0.52+2×0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E)=1C303=1 4060.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.[2019·安徽合肥一检]某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会.规定:若第一次取出的两个小球的号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸奖,若与第一次取出的两个小球的号码相同,则中奖,否则不中奖.按照这样的规则摸奖,中奖的概率为()A.45B.1925C.2350D.4110011.C[解析]根据题意可知中奖的概率为4C52+C52-4C52·1C52=25+350=2350,故选C.1.[2019·长沙一检] 已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还可以正常工作,则这个元件的使用寿命超过2年的概率为( )A .0.75B .0.6C .0.52D .0.481.A [解析] 设“这种元件的使用寿命超过1年”为事件A ,“这种元件的使用寿命超过2年”为事件B ,则P (A )=0.8,P (AB )=0.6,故P (B|A )=P(AB)P(A)=0.60.8=0.75,故选A .3.[2019·江西上饶联考] 某校为某项数学比赛选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格.该校有900名学生参加了初赛,所有学生的分数均在区间(30,150]内,按(30,50],(50,70],(70,90],(90,110],(110,130],[130,150]分组后,得到频率分布直方图如图T11-1所示.图T11-1(1)求本次初赛分数的中位数.(2)从初赛分数在区间(110,150]内的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流会,那么从分数在区间(110,130]与(130,150]内的参赛者中各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流会,设X 表示分数在(110,130]内参加全市座谈交流会的人数,学校打算给这4人一定的物质奖励,若该生分数在(110,130]内则给予500元奖励,若该生分数在(130,150]内则给予800元奖励,用Y 表示学校发的奖金数额,求Y 的分布列和数学期望.3.解:(1)由题意知分数在(30,90]内的频率为20×(0.002 5+0.007 5+0.007 5)=0.35,分数在(110,150]内的频率为20×(0.005 0+0.012 5)=0.35,所以分数在(90,110]内的频率为1-0.35-0.35=0.3, 从而分数在(90,110]内的频率组距=0.320=0.015. 设本次初赛分数的中位数为x ,则由题意得0.35+(x-90)×0.015=0.5,解得x=100. (2)分组区间(110,130]与(130,150]的频率之比为0.012 5∶0.005 0=5∶2.因为要从得分在区间(110,150]内的参赛者中,利用分层抽样的方法随机抽取7人, 所以应从分数在区间(110,130]与(130,150]内的参赛者中各抽取5人,2人. (3)X 的可能取值为2,3,4,则P (X=2)=C 52C 22C 74=27,P (X=3)=C 53C 21C 74=47,P (X=4)=C 54C 20C 74=17,从而Y 的分布列为Y 2600 23002000P274717∴Y 的数学期望E (Y )=2600×27+2300×47+2000×17=16 4007. 6.[2019·广东揭阳期末] 某公司培训员工的某项技能,培训有如下两种方式:方式一,周一到周五每天培训1小时,周日测试;方式二,周六一天培训4小时,周日测试.并规定,本周测试达标后,下周不再培训,否则继续培训,直到测试达标.公司有多个班组,每个班组60人,现任选两个班组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表.第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016其中第一、二周达标的员工评为优秀. (1)在甲组内任选两人,求恰有一人优秀的概率.(2)若每个员工技能测试是否达标相互独立,且以频率作为概率.(i)设公司员工在方式一、方式二下的受训时间分别为ξ1,ξ2,求ξ1,ξ2的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.6.解:(1)因为甲组60人中有45人优秀,所以从中任选两人,恰有一人优秀的概率为C 451C 151C 602=45×1530×59=45118. (2)(i)ξ1的分布列为ξ1 5101520P13512 16 112E (ξ1)=5×13+10×512+15×16+20×112=10. ξ2的分布列为ξ2 481216P215415 13 415E (ξ2)=4×215+8×415+12×13+16×415=4×4115=16415, ∵E (ξ1)<E (ξ2),∴公司应选培训方式一.(ii)按培训方式一,从公司任选一人,其优秀的概率为13+512=34, 则从公司任选两人,恰有一人优秀的概率为C 21×34×(1-34)=38.。

第13题 概率(文)-2019年高考数学23题试题分析与考题集训含答案

第13题 概率(文)-2019年高考数学23题试题分析与考题集训含答案

第13题 概率(文)【考法】本主题考题形式为选择题或填空题,与函数、不等式、统计等知识结合考查古典概型、几何概型及互斥事件、对立事件的概率求法,考查应用意识、运算求解能力,难度为容易题或中档试题,分值为5至10分.【考前回扣】1.古典概型的概率(1)公式P (A )=m n =A 中所含的基本事件数基本事件总数. (2)古典概型的两个特点:所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等. 2.几何概型的概率(1)P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).(2)几何概型应满足两个条件:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.3.概率的性质及互斥事件的概率 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0.(4)若A ,B 互斥,则P (A ∪B )=P (A )+P (B ),特别地P (A )+P (A -)=1.【易错点提醒】1.应用互斥事件的概率加法公式,一定要注意确定各事件是否彼此互斥,并且注意对立事件是互斥事件的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.几何概型的概率计算中,几何“测度”确定不准而导致计算错误3.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数,两点注意:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.4..利用古典概型计算事件A 的概率应注意的问题:①本试验是否是等可能的;②本试验的基本事件有多少个;③事件A 是什么,它包含的基本事件有多少个,回答好这三个方面的问题,解题才不会出错.【考向】考向一 古典概型【解决法宝】1.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数.2..基本事件数的探求方法:①列举法:适合于较简单的试验;②树状图法:适合于较为复杂的问题中的基本事件的探求.③列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.例1.【2019届四川省宜宾市二诊】一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A.B.C.D.【分析】先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率【解析】一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,6.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},{5,6}共9个,这2个球中有白球的概率是,故选B.考向二几何概型【解决法宝】1.当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;2.利用几何概型求概率时,关键是构成试验的全部结果的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.例2【2019届广西柳州市3月模拟】在区间上随机取一个数,使直线与圆相交的概率为()A.B.C.D.【分析】先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【解析】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为,故选C.考向三互斥事件和对立事件【解决法宝】1.注意区分互斥事件和对立事件,互斥事件是在同一试验中不可能同时发生的两个或多个事件,对立事件是同一试验中不可能同时发生的两个事件,且其和事件为必然事件;2.一个事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”、“至多”等问题往往用这种方法求解;例3.【河北沧州市2018届一模】甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为.【分析】利用互斥事件的概率公式进行求解.【解析】因为甲获胜的概率,甲、乙下和棋的概率以及乙获胜的概率三者之和为1,所以乙获胜的概率为.【集训】1.【江西省上饶市2018届二模】欧阳修的《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm 的圆面,中间有边长为1cm的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A.49πB.14πC.19πD.116π【答案】B2. 【2019届辽宁省丹东市质测(一)】从甲乙丙丁4人中随机选出2人参加志愿活动,则甲被选中且乙未被选中的概率是()A.B.C.D.【答案】B【解析】个人中选人,基本事件有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁六种,其中甲被选中且乙未被选中的事件有甲丙、甲丁两种,故概率为.故选B.3.【山西省2018届一模】甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙分钟的概率是()A. B. C. D.【答案】C【解析】建立直角坐标系如图,分别表示甲,乙二人到达的时刻,则坐标系中每个点可对应甲,乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是,其构成的区域为如图阴影部分,则所求的概率为,故选C4. 【2019届安徽省安庆市二模】“勾股圆方图”是我国古代数学家赵爽设计的一幅用来证明勾股定理的图案,如图所示.在“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.若直角三角形中较小的锐角满足,则从图中随机取一点,则此点落在阴影部分的概率是()A.B.C.D.【答案】D【解析】设大正方形边长为,由知直角三角形中较小的直角边长为,较长的直角边长为,所以小正方形的边长为且面积,大正方形的面积为25,则则此点落在阴影部分的概率是,故选D.5.【四川省凉山州2018届第二次诊断】在区间[]02,上任取两个数,则这两个数之和大于3的概率是( )A.18 B. 14 C. 78 D. 34【答案】A【解析】如图:不妨设两个数为x y ,,故3x y +>,如图所示,其概率为,故选A6.【2019届安徽省蚌埠市一质检】一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为 A .4 B .5C .8D .9【答案】B【解析】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B . 7.【河南省濮阳市2018届二模】在内任取一个实数,设,则函数的图象与轴有公共点的概率等于( )A.B.C. D.【答案】D【解析】的图象与轴有公共点,或在内取一个实数,函数的图象与轴有公共点的概率等于,故选D.8.【2019届安徽省六安市毛坦厂中学3月联考】若是从区间内任意选取的一个实数,也是从区间内任意选取的一个实数,则点在圆:内的概率为()A.B.C.D.【答案】C【解析】因为是从区间内任意选取的一个实数,也是从区间内任意选取的一个实数,所以点的所有取值构成边长为4的正方形区域,且正方形面积为;如图所示,作出满足题意的正方形和圆,在圆:内,由可得,所以,所以;因此,所以阴影部分面积为,所以点在圆:内的概率为,故选C9.【湖南省衡阳市2018届一模】2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行为此发行了以此为主题的金质纪念币,如图所示,该圆形金质纪念币,直径22mm.为了测算图中军旗部分的面积,现用1粒芝麻(将芝麻近似看作一个点)向硬币内随机投掷220次,其中恰有60次落在军旗内,据此可估计军旗的面积大约是A. 32B. 33C. 132D. 133【答案】B【解析】设军旗的面积为s ,由题知,圆的半径为11mm ,由几何概型公式知,,解得233mm s π=,故选B.10.【2019届湖南省怀化市一模】《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为( ) A . B .C .D .【答案】B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B .11.【广东省2018届一模】下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A. B. C. D.【答案】A【解析】根据圆的面积公式以及几何概型概率公式可得,此点取自黑色部分的概率是,故选A.12.【2019届河北省石家庄市3月质检】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。

