2020年高三数学 高考模拟题(试卷)带答案
2020年山东省济南市高考模拟文科数学试卷(5月份)含答案解析
2020年山东省济南市高考数学模拟试卷(文科)(5月份)一、选择题(本大题共10小题,每小题5分,满分50分,每小题给出的四个选项中只有一项是符合题目要求的)1.设复数z=(i为虚数单位),则z=()A.iB.﹣iC.2iD.﹣2i2.设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2B.3C.4D.53.如果log5a+log5b=2,则a+b的最小值是()A.25B.10C.5D.24.“a>2且b>2”是“ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.执行如图的程序框图,则输出的S等于()A.0B.﹣3C.﹣10D.﹣256.已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6B.﹣4C.0D.47.在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.8.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC 的面积S等于()A.3B.C.D.9.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣aB.3+aC.﹣2D.210.设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1二、填空题(本大共5小题,每小题5分,满分25分)11.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:月平均气温x(℃)17 13 8 2月销售量y(件)24 33 40 55由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为件.12.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是cm213.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于.14.已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是.15.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f(﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是.三、解答题(共6小题,满分75分)16.2020年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?17.已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.18.如图,四棱锥P﹣ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.(Ⅰ)求证:AB∥EF;(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A﹣PBD的体积.19.已知在等比数列{a n}中,a n+1>a n,对n∈N*恒成立,且a1a4=8,a2+a3=6.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足+…+=n,(n∈N*),求数列{b n}的前n项和S n.20.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为.(1)求椭圆C的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.21.已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.2020年山东省济南市高考数学模拟试卷(文科)(5月份)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分,每小题给出的四个选项中只有一项是符合题目要求的)1.设复数z=(i为虚数单位),则z=()A.iB.﹣iC.2iD.﹣2i【考点】复数代数形式的乘除运算.【分析】直接利用复数的除法的运算法则化简复数为:a+bi的形式即可.【解答】解:复数z=(i为虚数单位),则z===﹣i.故选:B.2.设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2B.3C.4D.5【考点】交集及其运算.【分析】求出P中x的范围确定出P,找出P与N的交集即可.【解答】解:由P中y=,得到3x﹣x2≥0,整理得:x(x﹣3)≤0,解得:0≤x≤3,即P=[0,3],∵N为自然数集,∴P∩N={0,1,2,3},则集合P∩N中元素个数是4,故选:C.3.如果log5a+log5b=2,则a+b的最小值是()A.25B.10C.5D.2【考点】基本不等式;对数的运算性质.【分析】利用对数的运算性质可得:ab=52,再利用基本不等式的性质即可得出.【解答】解:∵a,b>0,log5a+log5b=2=log5(ab),∴ab=52=25≤,解得a+b≥10,当且仅当a=b=5时取等号.则a+b的最小值是10.故选:B.4.“a>2且b>2”是“ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】依据充分性与必要性的定义,对两个条件之间的关系进行判断研究其因果规律,以确定两个条件的关系.【解答】解:若a>2且b>2,则ab>4成立,故充分性易证若ab>4,如a=8,b=1,此时ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“ab>4”的充分不必要条件,故选A5.执行如图的程序框图,则输出的S等于()A.0B.﹣3C.﹣10D.﹣25【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的s,k的值,当k=5时,不满足条件k<5,退出循环,输出s的值为﹣10.【解答】解:模拟执行程序,可得k=1,s=1满足条件k<5,执行循环体,s=1,k=2满足条件k<5,执行循环体,s=0,k=3满足条件k<5,执行循环体,s=﹣3,k=4满足条件k<5,执行循环体,s=﹣10,k=5不满足条件k<5,退出循环,输出s的值为﹣10.故选:C.6.已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6B.﹣4C.0D.4【考点】简单线性规划.【分析】由题意作平面区域,从而可得﹣3≤y≤5,0≤|x|≤3;化简y=|x|+m为m=y﹣|x|,从而确定最小值.【解答】解:由题意作平面区域如下,,结合图象可知,﹣3≤y≤5,0≤|x|≤3;∵y=|x|+m,∴m=y﹣|x|,故当y=﹣3,|x|=3,即过点A(﹣3,﹣3)时,m有最小值为﹣6;故选:A.7.在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.【考点】几何概型.【分析】利用三角函数的辅助角公式求出sinx+cosx≤1的等价条件,利用几何概型的概率公式即可得到结论.【解答】解:由sinx+cosx≥1得sin(x+)≥1,即sin(x+)≥,∴2kπ+≤x+≤2kπ+,k∈Z即2kπ≤x≤2kπ+,k∈Z∵0≤x≤π,∴当k=0时,x的取值范围是0≤x≤,则“sinx+cosx≥1”发生的概率P==,故选:D.8.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC的面积S等于()A.3B.C.D.【考点】正弦定理.【分析】由条件和正弦定理求出sinA,结合条件和内角的范围求出A,由内角和定理求出B,利用三角形面积公式求出△ABC的面积S.【解答】解:在△ABC中,∵a=,c=,C=,∴由正弦定理得,则sinA===,∵C是钝角,且0<A<π,∴A=,∴B=π﹣A﹣C=,∴△ABC的面积S===,故选:D.9.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣aB.3+aC.﹣2D.2【考点】函数奇偶性的性质.【分析】根据奇函数的结论f(0)=0求出a,再由对数的运算得出结论.【解答】解:∵函数f(x)为奇函数,∴f(0)=a=0,f(﹣8)=﹣f(8)=﹣log3(8+1)=﹣2.故选:C.10.设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1【考点】双曲线的简单性质.【分析】根据双曲线的定义结合直角三角形的性质建立方程关系进行求解即可.【解答】解:∵双曲线右支上存在一点P,使•=0,∴⊥,∵|PF1|=|PF2|,∴|F1F2|=2|PF2|=4c,即|PF2|=2c∴|PF1|﹣|PF2|=|PF2|﹣|PF2|=(﹣1)|PF2|=2a,∵|PF2|=2c∴2(﹣1)c=2a,e==,故选:C二、填空题(本大共5小题,每小题5分,满分25分)11.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:月平均气温x(℃)17 13 8 2月销售量y(件)24 33 40 55由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为2件.【考点】线性回归方程.【分析】分别求出,,再根据样本中心点一定在线性回归方程上,求出a的值,写出线性回归方程,将x=24代入线性回归方程求出对应的y的值,这是一个预报值.【解答】解:∵=(17+13+8+2)=10,=(24+33+40+55)=38,a=58∴=﹣2x+58,∴=﹣2×24+58=2,故答案为:2.12.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是12+4\sqrt{2}cm2【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,即可得出.【解答】解:由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,∴该几何体的表面积=22×2++2×2=12+4cm2.故答案为:12+4.13.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于45°.【考点】直线与圆的位置关系.【分析】由题意结合图象可得当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式和直线的垂直关系可得.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°14.已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是[\frac{1}{4},\frac{3}{4}].【考点】平面向量数量积的运算.【分析】根据|+|=|﹣|得出•=0,⊥,建立平面直角坐标系,利用平面向量的坐标运算表示出•,根据坐标运算即可求出•的取值范围.【解答】解:△ABC中,AB=AC=1,|+|=|﹣|,∴•=0,∴⊥;以AC,AB为坐标轴建立平面直角坐标系,如图所示:则A(0,0),C(1,0),B(0,1),∵=3,∴E(,);直线BC方程为x+y=1,即x+y﹣1=0;设P(x,y),则0≤x≤1,则=(x,y),=(,),∴•=x+y=x+(1﹣x)=x+;∵0≤x≤1,∴≤x+≤;即•的取值范围是[,].故答案为:[,].15.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f(﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是(\frac{1}{4},\frac{1}{2}.【考点】抽象函数及其应用.【分析】根据条件得到函数f(x)存在n个关于y轴对称的点,作出函数关于y轴对称的图象,根据对称性建立不等式关系进行求解即可.【解答】解:由“n度局部偶函数”的定义可知,函数存在关于y对称的点有n个,当x<0时,函数g(x)=|sin(x)|﹣1,关于y轴对称的函数为y=|sin(﹣x)|﹣1=|sin (x)|﹣1,x>0,作出函数函数g(x)g和函数y=h(x)=|sin x|﹣1,x>0的图象如图:若g(x)是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则等价为函数g(x)和函数y=|sin(x)|﹣1,x>0的图象有且只有3个交点,若a>1,则两个函数只有一个交点,不满足条件,当0<a<1时,则满足,即,则,即<a<,故答案为:(,)三、解答题(共6小题,满分75分)16.2020年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)根据各组的频率和等于1,即可求出m的值,(Ⅱ)(i)根据各组的人数比,利用分层抽样即可求出龄在35~55岁之间的人数,(ii)年龄在55~65岁之间的人数为3人,记为A,B,C,年龄在65~75岁之间的人数为2人,记为D,E,一一列举所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.【解答】解:(Ⅰ)因为各组的频率和等于1,m=0.1﹣(0.015+0.035+0.015+0.01)=0.025,(Ⅱ)依题意,各小组的人数为比0.015:0.035:0.025:0.015:0.010=3:7:5:3:2,(i)年龄在35~55岁之间的人数20×=12人,(ii)年龄在55~65岁之间的人数为20×=3人,记为A,B,C,年龄在65~75岁之间的人数为20×=2人,记为D,E,从55~75岁之间任意找两个人发言,有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中少一人再65~75岁之间的有AD,AE,BD,BE,CD,CE,DE共7种,所以至少一人再65~75岁之间的概率为.17.已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.【分析】利用倍角公式降幂后再由两角差的正弦化简.(Ⅰ)由相位在正弦函数的增区间内求得x的取值范围可得函数f(x)的单调增区间;(Ⅱ)由函数的伸缩和平移变换求得g(x)的解析式,结合x的范围求得相位的范围,进一步求得函数g(x)的值域.【解答】解:f (x )=sin2x+2sin 2x==. (Ⅰ)由,解得.∴函数f (x )的单调增区间为[],k ∈Z ;(Ⅱ)将函数f (x )的图象向左平移个单位,得y=2sin[2(x)﹣]+1=2sin2x+1.再向下平移1个单位后得到函数g (x )=2sin2x . 由x ∈[﹣,],得2x ∈[],∴sin2x ∈[﹣],则函数g (x )的值域为[﹣].18.如图,四棱锥P ﹣ABCD 中,△PAD 为正三角形,四边形ABCD 是边长为2的菱形, ∠BAD=60°平面ABE 与直线PA ,PD 分别交于点E ,F . (Ⅰ)求证:AB ∥EF ;(Ⅱ)若平面PAD ⊥平面ABCD ,试求三棱锥A ﹣PBD 的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系. 【分析】(1)由AB ∥CD 得出AB ∥平面PCD ,利用线面平行的性质得出AB ∥EF ; (2)过P 作PG ⊥AD 于G ,由面面垂直的性质得出PG ⊥平面ABCD ,于是V A ﹣PBD =V P ﹣ABD =.【解答】证明:(1)∵四边形ABCD 是菱形, ∴AB ∥CD ,又AB ⊄平面PCD ,CD ⊂平面PCD , ∴AB ∥平面PCD ,又AB ⊂平面ABEF ,平面ABEF ∩平面PCD=EF , ∴AB ∥EF .(2)过P 作PG ⊥AD 于G ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PG ⊥AD ,PG ⊂平面PAD , ∴PG ⊥平面ABCD .∵△PAD 为正三角形,四边形ABCD 是边长为2的菱形,∠DAB=60°, ∴PG=,S △ABD ==.∴V A ﹣PBD =V P ﹣ABD ===1.19.已知在等比数列{a n }中,a n+1>a n ,对n ∈N *恒成立,且a 1a 4=8,a 2+a 3=6. (Ⅰ)求数列{a n }的通项公式( Ⅱ)若数列{b n }满足+…+=n ,(n ∈N *),求数列{b n }的前n 项和S n .【考点】数列的求和;等比数列的通项公式.【分析】(I )利用等比数列的通项公式及其性质即可得出. (II )利用等比数列的前n 项和公式、“错位相减法”即可得出.【解答】解:(I )设等比数列{a n }的公比为q ,a n+1>a n ,对n ∈N *恒成立,且a 1a 4=8,a 2+a 3=6. ∴a 2a 3=8,联立解得a 2=2,a 3=4. ∴q=2.∴a n =2×2n ﹣2=2n ﹣1. (II )∵数列{b n }满足+…+=n ,(n ∈N *),∴=1,解得b 1=1.n ≥2时, =n ﹣(n ﹣1)=1,∴b n =(2n ﹣1)•2n ﹣1.∴数列{b n }的前n 项和S n =1+3×2+5×22+…+(2n ﹣1)•2n ﹣1. 2S n =2+3×22+…+(2n ﹣3)•2n ﹣1+(2n ﹣1)•2n , ∴﹣S n =1+2(2+22+…+2n ﹣1)﹣(2n ﹣1)•2n =﹣1﹣(2n ﹣1)•2n =(3﹣2n )•2n﹣3,∴S n =(2n ﹣3)•2n +3.20.在平面直角坐标系xOy 中,椭圆C :+=1(a >b >0)的离心率为,直线y=x与椭圆C 交于点E ,F ,直线y=﹣x 与椭圆C 交于点G ,H ,且四边形EHFG 的面积为.(1)求椭圆C 的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)利用椭圆C:+=1(a>b>0)的离心率为,得出a=2b,直线y=x 代入椭圆C,可得+=1,x=b,利用四边形EHFG的面积为,求出b,可得a,即可求得椭圆的方程;(2)设直线l1的方程代入椭圆的方程,消去y,整理得一元二次方程,由韦达定理,可求得P的坐标,以﹣代入,可得Q(,﹣),从而可求PQ的直线方程,令y=0,即可得到结论.【解答】解:(1)∵椭圆C:+=1(a>b>0)的离心率为,∴=,∴a=2b,直线y=x代入椭圆C,可得+=1,∴x=b,∵直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为,∴(b)2=,∴b=1,∴a=2,∴椭圆C的方程为=1;(2)设P(x1,y1),Q(x2,y2),直线斜率为k,则直线l1的方程为y=k(x+2)把它代入椭圆的方程,消去y,整理得:(1+4k2)x2+16k2x+(16k2﹣4)=0由韦达定理得﹣2+x1=﹣,∴x1=,∴y1=k(x1+2)=,∴P(,),以﹣代入,可得Q(,﹣),则k PQ=﹣∴PQ的直线方程为y﹣=﹣(x﹣),令y=0,则x=+=﹣.∴直线PQ过x轴上的一定点(﹣,0).21.已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出m=1的函数f(x)的解析式和导数,求得切线的斜率和切点,由点斜式方程可得切线的方程;(Ⅱ)(i)当m=﹣e时,求得g(x)的解析式和导数,以及单调区间,即可得到所求最大值;(ii)求得函数φ(x)的解析式,令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+,求出导数,可得单调区间,可得h(x)的最大值,由|g(x)|的最小值为1,即可判断.【解答】解:(Ⅰ)当m=1时,函数f(x)=lnx﹣e x+x的导数为f′(x)=﹣e x+1,可得函数f(x)在x=1处的切线斜率为2﹣e,切点为(1,1﹣e),即有函数f(x)在x=1处的切线方程为y﹣(1﹣e)=(2﹣e)(x﹣1),即为y=(2﹣e)x﹣1;(Ⅱ)(i)当m=﹣e时,g(x)=f(x)+e x+1=lnx﹣ex+1,g′(x)=﹣e,当x>时,g′(x)<0,g(x)递减;当0<x<时,g′(x)<0,g(x)递增.可得g(x)在x=处取得极大值,且为最大值﹣1;(ii)证明:函数φ(x)=|g(x)|﹣﹣=|lnx﹣ex+1|﹣(+),令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+的导数为h′(x)=,当x>e时,h′(x)<0,函数y递减;当0<x<e时,h′(x)>0,函数h(x)递增.即有函数h(x)=+的最大值为h(e)=+<1;由(i)可得g(x)≤﹣1,即有|g(x)|≥1,则方程(*)无解.即有函数φ(x)没有零点.2020年7月14日。
2020年山东省新高考数学模拟试卷(十二)(含答案)
2020年山东省新高考数学模拟试卷(十二)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={x||x﹣2|≥2},B={x|x≤2},则(∁U A)∩B=()A.{x|0≤x≤2}B.{x|0<x≤2}C.{x|﹣2≤x≤2}D.{x|﹣2<x≤2}2.设a,b均为不等于1的正实数,则“a>b>1”是“log b2>log a2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.元代数学家朱世杰编著的《算法启蒙》中记载了有关数列的计算问题:“今有竹七节,下两节容米四升,上两节容米二升,各节欲均容,问逐节各容几升?”其大意为:现有一根七节的竹子,最下面两节可装米四升,最上面两节可装米二升,如果竹子装米量逐节等量减少,问竹子各节各装米多少升?以此计算,第四节竹子的装米量为()A.1升B .升C .升D .升4.已知函数f(x)=x﹣4+,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为()A .B .C .D .5.如图,在下列四个正方体中,P,R,Q,M,N,G,H为所在棱的中点,则在这四个正方体中,阴影平面与PRQ所在平面平行的是()A .B .C .D .6.如图,棱长为2的正方体ABCD﹣A1B1C1D1中,点E、F分别为AB、A1B1的中点,则三棱锥F ﹣ECD的外接球体积为()A .B .C .D .7.已知双曲线,过原点的直线与双曲线交于A,B两点,以AB为直径的圆恰好过双曲线的右焦点C,若△ABC的面积为2a2,则双曲线的渐近线方程为()A .B .C .D .8.已知函数,,则方程f(g(x))=a的实根个数最多为()A.6B.7C.8D.9二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(5分)已知a,b均为正实数,若log a b+log b a =,a b=b a ,则=()A .B .C .D.210.(5分)对于定义域为D的函数f(x),若存在区间[m,n]⊆D,同时满足下列条件:①f(x)在[m,n]上是单调的:②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]为该函数的“和谐区间”.下列函数存在“和谐区间”的是()A.f(x)=x3B.f(x)=3C.f(x)=e x﹣1D.f(x)=lnx+211.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,则()A.若2cos C(a cos B+b cos A)=c,则C =B.若2cos C(a cos B+b cos A)=c,则C =C.若边BC 上的高为a ,则当+取得最大值时,A =D.若边BC 上的高为a ,则当+取得最大值时,A =12.(5分)已知数列{a n}是等差数列,前n项和为S n,满足a1+5a3=S8,下列选项正确的有()A.a10=0B.S10最小C.S7=S12 D.S20=0三、填空题(本题共4小题,每小题5分,共20分)13.(5分)(2x+y)(x﹣2y)5展开式中x3y3的系数为.14.(5分)已知x>0,y>0,是2x 与4y 的等比中项,则的最小值.15.(5分)已知圆x2+y2+4x﹣5=0的弦AB的中点为(﹣1,1),直线AB交x轴于点P,则的值为.16.(5分)已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(﹣,m)是角θ终边上的一点,且sinθ=,n=tan(θ+),则m=,n=.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在△ABC中,内角A,B,C所对的边分别为a,b,c,函数f(x)=cos x(sin x﹣cos x)+,将f(x)的图象向左平移个单位得到函数y=g(x)的图象,且g()=,c=.(1)求C;(2)若3(sin B﹣sin C)2=3sin2A﹣8sin B sin C,求cos(A﹣C).18.(12分)设数列{a n}的前n项和为S n,若.(1)求数列{a n}的通项公式;(2)设b n=(n+3)a n,求数列{b n}的前n项和T n.19.(12分)已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB⊥BC,AB∥CD,且AB=2CD.将梯形ABCD沿着BC折起,如图2所示,且AB⊥平面BEC.(Ⅰ)求证:平面ABE⊥平面ADE;(Ⅱ)若AB=BC,求二面角A﹣DE﹣B的余弦值.20.(12分)抛物线C:y=x2,直线l的斜率为2.(Ⅰ)若l与C相切,求直线l的方程;(Ⅱ)若l与C相交于A,B,线段AB的中垂线交C于P,Q ,求的取值范围.21.