2019高考试题汇编理科数学---概率统计

2019高考试题汇编理科数学---概率统计
(Ⅱ)首先确定X可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可.
(Ⅲ)由题意结合概率的定义给出结论即可.
【详解】(Ⅰ)由题意可知,两种支付方式都是用的人数为: 人,则:
该学生上个月A,B两种支付方式都使用的概率 .
(Ⅱ)由题意可知,
仅使用A支付方法的学生中,金额不大于1000的人数占 ,金额大于1000的人数占 ,
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
【答案】(Ⅰ) ;
(Ⅱ)见解析;
(Ⅲ)见解析.
【解析】
【分析】
(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;
.
(2019全国1理)21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为 和 ,一轮实验中甲药的得分记为 .

2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)

2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)

专题13 概率小题部分【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理及简单的排列组合,及列举法求概率。

6、理解随机变量的概念,掌握随机变量分布列的性质;7、掌握随机变量分布列的求法,及期望计算公式。

8、掌握条件概率的计算公式,掌握正态分布,二项分布的期望和方差公式。

【温馨小提示】概率在高考中有一道小题一道大题,17分左右,对于理科生来讲,只要掌握了基本的概念及公式,这是属于送分题,因此在练习时要注意总结方法。

【名校试题荟萃】1、袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④【答案】B【解析】至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.2、张卡片上分别写有数字,从这张卡片中随机抽取2张,则取出张卡片上数字之和为偶数的概率为( )A. B. C. D.【答案】B【解析】由题知基本事件总数为,如果2张卡片上数字之和为奇数,需1奇1偶,共有种,∴取出2张卡片上数字之和为奇数的概率为,因此取出2张卡片上数字之和为偶数的概率为.3、从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为()A. B. C. D.【答案】B【解析】先求三张价格均不相同的概率所求概率为。

4、国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有人去此地旅游的概率为()A. B. C. D.【答案】B5、已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A. B. C. D.【答案】C【解析】记“第一次取出次品”为事件,“第二次取出次品”为事件,则,,所以.6、设随机变量服从正态分布,若,则函数没有极值点的概率是()A. B. C. D.【答案】C【解析】由无相异实根得,因此函数没有极值点的概率是,选C.7、将本不同的书全发给名同学,每名同学至少有一本书的概率是( )A. B. C. D.【答案】A8、已知是球面上的五个点,其中在同一圆周上,若不在所在的圆周上,则从这五个点的任意两点的连线中取出条,这两条直线是异面直线的概率是()A. B. C. D.【答案】D【解析】由题意,得是四棱锥的五个顶点,任取两点,共有条直线,从条直线中任取两条直线,共有对,其中异面直线对是一条侧棱与地面上三条相等(如侧棱与)共有对异面直线,由古典概型的概率公式,得这两条直线是异面直线的概率是.9、某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A. B. C. D.【答案】C10、一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该运动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A. B. C. D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则.11、在区间内随机取两个实数,,则满足的概率是( )A. B. C. D.【答案】D【解析】由题意知表示的区域为边长为2的正方形,面积为4,满足的区域即为图中阴影部分,面积为,所以所求概率为,.12、若是从区间中任取的一个实数,是从区间中任取的一个实数,则的概率是( )A. B. C. D.【答案】A【解析】试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为.其中满足的结果构成的区域为图中阴影部分,其面积为.则所求概率为.13、如图,将半径为的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A. B. C. D.【答案】A14、在如图所示的正方形中随机投掷个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,A. B. C. D.【答案】C【解析】根据题意得,设落入阴影部分点的个数为,则,则.15、有一批产品,其中有件正品和件次品,有放回地任取件,若表示取到次品的件数,则_________.【答案】【解析】由题意知取到次品的概率为,∴,∴.16、已知随机变量,若,则_________.【答案】【解析】,所以,所以,解得,所以.17、设随机变量的分布列为,其中为常数,则_________.【答案】18、设随机变量的概率分布律如下表所示:其中成等差数列,若随机变量的的均值为,则的方差为________.【答案】【解析】由题意有,,,解得,则其方差为.19、有一种游戏规则如下:口袋里共装有个红球和个黄球,一次摸出个,若颜色都相同,则得分;若有个球颜色相同,另一个不同,则得分,其他情况不得分. 小张摸一次得分的期望是________.【答案】20、设随机变量,且,则实数的值为_________.【答案】3【解析】∵随机变量,∴正态曲线关于对称,∵,∴与关于对称,所以∴.21、某校高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为________.【答案】508【解析】因为分数服从,所以由正态分布的性质可知,估计分数高于105分的人数为故,答案为508.22、如图,是以为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用表示事件“豆子落在正方形内”,表示事件“豆子落在扇形(阴影部分)内”,则______.【答案】【解析】故答案为.23、袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出黑球,设“第一次摸得红球”为事件,“摸得的两球同色”为事件,则概率_________.【答案】【解析】由, ,根据条件概率可知.24、设集合,,分别从集合和中随机取一个数和,确定平面上一个点,设“点落在直线上”为事件,若事件的概率最大,则的值为________.【答案】2【解析】由题意知,点的坐标的所有情况为,,,,,,,,,共种.当时,落在直线上的点的坐标为,共种;当时,落在直线上的点的坐标为和,共种;当时,落在直线上的点的坐标为,,,共种;当时,落在直线上的点的坐标为,,共种;当时,落在直线上的点的坐标为,共种.因此,当的概率最大时,.25、个男生,个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有________.【答案】288026、将名新的同学分配到、、三个班级中,每个班级至少安排名学生,其中甲同学不能分配到班,那么不同的分配方案数为_________.(请用数字作答)【答案】24【解析】将甲同学分配到班或班,有种;剩下的名同学分配方案为种,所以不同的分配方案为种.27、某班组织文艺晚会,准备从等个节目中选出个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为_________.【答案】1140【解析】分两类:第一类,只有一个选中,则不同演出顺序有种;第二类,同时选中,则不同演出顺序有种,共有.故答案应填:.28、甲、乙两位高一学生进行新高考“七选三”选科(即在物、化、生、政、史、地、技术等七门科中任选择三门学科),已知学生甲必选政治,学生乙必不选物理,则甲、乙两位学生恰好有两门选课相同的选法有________种.(用数字作答)【答案】110【解析】(1)甲选物理:;(2)甲不选物理:;共有种.29、为了调查观众对央视某节目的关注度,现从某社区随机抽取名青年人进行调查,再从中挑选名做进一步调查,则这名青年人中的小张、小李至少有人被选中,而小汤没有被选中做进一步调查的不同选法有________种. 【答案】149630、有个大学报送名额,计划分别到个班级,每班至少一个名额,则不同的分法种数为种.【答案】6【解析】一共有个保送名额,分到个班级,每个班级至少一个保送名额,即将名额分成份,每份至少个(定行数).将个名额排成一列产生个空,中间有个空(定空位).即只需在中间个空中插入个隔板,隔板不同的方法共有种.(插隔板)专题13 概率(小题部分)(文)【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理,及列举法求概率。

2019年高考真题理科数学解析分类汇编13概率

2019年高考真题理科数学解析分类汇编13概率

2019年高考真题理科数学解析分类汇编13 概率1.【2019高考辽宁理10】在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A)16 (B) 13 (C) 23 (D) 45【答案】C【解析】设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或。

又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C 【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。

2.【2019高考湖北理8】如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π【答案】A考点分析:本题考察几何概型及平面图形面积求法.【解析】令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。

2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS 。

在扇形OAD 中21S 为扇形面积减去三角形OAC面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,选A.3.【2019高考广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49 B.13 C.29 D.19【答案】D【解析】法一:对于符合条件“个位数与十位数之和为奇数的两位数”分成两种类型:一是十位数是奇数,个位数是偶数,共有2555=⨯个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有2054=⨯,所以9120255=+=P .故选D .法二:设个位数与十位数分别为y x ,,则12-=+k y x ,=k 1,2,3,4,5,6,7,8,9,所以y x ,分别为一奇一偶,第一类x 为奇数,y 为偶数共有251515=⨯C C 个数;第二类x 为偶数,y 为奇数共有201514=⨯C C 个数。

2019年高考数学试题分类汇编概率附答案详解

2019年高考数学试题分类汇编概率附答案详解

2019年高考数学试题分类汇编概率一、选择题.1、(2019年高考全国I 卷文科6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生答案:C解析:组距为10,所以选出号码为等差数列,公差为10,故选C2、(2019年高考全国I 卷理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116答案:A解析:一共有6426=种可能,其中满足恰有3个阳爻的有2036=C 种,概率为1656420=故选A 3、(2019年高考全国II 卷文科4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35 C .25D .15答案:B解析:设5只兔子为A,B,C,D,E,其中A,B,C 为测量过指标的取出3只所有情况:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE 共10种满足条件的有6种:ABD 、ABE 、ACD 、ACE 、BCD 、BCE 故概率为53=p 故答案选B 4、(2019年高考全国II 卷理科5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 答案:A解析:9个数的中位数与去掉两个数后的7个数的中位数相同.故答案选A5、(2019年高考全国III 卷文科3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:两位男生和两位女生排成一列,共有44A 种站法,其中两位女生相邻的站法共有3322A A 种,所以两位女生相邻的概率是21123412312443322=⨯⨯⨯⨯⨯⨯⨯=A A A 。

专题13 概率-备战2019年高考数学(理)之纠错笔记系列(解析版)

专题13 概率-备战2019年高考数学(理)之纠错笔记系列(解析版)

易错点1 忽略概率加法公式的应用前提致错某商店日收入(单位:元)在下列范围内的概率如下表所示:已知日收入在[1000,3000)(元)范围内的概率为0.67,求月收入在[1500,3000)(元)范围内的概率.【错解】记这个商店日收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000) (元)范围内的事件分别为A,B,C,D,则日收入在[1500,3000)(元)范围内的事件为B+C+D,所以P(B+C+D)=1-P(A)=0.88.【错因分析】误用P(B+C+D)=1-P(A).事实上,本题中P(A)+P(B)+P(C)+P(D)≠1,故事件A与事件B+C+D 并不是对立事件.【试题解析】因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.在应用概率加法公式时,一定要注意其应用的前提是涉及的事件是互斥事件.对于事件A,B,有()()()P A B P A P B=+,只有当事件A,B互斥时,等号才成立.1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、绿球的概率各是多少?【答案】得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为14.【名师点睛】本题主要考查了等可能事件的概率,考查了互斥事件的概率加法公式,关键是明确互斥事A B C D表件和的概率等于概率的和,属于中档试题,着重考查了分析问题和解答问题的能力.分别以,,,示事件:从袋中任取一球“摸到红球”,“摸到黄球”,“摸到绿球”,则由题意得到三个和事件的概率,求解方程组,即可得到答案.学科&网易错点2 混淆“等可能”与“非等可能”从5名男生和3名女生中任选1人去参加演讲比赛,求选中女生的概率.【错解】从8人中选出1人的结果有“男生”“女生”两种,则选中女生的概率为.【错因分析】因为男生人数多于女生人数,所以选中男生的机会大于选中女生的机会,它们不是等可能的.【试题解析】选出1人的所有可能的结果有8种,即共有8个基本事件,其中选中女生的基本事件有3个,故选中女生的概率为.利用古典概型的概率公式求解时,注意需满足两个条件:(1)所有的基本事件只有有限个;(2)试验的每个基本事件是等可能发生的.2.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A.1999B.11000C.9991000D.12【答案】D【名师点睛】本题主要考查了概率的基本概念及应用,其中熟记随机事件的概率的基本概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.由题意投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,即可得到答案.学科.网错点3 几何概型中测度的选取不正确在等腰直角三角形ABC中,直角顶点为C.(1)在斜边AB上任取一点M,求AM<AC的概率;(2)在∠ACB的内部,以C为端点任作一条射线CM,与线段AB交于点M,求AM<AC的概率. 【错解】(1)如图所示,在AB上取一点C',使AC'=AC,连接CC'.由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===. (2)在∠ACB 的内部作射线CM,则所求概率为2AC AC AB AB '==. 【错因分析】第(2)问的解析中错误的原因在于选择的观察角度不正确,因为在∠ACB 的内部作射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的,则涉及的测度应该是角度而不是长度.【试题解析】(1)如图所示,在AB 上取一点C',使AC'=AC,连接CC'.由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===.(2)由于在∠ACB 内作射线CM,等可能分布的是CM 在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB,又1(18045)67.52ACC '∠=-=,90ACB ∠=, 所以()ACC P AM AC ACB '∠<==∠的角度的角度67.53904=.对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式. (1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.3.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则P = A .23 B .12 C .49D .29【答案】D【名师点睛】由题意结合几何概型计算公式求解满足题意的概率值即可.数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.学科.网易错点4 错解随机变量的取值概率而致错从4名男生和2名女生中任意选择3人参加比赛,设被选中的女生的人数为X .(1)求X 的分布列;(2)求所选女生的人数至多为1的概率.【错解】(1)由题设可得X 的可能取值为0,1,2,且3436A 1(0)A 5P X ===,214236A A 1(1)A 5P X ===,3(2)1(0)(1)5P X P X P X ==-=-==, 所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为2(1)(0)(1)5P X P X P X ≤==+==. 【错因分析】产生错解的原因是对随机变量的取值概率求解错误,事实上随机变量X 服从参数为6N =,2M =,3n =的超几何分布.【试题解析】(1)由题设可得X 的可能取值为0,1,2,且3436C 1(0)C 5P X ===, 122436C C 3(1)C 5P X ===,212436C C 1(2)C 5P X ===,所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为4(1)(0)(1)5P X P X P X ≤==+==.4.大豆是我国主要的农作物之一,因此,大豆在农业发展中占有重要的地位,随着农业技术的不断发展,为了使大豆得到更好的种植,就要进行超级种培育研究.某种植基地培育的“超级豆”种子进行种植测试:选择一块营养均衡的可种植4株的实验田地,每株放入三粒“超级豆”种子,且至少要有一粒种子发芽这株豆苗就能有效成活,每株成活苗可以收成大豆2.205kg .已知每粒豆苗种子成活的概率为12(假设种子之间及外部条件一致,发芽相互没有影响). (1)求恰好有3株成活的概率;(2)记成活的豆苗株数为ξ,收成为()kg η,求随机变量ξ分布列及η数学期望E η. 【答案】(1)3431024;(2)见解析.(2)记成活的豆苗株数为ξ,收成为=2.205ηξ,则ξ的可能取值为0,1,2,3,4,且ξ~74,8B ⎛⎫ ⎪⎝⎭, 所以ξ的分布列如下表:4 3.58E ξ∴=⨯=,()()= 2.205 2.2057.7175kg E E E ηξξ=⋅=.学科@网【名师点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:①阅读理解关;②概率计算关;③公式应用关.(1)利用对立事件求出每株豆子成活的概率,再结合独立事件概率公式得到结果; (2)记成活的豆苗株数为ξ,收成为=2.205ηξ,且ξ~74,8B ⎛⎫⎪⎝⎭,从而得到随机变量ξ的分布列及η的数学期望E η.易错点5 对超几何分布的概念理解不透彻而致错盒中装有12个零件,其中有9个正品,3个次品,从中任取一个,若取出的是次品不再放回,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数X 的分布列.【错解】由题意可知,X 服从超几何分布,其中12N =,3M =,3n =,所以在取得正品之前已取出次品数X 的分布列为339312C C (0,1,2,3)C ()k k P X k k -===,所以已取出次品数X 的分布列为 【错因分析】错解中未理解超几何分布的概念.本题是不放回抽样,“1X =”表示“第一次取到次品,第二次取到正品”,“2X =”表示“前两次都取到次品,第三次取到正品”,属于排列问题.而超几何分布是一次性抽取若干件产品,属于组合问题.【试题解析】由题易得X 的可能取值为0,1,2,3.19112()C 30C 4P X ===,1139212C C 9()1A 44P X ===,2139312A C 92A 2()20P X ===,3139412A C 13A 2()20P X ===,所以已取出次品数X 的分布列为求随机变量的分布列的关键是熟练掌握排列、组合知识,求出随机变量每个取值的概率,注意概率的取值范围(非负),在由概率之和为1求参数问题中要把求出的参数代回分布列进行检验.5.某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A 、B 两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A 组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B 组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》. (1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率; (2)若从A 、B 两组中各任选2人,设X 为选出的4人中选听《生活趣味数学》的人数,求X 的分布列和数学期望()E X . 【答案】(1)2140;(2)见解析. 【解析】(1)设“选出的3人中恰有2人选听《校园舞蹈赏析》”为事件M ,则()2173310C C 21C 40P M ==,学科&网答:选出的3人中恰有2人选听《校园舞蹈赏析》的概率为21 40.所以X的数学期望为:()9123160123502510255E X=⨯+⨯+⨯+⨯=.【名师点睛】本题主要考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,属于中档题.(1)利用相互独立事件与古典概率计算公式即可得出;(2)X可能的取值为0,1,2,3,利用相互独立事件、互斥事件的概率计算公式即可得出概率、分布列与数学期望.掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.易错点6 混淆互斥事件与相互独立事件而致错甲投篮命中率为0.9,乙投篮命中率为0.8,每人投3次,两人都恰好投中2次的概率是多少?【错解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B , 则“两人都恰好投中2次”为事件A B ,所以222233()()()C 0.90.1C 0.80.2P AB P A P B =+=⨯⨯+⨯⨯=0.627.【错因分析】产生错解的原因是把相互独立事件同时发生当成互斥事件来考虑,将“两人都恰好投中2次”理解为“甲恰好投中2次”与“乙恰好投中2次”的和.【试题解析】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,且A ,B 相互独立, 则“两人都恰好投中2次”为事件AB ,所以222233()()()C 0.90.1C 0.80.2P AB P A P B ==⨯⨯⨯⨯⨯=0.093312.1.运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.6.一张储蓄卡的密码共有6位数字,每位数字都可以从09~中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为A .25 B .310 C .15D .110【答案】C【解析】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为: P =19110109+⨯=15. 故选C .学科.网【名师点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.一、随机事件与概率 1.事件关系的判断方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.基本事件个数的计算方法 (1)列举法; (2)列表法; (3)利用树状图列举.3.求互斥事件概率的两种方法(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算. (2)间接求法:先求此事件的对立事件,再用公式P (A )=1-()P A 求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法往往会较简便. 二、古典概型1.求古典概型的基本步骤 (1)算出所有基本事件的个数n .(2)求出事件A 包含的所有基本事件数m . (3)代入公式P (A )=mn ,求出P (A ).2.基本事件个数的确定方法(1)列举法:此法适用于基本事件较少的古典概型.(2)列表法:此法适用于从多个元素中选定两个元素的试验,也可看成是坐标法. 3.求与古典概型有关的交汇问题的方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算. 三、几何概型1.求解与长度(角度)有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度).2.求解与体积有关的几何概型的方法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.3.求解与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.四、离散型随机变量分布列的常见类型及解题策略(1)与排列组合有关分布列的求法.可由排列组合、概率知识求出概率,再求出分布列.(2)与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.(3)与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.(4)与独立事件(或独立重复试验)有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列出分布列.(5)超几何分布的特点超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.五、n次独立重复试验与二项分布1.条件概率的两种解法(1)定义法:先求P(A)和P(AB),再由P(B|A)()=()P ABP A求P(B|A).(2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A).,再求事件AB所包含的基本事件数n(AB),得P(B|A)()() n ABn A =.2.求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁琐或难以入手时,可从其对立事件入手计算.4.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)()()=()()P AB n ABP A n A=,其中,在实际应用中P(B|A)=()()n ABn A是一种重要的求条件概率的方法.5.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).6.n次独立重复试验中,事件A恰好发生k次可看作是C kn个互斥事件的和,其中每一个事件都可看作是k 个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.1.(2018年全国卷II理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.118【答案】C【名师点睛】先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法:(1)列举法. 学科!网(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4C.0.6 D.0.7【答案】B【解析】设事件A为只用现金支付,事件B为只用非现金支付,事件C为既用现金支付也用非现金支付.则()()()()P A B C P A P B P C =++.因为()()0.45,0.15P A P C ==,所以()0.4P B =.故选B.【名师点睛】本题主要考查事件的基本关系和概率的计算,属于基础题.由公式()()()()P A B C P A P B P C =++计算可得.学科^网3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4D .0.3【答案】D【名师点睛】分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能个数及事件“选中的2人都是女同学”的总可能个数,代入概率公式可求得概率.应用古典概型求某事件的步骤: 第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; 第三步,利用公式()mP A n=求出事件A 的概率. 4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是A .13 B .16 C .14D .112【答案】A【解析】幼童把这三张卡片进行随机排列,基本事件总数n =23C =3, ∴该幼童能将这句话排列正确的概率p =13.故选A.【名师点睛】先排好医字,共有23C种排法,再排国字,只有一种方法.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.5.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=A.0.4 B.0.5C.0.6 D.0.7【答案】A6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683该运动员三次投篮恰有两次命中的概率为A.15B.35C.310D.910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数,故所求概率为3 10.故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的可以通过列举得到共3组随机数,根据概率公式,得到结果.7.传说战国时期,齐王与田忌各有上等,中等,下等三匹马,且同等级的马中,齐王的马比田忌的马强,但田忌的上、中等马分别比齐王的中、下等马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜.如果齐王将马按上,中,下等马的顺序出阵,而田忌的马随机出阵比赛,则田忌获胜的概率是A .B .C .D .【答案】C8.有一底面半径为1,高为2的圆柱,点O为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P 到点O的距离大于l的概率为A.13B.23C.34D.14【答案】B【解析】设点P到点O的距离小于等于1的概率为P1,由几何概型,得P1=322π13π12VV⨯⨯⨯半球圆柱==13,故点P到点O的距离大于1的概率P=1-13=23.学科*网故选B.9.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是A.0.01×0.992B.0.012×0.99C.13C0.01×0.992D.1-0.993【答案】D【名师点睛】本题主要考查了互斥事件概率的求法,解题的关键是熟练掌握互斥事件的概率和为1,属于基础题.根据题意求出事件“三盒中没有次品”的概率,然后根据互斥事件的概率和为1,即可得到答案.10.运行如图所示的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数是增函数的概率为A.B.C.D.【答案】C【解析】该程序的运行过程如下:x=-3,输出,输出,输出,输出,输出,输出,输出y=15,程序结束,故A={3,0,-1,8,15},其中有3个正元素,可使得函数是增函数,故所求概率为.故选C.11.设函数f(x)=e,01ln e,1ex xx x⎧≤<⎨+≤≤⎩在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是A.1eB.1﹣1eC.e1e+D.11e+【答案】B12.(2018新课标I卷理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC △的面积为112S bc =, 黑色部分的面积为22221πππ2222c b a S bc ⎡⎤⎛⎫⎛⎫⎛⎫=⋅+⋅-⋅-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2221π4442c b a bc ⎛⎫=+-+⎪⎝⎭ 22211π422c b a bc bc +-=⋅+=,其余部分的面积为2231π1π2242a a S bc bc ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =. 故选A.【名师点睛】该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.学科&网13.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】310【名师点睛】先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法:(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.14.(2018上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_____. 【答案】15【解析】编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个, 从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况, 所有的事件总数为:35C =10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2,共两个, 所以这三个砝码的总质量为9克的概率是:210=15, 故答案为:15. 【名师点睛】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.15.已知向量()()2,1,,x y ==,a b 若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量∥a b 的概率为_______. 【答案】16【名师点睛】本题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.先求出基本事件的个数,利用向量平行确定满足∥a b 的基本事件个数,然后代入古。