(12分)某读书协会共有1200人,现收集了该协会20名成员每周的课外阅读时间(分钟),其中某一周的数据记录如下:75 60 35 100 90 50 85 170 65 70 125 75 70 85 155 110 75 130 80 100对这20个数据按组距30进行分组,并统计整理,绘制了如下尚不完整的统计图表:阅读时间分组统计表(设阅读时间为x分钟)组别时间分组频数男性人数女性人数A30≤x<60211B60≤x<901046C90≤x<120m a1D120≤x<150211E150≤x<180n2b(I)写出m,n的值,请估计该读书小组中人均每周的课外阅读时长,以及该读书小组中一周阅读时长不少于90分钟的人数;(II)该读书协会拟发展新成员5人,记新成员中每周阅读时长在[60,90)之间的人数为ξ,以上述统计数据为参考,求ξ的分布列和数学期望;(Ⅲ)完成下面的2x2列联表,并回答能否有90%的把握认为“每周至少阅读120分钟与性别有关”?每周阅读时间不少于120分钟每周阅读时间少于120分钟合计男女合计附:K2=P(K20.1500.100 0.0500.0250.010 0.005 0.001≥k0)k0 2.072 2.706 3.841 5.024 6.6357.87910.828 22.(12分)已知函数f(x)=x﹣alnx+a﹣1(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若x∈[e a,+∞)时,f(x)≥0恒成立,求实数a的取值范围.2020年山东省新高考数学模拟试卷(十二)参考答案与试题解析一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】可以求出集合A,然后进行交集和补集的运算即可.【解答】解:∵A={x|x≤0或x≥4},B={x|x≤2},U=R,∴∁U A={x|0<x<4},(∁U A)∩B={x|0<x≤2}.故选:B.【点评】本题考查了描述法的定义,绝对值不等式的解法,交集和补集的运算,全集的定义,考查了计算能力,属于基础题.2.【分析】根据充分条件和必要条件的定义结合不等式的解法进行判断即可.【解答】解:a,b均为不等于1的正实数,①若“a>b>1”时由对数函数的性质可得:一象限底大图低,相同自变量为2时,底大函数值小,可得log b2>log a2成立.②若:“log b2>log a2”有①若a,b均大于1,由log b2>log a2,知必有a>b>1;②若a,b均大于0小于1,依题意,必有0<b<a<1;③若log a2<log b2<0,则必有0<b<a<1;故:“log b2>log a2”不能推出a>b>1;综上所述由充要条件的定义知,A正确.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.3.【分析】设竹子自下而上的各节容米量分别为a1,a2,…,a7,由题意得a1+a2+a6+a7=6,由等差数列的性质能求出第四节竹子的装米量.【解答】解:设竹子自下而上的各节容米量分别为a1,a2,…,a7,由题意得a1+a2+a6+a7=6,由等差数列的性质得:a1+a7=2a4=6,解得第四节竹子的装米量为a4=(升).故选:B.【点评】本题考查第四节竹子的装米量的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4.【分析】先根据基本不等式求出a,b的值,再结合指数函数的性质及函数的图象的平移可求【解答】解:∵x∈(0,4),∴x+1>1∴f(x)=x﹣4+=x +1+﹣5≥2﹣5=1,当且仅当x=2时取等号,此时函数有最小值1∴a=2,b=1,此时g(x)=2|x+1|=,此函数可以看成函数y =的图象向左平移1个单位结合指数函数的图象及选项可知A正确故选:A.【点评】本题主要考察了基本不等式在求解函数的最值中的应用,指数函数的图象及函数的平移的应用是解答本题的关键5.【分析】利用平面的基本性质作出经过P、Q、R三点的平面,然后判断选项的正误即可.【解答】解:由题意可知经过P、Q、R三点的平面如图:红色线的图形,可知N在经过P、Q、R三点的平面上,所以B、C错误;MC1与QE是相交直线,所以A不正确;故选:D.【点评】本题考查平面与平面平行的判断定理的应用,平面的基本性质的应用,是基本知识的考查.6.【分析】首先确定球心的位置,进一步利用勾股定理的应用求出求的半径,进一步求出球的体积.【解答】解:在正方体ABCD﹣A1B1C1D1中,连接FC1,FD1,三棱锥F﹣ECD的外接球即为三棱柱FC1D1﹣ECD的外接球,在△ECD中,取CD中点H,连接EH,则EH为边CD的垂直平分线,所以△ECD的外心在EH上,设为点M,同理可得△FC1D1的外心N,连接MN,则三棱柱外接球的球心为MN的中点设为点O,由图可得,EM2=CM2=CH2+MH2,又MH=2﹣EM,CH=1,如右图所示:,可得,所以,解得,所以.故选:D.【点评】本题考查的知识要点:锥体与球的关系的应用,球的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.7.【分析】设双曲线的左焦点为F,连接AF,BF,可得四边形AFBC为矩形,由双曲线的定义和勾股定理,以及三角形的面积公式,化简整理可得a,b的关系,即可得到所求双曲线的渐近线方程.【解答】解:设双曲线的左焦点为F,连接AF,BF,由题意可得AC⊥BC,可得四边形F ABC为矩形,即有|AF|=|BC|,设|AC|=m,|BC|=n,可得n﹣m=2a,n2+m2=4c2,mn=2a2,即有4c2﹣8a2=4a2,即有c =a,b ==a,可得双曲线的渐近线方程为y =±x.故选:B.【点评】本题考查双曲线的定义和方程、性质,考查矩形的定义和勾股定理的运用,考查运算能力,属于基础题.8.【分析】由方程的解的个数与函数图象的交点的个数的关系得:方程f(g(x))=a的实根个数为函数t=g(x)的图象与直线t=t1,t=t2,t=t3,t=t4的交点个数之和,再结合函数图象观察可得解.【解答】解:设t=g(x),则f(t)=a,则方程f(g(x))=a的实根个数为函数t=g(x)的图象与直线t=t1,t=t2,t=t3,t=t4的交点个数之和,要方程f(g(x))=a的实根个数最多,则需f(t)=a的解如图所示,由图(2)可知,函数t=g(x)的图象与直线t=t1,t=t2,t=t3,t=t4的交点个数之和为8,故选:C.【点评】本题考查了方程的解的个数与函数图象的交点的个数的关系及作图能力,属难度较大的题型.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.【分析】设t=log a b,代入化解求出t的值,得到a的b关系式,由a b=b a可求出a,b的值.【解答】解:令t=log a b,则t +=,∴2t2﹣5t+2=0,(2t﹣1)(t﹣2)=0,∴t =或t=2,∴log a b =或log a b=2∴a=b2,或a2=b∵a b=b a,代入得∴2b=a=b2或b=2a=a2∴b=2,a=4,或a=2.b=4∴.或故选:AD.【点评】本题考查对数的运算及性质,换元法的应用,属于基础题.10.【分析】由题意,函数在“和谐区间”上单调递增,且满足f(x)=x至少有两个解,逐项判断即可.【解答】解:由题意,函数在“和谐区间”上单调递增,且满足f(x)=x至少有两个解,对于A选项,函数f(x)=x3在定义域R上单调递增,且x3=x有解﹣1,0,1,满足条件,故正确;对于B选项,函数f(x)=3在(0,+∞)上单调递增,且有解1,2,满足条件,故正确;对于C选项,函数f(x)=e x﹣1在定义域上单调递增,但e x﹣1=x只有一个解0,不满足条件,故错误;对于D选项,函数f(x)=lnx+2在(0,+∞)上单调递增,显然函数f(x)=lnx+2与函数y =x在(0,+∞)上有两个交点,即lnx+2=x有两个解,满足条件,故正确.故选:ABD.【点评】本题以新定义问题为载体,考查了函数的单调性、零点及函数图象等基础知识点,属于基础题.解题的关键是理解“和谐区间”的定义.11.【分析】对于选项A,B,由正弦定理,两角和的正弦函数公式可求2cos C sin C=sin C,结合sin C ≠0,可得cos C =,结合范围C∈(0,π),可求C的值;对于选项C,D,由三角形的面积公式可求a2=2bc sin A ,利用余弦定理,两角和的正弦函数公式可求+=4sin(A +),结合已知利用正弦函数的性质即可求解.【解答】解:∵2cos C(a cos B+b cos A)=c,∴由正弦定理可得2cos C(sin A cos B+sin B cos A)=sin C,∴2cos C sin(A+B)=2cos C sin C=sin C,∵sin C≠0,∴可得cos C =,∵C∈(0,π),∴C =,可得A正确,B错误.∵边BC 上的高为a,∴bc sin A =•a •,∴a2=2bc sin A,∵cos A =,∴b2+c2=a2+2bc cos A=2bc sin A+2bc cos A,∴+==2sin A+2cos A=4sin(A +)≤4,当A +=时等号成立,此时A =,故C正确,D错误.故选:AC.【点评】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理,正弦函数的性质在解三角形中的应用,考查了转化思想,属于中档题.12.【分析】根据题意,结合等差数列的前n项和公式以及通项公式,依次分析选项,综合即可得答案.【解答】解:根据题意,数列{a n}是等差数列,若a1+5a3=S8,即a1+5a1+10d=8a1+28d,变形可得a1=﹣9d,又由a n=a1+(n﹣1)d=(n﹣10)d,则有a10=0,故A一定正确,不能确定a1和d的符号,不能确定S10最小,故B不正确;又由S n=na1+=﹣9nd +=×(n2﹣19n),则有S7=S12,故C一定正确,则S20=20a1+d=﹣180d+190d=﹣10d,S20≠0,则D不正确,故选:AC.【点评】本题考查等差数列的性质以及前n项和公式,关键是掌握与等差数列有关的公式,属于基础题.三、填空题(本题共4小题,每小题5分,共20分)13.【分析】根据题意,结合二项式定理把(x+2y)5按照二项式定理展开,由多项式乘法的性质分析可得答案.【解答】解:根据题意,(x﹣2y)5=x5﹣10x4y+40x3y2﹣80x2y3+80xy4﹣32y5,则(2x+y)(x+2y)5展开式中x3y3的系数为2×(﹣80)+1×40=﹣160+40=﹣120,故答案为:﹣120.【点评】本题考查二项式定理的应用,关键是掌握二项式定理的形式,属于基础题.14.【分析】由等比数列可得x+2y=1,则=+=1++,由基本不等式可得.【解答】解:x>0,y>0,是2x与4y的等比中项,则2x•4y=2,∴x+2y=1,∴=+=1++≥1+2=1+2,当且仅当=时,即x =﹣1,y =取等号,故答案为:2+1【点评】本题考查基本不等式,涉及等比数列的性质,属基础题.15.【分析】由已知先求k MC,然后根据圆的性质可求k AB,写出AB所在直线方程,联立方程可求A,B,然后根据向量数量积的坐标表示即可求解.【解答】解:设M(﹣1,1)圆心C(﹣2,0),∵k MC ==1,根据圆的性质可知,k AB=﹣1,∴AB所在直线方程为y﹣1=﹣(x+1),即x+y=0,联立方程可得,2x2+4x﹣5=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,令y=0可得P(0,0),=x1x2+y1y2=2x1x2=﹣5,故答案为:﹣5.【点评】本题主要考查了向量的数量积的坐标表示及直线与圆相交性质的简单应用.16.【分析】由题意利用任意角的三角函数的定义,两角和的正切公式,求得m、n的值.【解答】解:若P (﹣,m)是角θ终边上的一点,且sinθ==,∴m =.∵tanθ==﹣1,n=tan(θ+)==0,故答案为:;0.【点评】本题主要考查任意角的三角函数的定义,两角和的正切公式,属于基础题.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【分析】(1)先利用三角恒等变换将f(x)化简成y=A sin(ωx+θ)的形式,再利用图象平移变换方法得到g(x),根据g ()=,可求得角C.(2)利用正弦定理将给的式子化边,利用余弦定理可求得cos A ,结合,问题可解.【解答】解:(1)f(x)=cos x(sin x ﹣cos x)+==,∴g(x)=f(x)=sin(2x ﹣),∵g ()=,∴,∴,∴,故C =.(2)∵3(sin B﹣sin C)2=3sin2A﹣8sin B sin C,由正弦定理得:3(b﹣c)2=3a2﹣8bc,∴,∴,∴,∴cos(A﹣C )=,=.【点评】本题通过考查三角函数的恒等变换和图象变换以及正余弦定理的应用,考查了学生的数学运算、逻辑推理等数学核心素养.属于中档题.18.【分析】(1)通过,说明数列{a n}是以2为首项,2为公比的等比数列,求解通项公式.(2)由(1)得,,利用错位相减法求解数列的和即可.【解答】解:(1)因为,①当n=1时,2a1﹣S1=2a1﹣a1=2,所以a1=2.当n≥2时,2a n﹣1﹣S n﹣1=2,②①﹣②得2a n﹣S n﹣(2a n﹣1﹣S n﹣1)=0,即a n=2a n﹣1.因为a1=2≠0,所以a n≠0,所以(n∈N*,且n≥2),所以数列{a n}是以2为首项,2为公比的等比数列,所以.(2)由(1)得,,所以,③,④③﹣④得,=6+(21+22+23+…+2n)﹣(n+3)×2n+1==6+2n+1﹣2﹣(n+3)×2n﹣1=4﹣(n+2)2n+1,所以.【点评】本题考查数列的递推关系式的应用,数列求和,考查计算能力.19.【分析】(I)取BE的中点F,AE的中点G,证明CF⊥平面ABE,通过证明四边形CDGF是平形四边形得出CF∥DG,故DG⊥平面ABE,于是平面ABE⊥平面ADE;(II)建立空间坐标系,计算平面ADE和平面BDE的法向量,通过计算法向量的夹角得出二面角的大小.【解答】(Ⅰ)证明:取BE的中点F,AE的中点G,连接FG、GD、CF,则GF AB.∵DC AB,∴CD GF,∴四边形CFGD为平行四边形,∴CF∥DG.∵AB⊥平面BEC,∴AB⊥CF.∵CF⊥BE,AB∩BE=B,∴CF⊥平面ABE.∵CF∥DG,∴DG⊥平面ABE.∵DG⊂平面ADE,∴平面ABE⊥平面ADE.(Ⅱ)解:过E作EO⊥BC于O.∵AB⊥平面BEC,∴AB⊥EO.∵AB∩BC=B,∴EO⊥平面ABCD.以O为坐标原点,OE、BC所在的直线分别为x轴、y轴,过O且平行于AB的直线为z轴建立如图所示的空间直角坐标系.设AB=BC=4,则A(0,﹣2,4),B(0,﹣2,0),D(0,2,2),E(2,0,0),∴=(﹣2,2,2),=(﹣2,﹣2,4),=(﹣2,﹣2,0).设平面EAD 的法向量为=(x1,y1,z1),则有,即,取z1=2得x1=,y1=1,则=(,1,2),设平面BDE 的法向量为=(x2,y2,z2),则,即,取x2=1,得y2=﹣,z2=2,则=(1,﹣,2).∴cos <>===.又由图可知,二面角ADEB的平面角为锐角,∴二面角A﹣DE﹣B 的余弦值为.【点评】本题考查了面面垂直的判定,空间向量与二面角的计算,属于中档题.20.【分析】(1)设直线l的方程为y=2x+b,将直线l与抛物线C的方程联立,利用△=0求出b 的值,从而得出直线l的方程;(2)设点A(x1,y1)、B(x2,y2)、P(x3,y3)、Q(x4,y4),设直线l的方程为y=2x+b,将直线l的方程与抛物线C的方程联立,由△>0得出b的范围,并列出韦达定理,求出|AB|并求出线段AB的中点坐标,然后得出线段AB中垂线的方程PQ,将直线PQ的方程与抛物线C的方程联立,列出韦达定理并求出|PQ|,然后得出的表达式,结合不等式的性质求出这个代数式的取值范围.【解答】解:(1)设直线l的方程为y=2x+b,联立直线l与抛物线C 的方程,得x2﹣2x﹣b=0,△=4+4b=0,所以,b=﹣1,因此,直线l的方程为y=2x﹣1;(2)设直线l的方程为y=2x+b,设点A(x1,y1)、B(x2,y2)、P(x3,y3)、Q(x4,y4),联立直线l与抛物线C 的方程,得x2﹣2x﹣b=0,△=4+4b>0,所以,b>﹣1.由韦达定理得x1+x2=2,x1x2=﹣b.所以,,因为线段AB的中点为(1,2+b),所以,直线PQ 的方程为,由,得2x2+x﹣5﹣2b=0,由韦达定理得,,所以,,所以,,所以,的取值范围是.【点评】本题考查抛物线的综合问题,考查韦达定理设而不求法在抛物线综合问题中的应用,考查计算能力,属于中等题.21.【分析】(Ⅰ)由阅读时间分组统计表,得到m=4,n=2.由此能估计该读书小组中人均每周的课外阅读时长和该读书小组中一周阅读时长不少于90分钟的人数.(Ⅱ)估计新成员每周阅读时长在[60,90)之间的概率为,依题意ξ~B(5,),由此能求出ξ的分布列和数学期望.(Ⅲ)完成下面的2x2列联表,求出k0≈0.808,从而没有90%的把握认为“每周至少阅读120分钟与性别有关”.【解答】解:(Ⅰ)由阅读时间分组统计表,得到m=4,n=2.估计该读书小组中人均每周的课外阅读时长为:=93分钟.该读书小组中一周阅读时长不少于90分钟的人数为:1200×=480人.(Ⅱ)估计新成员每周阅读时长在[60,90)之间的概率为,依题意ξ~B(5,),共分布列为:P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,∴ξ的分布列为:ξ012345P∴E(ξ)=5×=.(Ⅲ)完成下面的2x2列联表:每周阅读时间不少于120分钟每周阅读时间少于120分钟合计男3811女189合计41620k0=≈0.808,∴没有90%的把握认为“每周至少阅读120分钟与性别有关”.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查运算求解能力,考查函数与方程思想,是中档题.22.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)通过讨论a的范围,结合函数的单调性求出函数的最小值,从而确定a的范围即可.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=1﹣=,①当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,②当a>0时,由f′(x)=0,解得:x=a,故f(x)在(0,a)递减,在(a,+∞)递增,综上,当a≤0时,f(x)在(0,+∞)递增,当a>0时,f(x)在(0,a)递减,在(a,+∞)递增;(Ⅱ)①当a=0时,∵x≥1,∴f(x)=x﹣1≥0恒成立,故a=0符合题意,②当a<0时,e a<0,∵f(1)=a<0,故f(x)≥0不恒成立,舍,③当a>0时,由(Ⅰ)知f(x)在(0,a)递减,在(a,+∞)递增,下面先证明:e a>a(a>0),设p(a)=e a﹣a,∵p′(a)=e a﹣1>0,∴p(a)在(0,+∞)递增,p(a)≥p(0)=1>0,故e a>a,故f(x)在[e a,+∞)递增,故f(x)min=f(e a)=e a﹣a2+a﹣1,设q(a)=e a﹣a2+a﹣1(a>0),则q′(a)=e a﹣2a+1,q″(a)=e a﹣2,由q″(a)>0,解得:a>ln2,由q″(a)<0,解得:0<a<ln2,故q′(a)在(0,ln2)递减,在(ln2,+∞)递增,故q′(a)≥q′(ln2)=3﹣2ln2>0,故q(a)在(0,+∞)递增,故q(a)>q(0)=0,故f(x)min>0,故f(x)≥0恒成立,故a>0符合题意,综上,a的范围是[0,+∞).【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.。
北京市东城区2020届高三下学期4月第一次模拟新高考适应考试数学试题 Word版含答案
2020年高考数学(4月份)第一次模拟试卷一、选择题(共10小题).1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1}D.{x|0<x<1}2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1D.23.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12B.36C.72D.7207.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =48.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729B.332C.181D.969.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是.(填写所有正确说法的编号)三、解答题16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.参考答案一、选择题共10题,每题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1}D.{x|0<x<1}【分析】先求出集合A,集合B,由此能求出A∪B.解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|﹣1<x<1},∴A∪B={x|﹣1≤x<1}.故选:C.2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1D.2【分析】利用复数模长的性质即可求解.解:∵复数z=,∴==,故选:A.3.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)【分析】利用抛物线x2=4y的准线方程为y=﹣1,即可求出抛物线x2=4y的准线与y轴的交点的坐标.解:抛物线x2=4y的准线方程为y=﹣1,∴抛物线x2=4y的准线与y轴的交点的坐标为(0,﹣1),故选:B.4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数【分析】根据x<0即可根据基本不等式得出,从而可得出f(x)≤﹣4,并且x=﹣1时取等号,从而得出f(x)有最大值,没有单调性,从而得出正确的选项.解:∵x<0,∴,当且仅当,即x=﹣1时取等号,∴f(x)有最大值,∴f(x)在(﹣∞,0)上没有单调性.故选:A.5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.解:若a>b>0,则对应的曲线为双曲线,不是椭圆,即充分性不成立,若曲线C为焦点在x轴上的椭圆,则满足a>﹣b>0,即a>0,b<0,满足a>b,即必要性成立,即“a>b”是“曲线C为焦点在x轴上的椭圆”的必要不充分条件,故选:B.6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12B.36C.72D.720【分析】根据题意,由捆绑法分析:先将2个三口之家的成员进行全排列,再对2个三口之家整体进行全排列,由分步计数原理计算可得答案.解:根据题意,先将2个三口之家的成员进行全排列,有=36种情况,再对2个三口之家整体进行全排列,有=2种情况,则有36×2=72种不同的坐法;故选:C.7.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =4【分析】根据圆心在直线y=x上,设出圆心坐标为(a,a),利用圆C与直线y=﹣x及x+y﹣4=0的相切,求得圆心坐标,再求圆的半径,可得圆的方程.解:圆心在y=x上,设圆心为(a,a),∵圆C与直线y=﹣x及x+y﹣4=0的相切,∴圆心到两直线y=﹣x及x+y﹣4=0的距离相等,即:⇒a=1,∴圆心坐标为(1,1),R==,圆C的标准方程为(x﹣1)2+(y﹣1)2=2.故选:A.8.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729B.332C.181D.96【分析】正项等比数列{a n}的公比设为q,q>0,运用等差数列的中项性质和等比数列的通项公式及性质,解方程可得公比q,再由等比数列的通项公式计算可得所求值.解:正项等比数列{a n}的公比设为q,q>0,由a1a5a9=27,可得a53=27,即a5=3,即a1q4=3,①a6与a7的等差中项为9,可得a6+a7=18,即a1q5+a1q6=18,②①②相除可得q2+q﹣6=0,解得q=2(﹣3舍去),则a10=a5q5=3×32=96.故选:D.9.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天【分析】由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x的范围,列出方程求解即可.解:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积y=a•2x(x∈N+),根据题意,令2(a•2x)=a•220,解得x=19,故选:C.10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5【分析】设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C 中元素个数分别为n(A),n(B),n(C),根据n(A∪B∪C)=n(A)+n(B)+n (C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B ∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C)可得.