2019高考试题汇编理科数学---概率统计(可编辑修改word版)

2019高考试题汇编理科数学---概率统计(可编辑修改word版)
(ii)求 p4 ,并根据 p4 的值解释这种实验方案的合理性.
答案: (1)略Βιβλιοθήκη (2)略 解答:(1)一轮实验中甲药的得分有三种情况:1、 1、 0 . 得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则 P( X 1) (1 ) ;
得 1分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则 P( X 1) (1 ) ;
束.
(1)求 P( X 2) ;
(2)求事件“ X 4 且甲获胜”的概率.
答案:
(1) 0.5 ;(2) 0.06
解析:
(1) X 2 时,有两种可能: ①甲连赢两局结束比赛,此时 P1 0.5 0.4 0.2 ;
②乙连赢两局结束比赛,此时 P2 0.5 0.6 0.3 ,
p7 p6 p1 46 ,
………………
p2 p1 p1 4 , 以上 7 个式子相加,得到 p8 p1 p1 (47 46 4) ,

p8
p1 (1
4
46
47 )
p1
1 48 1 4
48 1 3
p1
,则
p1
3 48 1

再把后面三个式子相加,得 p4 p1 p1 (4 42 43 ) ,
2 / 10

p4
p1
(1
4
42
43 )
44 1 3
p1
44 1 3
3 48 1
1 44 1
1 257

p4 表示“甲药治愈的白鼠比乙药治愈的白鼠多 4 只,且甲药的累计得分为 4”,因为 0.5 , 0.8 , ,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多 4 只,且甲药的累计得分为 4”这种情况的概率

2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx

2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx

概率与统计专题1.[2019年高考全国III卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70^100=0.7.故选C.【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.[2019年高考全国II卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差【答案】A【解析】设9位评委评分按从小到大排列为不 <吃<兀3<兀4 <忑<冯.则①原始中位数为冯,去掉最低分X1,最高分兀后剩余兀2<兀3<兀4< <忑,中位数仍为无,A正确;-1 — 1②原始平均数% = <x2<x3<x4 <X8< x9),后来平均数x' ~—{x2 < x3 < x4 < x8),平均数受极端值影响较大,•••:与7不一定相同,B不正确;1 1 — _ —® S2 = -[(%! - X)2 + (%! - X)2 ++(%-元)2], s'2 =-[(X2-X,)2+(X3-x'f++(X8-y)2],由②易知,C不正确;④原极差=冯-召,后来极差=忑-兀2,显然极差变小,D不正确.故选A.3. [2019年高考浙江卷】设OVaVl,则随机变量X的分布列是则当a 在(0,1)内增大时,A. D(X)增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解. 本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合 性,注重重要知识、基础知识、运算求解能力的考查.【解析】方法1:由分布列得E(X)=匕色,则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.方法 2:则 D(X) = E(X-)-E(X) = 0 + — + --^^ = ^-^-^ = -[(a--)-+~],3 3 9 9 9 2 4则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计 算能力差,不能正确得到二次函数表达式.4. [2019年高考江苏卷】已知一组数据6, 7, 8, 8, 9, 10,则该组数据的方差是 _______________________ .【答案】|所以该组数据的方差是丄[(6-8)2 + (7 -8)2 + (8-8)2 + (8 -8)2+ (9 -8)2 + (10-8)2]=-. 635. [2019年高考全国II 卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁 列车所有车次的平均正点率的估计值为 _______________ • 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为10x0.97 + 20x0.98 + 10x0.99 = 39.2,其中高铁39 2 个数为10 + 20 + 10 = 40 ,所以该站所有高铁平均正点率约为=0.98 .40【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度 不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车 总数的比值.B. £>(X)减小C. £>(X)先增大后减小D. £>(X)先减小后增大【解析】由题意,该组数据的平均数为 --------- -------- =8,6.[2019年高考全国I卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4: 1获胜的概率是【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解•题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63x0.5x0.5x2 = 0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4x0.62x0.52x2 = 0.072,综上所述,甲队以4 : 1获胜的概率是q = 0.108 + 0.072 = 0.1 &【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.[2019年高考全国III卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A, B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同•经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C)的估计值为0.70.(1)求乙离子残留百分比直方图中a, b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) a=0.35, b=0.10; (2)甲、乙离子残留百分比的平均值的估计值分别为4.05 , 6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a-0.35.^=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2x0.15+3x0.20+4x0.30+5x0.20+6x0.10+7x0.05=4.05.乙离子残留百分比的平均值的估计值为3x0.05+4x0.10+5x0.15+6x0.35+7x0.20+8x0.15=6.00.8.[2019年高考全国II卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.⑴求P (X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1) 0.5; (2) 0.1.【解析】(1) X=2就是10 : 10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X=2) =0.5x0.44- (1-0.5) x (1-0.4) =0.5.(2) X=4且甲获胜,就是10: 10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5x (1-0.4) + (1-0.5) x0.4]x0.5x0.4=0.1.9.[2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7: 30之前到校的概率均为扌.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7: 30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7: 30之前到校的天数比乙同学在7: 30之前到校的天数恰好多2”,求事件M发生的概率.【答案】(1)分布列见解析,E(X) = 2; (2)—.243【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7: 30之前到校的概率均为扌,2 2 1故X ~ B(3,-),从而P(X=k) = C; (-/ (-)3-'山=0,1,2,3.所以,随机变量X的分布列为随机变量X的数学期望E(X)=3x| = 2.(2)设乙同学上学期间的三天中7: 30之前到校的天数为Y ,2则Y 〜3(3,§),且M={X=3,Y = 1}{X = 2,Y = 0}.由题意知事件{X=3,Y = 1}与{X=2,Y = 0}互斥,且事件{X = 3}与{丫 = 1},事件{X = 2}与{Y = 0}均相互独立,从而由(1)知P(M) = P({X=3,Y = 1}{X=2,Y=0})= P(X=3,Y = l) + P(X=2,Y = 0)=P(X = 3)P(y = 1) + P(X = 2)P(Y = 0)8 2 4 1 20—___ x _ | _ x ___—___27 9 9 27 243 '10.[2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A, B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A, B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A, B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人, 发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1) 0.4; (2)分布列见解析,E (X) =1; (3)见解析.【解析】(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A, B两种支付方式都不使用的学生有5人.故样本中A, B两种支付方式都使用的学生有100-30-25-5=40人.40所以从全校学生中随机抽取1人,该学生上个月A, B两种支付方式都使用的概率估计为—-0.4.(2) X的所有可能值为0, 1, 2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.9 + 3 14 + 1由题设知,事件C, D相互独立,且P(C) = —= 0.4, P(D) = -^- = 0.6.所以P(X -2) = P(CD) = P(C)P(D) = 0.24 ,P(X = 1) = P(CD CD)= P(C)P(D) + P(C)P(D)=0.4 x (1 — 0.6) + (1 — 0.4) x0.6= 0.52,P(X =0) = P(CD) = P(C)P(D) = 0.24 .所以X的分布列为故x 的数学期望E(X) = 0x0.24 + 1x0.52 + 2x0.24 = 1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E) = -^ =――.C: 4060答案示例1:可以认为有变化.理由如下:P (E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.[2019年高考全国I卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为a和0, —轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,A0 = 0,1, ,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则Po=O,卩8=1,Pi = ap-i + bp: + epi*、(i = \,2,,7),其中1), b = P(X=0), C=P(X = 1).假设« = 0.5, 0 = 0.8.(i)证明:{p i+l-Pi] G = 0,l,2, ,7)为等比数列;(ii)求A,并根据A的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)⑴证明见解析,(ii) °4 =占,解释见解析.【解析】X的所有可能取值为-1,0,1.P(X=_l) = (l_a)0,P(X=Q) = a/3 + (l-a)(l-/3),p(X=l) = a(l_0),所以X的分布列为(2)(i)由(1)得a = 0.4,b = 0.5,c = 0.1.因此B =0.4p_i +0.5Pi +0.1p i+1,故0.1(p,+i —门)= 0.4(门一门_J, 即P M-P i=4(P i-P i-i)-又因为Pl _ Po = Pl * 0,所以{p^-p^i = 0,1,2,,7)为公比为4,首项为p的等比数列.(ii)由(i)可得ft = A-A+A-A+ +P l-Po + Po=(A-A)+(A-A)+ +(A-A)48-l=P\ •313由于A=h故0严歹二,44 _1 1所以A = (A - ft) + (ft - ^2)+(^2 - A)+(A - Po)==面•A表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为刃= 0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果f服从正态分布N(1Q2)Q>0),若P(0<£ <1) = 0.4,则P(0<^<2) =A. 0.4B. 0.8C. 0.6D. 0.2【答案】B【解析】由正态分布的图象和性质得P(0<^<2) = 2P(0<^<l) = 2x0.4 = 0.8.故选B.【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13. 【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙本容量和抽取的高中生近视人数分别为A. 100, 10 C. 200, 10【答案】D【解析】由题得样本容量为(3500 + 2000 + 4500) x 2% = 10000 x 2% = 200 , 抽取的高中生人数为2000x2% = 40人,则近视人数为40x0.5 = 20人,故选D.14. 【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的 次数为X,则X 的数学期望是A. 1B. 235 C. —D. 一22【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好岀现2枚正面向上的概率,进而利用二项分 布求数学期望即可.【解析】•••一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为丄x 丄=-,2 2 4X~B (4丄),E (X ) = 4x - = 1.故选A.4 4【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从 二项分布B ~(77, p ),也可以直接利用公式E (G = np 求数学期望.15. 【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三 三个年级中抽取的人数分别为 【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数.所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样 B. 100, 20 D. 200, 20甲【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为空,—,—,49 49 49因此,各年级抽取人数分别为98x —= 36, 98x —= 32, 98x —= 30,故选B.49 49 4916.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为则E(§) =14 13A. —B.—5 57 8C. —D.—3 3【答案】A【分析】先求出歹的可能取值及取各个可能取值时的概率,再利用E^) = ^p1+^p2+ +&门+可求得数学期望.【解析】§的可能取值为2,3,4, § = 2表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故3 3 9P(^ = 2) = -x- = —; ^ = 3表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白3 2 2 3 12球,故P(^ = 3) = -x-+-x-=—; ^=4表示从甲口袋中取岀一个白球,从乙口袋中取出一个红5 5 5 5 252 2 4 9 12 4 14球,故P(g = 4) = —x—= ——,所以E(^) = 2x —+ 3x —+ 4x—.故选A.5 5 25 25 25 25 517.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为元,方差为s',则A.壬= 70,『<75B.壬= 70,/>75C.壬>70,¥ <75D.壬<70,2 >75【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得元,M 的值,即可得到答案.设收集的48个准确数据分别记为西,尢2,,屯8, 则 75 =命[(X] — 70)2 + (x 2 -70)2 ++ (心-70)2 + (60 -70)2 + (90 — 70)2 ]=#3 - 70『*(勺 _ 70)2 + + (x 48 - 70)2 + 500],$2 =令[(西 _ 70)2 + (花-70)2 ++(屯8 _70)2 + (80 -70)2 + (70 -70)2]=寺[(Xi — 70)2 + (x 2 — 70)2 + + (x 48- 70)2 + 100] <75 ,所以52 < 75 ■故选A.【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数 和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18. 【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的 是A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000人C.考生竞赛成绩的平均分约70.5分D.考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率 分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4000x0.25 = 1000,故B 正确;由频率分布直方图可得:平均分等于45x0.1 + 55x0.15 + 65x0.2 + 75x0.3 + 85x0.15 +95x0.1 = 70.5,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为70 + 10X ^Q 71.67,故D 错误.故选D.0.319. 【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化 基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共 同参与诗【解析】由题意, 可得牙=70x50 + 80-60 + 70-9050= 70,成绩(分)词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髻小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.4【答案】(1)1, 3 , 2 ;(2)—.【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数= =15,这2人来自同一年龄组包含的基本事件个数为加=C; +C; = 4,由此能求出这2人来自同一年龄组的概率.【解析】(1)•••样本容量与总体个数的比是岛=岂,108 18•••样本中包含3个年龄段落的个体数分别是:年龄在[7, 20)的人数为一x 18=1,108年龄在[20, 40)的人数为—x54=3,108年龄在[40, 80)的人数为—x36=2,108•••从这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为" = C;=15,这2人来自同一年龄组包含的基本事件个数为加=C; + C; = 4,m 4/.这2人来自同一年龄组的概率P = — = —.n 1520.[2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利%!万元,销售一台第二类机器获利吃万元,…,销售一台第五类机器获利忑,依据上表统计数据,随机销售一台机器获利的期望为£(%),设元=斗+勺+ ;3 +屯+抵,试判断E(x)与无的大小.(结论不要求证明)【答案】(1) -; (2) —; (3) E(x) < x .3 21【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,d记两台机器的利润率不同为事件B,由P(B) = —屮即可结果;(3)先由题意确定,X可能取的值, 求出对应概率,进而可得出E(x),再由亍=再+勺+;+"+兀求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器,利润率高于0.2的是第一类和第四类,共有10台.设“这台机器利润率高于0.2”为事件4,则P(A)=|^ = |.(2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有C :种不同方法, 两台机器的利润率不同则每类各取一台有C ;C ;°种不同方法,c 1^10设两台机器的利润率不同为事件B ,则P(3) =•因 ith J E(x) = -x8 + —x5 + -x3 + -xl0 = —;6 15 5 6 1529,所以 E(x) < x . 21. 【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如 下:等级 标准果优质果精品果礼品果个数10 30 40 20(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,方案1:不分类卖出,单价为20元/kg. 方案2:分类卖出,分类后的水果售价如下:等级 标准果优质果精品果礼品果售价(元/kg)16 18 22 24从采购单的角度考虑,应该采用哪种方案?(3) 用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望E(X). 【答案】(1) 笺;(2)第一种方案;(3)分布列见解析,£(X) = |.625 5P(x -3) =10 + 8 30*10)佥冷,(3)由题意可得,X 可能取的值为&5,3,10【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公 式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布, 利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的 计算公式求得结果.【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为4,则P(A) = ^ = |, 现有放回地随机抽取4个,设抽到礼品果的个数为X,则X~B(4,f), 所以恰好抽到2个礼品果的概率为P(X=2) = C^(j)2(|)2 =曇,(2)设方案2的单价为则单价的期望值为 13 42^) = 16x- + 18x- + 22x- + 24x- =因为E(g)>20,所以从采购商的角度考虑,应该采用第一种方案.(3) 用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个,现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,C 3 1c 2C* 1 则 P(X=0)=-^ = -; P(X=1)=-^A = -Jo ° Jo 乙P(X = 2) = ^ = A ; P (X =3)=4 = ±C ;o 10 30所以X 的分布列如下:【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的 求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求 解出概率.6 516 + 54 + 88 + 4810所以 E(X) = 0x- + lx- + 2x —+ 3x —=6 2 10 30。