解:设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),则n(A)=14,n(B)=10,n(C)=8,n(A∪B∪C)=20,因为n(A∪B∪C)=n(A)+n(B)+n(C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n (A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C),所以14+10+8﹣20+n(A∩B∩C)≥3n(A∩B∩C),即n(A∩B∩C)≤=6.故选:C.二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=1.【分析】由题意利用任意角的三角函数的定义,先求得α的值,可得sinα的值.解:∵角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),∴tan(α+)==﹣,故α+为第二象限角.∴可令α+=,此时,α=,sinα=1,故答案为:1.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积.解:几何体的直观图如图:是长方体的一部分,长方体的棱长为:2,1,2,四棱锥的体积为:×1×2×2=.故答案为:.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是x2=8y或y2=x.【分析】由题意可设抛物线方程为y2=2px(p>0)或x2=2py(p>0),然后分类求解得答案.解:由题意可得,抛物线方程为y2=2px(p>0)或x2=2py(p>0).若抛物线方程为y2=2px(p>0),代入(1,1),得p=,则抛物线方程为y2=x,此时(4,2)在抛物线上,符合题意;若抛物线方程为x2=2py(p>0),代入(2,1),得p=2,则抛物线方程为x2=8y,此时(2,)在抛物线上,符合题意.∴抛物线的标准方程可以是x2=8y或y2=x.故答案为:x2=8y或y2=x.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是②③.(填写所有正确说法的编号)【分析】解题的关键是理解图象表示的实际意义,进而得解.解:由图可知,点A纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:②③.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;【分析】(Ⅰ)推导出A1O⊥DE,从而A1O⊥平面BCDE,由此能证明A1O⊥BD.(Ⅱ)以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,由此能求出直线A1C和平面A1BD所成角的正弦值.解:(Ⅰ)证明:∵在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.∴A1O⊥DE,∵将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,∴A1O⊥平面BCDE,∵BD⊂平面BCDE,∴A1O⊥BD.(Ⅱ)解:以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,A1(0,0,2),C(2,2,0),B(2,﹣2,0),D(0,﹣1,0),=(2,2,﹣2),=(2,﹣1,0),=(0,1,2),设平面A1BD的法向量为=(x,y,z),则,取x=1,得=(1,2,﹣1),设直线A1C和平面A1BD所成角为θ,则直线A1C和平面A1BD所成角的正弦值为:sinθ===.17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.【分析】取①,由余弦定理可得cos B=进而解得B,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;取②a cos B=b sin A,由正弦定理可得:tan B=1,B∈(0,π),解得B,可得sin C=sin(A+B),由正弦定理可得:a,利用三角形面积计算公式即可得出;取③,可得,由此可求出B的大小,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;解:(1)若选择①,由余弦定理,……………因为B∈(0,π),所以;……………………由正弦定理,得,……………因为,,所以,……………所以………所以.……………(2)若选择②a cos B=b sin A,则sin A cos B=sin B sin A,……………因为sin A≠0,所以sin B=cos B,……………因为B∈(0,π),所以;……………由正弦定理,得,……………因为,,所以,……………所以,…所以.……………(3)若选择③,则,所以,……………因为B∈(0,π),所以,所以,所以;……………由正弦定理,得,……………因为,,所以,……………所以,………18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.【分析】(Ⅰ)由茎叶图能求出甲公司员工A投递快递件数的平均数和众数.(Ⅱ)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.(Ⅲ)利用(Ⅱ)的结果能估算算两公司的每位员工在该月所得的劳务费.解:(Ⅰ)甲公司员工A投递快递件数的平均数为:=(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(Ⅱ)设a为乙公司员工B投递件数,则当a=34时,X=136元,当a>35时,X=35×4+(a﹣35)×7元,∴X的可能取值为136,147,154,189,203,P(X=136)=,P(X=147)=,P(X=154)=,P(X=189)=,P(X=203)=,X的分布列为:X136147154189203P=.(Ⅲ)根据图中数据,由(Ⅱ)可估算:甲公司被抽取员工该月收入=36×4.5×30=4860元,乙公司被抽取员工该月收入=165.5×30=4965元.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【分析】(1)求出函数的导数,问题转化为x2+x+a=0存在大于0的实数根,根据y=x2+x+a 在x>0时递增,求出a的范围即可;(2)求出函数f(x)的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;(3)求出函数g(x)的导数,根据f(e)=﹣>0,得到存在x0∈(1,e)满足g′(x0)=0,从而得到函数的单调区间,求出函数的极小值,证出结论即可.解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.【分析】(I)由椭圆的标准方程即可得出;(II)直线l:y=kx+m(k≠0)过点F,可得l:y=k(x﹣2).代入椭圆的标准方程可得:(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),可得根与系数的关系.点P关于x轴的对称点为P',则P'(x1,﹣y1).可得直线P'Q的方程可以为,令y=0,,把根与系数的关系代入化简即可得出.解:(Ⅰ)∵椭圆C:,∴c2=a2﹣b2=4,解得c=2,∴焦点F(2,0),离心率.(Ⅱ)直线l:y=kx+m(k≠0)过点F,∴m=﹣2k,∴l:y=k(x﹣2).由,得(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),则,.∵点P关于x轴的对称点为P',则P'(x1,﹣y1).∴直线P'Q的方程可以设为,令y=0,====3.∴直线P'Q过x轴上定点(3,0).21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.【分析】(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)对a2、a3分类取值,再结合各项均为非负整数列式求m的值;(Ⅲ)令S n=a1+a2+…+a n,则.进一步推得存在正整数M>m,当n>M时,必有成立.再由成立证明a n为常数.【解答】(Ⅰ)解:m=5时,数列{a n}的前五项分别为:5,1,0,2,2.(Ⅱ)解:∵0≤a n≤n﹣1,∴0≤a2≤1,0≤a3≤2,又数列{a n}的前3项互不相等,(1)当a2=0时,若a3=1,则a3=a4=a5= (1)且对n≥3,都为整数,∴m=2;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=4;(2)当a2=1时,若a3=0,则a3=a4=a5= 0且对n≥3,都为整数,∴m=﹣1,不符合题意;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=3;综上,m的值为2,3,4.(Ⅲ)证明:对于n≥1,令S n=a1+a2+…+a n,则.又对每一个n,都为正整数,∴,其中“<”至多出现m﹣1个.故存在正整数M>m,当n>M时,必有成立.当时,则.从而.由题设知,又及a n+1均为整数,∴=a n+1=,故=常数.从而=常数.故存在正整数M,使得n≥M时,a n为常数.。
2020年贵州省毕节市高考(文科)数学第二次模拟测试试卷 解析版
2020年高考数学第二次模拟试卷(文科)一、选择题1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5} 2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.274.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+15.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣17.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}二、填空题13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.14.计算:log10+log50.25﹣()=.15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为.16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5}【分析】求出集合M,N,由此能求出M∪N.解:∵集合M={x|≤0}={x|3≤x<7},N={x|x2﹣6x+5<0}={x|1<x<5},∴M∪N={x|1<x<7}.故选:A.2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:∵zi=(1﹣i)(2+i)=3﹣i,∴z=.故选:A.3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.27【分析】由题意利用分层抽样的定义,求得结果.解:设高三年级总人数为x,则由题意可得=,∴x=300(人),故选:B.4.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+1【分析】由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解:结合函数y=A sin(ωx+φ)+b在一个周期内的图象,可得A==2,b=1,•=﹣,∴ω=2.再根据五点法作图可得2×+φ=0,求得φ=﹣,故函数的解析式为y=2sin(2x ﹣)+1,故选:D.5.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.【分析】根据即可得出,进而可得出,然后根据B,P,N三点共线即可得出t的值.解:∵,∴,∴,且B,P,N三点共线,∴,解得.故选:C.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣1【分析】由已知利用同角三角函数基本关系式可求tanθ的值,进而利用二倍角公式,同角三角函数基本关系式化简所求即可求值得解.解:∵==3,∴tanθ=﹣2,∴sinθcosθ+cos2θ====﹣1.故选:D.7.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.【分析】先计算f(0),再根据恒等式寻找f(x)的周期或规律得出答案.解:取x=1,y=0,得3f(0)f(1)=f(1)+f(1)=,∴f(0)=,取x=n,y=1,有3f(n)f(1)=f(n+1)+f(n﹣1),即f(n)=f(n+1)+f(n﹣1),同理:f(n+1)=f(n+2)+f(n),∴f(n+2)=﹣f(n﹣1),∴f(n)=﹣f(n﹣3)=f(n﹣6)所以函数是周期函数,周期T=6,故f(2020)=f(3×336+4)=f(4).∵3f(x)f(y)=f(x+y)+f(x﹣y)令x=y=1,得3f2(1)=f(2)+f(0),可得f(2)=﹣,令x=2,y=1,得3f(2)f(1)=f(3)+f(1),解得f(3)=﹣,令x=3,y=1,得3f(3)f(1)=f(4)+f(2),解得f(4)=﹣.∴f(2020)=﹣;故选:C.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x【分析】由题意可得直线AB的方程为:y=(x﹣),与抛物线方程联立,利用韦达定理得到x A+x B=7p,由抛物线的定义可知:|AB|=x A+x B+p=8p=16,即可求出p的值,从而求出抛物线的方程.解:∵抛物线C:y2=2px,∴P(,0),∴直线AB的方程为:y=(x﹣),联立方程,消去y得:,∴x A+x B=7p,由|AB|=16,及抛物线的定义可知:|AB|=x A+x B+p=8p=16,∴p=2,∴抛物线的方程为:y2=4x,故选:C.9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π【分析】设三棱锥P﹣ABC的外接球的半径为R.由PB=PC=1,BC=,根据勾股定理的逆定理可得:PB⊥PC.根据AP⊥平面PBC,可得:AP⊥PB,AP⊥PC.可得三棱锥P﹣ABC的外接球的半径与三条棱长的关系,进而得出:三棱锥P﹣ABC的外接球体积.解:设三棱锥P﹣ABC的外接球的半径为R.∵PB=PC=1,BC=,∴PB2+PC2=BC2,∴PB⊥PC.又AP⊥平面PBC,∴AP⊥PB,AP⊥PC.∴(2R)2=12+12+22=6,解得:R=.则三棱锥P﹣ABC的外接球体积=π×=π.故选:D.10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题【分析】根据面面平行的判定方法及线面平行几何特征,可以判断P的真假;根据面面平行的定义及判定定理可得q的真假.解:如果平面内有无数条相互平行的直线都与平面平行,则两个平面不一定平行,故P 为假命题;如果平面内任意一条直线都与平面平行,由面面平行的判定定理,可得两个平面平行,故q为真命题.∴¬p∧¬q为假命题;“p∧q”为假命题;“¬p∧q”为真命题;“p∨¬q”为假命题.故选:C.11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或【分析】由已知结合正弦定理及和角公式进行化简可求A,然后结合正弦定理可求sin C,进而可求C.解:因为b=a(cos C+sin C),由正弦定理可得,sin B=sin A cos C+sin A sin C,所以sin A cos C+sin C cos A=sin A cos C+sin A sin C,所以sin A=cos A,即A=,因为a=1,c=,由正弦定理可得,,所以sin C=,因为c>a,所以C>A,故C=.故选:B.12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}【分析】函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即方程|e x﹣1|2﹣|e x﹣1|+k =0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0,作出函数t=|e x﹣1|的图象,可得方程t2﹣t+k=0有根的情况,然后分类利用根的分布分析,列关于k的不等式组求解.解:函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即f(x)=|e x﹣1|2﹣|e x﹣1|+k恰有1个零点,也就是方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0.作出函数t=|e x﹣1|的图象,要使方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,则方程t2﹣t+k=0有根的情况为:①两相等0根,该种情况不存在;②两相等大于等于1的根,该种情况也不存在;③一根大于等于1,而另一个小于0,此时,解得k<0.∴k的取值集合是{k|k<0}.故选:A.二、填空题:共4小题,每小题5分,共20分.13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.【分析】基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,由此能求出该居民会被处罚的概率.解:2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,则该居民会被处罚的概率为p=.故答案为:.14.计算:log10+log50.25﹣()=.【分析】由已知结合对数的运算性质及对数恒等式即可求解.解:log10+log50.25﹣()=2log510+log50.25﹣()=log5100×0.25﹣=2﹣.故答案为:15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为(﹣1,0].【分析】先求导,再令x=1,求出函数的解析式,再根据导数和函数的单调性的关系即可求出.解:∵f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,∴f′(x)=1﹣2f'(1)•﹣f(0)e x,令x=1可得f′(1)=1﹣2f'(1)•﹣f(0)e,由f(0)=﹣f(0),∴f(0)=0,∴f′(1)=1﹣f'(1),∴f′(1)=,∴f(x)=x﹣ln(x+1),x>﹣1,∴f′(x)=1﹣≤0,解得﹣1<x≤0,故答案为:(﹣1,0].16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为2.【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点P的坐标,利用|FM|=λ|PM,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率.解:设F(c,0),则c2=a2+b2∵双曲线C:﹣=1的渐近线方程为y=±x,∴垂线FM的斜率为﹣,∴直线FM的方程为y=﹣(x﹣c),令x=0,得P的坐标(0,),设M(x,y),∵|FM|=λ|PM|,∴(x﹣c,y)=λ(﹣x,﹣y),∴x﹣c=﹣λx且y=﹣4y,即x=,y=,代入y=x,得,即λa2=b2,∴λa2=c2﹣a2,∴(λ+1)a2=c2,∴a=c,∵e=,∴λ=2,故答案为:2.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.【分析】(Ⅰ)由等差数列的通项公式、求和公式,以及等比数列的中项性质,解方程可得首项和公差,进而得到所求通项公式;(Ⅱ)由等比数列的通项公式可得b n﹣3a n,进而得到b n,再由数列的分组求和,结合等差数列和等比数列的求和公式,计算可得所求和.解:(Ⅰ)根据题意得:S4+S6=4a1+6d+6a1+15d=10a1+21d=31,由a1,a3,a9成等比数列可得,∴,∴,∵d≠0,∴a1=d=1,∴a n=1+(n﹣1)=n,n∈N*;(Ⅱ)由题意可得,即b n=3n﹣1+3a n,∴,∴T n=b1+b2+…+b n=(30+31+…+3n﹣1)+3(1+2+…n)=.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.【分析】(Ⅰ)根据已知数据和参考公式计算出这两个系数即可得到回归直线方程;(Ⅱ)先算出每组数据的残差,并判断出是否为”好数据“,然后结合古典概型,分别找出基本事件和总事件的个数,即可求出概率.解:(Ⅰ)由,可得t=4,,,,代入得,,∴回归直线方程为.(Ⅱ),,,,,共有3个“好数据”.设3个“好数据”为A,B,C,2个非“好数据”为D,E,从5个数据中选择3个的取法为ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10种;其中“好数据”的个数至少为2个的取法有7种,∴概率为.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.【分析】(Ⅰ)由N、M是BC和CE的中点,得MN∥BE,可得MN∥平面BEA1,再由已知结合平面与平面垂直的性质可得MD1⊥平面BCE,进一步得到MD1∥平面BEA1,然后利用平面与平面平行的判定可得平面MND1∥平面BEA1.(Ⅱ)连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,则点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,再由求解.【解答】(Ⅰ)证明:∵N、M是BC和CE的中点,∴MN∥BE,又∵MN⊄平面BEA1,BE⊂平面BEA1,∴MN∥平面BEA1,∵△A1BE,△BCE,△ECD1为正三角形,∴MD1⊥CE.又∵平面ECD1⊥平面BCE,平面ECD1∩平面BCE=CE,MD1⊂平面ECD1,∴MD1⊥平面BCE,又∵平面A1BE⊥平面BCE,MD1⊄平面BEA1,∴MD1∥平面BEA1,∵MD1∩NM=M,NM⊂平面MND1,MD1⊂平面MND1,∴平面MND1∥平面BEA1.(Ⅱ)解:连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,∴点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,∴,则.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).【分析】(Ⅰ)由题意离心率,及|MF|的值求出a,b,c的值,进而求出椭圆的方程;(Ⅱ)由(Ⅰ)可得A,B的坐标,设P的坐标,求出直线PA与x=﹣4联立求出S的坐标,同理可得T的坐标,进而求出数量积,为0,可证得以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).解:(Ⅰ)由题意和,得,又因为且a2=b2+c2,得a=2,c=1,,所以椭圆C的方程为.(Ⅱ)证明:设点P(m,n),则得,又设直线PA,PB的斜率分别为k1,k2,则,,所以,∴直线PA:y=k1(x+2),直线PB:,所以点S(﹣4,﹣2k1),,由,所以以线段ST为直径的圆过定点Q,同理,以线段ST为直径的圆过定点G.可证以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.【分析】(Ⅰ)求出f'(x)=e x﹣2a,通过切线的斜率,求解a,利用导函数为0.求解极值点即可.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a ﹣2aln2a﹣2a=﹣2aln2a<0,得到a的范围,判断函数的单调性,题目转化证明,利用分析法说明即证:h(x2)>h(2ln2a﹣x2),令g(x)=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),求出导函数,判断函数的单调性求解证明即可.解:(Ⅰ)f'(x)=e x﹣2a,f'(0)=1﹣2a=0,∴,∴f'(x)=e x﹣1,令f'(x)=0⇒x=0,f'(x)>0⇒x>0,f'(x)<0⇒x<0,∴f(x)的极小值为f(0)=0.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a﹣2aln2a﹣2a=﹣2aln2a<0,∴ln2a>0,∴2a>1,∴,又∵当x→+∞时,h(x)→+∞;当x→﹣∞时,h(x)→+∞,∴,此时,,∴,,∴,要证:(x1+1)(x2+1)<1,即证:,即证:,即证:x1+x2<2ln2a,即证:x1<2ln2a﹣x2,不妨设x1<x2,∴x1<ln2a<x2,∴x1<2ln2a﹣x2<ln2a,即证:h(x1)>h(2ln2a﹣x2),即证:h(x2)>h(2ln2a﹣x2),令g(x)=(e x﹣2ax﹣2a)﹣[e2ln2a﹣x﹣2a(2ln2a﹣x)﹣2a]=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),,当且仅当x=ln2a时取“=”,∴g(x)在(ln2a,+∞)上为增函数,∴g(x)>g(ln2a)=0,∴h(x2)>h(2ln2a﹣x2)成立,∴(x1+1)(x2+1)<1成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.【分析】(Ⅰ)由极坐标与直角坐标的互化公式可得A的直角坐标,画出图形,数形结合可得B与C的直角坐标;(Ⅱ)写出过BC的直线方程,点,由点到直线的距离公式写出点P到直线BC的距离,再由三角函数求最值可得点P到直线BC的距离的取值范围.解:(Ⅰ)由,且点A的极坐标为(4,),可得A点的直角坐标为,∵等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,∴B点的直角坐标为(﹣4,0),C点的直角坐标为;(Ⅱ)由B(﹣4,0),C,可得BC的直线方程为,设点,则点P到直线BC的距离为,∵0≤φ≤π,∴,∴,即点P到直线BC的距离的取值范围.一、选择题23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.【分析】(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)根据分析法即可证明.解:(Ⅰ)①当x<﹣1时,不等式f(x)≥0可化为﹣x2+2x+3≥0,解得:﹣1≤x≤3,故此时x无解;②当﹣1≤x≤1时,不等式f(x)≥0可化为﹣x2+1≥0,解得:﹣1≤x≤1,故有﹣1≤x≤1;③当x>1时,不等式f(x)≥0可化为﹣x2+2x﹣3≥0,解得:﹣3≤x≤1,故此时x无解;综上,不等式f(x)≥0的解集M={x|﹣1≤x≤1}.(Ⅱ)要证|m+n|≤|mn+1|,即证|m+n|2≤|mn+1|2,即证m2+2mn+n2≤m2n2+2mn+1,即证m2+n2≤m2n2+1,即证m2n2﹣m2﹣n2+1≥0,即证(m2﹣1)(n2﹣1)≥0,∵m,n∈M,∴m2﹣1≤0,n2﹣1≤0,∴(m2﹣1)(n2﹣1)≥0成立.∴|m+n|≤|mn+1|成立.。