专题13 概率与统计-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

专题13 概率与统计-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

专题13 概率与统计【母题来源一】【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题. 【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.【母题来源二】【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 102=45种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法, 故所求概率为31=4515,故选C .【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.【命题意图】本类问题主要涉及古典概型、对立事件概率的计算及概率与统计的综合,要求掌握利用古典概型求概率的方法,掌握利用互斥事件概率的加法公式及对立事件的概率公式求概率的方法.【命题规律】古典概型是高考命题的重点,题目难度中等,要求考生通过阅读提取信息,并掌握必要的计数方法:枚举法,树状图或者排列组合知识等.【答题模板】解答本类题目,以2018年高考这题试题为例,一般考虑如下三步: 第一步:分析已知条件选择古典概型模型;第二步:找基本事件总数以及事件包含的基本事件数; 第三步:带入古典概型的计算公式求解. 【方法总结】1.古典概型是概率论中最简单而又直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.求古典概型的概率(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式()mP A n求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.(3)如果基本事件个数比较多,列举有一定困难时,可以用树状图法,树状图法适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y )可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.(4)较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:①转化为几个互斥事件的和,利用互斥事件的加法公式求解;学科.网②采用间接法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.1.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001 231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A .19B .318 C .29D .518【答案】C【解析】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:021,001,031,130共4个基本事件,根据古典概型概率公式可得, 恰好第三次就停止的概率为42189,故选C. 【名师点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率. 2.【辽宁省沈阳市2019届高三上学期一模数学试题】某英语初学者在拼写单词“steak ”时,对后三个字母的记忆有些模糊,他只记得由“a ”、“e ”、“k ”三个字母组成并且字母“k ”只可能在最后两个位置中的某一个位置上.如果该同学根据已有信息填入上述三个字母,那么他拼写正确的概率为A .16 B .14 C .13D .12【答案】B【解析】因为某英语初学者在拼写单词“steak ”时, 对后三个字母的记忆有些模糊,他只记得由“a ”、“e ”、“k ”三个字母组成,并且字母“k ”只可能在最后两个位置中的某一个位置上. 该同学根据已有信息填入上述三个字母,满足题意的字母组合有四种,分别是eka,ake,eak,aek , 拼写正确的组合只有一种eak , 所以他拼写正确的概率为14P =.故选B . 【名师点睛】本题主要考查概率的求法,考查古典概型、列举法等基础知识,是基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率.3.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是A .101B .103C .35D .25【答案】C【解析】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故选C.【名师点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.4.【吉林省实验中学2019届高三下学期第八次月考数学试题】从1,2,3,4,5中任取5个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是A .23 B .35C .12D .25【答案】D【解析】从1,2,3,4,5这5个数字中任取5个数字组成没有重复数字的五位数, 基本事件总数n =55A =120,这个五位数是偶数包含的基本事件个数m =1424C A =48, ∴这个五位数是偶数的概率P =4821205m n ==. 故选D .【名师点睛】本题考查古典概型概率的求法,是基础题.5.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考数学试题】已知函数()322113f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为 A .79B .13C .59D .23【答案】D【解析】将a 记为横坐标,将b 记为纵坐标,可知总共有()()()()()()()()()1,0,1,1,1,2,2,0,2,1,2,2,3,0,3,1,3,2共9个的结果,而函数有两个极值点的条件为其导函数有两个不相等的实根,22()2f 'x x ax b =++,满足题中条件为22440a b ∆=->,即a b >,所以满足条件的基本事件有()()()()()()1,0,2,0,2,1,3,0,3,1,3,2共6个基本事件,所以所求的概率为6293P ==,故选D .6.【山东省青岛市2019届高三9月期初调研检测数学试题】已知某运动员每次投篮命中的概率是40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.该运动员三次投篮恰有两次命中的概率为A .15 B .35C .310D .910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数, 故所求概率为310. 故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.7.【宁夏银川市2019届高三下学期质量检测数学试题】根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为A .16B .14C .13D .12【答案】A【解析】派四位专家对三个县区进行调研,每个县区至少派一位专家,基本事件总数:2343C A 36n ==,甲,乙两位专家派遣至同一县区包含的基本事件个数:212232C C A 6m ==,∴甲,乙两位专家派遣至同一县区的概率为:61366m p n ===, 故选A.【名师点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.8.【2019年甘肃省兰州市高考数学一诊试卷】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A 或B 被选中的概率是A .15 B .25C .35D .710【答案】D【解析】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人, 赴区属的某贫困村进行驻村扶贫工作,基本事件总数n =25C =10, A 或B 被选中的对立事件是A 和B 都没有被选中,则A 或B 被选中的概率是P =1-2325C 7C 10=.故选D .【名师点睛】本题主要考查古典概型的求解,侧重考查数学建模和数学运算的核心素养. 9.【甘肃省天水市第一中学2019届高三一轮复习第六次质量检测数学试题】为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是 A .0.3 B .0.4 C .0.6D .0.7【答案】D【解析】由题意得,从五个节日中随机选取两个节日的所有情况有25C 10=种,设“春节和端午节至少有一个被选中”为事件A ,则事件A 包含的基本事件的个数为12322C C 7+=. 由古典概型概率公式可得()1232252C C 70.7C 10P A +===. 故选D .【名师点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题.10.【新疆2019届高三第三次诊断性测试数学试题】将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是 A .29B .827C .49D .1627【答案】C【解析】由题可得:大正方体的最上层有4个恰好是两面涂色的小正方体, 大正方体的中间一层及最底层都有4个恰好是两面涂色的小正方体, 所以恰好是两面涂色的小正方体个数为4312⨯=个,所以从这些小正方体中任取一个,恰好是两面涂色的概率是124279p ==, 故选C.【名师点睛】本题主要考查了古典概型概率计算,考查空间思维能力,属于基础题. 11.【内蒙古2019年呼和浩特市高三年级第二次质量普查调研考试数学试题】一个盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,其余两个是黄球,若从中任取两个球,则取的两个球颜色不同,且恰有1个球的号码是偶数的概率是A.115B.215C.315D.415【答案】D【解析】盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,5,6号是黄球,从中任取两个球,有12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15种情况,恰有1个球的号码是偶数有16,25,36,45共有4种情况,故所求概率P=4 15.故选D.【名师点睛】本题考查古典概型的概率公式的应用,属于基础题.12.【内蒙古赤峰市2019届高三4月模拟考试数学试题】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是A.23B.35C.59D.34【答案】A【解析】因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种,满足“齐王获胜”的这一条件的情况为:齐王派出上等马,则获胜的事件数为3;齐王派出中等马,则获胜的事件数为2;齐王派出下等马,则获胜的事件数为1;故满足“齐王获胜”这一条件的事件数为6种, 根据古典概型公式可得,齐王获胜的概率6293P ==,故选A. 【名师点睛】本题考查了古典概型问题,解题的关键是求出满足条件的事件数,再根据古典概型的计算公式求解问题,属于基础题.13.【陕西省咸阳市2019届高三高考模拟检测(二)数学试题】一个三位数的百位,十位,个位上的数字依次是a ,b ,c ,当且仅当a b <且b c >时称为“凸数”.现从1,2,3,4中任取三个组成一个三位数,则它为“凸数”的概率是______.【答案】13【解析】从1,2,3,4中任取三个组成一个三位数,有34A 24=种排法,满足凸数的个数为:当b =4时,有23A 6=种排法;当b =3时,有2种排法,共8种.概率为81.243= 故答案为13. 【名师点睛】解排列组合问题要遵循两个原则: ①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).14.【陕西省榆林市2019届高三第二次模拟试题数学试题】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,则摸到同色球的概率为________. 【答案】25【解析】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,基本事件总数n 25C ==10,摸到同色球包含的基本事件个数m 2232C C =+=4,∴摸到同色球的概率42105m P n ===. 故答案为25. 【名师点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15.【广西南宁市2019届高三毕业班第一次适应性测试数学】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.【答案】5 16【解析】5个格子用0与1两个数字随机填入共有5232=种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有14510++=种基本方法,那么概率1053216P==.故答案为5 16.【名师点睛】本题主要考查了古典概型的求解,解题的关键是采用分类的方式计算满足条件的基本事件数,属于中档题.16.【辽宁省辽阳市2019届高三上学期期末考试数学试题】现有两对情侣都打算从巴黎、厦门、马尔代夫、三亚、泰国这五个地方选取一个地方拍婚纱照,且这两对情侣选择的地方不同,则这两对情侣都选在国外拍婚纱照的概率为_______.【答案】3 10【解析】两对情侣所有选择方案为(巴黎,厦门),(巴黎,马尔代夫)(巴黎,三亚),(巴黎,泰国),(厦门,马尔代夫),(厦门,三亚),(厦门,泰国),(马尔代夫,三亚),(马尔代夫,泰国),(三亚,泰国),共有10种,其中有3种满足题意,故所求概率为310,故答案为3 10.【名师点睛】本题考查了古典概型,考查了利用列举法解决排列组合的问题,属于基础题.17.【河北省省级示范性高中联合体2019届高三3月联考数学试题】小张要从5种水果中任选2种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________.【答案】3(0.6)5或【解析】由题从5种水果中任选2种的事件总数为25C 10,= 小张送的水果既有热带水果又有温带水果的基本事件总数为1123C C 6,=∴小张送的水果既有热带水果又有温带水果的概率为63105=. 故答案为35.。