2020年高考模拟内蒙古高考数学模拟试卷(理科)(3月份) 含解析
2020年高考模拟高考数学模拟试卷(理科)(3月份)一、选择题1.设复数z的共轭复数为,i为虚数单位,若z=1﹣i,则(3+2)i=()A.﹣2﹣5i B.﹣2+5i C.2+5i D.2﹣5i2.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.23.已知等差数列{a n}中,S n为其前n项的和,S4=24,S9=99,则a7=()A.13B.14C.15D.164.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角为θ,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.1﹣sin 2θB.C.1﹣sinθD.5.函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)的图象大致是()A.B.C.D.6.从6名女生3名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.45种B.120 种C.30种D.63种7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.B.2C.4D.12π8.设F1,F2分别是椭圆E的左、右焦点,过点F1的直线交椭圆E于A,B两点,A在x轴上方,且满足|AF1|=3|F1B|,,则A点位于()A.第一象限B.第二象限C.y轴上D.都有可能9.已知函数,函数y=f(x)﹣a有四个不同的零点,从小到大依次为x1,x2,x3,x4,则x1+x2+x3+x4的最大值为()A.1+e B.4+e C.1﹣e D.1+2e10.O为△ABC内一点,且,若B,O,D三点共线,则t的值为()A.B.C.D.11.已知F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是()A.(,+∞)B.(2,+∞)C.(,2)D.(1,2)12.定义在R上的偶函数f(x)的导函数为f′(x),且当x>0时,xf′(x)+2f(x)<0.则()A.B.9f(3)>f(1)C.D.二、填空题(共4小题,每小题5分,满分20分)13.设x,y满足,则z=2x+y的最小值为.14.在等比数列{a n}中,已知a2+a4=8,a6+a8=4,则a10+a12+a14+a16=.15.“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收人快速增长,人民生活品质不断提升.右图是北京市2012﹣2016年城乡居民人均可支配收人实际增速趋势图(例如2012年,北京城镇居民收人实际增速为7.3%,农村居民收人实际增速为8.2%).从2012﹣2016五年中任选两年,则至少有一年农村和城镇居民收入实际增速均超过7%的概率为.16.在棱长为a的正方体内有一个和各面都相切的球,过正方体中两条互为异面直线的棱的中点作直线,则该直线被球面截在球内的弦长为.三、解答题(共5小题,满分60分)17.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC 的外接圆半径为,求△ABC周长的最大值.18.如图,在平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,EDBF是矩形,DE =a,平面EDBF⊥平面ABCD.(1)若a=1,求证:AE⊥CF;(2)若二面角A﹣EF﹣B的余弦值为,求a的值.19.设动圆P(圆心为P)经过定点(0,2),被x轴截得的弦长为4,P的轨迹为曲线E.(1)求曲线E的方程;(2)直线l:y =x+m(m∈R)与曲线E交于不同的两点A、B,线段AB的垂直平分线与y轴交于点M,若tan∠AMB=﹣2,求m的值.20.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:M≥205质量指标值m m<185185≤m<205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如右的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似服从正态分布N(216,139),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?21.已知函数f(x)=x﹣2+ae x(e为自然对数的底数)(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>6.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(1)若a=1,求C与l交点的直角坐标;(2)若C上的点到l的距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|x﹣a|.(1)当a=﹣2时,求不等式0<f(x)≤3的解集;(2)若a≤0,∃x∈(0,+∞)使f(x)≤a2﹣3成立,求a的取值范围.参考答案一、选择题(共12小题,每小题5分,满分60分)1.设复数z的共轭复数为,i为虚数单位,若z=1﹣i,则(3+2)i=()A.﹣2﹣5i B.﹣2+5i C.2+5i D.2﹣5i【分析】把z=1﹣i代入(3+2)i,再由复数代数形式的乘除运算化简得答案.解:由z=1﹣i,得(3+2)i=(3+2+2i)i=(5+2i)i=﹣2+5i.故选:B.2.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.2【分析】可以求出M={x|﹣1<x<3},从而可以根据M∩N={x|0<x<1}即可得出N={x|0<x<m},从而得出m=1.解:∵M={x|﹣1<x<3},N={x|x2﹣mx<0},M∩N={x|0<x<1},∴N={x|0<x<m},∴m=1.故选:A.3.已知等差数列{a n}中,S n为其前n项的和,S4=24,S9=99,则a7=()A.13B.14C.15D.16【分析】由已知结合等差数列的求和公式可求d,a1,然后结合等差数列的通项公式即可求解.解:因为S4=24,S9=99,,解可得,a1=3,d=2则a7=a1+6d=15.故选:C.4.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角为θ,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.1﹣sin 2θB.C.1﹣sinθD.【分析】分别求出小正方形的面积及大正方形的面积,然后根据几何概率的求解公式即可.解:由题意可知,小正方形的边长为2(cosθ﹣sinθ),面积S1=4(cosθ﹣sinθ)2=4(1﹣sin2θ),大正方形的面积S=2×2=4,故镖落在小正方形内的概率P=(1﹣sin2θ).故选:A.5.函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)的图象大致是()A.B.C.D.【分析】利用函数的奇偶性排除选项,通过函数的导数求解函数的极值点的个数,求出f(π)的值,推出结果即可.解:函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)是偶函数排除A.当x>0时,f(x)=lnx+sin x,可得:f′(x)=+cos x,令+cos x=0,作出y=与y=﹣cos x图象如图:可知两个函数有一个交点,就是函数有一个极值点.f(π)=lnπ>1,故选:B.6.从6名女生3名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.45种B.120 种C.30种D.63种【分析】6名女生3名男生中,选出3名学生组成课外小组,根据分层抽样要求,应选出2名女生,1名男生.利用组合数的意义、乘法原理即可得出.解:6名女生3名男生中,选出3名学生组成课外小组,根据分层抽样要求,应选出2名女生,1名男生.∴不同的抽取方法数=•=45.故选:A.7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.B.2C.4D.12π【分析】首先把三视图转换为几何体,进一步利用几何体的表面积公式的应用求出结果.解:根据几何体的三视图,把几何体转换为:所以:该几何体的球心为O,R=,.故选:D.8.设F1,F2分别是椭圆E的左、右焦点,过点F1的直线交椭圆E于A,B两点,A在x轴上方,且满足|AF1|=3|F1B|,,则A点位于()A.第一象限B.第二象限C.y轴上D.都有可能【分析】设|BF2|=k,题意开发其他的焦半径的值,再由余弦定理可得a与k的关系,进而可得|AF2|=3k=|AF1|,可得A在y轴上.解:设|BF1|=k,则|AF1|=3k由椭圆的定义可得:|AF2|=2a﹣3k,|BF2|=2a﹣k,|AB|=4k,在△ABF2中,由余弦定理可得:|AB|2=|AF2|2+|BF﹣2|AF2|•|BF2|cos∠AF2B,即16k2=(2a﹣3k)2+(2a﹣k)2﹣2(2a﹣3k)(2a﹣k),整理可得a=3k,所以|AF2|=3k=|AF1|,|BF2|=5k,F1A⊥F2A,即△AF1F2为等腰直角三角形,所以A在y轴上,故选:C.9.已知函数,函数y=f(x)﹣a有四个不同的零点,从小到大依次为x1,x2,x3,x4,则x1+x2+x3+x4的最大值为()A.1+e B.4+e C.1﹣e D.1+2e【分析】作出函数f(x)的图象,结合题意,利用根与系数的关系利用函数的单调性得解.解:若函数y=f(x)﹣a有四个不同的零点,则有a∈(1,e],当x>0时,f(x)=x+﹣3≥2﹣3=1,可得f(x)在x>2递增,在0<x<2处递减,由f(x)=,x≤0,x<﹣1时,f(x)递减;﹣1<x<0时,f(x)递增,可得x=﹣1处取得极小值1,作出f(x)的图象,以及直线y=a,可得===,即有x1+1+x2+1=0,可得x1+x2=﹣2,x3,x4是方程﹣3=a的两根,即x2﹣(3+a)x+4=0的两个根,∴x3+x4=3+a,则x1+x2+x3+x4=﹣2+3+a=a+1≤e+1,故最大值为e+1,故选:A.10.O为△ABC内一点,且,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】根据即可得出,而根据B,O,D三点共线,可设,从而可得出,这样根据平面向量基本定理即可得出,解出t即可.解:由得,,∴,∵B,O,D三点共线,∴可设,且,∴,∴,解得.故选:D.11.已知F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是()A.(,+∞)B.(2,+∞)C.(,2)D.(1,2)【分析】确定M,F1,F2的坐标,进而由•<0,结合a、b、c的关系可得关于ac的不等式,利用离心率的定义可得范围.解:设直线方程为y=(x﹣c),与双曲线(a>0,b>0)联立,可得交点坐标为P(,﹣)∵F1(﹣c,0),F2(c,0),∴=(﹣,),=(,),由题意可得•<0,即<0,化简可得b2<3a2,即c2﹣a2<3a2,故可得c2<4a2,c<2a,可得e=<2,∵e>1,∴1<e<2故选:D.12.定义在R上的偶函数f(x)的导函数为f′(x),且当x>0时,xf′(x)+2f(x)<0.则()A.B.9f(3)>f(1)C.D.【分析】构造函数g(x)=x2f(x),结合已知条件及导数与单调性关系可判断g(x)的单调性及奇偶性,从而可求解.解:令g(x)=x2f(x),当x>0时,xf′(x)+2f(x)<0,则g′(x)=2xf(x)+x2f′(x)=x[2f(x)+f′(x)]<0即g(x)在(0,+∞)上单调递减,因为f(﹣x)=f(x),所以g(﹣x)=(﹣x)2f(﹣x)=x2f(x)=g(x)即g(x)为偶函数,根据偶函数的对称性可知,g(x)在(﹣∞,0)上单调递增,g(e)>g(3),所以=,故选:D.二、填空题(共4小题,每小题5分,满分20分)13.设x,y满足,则z=2x+y的最小值为﹣6.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.解:由x,y满足作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过B(﹣2,﹣2)时直线在y轴上的截距最小,z最小z=﹣2×2﹣2=﹣6.故答案为:﹣6.14.在等比数列{a n}中,已知a2+a4=8,a6+a8=4,则a10+a12+a14+a16=3.【分析】由已知结合等比数列的通项公式可求公比q,然后结合等比数列的性质即可求解.解:设等比数列的公比为q,则,解可得q4=,所以a10+a12+a14+a16=+(a6+a8)q8=8×=3.故答案为:3.15.“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收人快速增长,人民生活品质不断提升.右图是北京市2012﹣2016年城乡居民人均可支配收人实际增速趋势图(例如2012年,北京城镇居民收人实际增速为7.3%,农村居民收人实际增速为8.2%).从2012﹣2016五年中任选两年,则至少有一年农村和城镇居民收入实际增速均超过7%的概率为.【分析】设至少有一年农村和城镇居民实际收入增速均超7%为事件B,这五年中任选两年,利用列举法能出至少有一年农村和城镇居民收入实际增速均超过7%的概率.解:设至少有一年农村和城镇居民实际收入增速均超7%为事件B,这五年中任选两年,有(2012,2013),(2012,2014),(2012,2015),(2012,2016),(2013,2014),(2013,2015),(2013,2016),(2014,2015),(2014,2016),(2015,2016)共10种情况,其中至少有一年农村和城镇居民实际收入增速均超过7%的为前9种情况,所以至少有一年农村和城镇居民收入实际增速均超过7%的概率P(B)=,故答案为:.16.在棱长为a的正方体内有一个和各面都相切的球,过正方体中两条互为异面直线的棱的中点作直线,则该直线被球面截在球内的弦长为.【分析】由题意画出图形,利用直线与圆的位置关系及垂径定理求解.解:如图,M,N是正方体中两条互为异面直线的棱的中点,直线MN与球O的表面交于E,F两点,连接MO,并延长交于P,则P为对棱的中点,取EF的中点G,则OG∥PN,且OG==.在Rt△OGE中,OE=,则EF=2EG=2.故答案为:.三、解答题(共5小题,满分60分)17.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC 的外接圆半径为,求△ABC周长的最大值.【分析】(1)根据向量数量积的定义求出f(x),结合零点的定义进行求解即可.(2)根据条件先求出A和a的大小,结合余弦定理,以及基本不等式的性质进行转化求解即可.解:(1)f(x)==2cos x sin(x﹣)+2sin x cos(x﹣)=2sin(2x﹣),由f(x)=0得2x﹣=kπ,k∈Z,得x=+,即函数的零点为x=+,k∈Z.(2)∵f(A)=2,∴f(A)=2sin(2A﹣)=2,得sin(2A﹣)=1,即2A﹣=2kπ+,即A=kπ+,在三角形中,当k=0时,A=,满足条件,∵△ABC的外接圆半径为,∴=2,即a=2×=3,由余弦定理得a2=b2+c2﹣2bc cos A=b2+c2﹣bc=(b+c)2﹣3bc≥=(b+c)2﹣(b+c)2=(b+c)2,即(b+c)2≤4×9=36,即b+c≤6当且仅当b=c时取等号,则a+b+c≤9,即三角形周长的最大值为9.18.如图,在平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,EDBF是矩形,DE =a,平面EDBF⊥平面ABCD.(1)若a=1,求证:AE⊥CF;(2)若二面角A﹣EF﹣B的余弦值为,求a的值.【分析】(1)根据勾股定理判断AD⊥BD,AE⊥EF,AE⊥EC,得到AE⊥平面EFC,最后得出结论;(2)以D为原点,DA,DB,DE分别为x,y,z轴建立空间直角坐标系,求出平面AEF 和平面DEFB的法向量,利用夹角公式列方程,求出a.解:(1)连接AC,在三角形ABD中AB=2,AD=1,∠BAD=60°,由余弦定理得BD=,AD2+BD2=AB2,故AD⊥BD,EDBF是矩形,DE=1,平面EDBF⊥平面ABCD,故BF⊥平面ABCD,DE⊥平面ABCD,则AF=,AE2+EF2=AF2,故AE⊥EF,由AC=,EC=,AE=,得AE2+EC2=AC2,故AE⊥EC,EC∩EF=E,所以AE⊥平面EFC,FC⊂平面EFC,所以AE⊥FC;(2)以D为原点,DA,DB,DE分别为x,y,z轴建立空间直角坐标系,则A(1,0,0),E(0,0,a),F(0,),,设平面AEF的法向量为,由,得,平面DEFB的法向量为,由cos<>=,得a=.19.设动圆P(圆心为P)经过定点(0,2),被x轴截得的弦长为4,P的轨迹为曲线E.(1)求曲线E的方程;(2)直线l:y=x+m(m∈R)与曲线E交于不同的两点A、B,线段AB的垂直平分线与y轴交于点M,若tan∠AMB=﹣2,求m的值.【分析】(1)设动圆P的圆心为(x,y),半径为r,根据题意列出方程组化简即可得到曲线E的方程;(2)设A(x1,y1),B(x2,y2),线段AB的中点坐标C(x3,y3),M(0,y0),联立直线l与抛物线方程,利用韦达定理求出C的坐标为(2,4+m),利用弦长公式求出|AB|=4,所以|AC|=2,又y0=6+m,所以|MC|=,再利用二倍角的正切公式求出tan,所以tan∠AMC===,即可解出m的值.解:(1)设动圆P的圆心为(x,y),半径为r,被x轴截得的弦长为|AB|,依题意得:,化简整理得:x2=4y,∴曲线E的方程为:x2=4y;(2)设A(x1,y1),B(x2,y2),线段AB的中点坐标C(x3,y3),M(0,y0),联立方程,整理得:,∴△=16×2+4×4m=32+16m>0,∴m>﹣2,∴,x1x2=﹣4m,,∴,y3=4+m,∴线段AB的中点C的坐标为(2,4+m),又|AB|===4,∴|AC|=2,又AB的垂直平分线方程为:y﹣(4+m)=﹣,∴y0=6+m,∴|MC|=,∵CM垂直平分AB,∴∠AMB=2∠AMC,又tan∠AMB==﹣2,解得tan或﹣(舍去),∴在Rt△AMC中,tan∠AMC===,∴m=0,满足m>﹣2,∴m的值为0.20.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:M≥205质量指标值m m<185185≤m<205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如右的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似服从正态分布N(216,139),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?【分析】(1)根据抽样调查数据,求得一等品所占比例的估计值为0.375,由于该估计值小于0.5,故不能认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定;(2)由直方图知,一、二、三等品的频率,求得在样本中用分层抽样的方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,然后利用古典概型概率计算公式求解;(3)求出“质量提升月”活动前,该企业这种产品的质量指标值的均值,再由“质量提升月”活动后,产品质量指标值X近似满足X~N(216,139),得质量指标的均值约为216,作差得答案.解:(1)根据抽样调查数据,一等品所占比例的估计值为0.260+0.090+0.025=0.375.由于该估计值小于0.5,故不能认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定;(2)由直方图知,一、二、三等品的频率分别为:0.375,0.5,0.125.故在样本中用分层抽样的方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中抽取4件,一、二、三等品都有的情形由2种.①一等品2件,二等品1件,三等品1件.②一等品1件,二等品2件,三等品1件.P=;(3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为:170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4.“质量提升月”活动后,产品质量指标值X近似满足X~N(216,139),即质量指标的均值约为216.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了15.6.21.已知函数f(x)=x﹣2+ae x(e为自然对数的底数)(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>6.【分析】(1)对函数求导,然后结合导数与单调性的关系对a进行分类讨论确定导数符号,即可求解函数单调性;(2)由零点存在的条件,结合函数的性质,把所要证明的不等式转换为函数的单调性与大小关系的比较.解:(1)f′(x)=1+ae x,当a≥0时,f′(x)>0,则f(x)在R上单调递增,当a<0时,令f′(x)=0可得x=ln(﹣),故函数的单调递增区间为(﹣),单调递减区间(ln(﹣),+∞),(2)证明:由f(x)=0可得a=,设g(x)=,则,当x<3时,g′(x)<0,函数单调递减,当x>3时,g′(x)>0,函数单调递增,当x=3时,g(x)取得最小值g(3)=﹣,当x>时,g(x)<0,当x<2时,g(x)>0,不妨设x1<x2,则x1∈(2,3),x2∈(3,+∞),所以6﹣x1>3,且g(x)在(3,+∞)上单调递增,要证x1+x2>6,只要证x2>6﹣x1>3,故只要证g(x2)>g(6﹣x1),因为g(x1)=g(x2)=a,只要证g(x1))>g(6﹣x1),即,即证(x1﹣4)+x﹣2<0,令h(x)=e2x﹣6(x﹣4)+x﹣2,2<x<3,则h′(x)=e2x﹣6(2x﹣7)+1,令m(x)=h′(x),则m′(x)=4e2x﹣6(x﹣3)<0,所以m(x)在(2,3)上单调及,h′(x)>h′(3)=0,故h(x)在(2,3)上单调递增,h(x)<h(3)=0,即e2x﹣6(x﹣4)+x﹣2<0,从而:x1+x2>6.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(1)若a=1,求C与l交点的直角坐标;(2)若C上的点到l的距离的最大值为,求a.【分析】(1)求出曲线C的普通方程和当a=1时,直线l的普通方程,列方程组能求出C与l的交点的直角坐标.(2)直线l的普通方程是x+y﹣1﹣a=0,C上的点(2cos θ,sin θ)到l的距离为,由此利用C上的点到l的距离的最大值为,能求出a.解:(1)∵曲线C的极坐标方程为,∴曲线C的普通方程为,∵直线l的参数方程为,∴当a=1时,直线l的普通方程为x+y﹣2=0.由解得或从而C与l的交点的直角坐标是.(2)直线l的普通方程是x+y﹣1﹣a=0,故C上的点(2cos θ,sin θ)到l的距离为,当a≥﹣1时,d的最大值为.由题设得,所以当a<﹣1时,d的最大值为.由题设得,所以.综上,.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|x﹣a|.(1)当a=﹣2时,求不等式0<f(x)≤3的解集;(2)若a≤0,∃x∈(0,+∞)使f(x)≤a2﹣3成立,求a的取值范围.【分析】(1)当a=﹣2时,利用绝对值不等式得f(x)=|x﹣1|﹣|x+2|≤|(x﹣1)﹣(x+2)|=3,即f(x)≤3的解集为R;再由f(x)>0,得|x﹣1|>|x+2|,解之,即可得到不等式0<f(x)≤3的解集;(2)当a≤0,x∈(0,+∞)时,可求得f(x)=|x﹣1|﹣x+a的最小值为f(1)=a﹣1,解不等式a2﹣3≥a﹣1即可得到答案.解:(1)当a=﹣2时,因为f(x)=|x﹣1|﹣|x+2|≤|(x﹣1)﹣(x+2)=3,|所以f(x)≤3的解集为R;由f(x)>0,得|x﹣1|>|x+2|,解得x<﹣,故不等式0<f(x)≤3的解集为(﹣∞,﹣);(2)当a≤0,x∈(0,+∞)时,f(x)=|x﹣1|﹣x+a=,则f(x)min=f(1)=a﹣1,故a2﹣3≥a﹣1,解得:a≥2或a≤﹣1,又a≤0,所以a≤﹣1.所以a的取值范围是(﹣∞,﹣1].。