易错题库-(精校版)2019年天津卷理数高考试题文档

易错题库-(精校版)2019年天津卷理数高考试题文档

A 处取得最大值。
x y 2 0,

x1
,得 A( 1,1),所以 zmax
4 ( 1) 1 5。故选 C。
【点睛】 线性规划问题, 首先明确可行域对应的是封闭区域还是开放区域, 分界线是实线还是虚线,
其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线
的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.
【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析。
二. 填空题
9.【答案】 13
【分析】先化简复数,再利用复数模的定义求所给复数的模。
5i
【详解】
1i
(5 i )(1 i ) 2 3i
(1 i )(1 i )
13 。
【点睛】本题考查了复数模的运算,是基础题 .
10.【答案】 28
【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较。
7.【答案】 C
【分析】只需根据函数性质逐步得出 A, , 值即可。 【详解】因为 f ( x) 为奇函数,∴ f (0) A sin 0, =k , k 0, 0 ;
1
2
g(x) Asin x, T

2
1
2,
2 , A 2,又 g( ) 4
(Ⅲ)若二面角 E BD F 的余弦值为 1 ,求线段 CF 的长. 3
18.(本小题满分 13 分)
设椭圆 x2 a2
y2 b2
1(a b 0) 的左焦点为 F ,上顶点为 B .已知椭圆的短轴长为
4,离心率
为 5. 5
(Ⅰ)求椭圆的方程;
(Ⅱ)设点 P 在椭圆上,且异于椭圆的上、下顶点,点 M 为直线 PB 与 x 轴的交点,点 N 在 y 轴的负半轴上.若 | ON | | OF | ( O 为原点),且 OP MN ,求直线 PB 的斜率.

专题14 概率问题易错点-名师揭秘2019年高考数学(理)命题热点全覆盖(原卷版)

专题14 概率问题易错点-名师揭秘2019年高考数学(理)命题热点全覆盖(原卷版)