2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析
三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案
绝密★启用前2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题 1.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则MN =( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<答案:A根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 解:∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 点评:本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-答案:B根据共轭复数定义及复数模的求法,代入化简即可求解. 解:z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 点评:本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案:A根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 解:∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 点评:本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=,则实数λ的值是( ) A .-1 B .7C .1D .1或7答案:C根据平面向量数量积的坐标运算,化简即可求得λ的值. 解:由平面向量数量积的坐标运算,代入化简可得cos 105AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 点评:本题考查了平面向量数量积的坐标运算,属于基础题.5.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论: (1)焦距长约为300公里; (2)长轴长约为3988公里; (3)两焦点坐标约为()150,0±; (4)离心率约为75994. 其中正确结论的个数为()A .1B .2C .3D .4答案:B根据椭圆形轨道,设该椭圆长轴长为a ,半焦距为c ,先求得月球的半径r ,再根据近月点与月球表面距离为100公里,有100a c r -=+,远月点与月球表面距离为400公里,有400a c r +=+,然后两式联立求解. 解:设该椭圆长轴长为a ,半焦距为c ,依题意可得月球半径约为1347617382⨯=, 所以1001738183840017382138a c a c -=+=⎧⎨+=+=⎩,解得1988150a c =⎧⎨=⎩所以离心率150751988994c e a ===,可知结论(1)(4)正确,(2)错误; 因为没有给坐标系,焦点坐标不确定,所以(3)错误. 故选:B 点评:本题主要考查椭圆的几何性质,还考查了阅读抽象应用的能力,属于基础题. 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,且321c b -=,则cos C ()A .12-B .3C .12D 6 答案:A根据1a =,321c b -=,由正弦定理边化为角得到3sin 2sin sin C B A -=,由A B C π++=,得到()3sin 2sin sin C A C A -+=,再根据6A π=求解.解:由321c b -=,得32c b a -=,即3sin 2sin sin C B A -=, 所以()3sin 2sin sin C A C A -+=, 而6A π=,所以3sin 2sin sin 66C C ππ⎛⎫-+= ⎪⎝⎭, 即3113sin 2sin cos 222C C C ⎛⎫-+= ⎪ ⎪⎝⎭, 解得1cos 2C =-. 故选:A 点评:本题主要考查正弦定理和三角恒等变换,还考查了运算求解的能力,属于中档题. 7.函数()2cos2cos221xxf x x =+-的图象大致是( ) A . B .C .D .答案:C根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项. 解:∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--,()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故选:C. 点评:本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.8.设x ,y 满足约束条件2010x y x y x m -+≥⎧⎪+-≥⎨⎪≤⎩,若2z x y =+的最大值大于17,则实数m 的取值范围为() A .()4,+∞ B .13,2⎛⎫+∞⎪⎝⎭C .()6,+∞D .()5,+∞答案:D先作出不等式组表示的平面区域,然后平移直线l :20x y +=,当直线l 在y 轴上的截距最大时,z 取得最大值求解. 解:作出不等式组表示的平面区域如图所示,作出直线l :20x y +=,并平移,当直线l 经过点(),2m m +时,直线在y 轴上的截距最大,z 取得最大值, 因为2z x y =+的最大值大于17, 所以2217m m ++>,解得5m >. 故选:D 点评:本题主要考查线性规划求最值,还考查了数形结合的方法的能力,属于基础题. 9.七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为A .112B .18C .14D .316答案:D这是一个几何概型模型,设包含7块板的正方形边长为4,求得正方形的面积,即为雄鸡的面积,然后求得雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和,代入公式求解. 解:设包含7块板的正方形边长为4,正方形的面积为4416⨯=, 则雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和为1212132⨯⨯+⨯=, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡几头或鸡尾(阴影部分)的概率为316p. 故选:D 点评:本题主要考查几何概型的概率,还考查了阅读抽象应用的能力,属于基础题.10.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为()A .2π B .3π C .4π D .6π 答案:C设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.设AE BF a ==,则()()23119333288B EBFaa V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 9322222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 点评:本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是() A .①②③ B .①③④C .①④D .③④答案:B 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证. 解: ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即=1a =,①正确; ∴()sin 2sin 3π⎛⎫==- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈, 当0k =时,12x x +取最小值23π,所以①③④正确,②错误.故选:B 点评:本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.12.如图,在ABC 中,AB 4=,点E 为AB 的中点,点D 为线段AB 垂直平分线上的一点,且4DE =,固定边AB ,在平面ABD 内移动顶点C ,使得ABC 的内切圆始终与AB 切于线段BE 的中点,且C 、D 在直线AB 的同侧,在移动过程中,当CA CD +取得最小值时,ABC 的面积为()A .12524-B .6512-C .12518-D .658-答案:A以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,利用圆的切线长定理,得到C 点的轨迹是以A 、B 为焦点的双曲线在第一象限部分,然后利用直线段最短,得到点C 的位置,再求三角形的面积. 解: 如图,以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,则()2,0A -,()2,0B ,()0,4D ,设ABC 的内切圆分别切BC 、AC 、AB 于F ,G ,H 点,∵3124CA CB AG BF AH HB -=-=-=-=<,所以C 点的轨迹是以A 、B 为焦点的双曲线的第一象限部分,且1a =,2c =,2223b c a =-=,∴C 的轨迹方程为()220,03y x x y ->>.∵2CA CB -=,∴2CA CB =+,∴2CA CD CB CD +=++, 则当点C 为线段BD 与双曲线在第一象限的交点时,CA CD +最小, 如图所示:线段BD 的方程为()4202y x x =-≤≤,将其代入22330x y --=,得216190x x -+=,解得835x =+835x =-,∴426512y x =-=, ∴()835,6512C -. ∴ABC 的面积为()146512125242⨯⨯=. 故选:A 点评:本题主要考查双曲线的定义,圆的切线长定理以及三角形的面积,还考查了数形结合的思想和运算求解的能力,属于中档题. 二、填空题13.若函数()()()()()2log 2242x x f x f x x ⎧->⎪=⎨+≤⎪⎩,则()()5f f -=__________. 答案:1利用分段函数,先求()5f -,再求()()5f f -的值.解: ∵()()()5130f f f -=-==,∴()()()()5041ff f f -===.故答案为:1 点评:本题主要考查分段函数求函数值问题,还考查了运算求解的能力,属于基础题. 14.若()()613x a x -+的展开式中3x 的系数为45-,则实数a =__________. 答案:13利用通项公式得到()()613x a x -+的展开式中含3x 的项为:()()23236633x C x a C x ⋅-⋅,再根据系数为45-,建立方程求解.解:因为()()613x a x -+的展开式中含3x 的项为:()()()232336633135540x C x a C x a x ⋅-⋅=-,∴13554045a -=-,解得13a =. 故答案为:13点评:本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 15.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.答案:323π 根据题意,画出空间几何体,设BE EC BC ,,的中点分别为M N O ,,,并连接AM CM AO DN NO DO OE ,,,,,,,利用面面垂直的性质及所给线段关系,可知几何体ABCDE 的外接球的球心为O ,即可求得其外接球的体积. 解:由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图所示,设BE EC BC ,,的中点分别为M N O ,,, 连接AM CM AO DN NO DO OE ,,,,,,, 则OM BE ⊥,ON CE ⊥.因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE , 所以OM ⊥平面ABE ,ON ⊥平面DEC , 易得2OA OB OC OD OE =====,则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==. 故答案为:323π. 点评:本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16.若函数()2ln 2f x x x ax x =--有两个不同的极值点,则实数a 的取值范围为__________. 答案:10,4e ⎛⎫ ⎪⎝⎭由函数()2ln 2f x x x ax x =--有两个不同的极值点,则()ln 40f x x ax '=-=有两个不同的根,转化为方程ln 4x a x =有两个不同解,即函数()g x ln 4xx=的图象与直线y a =有两个公共点求解.解:由()ln 40f x x ax '=-=,得ln 4xa x=, 记()ln 4x g x x =,则()21ln 4xg x x-'=, 当()0,x e ∈时,()0g x '>,()g x 单调递增,当(),x e ∈+∞时,()0g x '<,()g x 单调递减. 又∵()14g e e=,当0x →时,()g x →-∞,当x →+∞时,()0g x →. 因为函数()2ln 2f x x x ax x =--有两个不同的极值点, 所以方程ln 4xa x=有两个不同的解, 即函数()g x 的图象与直线y a =有两个公共点, 故实数a 的取值范围为10,4e ⎛⎫ ⎪⎝⎭. 故答案为:10,4e ⎛⎫ ⎪⎝⎭点评:本题主要考查导数与函数的极值点以及导数与函数的零点问题,还考查了数形结合的思想和运算求解的能力,属于中档题. 三、解答题17.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,//DF GE ,2222AB AG DG DF ====.(1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小. 答案:(1)见解析;(2)23π(1)根据面面垂直性质及线面垂直性质,可证明BE FG ⊥;由所给线段关系,结合勾股定理逆定理,可证明FE FG ⊥,进而由线面垂直的判定定理证明FG ⊥平面BEF .(2)建立空间直角坐标系,写出各个点的坐标,并求得平面AFB 和平面EFB 的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角A BF E --的大小. 解:(1)证明:∵平面DGEF ⊥平面ABEG ,且BE GE ⊥, ∴BE ⊥平面DGEF , ∴BE FG ⊥,由题意可得2FG FE ==, ∴222FG FE GE +=,∵FE FG ⊥,且FE BE E ⋂=, ∴FG ⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--,()1,1,1FB =-,()0,1,1FE =-.设平面AFB 的法向量是()111,,n x y z =,则11111111100000x y z x z FA n x y z y FB n --==⎧⎧⎧⋅=⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎩,令11x =,()1,0,1n =,由(1)可知平面EFB 的法向量是()0,1,1m GF ==,∴1cos<,222n m n m n m⋅>===⨯⋅,由图可知,二面角A BF E --为钝二面角,所以二面角A BF E --的大小为23π. 点评:本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18.在等差数列{}n a 中,12a =,35730a a a ++=.(1)求数列{}n a 的通项公式;(2)记23n n a an b =+,当*n N ∈时,1n n b b λ+>,求实数λ的取值范围.答案:(1)2n a n =(2)实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭(1)根据12a =,35730a a a ++=,利用“1,a d ”法求解.(2)由(1)得到2349n naa n n nb =+=+,将()114949n n n n λ+++>+对*n N ∀∈恒成立,转化为5419nλ<⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立求解. 解:(1)在等差数列{}n a 中,3575330a a a a ++==,∴510a =,所以{}n a 的公差51251a a d -==-, ∴()112n a a n d n =+-=. (2)∵2349n naa n n nb =+=+,∴()114949n n n n λ+++>+对*n N ∀∈恒成立,即4499595444949419n n n n n n n n λ⨯+⨯⨯<=+=+++⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立, 又∵55974441341199n+≥+=⎛⎫++ ⎪⎝⎭,∴9713λ<,即实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭.点评:本题主要考查等差数列的基本运算以及有关数列的不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()02F ,的距离小1.(1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222221C x y -++=:上一动点,过点P 作曲线1C 的两条切线,切点分别为A B 、,求直线AB 斜率的取值范围.答案:(1)28x y =;(2)13,44⎡⎤⎢⎥⎣⎦(1)设(),M x y ,根据题意可得点M 的轨迹方程满足的等式,化简即可求得动点M 的轨迹1C 的方程;(2)设出切线PA PB 、的斜率分别为12k k ,,切点()12,A x x ,()22,B x y ,点()P m n ,,则可得过点P 的拋物线的切线方程为()y k x m n =-+,联立抛物线方程并化简,由相切时0∆=可得两条切线斜率关系12,k k +12k k ;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出12,y y ,可求得4AB mk =,结合点()P m n ,满足()()22221x y -++=的方程可得m 的取值范围,即可求得AB k 的范围.解:(1)设点(),M x y ,∵点M 到直线1y =-的距离等于1y +, ∴11y +=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA PB 、的斜率都存在,分别设为12k k ,,切点()12,A x x ,()22,B x y ,设点()P m n ,,过点P 的拋物线的切线方程为()y k x m n =-+,联立()28y k x m n x y⎧=-+⎨=⎩,化简可得28880x kx km n -+-=,∴26432320k km n ∆=-+=,即220k km n -+=, ∴122m k k +=,122n k k =. 由28x y =,求得导函数4xy '=, ∴114x k =,2211128x y k ==,2222228x y k ==,∴222121212121224424ABy y k k k k m k x x k k --+====--, 因为点()P m n ,满足()()22221x y -++=, 由圆的性质可得13m ≤≤,∴13444AB m k ≤=≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 点评:本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.20.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案()a 规定每日底薪100元,外卖业务每完成一单提成2元;方案()b 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)[)[)[)[)[)[]2535354545555565657575858595,,,,,,,,,,,,,七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案()a 的概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 答案:(1)0.4;(2)1127;(3)应选择方案()a ,理由见解析 (1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案()a 的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案()a 的概率;(3)设骑手每日完成外卖业务量为X 件,分别表示出方案()a 的日工资和方案()b 的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择. 解:(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为0.2,0.15,0.05,∵020*******++=...., ∴()P A 估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C ,为“甲、乙、丙、丁四名骑手中恰有()01234ii =,,,,人选择方案()a ”, 则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()11002,*Y X X N =+∈,方案()b 的日工资()215054*15055454*X X N Y X X X N ≤∈⎧=⎨+->∈⎩,,,,,所以随机变量1Y 的分布列为()1160005180005200022200324002260015280005224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.......;同理,随机变量2Y 的分布列为()21500318003230022800153300052035E Y =⨯+⨯+⨯+⨯+⨯=.......∵()()21EY E Y >,∴建议骑手应选择方案()a . 点评:本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.21.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-.(1)若函数()f x 在()0+∞,上单调递减,且函数()g x 在02,上单调递增,求实数m 的值;(2)求证:()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭(*n N ∈,且2n ≥).答案:(1)1;(2)见解析(1)分别求得()f x 与()g x 的导函数,由导函数与单调性关系即可求得m 的值; (2)由(1)可知当0x >时,()ln1x x +<,当02x π<<时,sin x x <,因而()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,,,构造()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,由对数运算及不等式放缩可证明()()1111ln 1sin11+sin 1+sin 1sin 2212231n n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+=-<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,从而不等式可证明. 解:(1)∵函数()f x 在()0+∞,上单调递减, ∴()101mf x x'=-≤+,即1m x ≤+在()0+∞,上恒成立, ∴1m ,又∵函数()g x 在02,上单调递增,∴()cos 0g x m x '=-≥,即cos m x ≥在02,上恒成立,m 1≥,∴综上可知,1m =.(2)证明:由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0+∞,上为减函数,()sin g x x x =-在02,上为增函数,而()()00,00f g ==,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <. ∴()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,, ∴()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()111ln 1sin1ln 1+sin ln 1+sin ln 1sin 12231n n ⎛⎫⎛⎫⎛⎫=+++⋯++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭ ()111sin1sinsin sin 12231n n <+++⋯+⨯⨯-⨯()11111111111122312231n n n n ⎛⎫⎛⎫⎛⎫<+++⋯+=+-+-+⋯+- ⎪ ⎪ ⎪⨯⨯-⨯-⎝⎭⎝⎭⎝⎭122n=-< 即()()111ln 1sin11+sin 1+sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦, ∴()()()2*1111sin11+sin 1+sin 1sin ,212231e n N n n n ⎛⎫⎛⎫⎛⎫+⋯+<∈≥⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭,. 点评:本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题. 22.在直角坐标系xOy 中,直线l 的方程为0x y a -+=,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线6πθ=与l 的交点为M ,与曲线C 的交点为A ,B ,且4OA OB OM +=,求实数a 的值.答案:(1)l :cos sin 0a ρθρθ-+=,C :24cos 4sin 40ρρθρθ--+=(2)12a =- (1)先消去参数得到C 的普通方程,然后利用cos x ρθ=,sin y ρθ=分别代入,得到直线和曲线C 的极坐标方程.(2)在极坐标系中,设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭,将π6θ=代入24cos 4sin 40ρρθρθ--+=,然后利用韦达定理求解.解:(1)将cos x ρθ=,sin y ρθ=代入方程0x y a -+=中,得到直线l 的极坐标方程为cos sin 0a ρθρθ-+=;曲线C 的普通方程为()()22224x y -+-=,即224440x y x y +--+=, 所以曲线C 的极坐标方程为24cos 4sin 40ρρθρθ--+=.(2)在极坐标系中,可设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭, 将π6θ=代入24cos 4sin 40ρρθρθ--+=,得()2240ρρ-+=,∴232ρρ+=,∵4OA OB OM +=,∴1ρ=即1π,26M ⎛⎫ ⎪ ⎪⎝⎭,将1π,26M ⎛⎫ ⎪ ⎪⎝⎭代入cos sin 0a ρθρθ-+=,得()111sin cos 222a ρθθ=-=⨯=-. 点评:本题主要考查参数方程,普通法方程极坐标方程间的转化以及直线与曲线的位置关系,还考查了运算求解的能力,属于中档题.23.已知不等式112x x ++-≤的解集为{}x a x b ≤≤.(1)求实数a 、b 的值;(2)设0m >,0n >,且满足122a b m n-=,求证:1212m n ++-≥. 答案:(1)1a =-,1b =(2)见解析(1)利用绝对值的几何意义,去绝对值求解.(2)由(1)得到1122m n+=,利用三角不等式转化为1212m n m n ++-≥+,再利用基本不等式求解.解:(1)原不等式等价于①122x x <-⎧⎨-≤⎩,∴x ∈∅; ②1122x -≤≤⎧⎨≤⎩,∴11x -≤≤; ③122x x >⎧⎨≤⎩,∴x ∈∅. 所以原不等式的解集为{}11x x -≤≤,∴1a =-,1b =.(2)∵122a b m n -=,∴1122m n+=, ∴()()1211212m n m n m n ++-≥++-=+()111122222222n m m n m n m n ⎛⎫⎛⎫=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当22n m m n =,即1m =,12n =时取等号, ∴1212m n ++-≥.点评:本题主要考查绝对值不等式的解法以及三角不等式和基本不等式的应用,还考查了运算求解的能力,属于中档题.。
2020年四川省德阳市高考(文科)数学三诊试卷 (解析版)
2020年四川省德阳市高考数学三诊试卷(文科)一、选择题(共12小题).1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0}B.{0,1}C.{﹣1,1}D.{﹣1,0,1} 2.如图,若向量对应的复数为z,则复数z+为()A.3+i B.﹣3﹣i C.3﹣i D.1+3i3.在正方形ABCD中,弧AD是以AD为直径的半圆,若在正方形ABCD中任取一点,则该点取自阴影部分内的概率为()A.B.C.D.4.已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.30B.25C.15D.105.设向量=(﹣2,1),+=(m,﹣3),=(3,1),若(+)⊥,设、的夹角为θ,则cosθ=()A.﹣B.C.D.﹣6.若函数f(x)=e x(sin x+a)在区间R上单调递增,则实数a的取值范围为()A.[,+∞)B.(1,+∞)C.[﹣1,+∞)D.(,+∞)7.若函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π),已知函数y=|f(x)|的图象如图,则()A.f(x)=2sin(4x+)B.f(x)=2sin(4x﹣)C.f(x)=2sin(x﹣)D.f(x)=2sin(x+)8.如图,△ABC是等腰直角三角形,AB=AC,在△BCD中∠BCD=90°且BC=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若AM=,那么()A.平面ABD⊥平面BCD B.平面ABC⊥平面ABDC.AB⊥CD D.AC⊥BD9.执行如图所示的程序框图,如果输入的N是10,那么输出的S是()A.2B.﹣1C.﹣1D.2﹣110.已知双曲线﹣=1与圆x2+y2﹣5x+4=0交于点P,圆在点P处的切线恰好过双曲线的左焦点(﹣2,0),则双曲线的离心率为()A.+B.C.D.11.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽.比如圆就是等宽曲线.其宽就是圆的直径.如图是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等.A.1个B.2个C.3个D.4个12.已知函数f(x)=ax2﹣2x+lnx有两个极值点x1,x2,若不等式f(x1)+f(x2)<x1+x2+t 恒成立,那么t的取值范围是()A.[﹣1,+∞)B.[﹣2﹣2ln2,+∞)C.[﹣3﹣ln2,+∞)D.[﹣5,+∞)二、填空题(共4小题).13.已知f(x)=,则f[f(3)]=.14.设数列{a n}的前n项和为S n,且a n=2n﹣1,则数列{}的前n项和为.15.某车间每天能生产x吨甲产品,y吨乙产品,由于条件限制,每天两种产品的总产量不小于1吨不大于3吨且两种产品的产量差不超过1吨.若生产甲产品1吨获利2万元,乙产品1吨获利1万元,那么该车间每天的最高利润为万元.16.已知点M(,﹣1),直线l过抛物线C:x2=4y的焦点交抛物线C于A、B两点,且AM恰与抛物线C相切,那么直线l的斜率为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.我市某校800名高三学生在刚刚结束的一次数学模拟考试中,成绩全部在100分到150分之间,抽取其中一个容量为50的样本,将成绩按如下方式分成五组:第一组[100,110),第二组[110,120),…,第五组[140,150],得到频率分布直方图.(1)若成绩在130分及以上视为优秀,根据样本数据估计该校在这次考试中成绩优秀的人数;(2)若样本第一组只有一个女生,其他都是男生,第五组只有一个男生,其他都是女生.现从第一、五组中各抽1个同学组成一个实验组,求所抽取的2名同学中恰为一个女生一个男生的概率.18.在三角形△ABC中,内角A、B、C对应的边分别为a、b、c,已知b cos C+c cos B=2,b sin C=a.(1)求△ABC的面积;(2)若b:c=:1,求A.19.如图,四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,底面ABCD是菱形,四棱锥P﹣ABCD的顶点P在平面A1B1C1D1上的投影恰为四边形A1B1C1D1对角线的交点O1,四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等.(1)证明:PB∥平面ADO1;(2)若AB=BD=BB1=2,求几何体P﹣AB1C1的体积.20.巳知函数f(x)=ax﹣2lnx﹣2,g(x)=axe x﹣4x.(1)求函数f(x)的极值;(2)当a=2时,证明:g(x)+f(x)≥0.21.已知动点Q到点F(1,0)的距离和到直线l:x=4的距离之比为.(1)求动点Q的轨迹方程C;(2)已知点P(1,),过点F的直线和曲线C交于A、B两点,直线PA、PB、AB 分别交直线x=4于M、N、H.(i)证明:H恰为线段MN的中点;(ii)是否存在定点G,使得以MN为直径的圆过点G?若存在,求出定点G的坐标,否则说明理由.请考生在22.23二题中任选-题作答注意:只能做所选定的题目如果多做,则按所做第一个题目计分作答时.请用2B铅笔在答题卡上将所选题号后的方框涂黑[选修4-4:坐标系与参数方程](本题满分10分)22.在平面直角坐标系xOy中,已知直线l:x=4,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ.(1)求直线l的极坐标方程和圆C的直角坐标方程;(2)射线OP:θ=α(α∈(0,))交圆C于O、A,交直线l于B,若A,B两点在x轴上投影分别为M、N,求MN长度的最小值,并求此时A、B两点的极坐标.[选修4-5:不等式选讲](本题满分0分)23.已知函数f(x)=+﹣m≥0恒成立.(1)求m的取值范围;(2)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.参考答案一、选择题(共12小题).1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0}B.{0,1}C.{﹣1,1}D.{﹣1,0,1}【分析】求出集合N,然后直接求解M∩N即可.解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣4,0,1},所以M∩N={0,1}.故选:B.2.如图,若向量对应的复数为z,则复数z+为()A.3+i B.﹣3﹣i C.3﹣i D.1+3i【分析】由已知求得z,代入z+,再由复数代数形式的乘除运算化简得答案.解:由题意,得z=1﹣i,则z+=1﹣i+=1﹣i+=3+i.故选:A.3.在正方形ABCD中,弧AD是以AD为直径的半圆,若在正方形ABCD中任取一点,则该点取自阴影部分内的概率为()A.B.C.D.【分析】根据对称性得到阴影部分的面积等于△AOB的面积;再结合面积比即可求解结论.解:由对称性可得,阴影部分的面积等于△AOB的面积;而△AOB的面积占整个正方形面积的;故选:D.4.已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.30B.25C.15D.10【分析】根据题意,设数列{a n}的公比为q,由等比中项的性质可得a4a7=a4a6q=(a5)2q=45,解可得q的值,结合等比数列的通项公式有==q(1+q),计算即可得答案.解:根据题意,等比数列{a n}中,设其公比为q,若a5=3,a4a7=45,则a4a7=a8a6q=(a5)2q=45,则q=5,故选:A.5.设向量=(﹣2,1),+=(m,﹣3),=(3,1),若(+)⊥,设、的夹角为θ,则cosθ=()A.﹣B.C.D.﹣【分析】由已知利用平面向量垂直的坐标表示可求m的值,根据平面向量数量积的坐标表示、模、夹角即可求解.解:∵+=(m,﹣3),=(3,1),(+)⊥,∴3m﹣3=0,可得m=5,可得+=(1,﹣3),∴=(3,﹣4),∴设、的夹角为θ,则cosθ===﹣.故选:D.6.若函数f(x)=e x(sin x+a)在区间R上单调递增,则实数a的取值范围为()A.[,+∞)B.(1,+∞)C.[﹣1,+∞)D.(,+∞)【分析】求函数的导数,要使函数单调递增,则f′(x)≥0恒成立,然后求出实数a 的取值范围.解:因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数单调递增,则f′(x)≥0恒成立.所以a≥﹣sin x﹣cos x,所以﹣≤﹣sin x﹣cos x≤,故选:A.7.若函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π),已知函数y=|f(x)|的图象如图,则()A.f(x)=2sin(4x+)B.f(x)=2sin(4x﹣)C.f(x)=2sin(x﹣)D.f(x)=2sin(x+)【分析】直接利用函数y=|f(x)|的周期为函数y=f(x)的周期的一半,根据函数的图象和沿x轴的翻折,进一步利用函数f()=±2来求出φ的值,最后求出函数的关系式.解:由于函数y=|f(x)|的周期为函数y=f(x)的周期的一半,根据函数的图象函数y=f(x)的周期T,满足,所以ω=4.整理得φ=kπ+(k∈Z),解得φ=kπ﹣(k∈Z),故选:A.8.如图,△ABC是等腰直角三角形,AB=AC,在△BCD中∠BCD=90°且BC=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若AM=,那么()A.平面ABD⊥平面BCD B.平面ABC⊥平面ABDC.AB⊥CD D.AC⊥BD【分析】由直角三角形的斜边的中线长为斜边的一半,以及平面的垂线和斜线的性质,判定M为BC的中点,由线面垂直的性质和判定,可得结论.解:△ABC是等腰直角三角形,AB=AC,BC=3,点A在平面BCD上的射影为点M,若AM=,AM⊥平面BCD,则AM⊥CD,可得CD⊥平面ABC,可得CD⊥AB,故选:C.9.执行如图所示的程序框图,如果输入的N是10,那么输出的S是()A.2B.﹣1C.﹣1D.2﹣1【分析】模拟执行程序框图可知程序框图的功能是求,S=+++…++的值,用裂项法即可得解.解:模拟执行程序框图,可得N=10,S=0,k=1满足条件k<10,k=2,S=+,…不满足条件k<10,退出循环,输出S的值为﹣1.故选:C.10.已知双曲线﹣=1与圆x2+y2﹣5x+4=0交于点P,圆在点P处的切线恰好过双曲线的左焦点(﹣2,0),则双曲线的离心率为()A.+B.C.D.【分析】设出切线的斜率,求出切线方程,然后求解切点坐标,代入双曲线方程,然后求解双曲线的离心率即可.解:设圆在点P处的切线的斜率为k,则切线方程为:y=k(x+2),可得kx﹣y+2k=0,圆x2+y2﹣5x+3=0的圆心(,0),半径为:,不妨取切线方程y=(x+2)代入圆的方程可得:(1+)x2﹣5x+x+4+=0,解得x=2,解得a=b=,故选:C.11.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽.比如圆就是等宽曲线.其宽就是圆的直径.如图是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等.A.1个B.2个C.3个D.4个【分析】若曲线Γ和圆的宽相等,设曲线Γ的宽度为1,则圆的半径为,根据定义逐一判断即可得出结论.解:若曲线Γ和圆的宽相等,设曲线Γ的宽度为1,则圆的半径为,(1)根据定义,可以得到曲线Γ是等宽曲线,错误;(3)根据(2)得(3)错误;综上,正确的有2个.故选:B.12.已知函数f(x)=ax2﹣2x+lnx有两个极值点x1,x2,若不等式f(x1)+f(x2)<x1+x2+t 恒成立,那么t的取值范围是()A.[﹣1,+∞)B.[﹣2﹣2ln2,+∞)C.[﹣3﹣ln2,+∞)D.[﹣5,+∞)【分析】由题意可得f′(x)=(x>0),由函数f(x)=ax2﹣2x+lnx 有两个极值点x1,x2,可得方程2ax2﹣2x+1=0在(0,+∞)上有两个不相等的正实数根,由根与系数的关系可求得a的取值范围,由f(x1)+f(x2)﹣(x1+x2)═﹣﹣1﹣ln2a,令h(a)=﹣﹣1﹣ln2a,利用导数研究其最大值即可.解:函数f(x)的定义域为(0,+∞),f′(x)=(x>0),所以方程2ax2﹣2x+5=0在(0,+∞)上有两个不相等的正实数根,因为f(x1)+f(x2)﹣(x1+x5)=a﹣2x6+lnx1+a﹣2x2+lnx2﹣x1﹣x7=a[(x1+x2)2﹣2x1x2]﹣2(x1+x2)+ln(x1x2)=﹣﹣7﹣ln2a,h′(a)=,易知h′(a)>0在(0,)上恒成立,故h(a)<h()=﹣5,所以t的取值范围是[﹣3,+∞).故选:D.二、填空题:共4小题,每小题5分,共20分将等案填在答题卡上13.已知f(x)=,则f[f(3)]=.【分析】直接利用分段函数的解析式,由里及外逐步求解即可.解:∵f(x)=,∴f(3)=﹣lg100=﹣2;故答案为:.14.设数列{a n}的前n项和为S n,且a n=2n﹣1,则数列{}的前n项和为..【分析】通过数列{a n}的通项公式为a n=2n﹣1判断数列是等差数列,求出数列的和,化简的表达式,然后求和即可.解:∵数列{a n}的通项公式为a n=2n﹣1,所以数列是等差数列,首项为1,公差为2,S n=n+=n2,可得数列{}的前n项和为1+3+3+…+n=.故答案为:.15.某车间每天能生产x吨甲产品,y吨乙产品,由于条件限制,每天两种产品的总产量不小于1吨不大于3吨且两种产品的产量差不超过1吨.若生产甲产品1吨获利2万元,乙产品1吨获利1万元,那么该车间每天的最高利润为5万元.【分析】由题意列出不等式组,画出可行域,设该车间每天的利润为z,则目标函数z=2x+y,根据简单的二元线性规划的解决方法,即可求出每天利润的最大值.解:由题意可知,设该车间每天的利润为z,则z=2x+y,由图可知,当目标函数过点A时,取得最大值,所以z的最大值为8×2+1=5,故答案为:5.16.已知点M(,﹣1),直线l过抛物线C:x2=4y的焦点交抛物线C于A、B两点,且AM恰与抛物线C相切,那么直线l的斜率为.【分析】设直线AB的方程,代入抛物线方程,利用韦达定理及导数的几何意义,即可求得x1,x2,求得直线l的斜率.解:方法一:抛物线C的焦点为(0,1),设A(x1,y1),B(x5,y2),直线AB的方程为y=kx+1,联立方程组,消去y,整理得:x2﹣4kx﹣4=0,由,求导,直线AM的斜率==,整理得x18﹣3x1﹣6=0,所以或,即k=,所以直线AB的斜率为k==.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤17.我市某校800名高三学生在刚刚结束的一次数学模拟考试中,成绩全部在100分到150分之间,抽取其中一个容量为50的样本,将成绩按如下方式分成五组:第一组[100,110),第二组[110,120),…,第五组[140,150],得到频率分布直方图.(1)若成绩在130分及以上视为优秀,根据样本数据估计该校在这次考试中成绩优秀的人数;(2)若样本第一组只有一个女生,其他都是男生,第五组只有一个男生,其他都是女生.现从第一、五组中各抽1个同学组成一个实验组,求所抽取的2名同学中恰为一个女生一个男生的概率.【分析】(1)由频率分布直方图可知,成绩在130分及以上的同学在第四、五组内,由频率/组距×组距×总体数量即可得解;(2)由频率/组距×组距×样本容量,可分别算出第一小组由3人(记为A1,A2,B1)和第五小组有4人(记为A3,B2,B3,B4),然后用列举法写出从第一、五组中各抽1个同学组成一个实验组的情况以及恰有1男1女的情况,最后由古典概型计算概率的方式即可得解.解:(1)由频率分布直方图可知,成绩在130分及以上的同学在第四、五组内,其频率为(0.032+0.008)×10=0.2,(2)第一小组共有0.006×10×50=3人,其中2男1女,分别记为A1,A6,B1;现从第一、五组中各抽1个同学组成一个实验组的情况有:A2B3,A2B5,A3B1,B1B2,B1B3,B1B4,共12种,A2B2,A2B4,A2B4,A3B1,共7种.故抽取的2名同学中恰为一个女生一个男生的概率为.18.在三角形△ABC中,内角A、B、C对应的边分别为a、b、c,已知b cos C+c cos B=2,b sin C=a.(1)求△ABC的面积;(2)若b:c=:1,求A.【分析】(1)由余弦定理化简已知等式解得a=2,由已知可求b sin C=,进而根据三角形的面积公式即可计算得解.(2)由(1)及条件和余弦定理可得:,化简可得sin(A+)=1,结合A的范围,利用正弦函数的性质即可求解A的值.解:(1)∵b cos C+c cos B=2,∴由余弦定理可得:b•+c•=5,∵b sin C=a=,(5)由(1)及条件和余弦定理可得:,因为:A∈(0,π),可得:A+=,可得A=.19.如图,四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,底面ABCD是菱形,四棱锥P﹣ABCD的顶点P在平面A1B1C1D1上的投影恰为四边形A1B1C1D1对角线的交点O1,四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等.(1)证明:PB∥平面ADO1;(2)若AB=BD=BB1=2,求几何体P﹣AB1C1的体积.【分析】(1)四边形PBO1D中,由已知证明PO1与BD的交点O为PO1的中点,也是BD的中点,可得四边形PBO1D是平行四边形,故PB∥DO1,再由直线与平面平行的判定可得PB∥平面ADO1;(2)连接PC1和AC交于点E,求出三角形PAE的面积,可得三角形PAC1的面积,再由等体积法求几何体P﹣AB1C1的体积.【解答】(1)证明:由已知可得,PO1⊥平面A1B1C1D1,且四棱柱ABCD﹣A2B1C1D1的侧棱与底面垂直,故PO1∥BB1∥DD6,即P、B、O1、D四点共面.可知,在四边形PBO1D中,PO1与BD的交点O为PO1的中点,也是BD的中点.又PB⊄平面ADO1,O1D⊂ADO1,(3)解:∵=,连接PC1和AC交于点E,由△POE≌△C1CE,得OE=,∴=.∴几何体P﹣AB1C6的体积为.20.巳知函数f(x)=ax﹣2lnx﹣2,g(x)=axe x﹣4x.(1)求函数f(x)的极值;(2)当a=2时,证明:g(x)+f(x)≥0.【分析】(1)求导得f'(x)=,定义域为(0,+∞),再分a≤0和a>0两类讨论f'(x)与0的大小关系,即可得f(x)的单调性,从而求极值;(2)可将g(x)+f(x)化简为2xe x﹣2ln(xe x)﹣2,要证g(x)+f(x)≥0,需证f (xe x)≥0;利用(1)中的结论可知f(x)≥0恒成立,故而得证.【解答】(1)解:∵f(x)=ax﹣2lnx﹣2,∴f'(x)=a﹣=,定义域为(5,+∞),当a≤0时,f'(x)<0,f(x)在(0,+∞)上单调递减,无极值;∴极小值为f()=2(lna﹣ln2),无极大值.当a≤0时,函数f(x)无极值;(8)证明:当a=2时,g(x)+f(x)=2x﹣2lnx﹣2+2xe x﹣7x=2xe x﹣2x﹣2lnx﹣2=2xe x﹣7ln(xe x)﹣2,由(1)知,当a=2时,极小值为f()=f(1)=2(ln6﹣ln2)=0,这也是f(x)的最小值,故当a=2时,有g(x)+f(x)≥0.21.已知动点Q到点F(1,0)的距离和到直线l:x=4的距离之比为.(1)求动点Q的轨迹方程C;(2)已知点P(1,),过点F的直线和曲线C交于A、B两点,直线PA、PB、AB 分别交直线x=4于M、N、H.(i)证明:H恰为线段MN的中点;(ii)是否存在定点G,使得以MN为直径的圆过点G?若存在,求出定点G的坐标,否则说明理由.【分析】(1)设Q(x,y),由题意列式,化简得答案;(2)(i)证明AB的斜率为0时,H恰为线段MN的中点.当AB的斜率不为0时,设直线AB:x=ty+1(t≠0),联立直线方程与椭圆方程,化为关于y的一元二次方程,利用根与系数的关系求得MN中点的纵坐标,即可验证H恰为线段MN的中点;(ii)当AB的斜率不为0时,求出以MN为直径的圆的方程,取y=0可得圆过定点(1,0)或(7,0),验证AB的斜率为0时也成立,即可得到存在定点G(1,0)或(7,0),使得以MN为直径的圆过G.【解答】(1)解:设Q(x,y),由题意得:,化简可得动点Q的轨迹方程为:;直线PB:y=﹣,得N(2,﹣3).当直线AB的斜率不为0时,设直线AB:x=ty+1(t≠0),A(x1,y1),B(x2,y2),H(4,).∴,.同理可得N(4,).∴线段MN的中点坐标为(4,),即为H点.(ii)解:当直线AB的斜率不等于0时,|MN|=||=||.若存在定点G,使得以MN为直径的圆过点G,由对称性可知,G一定在x轴上.则=解得x=1或x=7.当直线AB的斜率等于0时,M(4,3),N(6,﹣3),H(4,0),综上,存在定点G(1,0)或(7,4),使得以MN为直径的圆过G.请考生在22.23二题中任选-题作答注意:只能做所选定的题目如果多做,则按所做第一个题目计分作答时.请用2B铅笔在答题卡上将所选题号后的方框涂黑[选修4-4:坐标系与参数方程](本题满分10分)22.在平面直角坐标系xOy中,已知直线l:x=4,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ.(1)求直线l的极坐标方程和圆C的直角坐标方程;(2)射线OP:θ=α(α∈(0,))交圆C于O、A,交直线l于B,若A,B两点在x轴上投影分别为M、N,求MN长度的最小值,并求此时A、B两点的极坐标.【分析】(1)直接利用转换关系,把直线的普通方程转换为极坐标方程,进一步把圆的极坐标方程转换为直角坐标方程.(2)利用极径的应用和三角函数关系式的变换和正弦型函数的性质的应用求出结果,最后求出点A和B的极坐标.解:(1)已知直线l:x=4,转换为极坐标方程为ρcosθ=4.圆C的极坐标方程为ρ=4sinθ.整理得ρ2=4ρsinθ,根据转换为直角坐标方程为x2+y2﹣3y=0.得到A(4sinα,α),B(),若A,B两点在x轴上投影分别为M、N,当时,|MN|min=2,即最小值为4.所以点A(2),B(4).[选修4-5:不等式选讲](本题满分0分)23.已知函数f(x)=+﹣m≥0恒成立.(1)求m的取值范围;(2)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【分析】(1)由参数分离和绝对值不等式的性质,即可得到所求范围;(2)可令3a+b=s,a+2b=t,用s,t表示a,b,结合乘1法和基本不等式,计算可得所求最小值.解:(1)f(x)=+﹣m=|x+1|+|x﹣3|﹣m≥0⇔m≤|x+1|+|x﹣2|恒成立,因为|x+1|+|x﹣3|≥|x+1﹣x+3|=5,当且仅当﹣1≤≤3时取得等号.(2)由(1)可得n =7,即+=4,(a>7,b>0),即有+=4,所以7a+4b =+=2s+t当且仅当s=t,即b=2a=时取得等号.所以7a+4b的最小值为.。