一.【学习目标】1.了解互斥事件,相互独立事件和条件概率的意义及其运算公式.2.理解独立重复试验的模型,会计算事件在n次独立重复试验中发生k次的概率.二.【知识要点】1.互斥事件与对立事件(1)互斥事件:若A∩B为不可能事件(A∩B=∅),则称事件A与事件B互斥,其含义是:事件A与事件B 在任何一次试验中不会同时发生.(2)对立事件:若A∩B为不可能事件,而A∪B为必然事件,那么事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.概率的几个基本性质(1)概率的取值范围:.(2)互斥事件的概率加法公式:①P(A∪B)==(A,B互斥).②P(A1∪A2∪…∪An)=或P(A1+A2+…+An)=.(A1,A2,…,An互斥).③对立事件的概率:=.3.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为.(2)条件概率具有的性质:①;②如果B和C是两个互斥事件,则4.相互独立事件(1)对于事件A,B,若A的发生与B的发生互不影响,则称.(2)若A与B相互独立,则P(B|A)=,P(AB)=.(3)若A与B相互独立,则A与,与B,与也都相互独立.5.独立重复试验与二项分布(1)两个相互独立事件A,B同时发生的概率为P(A·B)=P(A)·P(B),此公式可推广到n个相互独立事件,则P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An).(2)n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cnkpk(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.三.概率十大易错点典例分析1.频率与概率2.事件的关系与运算3.互斥事件解题策略4.对立事件解题方法5.古典概型解题步骤6.几何概型题型7.概率综合8.条件概率9.独立事件10.独立重复试验(一)频率与概率例1.设某厂产品的次品率为3%,估计该厂8000件产品中次品的件数为()A.3B.160C.240D.7480练习1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%练习2.下列说法正确的有()①概率是频率的稳定值,频率是概率的近似值;②一次试验中不同的基本事件不可能同时发生;③任意事件A发生的概率P(A)总满足0<P(A)<1;④若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事件.A.0个B.1个C.2个D.3个(二)事件的关系与运算例2.抛掷一枚质地均匀的骰子,向上的一面出现任意一个点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=()A.B.C.D.练习1.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆D B.B∩D=∅C.A∪C=D D.A∪C=B∪D练习2.下列说法正确的有()①概率是频率的稳定值,频率是概率的近似值.②一次试验中不同的基本事件不可能同时发生.③任意事件A发生的概率P(A)总满足0<P(A)<1.④若事件A的概率为0,则事件A是不可能事件.A.0个B.1个C.2个D.3个(三)互斥事件解题策略例3.依据黄河济南段8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示:依据济南的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.现此企业有如下三种应对方案:试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.练习1.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.练习2.从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是()A.至少2个白球,都是红球B.至少1个白球,至少1个红球C.至少2个白球,至多1个白球D.恰好1个白球,恰好2个红球练习3.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为,则这周能进行决赛的概率为A.B.C.D.(四).对立事件解题方法例4.在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.(Ⅰ)求A1被选中的概率;(Ⅱ)求A1,B1不全被选中的概率.练习1.一批排球中正品有个,次品有个,,从这批排球中每次随机取一个,有放回地抽取10次,表示抽到的次品个数.若,从这批排球中随机抽取两个,则至少有一个正品的概率()A.B.C.D.练习2.一道数学选择题共有4个选项,其中有且只有一个选项为正确选项.已知某同学在数学测试中遇到两道完全不会的选择题(即该同学在其中任何一题选A,B,C,D 的可能性均一样),则该同学这两题能够得分的可能性是()A .B .C .D .练习3.某公交线路某区间内共设置四个站点(如图),分别记为,现有甲、乙两人同时从站点上车,且他们中的每个人在站点下车是等可能的.则甲、乙两人不在同一站点下车的概率为A .B .C .D .(五).古典概型解题步骤例5.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为,早高峰时段,基本畅通;轻度拥堵;中度拥堵;严重拥堵,从某市交通指挥中心随机选取了二环以内个交通路段,依据交通指数数据绘制直方图如图所示.(1)据此直方图估算早高峰时段交通拥堵指数的中位数和平均数;(2)现从样本路段里的严重拥堵的路段中随机抽取两个路段进行综合整治,求选中路段中恰有一个路段的交通指数的概率.练习1.如下的茎叶图表示甲乙两人在5次测评中的成绩,已知甲的中位数是90,则从乙的5次测评成绩中随机抽取一次成绩,其分数高于甲的平均成绩的概率为A .B .C .D .练习2.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.练习3.袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232321230023123021132220011203331100 231130133231031320122103233221020132由此可以估计,恰好第三次就停止的概率为()A.B.C.D.(六).几何概型题型例6.甲、乙两名同学决定在今年的寒假每天上午9:00—10:00在图书馆见面,一起做寒假作业,他们每次到图书馆的时间都是随机的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题13 概率1.(我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115D .118【答案】C【名师点睛】先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法: (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3 B .0.4 C .0.6D .0.7【答案】B【解析】设事件A 为只用现金支付,事件B 为只用非现金支付,事件C 为既用现金支付也用非现金支付. 则()()()()P A B C P A P B P C =++.因为()()0.45,0.15P A P C ==,所以()0.4P B =.故选B.【名师点睛】本题主要考查事件的基本关系和概率的计算,属于基础题.由公式()()()()P A B C P A P B P C=++计算可得.3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3【答案】D【名师点睛】分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能个数及事件“选中的2人都是女同学”的总可能个数,代入概率公式可求得概率.应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A;第二步,分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;第三步,利用公式()mP An=求出事件A的概率.4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是A.13B.16C.14D.112【答案】A【解析】幼童把这三张卡片进行随机排列,基本事件总数n=23C=3,∴该幼童能将这句话排列正确的概率p=13.故选A.【名师点睛】先排好医字,共有23C种排法,再排国字,只有一种方法.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.5.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=A.0.4 B.0.5C.0.6 D.0.7【答案】A6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683该运动员三次投篮恰有两次命中的概率为A.15B.35C.310D.910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数,故所求概率为3 10.故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的可以通过列举得到共3组随机数,根据概率公式,得到结果.7.传说战国时期,齐王与田忌各有上等,中等,下等三匹马,且同等级的马中,齐王的马比田忌的马强,但田忌的上、中等马分别比齐王的中、下等马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜.如果齐王将马按上,中,下等马的顺序出阵,而田忌的马随机出阵比赛,则田忌获胜的概率是A .B .C .D .【答案】C8.有一底面半径为1,高为2的圆柱,点O为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P 到点O的距离大于l的概率为A.13B.23C.34D.14【答案】B【解析】设点P到点O的距离小于等于1的概率为P1,由几何概型,得P1=322π13π12VV⨯⨯⨯半球圆柱==13,故点P到点O的距离大于1的概率P=1-13=23.故选B.9.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是A.0.01×0.992B.0.012×0.99C.13C0.01×0.992D.1-0.993【答案】D【名师点睛】本题主要考查了互斥事件概率的求法,解题的关键是熟练掌握互斥事件的概率和为1,属于基础题.根据题意求出事件“三盒中没有次品”的概率,然后根据互斥事件的概率和为1,即可得到答案.10.运行如图所示的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数是增函数的概率为A.B.C.D.【答案】C【解析】该程序的运行过程如下:x=-3,输出,输出,输出,输出,输出,输出,输出y=15,程序结束,故A={3,0,-1,8,15},其中有3个正元素,可使得函数是增函数,故所求概率为.故选C.11.设函数f(x)=e,01ln e,1ex xx x⎧≤<⎨+≤≤⎩在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是A.1eB.1﹣1eC.e1e+D.11e+【答案】B12.(2018新课标I卷理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC △的面积为112S bc =, 黑色部分的面积为22221πππ2222c b a S bc ⎡⎤⎛⎫⎛⎫⎛⎫=⋅+⋅-⋅-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2221π4442c b a bc ⎛⎫=+-+ ⎪⎝⎭ 22211π422c b a bc bc +-=⋅+=,其余部分的面积为2231π1π2242a a S bc bc ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =. 故选A.【名师点睛】该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.13.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】310【名师点睛】先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.14.(2018上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_____. 【答案】15【解析】编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个, 从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况, 所有的事件总数为:35C =10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2,共两个, 所以这三个砝码的总质量为9克的概率是:210=15, 故答案为:15. 【名师点睛】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.15.已知向量()()2,1,,x y ==,a b 若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量∥a b 的概率为_______. 【答案】16【名师点睛】本题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.先求出基本事件的个数,利用向量平行确定满足∥a b 的基本事件个数,然后代入古典概型概率计算公式求概率.16.(1)一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求在第一次取到白球的条件下,第二次取到黑球的概率为____________;(2)有一批种子的发芽率为0.95,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,这粒种子能成长为幼苗的概率为____________. 【答案】(1)49;(2)0.76. 【解析】(1)记“第一次取到白球”为事件A ,“第二次取到黑球”为事件B .注意这里的问题与“求第一次取到白球,第二次取到黑球的概率”不一样.方法一:显然,事件“第一次取到白球,第二次取到黑球”的概率()644()()10915n AB P AB n Ω⨯===⨯, 由条件概率的计算公式,得4()415()6()9|10P AB P B A P A ===. 方法二:因为1169C C()n A =,1164C (C)n AB =,所以11641169C C ()4()()C C |9n AB P B A n A ===.(2)设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽且成活为幼苗),则出芽后的幼苗成活率为()0|.8P B A =,()0.95P A =,根据条件概率公式()()()0.950.80.76|P AB P B A P A =⋅=⨯=,故在这批种子中,随机抽取一粒,这粒种子能成长为幼苗的概率为0.76.【名师点睛】(1)由条件概率的定义知,|()P B A 与|()P A B 是不同的;另外,在事件A 发生的前提下,事件B 发生的可能性大小不一定是()P B ,即|()P B A 与()P B 不一定相等.(2)()()()|P AB P B A P A =可变形为()()()|P AB P B A P A =⋅,即只要知道其中两个值就可以求得第三个值.如已知()P A ,()P AB 可求|()P B A ;已知()P A ,|()P B A 可求()P AB .17.设集合1{|216}4x A x =<<,()2{|ln 3}B x y x x ==-,从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率是__________.【答案】1 2【名师点睛】(1)本题主要考查集合的化简和运算,考查几何概型,意在考查学生对这些知识的掌握水平和分析推理能力.先根据集合A,B,求出A∩B,再利用长度型的几何概型的意义求解即可.(2)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A构成的区域长度(角度、弧长等),最后代公式()AP A=构成事件的区域长度试验的全部结果所构成的区域长度;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.18.设随机变量X的分布列为则a = ;E(X)= .【答案】19.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 【答案】(1)0.6;(2)0.8.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25, 由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时, 若最高气温不低于25,则Y =6⨯450-4⨯450=900;若最高气温位于区间 [20,25),则Y =6⨯300+2×(450-300)-4⨯450=300; 若最高气温低于20,则Y =6⨯200+2×(450-200)-4⨯450= -100. 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为0.8.【名师点睛】在解古典概型概率题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. (1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[)20,25和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率;(2)当湿度大于等于25C 时,需求量为500 ,求出900Y =元;当温度在[)20,25时,需求量为300,求出300Y =元;当温度低于20C 时,需求量为200,求出100Y =-元,从而当温度大于等于20时,0Y >,由此能估计估计Y 大于零的概率.20.为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下:(1)若甲单位数据的平均数是122,求;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为,令,求的分布列和期望.【答案】(1)8;(2)见解析.【解析】(1)由题意,解得;(2)随机变量的所有取值有0,1,2,3,4.;;的分布列为:21.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?【答案】(1)不能;(2);(3)【解析】(1)根据抽样调查数据,一、二等品所占比例的估计值为=,由于该估计值小于,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定.(3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为=,“质量提升月”活动后,产品质量指标值近似满足,即质量指标值的均值约为.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了22.(2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案】(1)应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人;(2)(i)见解析;(ii)67.【解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.(2)(i)随机变量X的所有可能取值为0,1,2,3.P (X =k )=34337C C C k k-⋅(k =0,1,2,3).所以,随机变量X 的分布列为随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=. (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥,由(i )知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67. 所以,事件A 发生的概率为67.________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。

相关文档
最新文档