2020高考数学(文)冲刺刷题首先练辑:第三部分 2020高考仿真模拟卷(五) Word版含解析
2020高考仿真模拟卷(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合A ={x |(2x -1)(x -3)<0},B ={x |(x -1)(x -4)≤0},则(∁U A )∩B =( )A .[1,3)B .(-∞,1)∪[3,+∞)C .[3,4]D .(-∞,3)∪(4,+∞) 答案 C 解析 因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,B ={x |1≤x ≤4}, 所以∁U A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥3,所以(∁U A )∩B ={x |3≤x ≤4}. 2.在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z -在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 因为z =4-7i 2+3i =(4-7i )(2-3i )13=-13-26i13=-1-2i ,所以z 的共轭复数z -=-1+2i 在复平面内对应的点(-1,2)位于第二象限.3.在△ABC 中,点D 在边AB 上,且BD→=12DA →,设CB →=a ,CA →=b ,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 答案 B解析 因为BD→=12DA →,CB →=a ,CA →=b ,故CD →=a +BD →=a +13BA →=a +13(b -a )=23a +13b .4.(2019·济南模拟)在平面直角坐标系xOy 中,与双曲线x 24-y 23=1有相同的渐近线,且位于x 轴上的焦点到渐近线的距离为3的双曲线的标准方程为( )A.x 29-y 24=1B.x 28-y 29=1 C.x 212-y 29=1 D.x 216-y 212=1 答案 C解析 与双曲线x 24-y 23=1有相同的渐近线的双曲线的方程可设为x 24-y 23=λ(λ≠0),因为该双曲线的焦点在x 轴上,故λ>0.又焦点(7λ,0)到渐近线y =32x 的距离为3,所以21λ7=3,解得λ=3.所以所求双曲线的标准方程为x 212-y 29=1.5.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-16 2 C .2 D .162 答案 D解析 因为a n a n +1=22n(n ∈N *),所以a n +1a n +2=22n +2(n ∈N *),两式作比可得a n +2an=4(n ∈N *),即q 2=4,又a n >0,所以q =2,因为a 1a 2=22=4,所以2a 21=4,所以a 1=2,a 2=22,所以a 6-a 5=(a 2-a 1)q 4=16 2.6.某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm 3)是( )A .4 3 B.1033 C .2 3 D.833 答案 B解析 由三视图还原几何体如图所示,该几何体为直三棱柱截去一个三棱锥H -EFG ,三角形ABC 的面积S =12×2×22-12= 3.∴该几何体的体积V =3×4-13×3×2=1033.7.执行如图所示的程序框图,若输出的结果是59,则判断框中可填入的条件是( )A .i <10?B .i <9?C .i >8?D .i <8? 答案 B解析 由程序框图的功能可得S =1×⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×…×⎣⎢⎡⎦⎥⎤1-1(i +1)2=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+13×…×⎝ ⎛⎭⎪⎫1-1i +1⎝ ⎛⎭⎪⎫1+1i +1=12×32×23×43×…×ii +1×i +2i +1=i +22i +2=59,所以i =8,i +1=9,故判断框中可填入i <9?.8.现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球排成一排,则中间2个小球不都是红球的概率为( )A.16B.13C.56D.23 答案 C解析 设白球为A ,蓝球为B ,红球为C ,则不同的排列情况为ABCC ,ACBC ,ACCB ,BACC ,BCAC ,BCCA ,CABC ,CACB ,CBCA ,CBAC ,CCAB ,CCBA 共12种情况,其中红球都在中间的有ACCB ,BCCA 两种情况,所以红球都在中间的概率为212=16,故中间两个小球不都是红球的概率为1-16=56.9.(2019·东北三省三校一模)圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y > 1-x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A.7825B.7225C.257D.227 答案 A解析 在平面直角坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在x 轴上方、正方形内且在圆外的区域,区域面积为2-π2,由几何概型概率公式可得2-π22×2≈11100,解得π≈7825.故选A.10.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.55C.56D.22 答案 B解析 解法一:(平行线法)如图1,取DB 1的中点O 和AB 的中点M ,连接OM ,DM ,则MO ∥AD 1,∠DOM 为异面直线AD 1与DB 1所成的角.依题意得DM 2=DA 2+AM 2=1+⎝ ⎛⎭⎪⎫122=54.OD 2=⎝ ⎛⎭⎪⎫12DB 12=14×(1+1+3)=54,OM 2=⎝ ⎛⎭⎪⎫12AD 12=14×(1+3)=1.∴cos ∠DOM =OD 2+OM 2-DM 22·OD ·OM =54+1-542×52×1=15=55.解法二:(割补法)如图2,在原长方体后面补一个全等的长方体CDEF -C 1D 1E 1F 1,连接DE 1,B 1E 1.∵DE 1∥AD 1,∴∠B 1DE 1就是异面直线AD 1与DB 1所成的角.DE 21=AD 21=4,DB 21=12+12+(3)2=5. B 1E 21=A 1B 21+A 1E 21=1+4=5.∴在△B 1DE 1中,由余弦定理得cos ∠B 1DE 1=DE 21+DB 21-B 1E 212·DE 1·DB 1=4+5-52×2×5=445=55,即异面直线AD 1与DB 1所成角的余弦值为55.11.如图所示,椭圆有这样的光学性质:从椭圆的一个焦点发出的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |=()A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶3 答案 C解析 由椭圆的光学性质可知,直线l ′平分∠F 1PF 2, 因为S △PF 1M S △PF 2M =|F 1M ||F 2M |,又S △PF 1M S △PF 2M =12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|,故|F 1M ||F 2M |=|PF 1||PF 2|.由|PF 1|=1,|PF 1|+|PF 2|=4,得|PF 2|=3,故|F 1M |∶|F 2M |=1∶3.12.设x 1,x 2分别是函数f (x )=x -a -x 和g (x )=x log a x -1的零点(其中a >1),则x 1+4x 2的取值范围是( )A .[4,+∞)B .(4,+∞)C .[5,+∞)D .(5,+∞) 答案 D解析 令f (x )=x -a -x =0,则1x =a x ,所以x 1是指数函数y =a x (a >1)的图象与y =1x 的图象的交点A 的横坐标,且0<x 1<1,同理可知x 2是对数函数y =log a x (a >1)的图象与y =1x 的图象的交点B 的横坐标.由于y =a x 与y =log a x 互为反函数,从而有x 1=1x 2,所以x 1+4x 2=x 1+4x 1.由y =x +4x 在(0,1)上单调递减,可知x 1+4x 2>1+41=5,故选D.二、填空题:本题共4小题,每小题5分,共20分.13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.1818 0792 4544 1716 5809 7983 8619...第1行6206 7650 0310 5523 6405 0526 6238 (2)答案 19解析 由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为:18,07,17,16,09,19,…,故选出来的第6个个体编号为19.14.(2019·湖南师范大学附中模拟三)若函数f (x )=2sin(ωx +φ)(ω>0,φ>0,0<φ<π)的图象经过点⎝ ⎛⎭⎪⎫π6,2,且相邻两条对称轴间的距离为π2,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案3解析 由题意得2πω=π,∴ω=2,则f (x )=2sin(2x +φ),又函数的图象经过点⎝ ⎛⎭⎪⎫π6,2,则sin ⎝ ⎛⎭⎪⎫π3+φ=1,∵0<φ<π,∴φ=π6,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6= 3.15.已知抛物线y 2=2px (p >0)的准线方程为x =-2,点P 为抛物线上的一点,则点P 到直线y =x +3的距离的最小值为________.答案 22解析 由题设得抛物线方程为y 2=8x , 设P 点坐标为P (x ,y ), 则点P 到直线y =x +3的距离为 d =|x -y +3|2=|8x -8y +24|82=|y 2-8y +24|82=|(y -4)2+8|82≥22,当且仅当y =4时取最小值22.16.(2019·南宁摸底考试)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4-13 解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ≠π2,且3sin A cos B +12b sin2A =3sin C .(1)求a 的值;(2)若A =2π3,求△ABC 周长的最大值.解 (1)由3sin A cos B +12b sin2A =3sin C ,得3sin A cos B +b sin A cos A =3sin C ,由正弦定理,得3a cos B +ab cos A =3c ,由余弦定理,得3a ·a 2+c 2-b 22ac +ab ·b 2+c 2-a 22bc =3c ,整理得(b 2+c 2-a 2)(a -3)=0,因为A ≠π2,所以b 2+c 2-a 2≠0,所以a =3.(另解:由sin C =sin(A +B )=sin A cos B +cos A sin B 代入条件变形即可)6分 (2)在△ABC 中,A =2π3,a =3,由余弦定理得,9=b 2+c 2+bc ,因为b 2+c 2+bc =(b +c )2-bc ≥(b +c )2-⎝⎛⎭⎪⎫b +c 22=34(b +c )2,所以34(b +c )2≤9,即(b +c )2≤12,所以b +c ≤23,当且仅当b =c =3时,等号成立.故当b =c =3时,△ABC 周长的最大值为3+2 3.12分18.(2019·黑龙江齐齐哈尔市二模)(本小题满分12分)某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比为13.8%,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:解他们的生活状况,则80岁及以上老人应抽多少人?(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;②本县户籍80岁及以上老年人额外享受高龄老人生活补贴. (a)百岁及以上老年人,每人每月发放345元的生活补贴;(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴; (c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴. 试估计政府执行此项补贴措施的年度预算.解 (1)样本中70岁及以上老人共105人,其中80岁及以上老人30人,所以应抽取的21人中,80岁及以上老人应抽30×21105=6人.3分(2)在(1)中所抽取的80岁及以上的6位老人中,90岁及以上老人1人,记为A ,其余5人分别记为B ,C ,D ,E ,F ,从中任取2人,基本事件共15个:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),这15个基本事件发生的可能性相等.6分记“抽到90岁及以上老人”为事件M ,则M 包含5个基本事件, 所以P (M )=515=13.8分(3)样本中230人的月预算为230×55+25×100+5×200=16150(元),10分 用样本估计总体,年预算为⎝ ⎛⎭⎪⎫16150×6×105×13.8%230+400×15×12=6984×104(元).所以政府执行此项补贴措施的年度预算为6984万元.12分19.(2019·湖南长沙长郡中学一模)(本小题满分12分)如图,在多边形ABPCD 中(图1),四边形ABCD 为长方形,△BPC 为正三角形,AB =3,BC =32,现以BC 为折痕将△BPC 折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).(1)证明:PD ⊥平面P AB ;(2)若点E 在线段PB 上,且PE =13PB ,当点Q 在线段AD 上运动时,求三棱锥Q -EBC 的体积.解 (1)证明:过点P 作PO ⊥AD ,垂足为O . 由于点P 在平面ABCD 内的射影恰好在AD 上,∴PO ⊥平面ABCD ,∴PO ⊥AB ,∵四边形ABCD 为矩形,∴AB ⊥AD ,又AD ∩PO =O ,∴AB ⊥平面P AD ,2分∴AB ⊥PD ,AB ⊥P A ,又由AB =3,PB =32,可得P A =3,同理PD =3,又AD =32,∴P A 2+PD 2=AD 2, ∴P A ⊥PD ,且P A ∩AB =A , ∴PD ⊥平面P AB .5分(2)设点E 到底面QBC 的距离为h ,则V Q -EBC =V E -QBC =13S △QBC ×h ,由PE =13PB ,可知BE BP =23,7分∴h PO =23,∵P A ⊥PD ,且P A =PD =3, ∴PO =P A ·PD AD =322,∴h =23×322=2,9分 又S △QBC =12×BC ×AB =12×32×3=922, ∴V Q -EBC =13S △QBC ×h =13×922×2=3.12分20.(本小题满分12分)抛物线y 2=4x 的焦点为F ,过F 的直线交抛物线于A ,B 两点.(1)若点T (-1,0),且直线AT ,BT 的斜率分别为k 1,k 2,求证:k 1+k 2为定值; (2)设A ,B 两点在抛物线的准线上的射影分别为P ,Q ,线段PQ 的中点为R ,求证:AR ∥FQ .证明 (1)设直线AB :my =x -1,A (x 1,y 1),B (x 2,y 2), ⎩⎨⎧ my =x -1,y 2=4x ,可得y 2-4my -4=0,⎩⎨⎧y 1+y 2=4m ,y 1y 2=-4,3分 k 1+k 2=y 1x 1+1+y 2x 2+1=y 1(x 2+1)+y 2(x 1+1)(x 1+1)(x 2+1)=y 1x 2+y 2x 1+(y 1+y 2)(x 1+1)(x 2+1)=y 1(my 2+1)+y 2(my 1+1)+(y 1+y 2)(my 1+1+1)(my 2+1+1)=2my 1y 2+2(y 1+y 2)(my 1+2)(my 2+2)=2m (-4)+2×4m(my 1+2)(my 2+2)=0.6分(2)A (x 1,y 1),P (-1,y 1),Q (-1,y 2),R ⎝ ⎛⎭⎪⎫-1,y 1+y 22,F (1,0), k AR =y 1+y 22-y 1-1-x 1=y 1-y 221+x 1=y 1-y 22(1+x 1),k QF =y 2-0-1-1=-y 22,8分k AR -k QF =y 1-y 22(1+x 1)+y 22=y 1-y 2+y 2(1+x 1)2(1+x 1)=y 1-y 2+y 2(my 1+2)2(1+x 1)=(y 1+y 2)+my 1y 22(1+x 1)=4m +m ×(-4)2(1+x 1)=0,即k AR =k QF ,所以直线AR 与直线FQ 平行.12分21.(2019·山东潍坊一模)(本小题满分12分)已知函数f (x )=x ln x -(a +1)x ,g (x )=f (x )-a ⎝ ⎛⎭⎪⎫12x 2-x -1,a ∈R .(1)当x >1时,求f (x )的单调区间;(2)设F (x )=e x +x 3+x ,若x 1,x 2为函数g (x )的两个不同极值点,证明:F (x 1x 22)>F (e 2).解 (1)f ′(x )=1+ln x -a -1=ln x -a ,若a ≤0,x ∈(1,+∞),f ′(x )>0,f (x )单调递增, 若a >0,由ln x -a =0,解得x =e a ,2分 且x ∈(1,e a ),f ′(x )<0,f (x )单调递减, x ∈(e a ,+∞),f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )的单调递增区间为(1,+∞);当a >0时,f (x )的单调递增区间为()e a,+∞,单调递减区间为(1,e a ).5分 (2)证明:F ′(x )=e x +3x 2+1>0,故F (x )在R 上单调递增,即证x 1x 22>e 2,也即证ln x 1+2ln x 2>2,又g (x )=x ln x -ax -x -a 2x 2+ax +a =x ln x -a2x 2-x +a ,g ′(x )=1+ln x -ax -1=ln x -ax ,所以x 1,x 2为方程ln x =ax 的两根,即⎩⎨⎧ln x 1=ax 1, ①ln x 2=ax 2, ②即证ax 1+2ax 2>2,即a (x 1+2x 2)>2, 而①-②得a =ln x 1-ln x 2x 1-x 2,8分即证ln x 1-ln x 2x 1-x 2·(x 1+2x 2)>2,则证ln x 1x 2·x 1+2x 2x 1-x 2>2,变形得ln x 1x 2·x 1x 2+2x 1x 2-1>2,不妨设x 1>x 2,t =x 1x 2>1,即证ln t ·t +2t -1>2,整理得ln t -2(t -1)t +2>0,设h (t )=ln t -2(t -1)t +2,则h ′(t )=1t -6(t +2)2=t 2-2t +4t (t +2)2=(t -1)2+3t (t +2)2>0,∴h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即结论成立.12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的方程为x 22+y 2=1,曲线C 2的参数方程为⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),曲线C 3的方程为y =x tan α⎝ ⎛⎭⎪⎫0<α<π2,x >0,曲线C 3与曲线C 1,C 2分别交于P ,Q 两点.(1)求曲线C 1,C 2的极坐标方程; (2)求|OP |2·|OQ |2的取值范围.解 (1)因为x =ρcos θ,y =ρsin θ,所以曲线C 1的极坐标方程为 ρ2cos 2θ2+ρ2sin 2θ=1,即ρ2=21+sin 2θ,2分由⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),消去φ, 即得曲线C 2的直角坐标方程为x 2+(y -1)2=1, 将x =ρcos θ,y =ρsin θ,代入化简, 可得曲线C 2的极坐标方程为ρ=2sin θ.5分 (2)曲线C 3的极坐标方程为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2.6分由(1)得|OP |2=21+sin 2α,|OQ |2=4sin 2α, 即|OP |2·|OQ |2=8sin 2α1+sin 2α=81sin 2α+1,8分因为0<α<π2,所以0<sin α<1, 所以|OP |2·|OQ |2∈(0,4).10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -5|-|x +3|. (1)解关于x 的不等式f (x )≥x +1;(2)记函数f (x )的最大值为m ,若a >0,b >0,e a ·e 4b =e 2ab -m ,求ab 的最小值. 解 (1)当x ≤-3时,由5-x +x +3≥x +1,得x ≤7,所以x ≤-3;当-3<x <5时,由5-x -x -3≥x +1,得x ≤13,所以-3<x ≤13;当x ≥5时,由x -5-x -3≥x +1,得x ≤-9,无解.4分综上可知,x ≤13,即不等式f (x )≥x +1的解集为⎝ ⎛⎦⎥⎤-∞,13.5分(2)因为|x -5|-|x +3|≤|x -5-x -3|=8,所以函数f (x )的最大值m =8.6分 因为e a ·e 4b =e 2ab -8,所以a +4b =2ab -8.又a >0,b >0,所以a +4b ≥24ab =4ab ,当且仅当a =4b 时,等号成立,7分所以2ab -8-4ab ≥0,即ab -4-2ab ≥0. 所以有(ab -1)2≥5.8分又ab >0,所以ab ≥1+5或ab ≤1-5(舍去),ab≥6+25,即ab的最小值为6+2 5.10分。
2020届江苏高三高考数学全真模拟试卷07(解析版)
直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11
=
a
[π
- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B
山东省2020年高考模拟考试数学试题 Word版含答案
山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
2020年浙江省普通高中高考数学模拟试卷(二)(5月份)(有答案解析)
A. 5
B. -5
C. -2
D. 2
3. 若 α∈( ,π),sin(π-α)= ,则 cosα=( )
A.
B.
C.
D.
4. lg( )2=( )
A. -4
B. 4
5. 下列函数中,最小正周期为 的是(
A. y=2018sinx
C. y=-cos2x
C. Байду номын сангаас0
)
D. -10
B. y=sin2018x D. y=sin(4x+ )
考查函数定义域的概念及求法,指数函数的定义域.
7.答案:C
解析:解:直线 y=x,即 x -y=0,它与直线 x-y+2=0 的距离为 = ,
故选:C. 由题意利用两条平行直线间的距离公式,求得结果. 本题主要考查两条平行直线间的距离公式的应用,注意未知数的系数必需相同,属于基 础题.
8.答案:C
解析:解:∵1=log44<log49<log416=2, ∴1<a<2,
2020 年浙江省普通高中高考数学模拟试卷(二)(5 月份)
一、选择题(本大题共 18 小题,共 54.0 分) 1. 已知集合 P={-3,-2,-1,0},Q={x∈N|-2<x<2},那么集合 P∪Q 中元素的个数是
()
A. 2
B. 3
C. 4
D. 5
2. 已知向量 =(-1,1), =(3,-2),则 =( )
6. 函数 f(x)=2x
的定义域为(
A. [-2,2] C. (-∞,-2]∪[2,+∞)
7. 直线 y=x 与直线 x-y+2=0 的距离为(
A. 2
B.
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
2020年高考模拟山西省临汾市高考数学第三次模拟试卷(理科) 含解析
2020年高考模拟高考数学第三次模拟试卷(理科)一、选择题1.已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B=()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)2.设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx04.已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣5.在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+188.函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,]9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4] 10.已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m﹣n|≤1,则实数a的取值范围是()A.[2,4]B.[2,]C.[,3]D.[2,3]11.已知双曲线E:﹣=1(a>0,b>0)满足以下条件:①双曲线E的右焦点与抛物线y2=4x的焦点F重合;②双曲线E与过点P(4,2)的幂函数f(x)=x a的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.+112.已知函数f(x)=xe1﹣x,若对于任意的x0∈(0,e],函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,则实数a的取值范围为()A.(1,e]B.(e﹣,e]C.(e﹣,e+]D.(1,e﹣]二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.(1﹣2x)(1+x)6的展开式中x2的系数为.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程px2=q中,p为“隅”,q为“实”.即若△ABC的大斜、中斜、小斜分别为a,b,c,则S2=[a2c2﹣()2].已知点D是△ABC 边AB上一点,AC=3,BC=2,∠ACD=45°,tan∠BCD=,则△ABC的面积为.15.过直线y=kx+7上一动点M(x,y)向圆C:x2+y2+2y=0引两条切线MA,MB,切点为A,B,若k∈[1,4],则四边形MACB的最小面积S∈[,]的概率为16.三棱锥S﹣ABC中,点P是Rt△ABC斜边AB上一点.给出下列四个命题:①若SA⊥平面ABC,则三棱锥S﹣ABC的四个面都是直角三角形;②若AC=4,BC=4,SC=4,SC⊥平面ABC,则三棱锥S﹣ABC的外接球体积为32;③若AC=3,BC=4,SC=,S在平面ABC上的射影是△ABC内心,则三棱锥S﹣ABC的体积为2;④若AC=3,BC=4,SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的最大角为60°.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且满足a4+a6=18,S11=121.(1)求数列{a n}的通项公式;(2)设b n=(a n+3)2n,数列{b n}的前n项和为T n,求T n.18.某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.(1)根据频率分布直方图填写下面2×2列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为“书虫”与性别有关?男生女生总计书虫非书虫总计附:K2=P(k2≥k)0.250.150.100.050.025k 1.323 2.072 2.706 3.814 5.024(2)从所抽取的50名女生中随机抽取两名,记“书虫”的人数为X,求X的分布列和数学期望.19.如图,己知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且∠DAB=60°,点F是BC的中点.(1)求证:BD⊥EF;(2)求二面角E﹣DF﹣B的余弦值.20.已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P(1,)在椭圆上,且过点F2的直线l交椭圆于A,B两点,△AF1B的周长为8.(1)求椭圆E的方程;(2)我们知道抛物线有性质:“过抛物线y2=2px(p>0)的焦点为F的弦AB满足|AF|+|BF|=|AF|•|BF|.”那么对于椭圆E,问否存在实数λ,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立,若存在求出λ的值;若不存在,请说明理由.21.已知函数f(x)=e x﹣2+1.(1)求函数f(2x)在x=1处的切线方程;(2)若不等式f(x+y)+f(x﹣y)≥mx对任意的x∈[0,+∞),y∈[0,+∞)都成立,求实数m的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=cos().(Ⅰ)求直线l的普通方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|.[选修4-5不等式选讲]23.已知函数f(x)=|x+2|.(1)求不等式f(2x)﹣f(x﹣4)>2的解集;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,求实数a的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B=()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)【分析】求出集合A,B,由此能求出A∩B.解:∵函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},∴A={x|x2﹣2x≤0}={x|0≤x≤2},B={2x﹣2≤0}={x|x≤1},∴A∩B={x|0≤x≤1}.故选:C.2.设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i【分析】根据复数的基本运算法则进行化简即可.解:复数z=1+i,|z|=,z2=(1+i)2=2i,则+z2===1﹣i+2i=1+i故选:A.3.命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx0【分析】根据全称量词命题的否定是存在量词命题,写出即可.解:全称量词命题的否定是存在量词命题,所以命题“∀x∈(0,1),e﹣x>lnx”的否定是:“∃x∈(0,1),e﹣x≤lnx”.故选:D.4.已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣【分析】运用向量垂直的条件:数量积为0,以及向量的平方即为模的平方,和向量投影的概念,计算即可得到所求值.解:||=,||=2,若⊥(﹣),则•(﹣)=0,即为•=2=3,(+)•=•+2=3+4=7,则向量+在向量方向的投影为=.故选:B.5.在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【分析】根据充分条件和必要条件的定义分别进行判断即可.解:sin A>sin B⇔a>b⇔π>A>B>0,∵π>A>B>0推不出tan A>tan B,tan A>tan B推不出π>A>B>0,∴“sin A>sin B”是“tan A>tan B”的既不充分也不必要条件.故选:D.6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算变量n×S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:执行程序框图,可得S=0,n=2,满足条件,S=,n=4,满足条件,S==,n=6,满足条件,S=+=,n=8,由题意,此时应该不满足条件,退出循环,输出S的值为=.故选:D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+18【分析】首先把三视图转换为几何体,进一步求出几何体的体积.解:由已知中的三视图知圆锥底面半径为,圆锥的高h=,圆锥母线l=,截去的底面弧的圆心角为120°,底面剩余部分的面积为S==,故几何体的体积为:V=,故选:C.8.函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,]【分析】利用辅助角公式进行转化,结合三角函数的单调性进行求解即可.解:因为y=cos2x﹣sin2x=2cos(2x+),由2kπ﹣π≤2x+≤2kπ,k∈Z,解得2kπ﹣≤2x≤2kπ﹣,k∈Z,即kπ﹣≤x≤kπ﹣,k∈Z,即函数的增区间为[kπ﹣,kπ﹣],k∈Z,所以当k=1时,增区间为[,],∵x∈[0,],∴增区间为[,],故选:D.9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4]【分析】作出不等式组对应的平面区域,根据线性规划的知识,结合直线斜率与区域的关系进行求解即解:作出不等式对应的平面区域,如图所示:其中A(2,6),直线x+my+1=0过定点D(﹣1,0),当m=0时,不等式x+1≤0表示直线x+1=0及其左边的区域,不满足题意;当m>0时,直线x+my+1=0斜率﹣<0,不等式x+my+1≤0表示直线x+my+1=0下方的区域,不满足题意;当m<0时,直线x+my+1=0的斜率﹣>0,不等式x+my+1≤0表示直线x+my+1=0上方的区域,要使不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,只需直线x+my+1=0的斜率﹣≤K AD=2,解得m.综上可得实数m的取值范围为(﹣∞,﹣],故选:B.10.已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m﹣n|≤1,则实数a的取值范围是()A.[2,4]B.[2,]C.[,3]D.[2,3]【分析】先对函数f(x)求导,然后结合导数与函数的性质可求m,代入不等式可求n 的范围,问题转化为:使方程x2﹣ax﹣a+3=0在区间[0,2]上有解,分离参数后结合对勾函数的性质可求.解:因为f(x)=e x﹣1+x﹣2,且f(1)=0,所以函数f′(x)=e x﹣1+x﹣2单调递增且有唯一的零点为m=1,所以|1﹣n|≤1,∴0≤n≤2,问题转化为:使方程x2﹣ax﹣a+3=0在区间[0,2]上有解,即a===x+1+﹣2,在区间[0,2]上有解,而根据“对勾函数”可知函数y=x+1+﹣2,在区间[0,2]的值域为[2,3],∴2≤a≤3,故选:D.11.已知双曲线E:﹣=1(a>0,b>0)满足以下条件:①双曲线E的右焦点与抛物线y2=4x的焦点F重合;②双曲线E与过点P(4,2)的幂函数f(x)=x a的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.+1【分析】先根据导函数的几何意义求出点Q的坐标,再代入双曲线方程结合c=1,c2=a2+b2,从而求出离心率.解:依题意可得,抛物线y2=4x的焦点为F(1,0),F关于原点的对称点(﹣1,0),∵2=4α,,所以,f'(x)=,设Q,则,解得x0=1,∴Q(1,1),可得,又c=1,c2=a2+b2,可解得a=,故双曲线的离心率是,故选:B.12.已知函数f(x)=xe1﹣x,若对于任意的x0∈(0,e],函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,则实数a的取值范围为()A.(1,e]B.(e﹣,e]C.(e﹣,e+]D.(1,e﹣]【分析】函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,等价于方程lnx﹣x2+ax+1=f(x0)在(0,e]内都有两个不同的根.利用导数可得,当x∈(0,e],0<f(x)≤1.设F(x)=lnx﹣x2+ax+1,分析知F′(x)=0在(0,e)有解,且易知只能有一个解.设其解为x1,可得当x∈(0,x1)时,F(x)在(0,x1)上是增函数;当x∈(x1,e)时,F(x)在(x1,e)上是减函数.结合∀x0∈(0,e],方程lnx ﹣x2+ax+1=f(x0)在(0,e]内有两个不同的根,得F(x)max=F(x1)>1,且F(e)≤0.由此求得1<a<2e.解:函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,等价于方程lnx﹣x2+ax+1=f(x0)在(0,e]内都有两个不同的根.f′(x)=e1﹣x﹣xe1﹣x=(1﹣x)e1﹣x,∴当x∈(0,1)时,f′(x)>0,f(x)是增函数;当x∈(1,e]时,f′(x)<0,f(x)是减函数,因此0<f(x)≤1.设F(x)=lnx﹣x2+ax+1,F′(x)=,若F′(x)=0在(0,e)上无解,则F(x)在(0,e]上是单调函数,不合题意;F′(x)=0在(0,e)有解,且易知只能有一个解.设其解为x1,当x∈(0,x1)时,F′(x)>0,F(x)在(0,x1)上是增函数;当x∈(x1,e)时,F′(x)<0,F(x)在(x1,e)上是减函数.∵∀x0∈(0,e],方程lnx﹣x2+ax+1=f(x0)在(0,e]内有两个不同的根,∴F(x)max =F(x1)>1,且F(e)≤0.由F(e)≤0,即lne﹣e2+ae+1≤0,解得a≤e﹣.由F(x)max=F(x1)>1,即>1,∴>0.∵,∴,代入>0,得>0.设m(x)=lnx+x2﹣1,m′(x)=>0,∴m(x)在(0,e)上是增函数,而m(1)=ln1+1﹣1=0,由>0,可得m(x1)>m(1),得1<x1<e.由在(1,e)上是增函数,得1<a<2e.综上所述1<a≤e﹣,故选:D.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.(1﹣2x)(1+x)6的展开式中x2的系数为3.【分析】由二项式定理及展开式的通项公式即可求解.解:由(1﹣x)6展开式的通项为:T r+1=(﹣1)r x r;得(1﹣2x)(1+x)6的展开式中x2的系数为+(﹣2)=3.故答案为:3.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程px2=q中,p为“隅”,q为“实”.即若△ABC的大斜、中斜、小斜分别为a,b,c,则S2=[a2c2﹣()2].已知点D是△ABC 边AB上一点,AC=3,BC=2,∠ACD=45°,tan∠BCD=,则△ABC的面积为.【分析】由已知结合两角和的三角公式及同角平方关系可求cos∠ACB,然后结合余弦定理可求AB,代入已知公式即可求解.解:因为tan∠ACB=tan(∠ACD+∠BCD)==﹣,所以cos∠ACB=﹣,由余弦定理可知AB2=AC2+BC2﹣2AC•BC cos∠ACB,==16,即AB=4,根据“三斜求积术”可得S2==,所以S=.故答案为:15.过直线y=kx+7上一动点M(x,y)向圆C:x2+y2+2y=0引两条切线MA,MB,切点为A,B,若k∈[1,4],则四边形MACB的最小面积S∈[,]的概率为【分析】求出圆的圆心与半径,利用四边形面积的最小值求出MC的最小值,利用点到直线的距离求解即可.解:连接MC,由圆的切线性质可知,AC⊥MA,BC⊥MB,又因为圆C:x2+y2+2y=0的圆心C(0,﹣1),半径r=1,所以S MACB=2△MAC=2×=MA=,要使得四边形MACB的面积最小,则MC最小,即当CM垂直直线y=kx+7时,满足题意,此时|MC|min=,S MACB的最小值为,又因为1≤k≤4,解可得,,故所求的概率为:.故答案为:.16.三棱锥S﹣ABC中,点P是Rt△ABC斜边AB上一点.给出下列四个命题:①若SA⊥平面ABC,则三棱锥S﹣ABC的四个面都是直角三角形;②若AC=4,BC=4,SC=4,SC⊥平面ABC,则三棱锥S﹣ABC的外接球体积为32;③若AC=3,BC=4,SC=,S在平面ABC上的射影是△ABC内心,则三棱锥S﹣ABC的体积为2;④若AC=3,BC=4,SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的最大角为60°.其中正确命题的序号是①②③.(把你认为正确命题的序号都填上)【分析】①由线面垂直的判定定理与性质定理即可判断;②三棱锥S﹣ABC的外接球可以看作棱长为4的正方体的外接球,进而求出外接球的半径,即可得解;③由线面垂直的判定定理可知SO⊥平面ABC,所以SO⊥OC,再结合勾股定理以及内切圆的半径公式可求得SO=1,最后利用三棱锥的体积公式即可得解;④因为SA⊥平面ABC,所以直线PS与平面SBC所成的角最大时,P点与A点重合,再在△SCA中,求出tan∠ASC即可得解.解:对于①,因为SA⊥平面ABC,所以SA⊥AC,SA⊥AB,SA⊥BC,又BC⊥AC,所以BC⊥平面SAC,所以BC⊥SC,故四个面都是直角三角形,∴①正确;对于②,若AC=4,BC=4,SC=4,SC⊥平面ABC,∴三棱锥S﹣ABC的外接球可以看作棱长为4的正方体的外接球,∴,,∴体积为,∴②正确;对于③,设△ABC内心是O,则SO⊥平面ABC,连接OC,则有SO2+OC2=SC2,又内切圆半径,所以,SO2=SC2﹣OC2=3﹣2=1,故SO=1,∴三棱锥S﹣ABC的体积为,∴③正确;对于④,若SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的角最大时,P点与A 点重合,在Rt△SCA中,,∴∠ASC=45°,即直线PS与平面SBC所成的最大角为45°,∴④不正确,故答案为:①②③.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且满足a4+a6=18,S11=121.(1)求数列{a n}的通项公式;(2)设b n=(a n+3)2n,数列{b n}的前n项和为T n,求T n.【分析】(1)设数列{a n}的公差为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到所求通项公式;(2)求得b n=(n+1)•2n+1,运用数列的错位相减法求和,结合等比数列的求和公式,化简可得所求和.解:(1)设数列{a n}的公差为d,a4+a6=18,可得2a1+8d=18,即a1+4d=9,S11=121,可得11a1+×11×10d=121,即a1+5d=11,解得a1=1,d=2,可得a n=1+2(n﹣1)=2n﹣1;(2)由(1)可知b n=(a n+3)2n=(n+1)•2n+1,数列{b n}的前n项和为T n=2•22+3•23+…+(n+1)•2n+1,2T n=2•23+3•24+…+(n+1)•2n+2,两式作差,得﹣T n=8+23+24+…+2n+1﹣(n+1)•2n+2=8+﹣(n+1)•2n+2,化简可得T n=n•2n+2.18.某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.(1)根据频率分布直方图填写下面2×2列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为“书虫”与性别有关?男生女生总计书虫非书虫总计附:K2=P(k2≥k)0.250.150.100.050.025k 1.323 2.072 2.706 3.814 5.024(2)从所抽取的50名女生中随机抽取两名,记“书虫”的人数为X,求X的分布列和数学期望.【分析】(1)由已知可得列联表,利用K2计算公式即可得出.(2)由频率分布直方图可得女生“书虫”的人数为4,X的所有可能取值为0,1,2,利用超几何分布列计算公式即可得出.解:(1)由频率分布直方图可得,男生书虫、非书虫的人数分别为12,38,女生书虫、非书虫的人数分别为4,46,故得如下2×2列联表:男生女生总计书虫12416非书虫384684总计5050100根据列联表中数据可得:K2==4.762.由于4.762>3.841,所以在犯错误的概率不超过5%的前提下,可以认为“书虫”与性别有关.(2)由频率分布直方图可得女生“书虫”的人数为4,X的所有可能取值为0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为X012PX的数学期望为E(X)=0×+1×+2×=.19.如图,己知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且∠DAB=60°,点F是BC的中点.(1)求证:BD⊥EF;(2)求二面角E﹣DF﹣B的余弦值.【分析】(1)取AB的中点O,连结EO,OF,AC,由题意知EO⊥AB.EO⊥平面ABCD.EO ⊥BD,由四边形ABCD为菱形,得BD⊥AC,BD⊥OF,由此能证明BD⊥平面EOF.从而BD⊥EF.(2)连结DO,由题意知EO⊥AB,DO⊥AB.推导出DO⊥平面ABE,以O为原点,建立如图所示的空间直角坐标系O﹣xyz.利用向量法能求出二面角E﹣DF﹣B的余弦值.解:(1)证明:取AB的中点O,连结EO,OF,AC,由题意知EO⊥AB.又因为平面ABCD⊥平面ABE,所以EO⊥平面ABCD.因为BD⊂平面ABCD,所以EO⊥BD,因为四边形ABCD为菱形,所以BD⊥AC,又因为OF∥AC,所以BD⊥OF,所以BD⊥平面EOF.又EF⊂平面EOF,所以BD⊥EF.(2)解:连结DO,由题意知EO⊥AB,DO⊥AB.又因为平面ABCD⊥平面ABE,所以DO⊥平面ABE,以O为原点,建立如图所示的空间直角坐标系O﹣xyz.则O(0,0,0),E(,0,0),D(0,0,),F(0,,),B(0,1,0),=(,0,﹣),=(0,).设平面DEF的一个法向量为=(x,y,z),则,令x=1,所以=(1,,1).又由(1)可知EO⊥平面ABCD,所以平面DFB的一个法向量为=(1,0,0),设二面角E﹣DF﹣B的平面角为θ,则cosθ==.20.已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P(1,)在椭圆上,且过点F2的直线l交椭圆于A,B两点,△AF1B的周长为8.(1)求椭圆E的方程;“过抛物线y2=2px(p>0)的焦点为F的弦AB满足|AF|+|BF|(2)我们知道抛物线有性质:=|AF|•|BF|.”那么对于椭圆E,问否存在实数λ,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立,若存在求出λ的值;若不存在,请说明理由.【分析】(1)利用椭圆的定义,结合三角形的周长,求出a,设出椭圆方程,代入点的坐标求解即可点的椭圆方程.(2)求出F2(1,0),设直线l的方程为x=my+1,与椭圆方程联立,消去x,整理得(3m2+4)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),利用韦达定理,不妨设y1>0,y2<0,求出|AF2|,|BF2|,通过,转化求解,推出|AF2|+|BF2|=|AF2|•|BF2|,点的存在实数.解:(1)根据椭圆的定义,可得|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,△AF1B的周长为4a=8,得a=2,所以,椭圆E的方程为:+=1,将点P(1,)代入椭圆E的方程可得b=,所以椭圆E的方程为+=1.(2)由(1)可知c==1,得F2(1,0),依题意可知直线l的斜率不为0,故可设直线l的方程为x=my+1,由消去x,整理得(3m2+4)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=,,不妨设y1>0,y2<0,|AF2|===,同理|BF2|=,所以===•=,即|AF2|+|BF2|=|AF2|•|BF2|,所以存在实数,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立.21.已知函数f(x)=e x﹣2+1.(1)求函数f(2x)在x=1处的切线方程;(2)若不等式f(x+y)+f(x﹣y)≥mx对任意的x∈[0,+∞),y∈[0,+∞)都成立,求实数m的取值范围.【分析】(1)利用导数的几何意义即可求解;(2))根据题意可得e x+y﹣2+e x﹣y﹣2+2≥mx,对任意的x∈[0,+∞),y∈[0,+∞)都成立,当x=0时,不等式即为e x+y﹣2+e x﹣y﹣2+2≥0,显然成立,当x>0时,设g(x)=e x+y ﹣2+e x﹣y﹣2+2,则不等式e x+y﹣2+e x﹣y﹣2+2≥mx恒成立,即为不等式g(x)≥mx恒成立,利用基本不等式得到对x∈(0,+∞)恒成立,令h(x)=,利用导数得到当x=2 时,h(x)取得最小值,为h(2)=,所以m≤2,从而求得实数m的取值范围.解:(1)设t(x)=f(2x)=e2x﹣2+1,则t'(x)=2e2x﹣2,当x=1时,t(1)=2,t'(1)=2,∴函数f(2x)在x=1 处的切线方程为:y﹣2=2(x﹣1),即2x﹣y=0;(2)根据题意可得e x+y﹣2+e x﹣y﹣2+2≥mx,对任意的x∈[0,+∞),y∈[0,+∞)都成立,当x=0时,不等式即为e x+y﹣2+e x﹣y﹣2+2≥0,显然成立,当x>0时,设g(x)=e x+y﹣2+e x﹣y﹣2+2,则不等式e x+y﹣2+e x﹣y﹣2+2≥mx恒成立,即为不等式g(x)≥mx恒成立,∵g(x)=e x+y﹣2+e x﹣y﹣2+2=e x﹣2(e y+e﹣y)+2(当且仅当y=0时取等号),∴由题意可得2e x﹣2+2≥mx,即有对x∈(0,+∞)恒成立,令h(x)=,则h'(x)=2×=2×,令h'(x)=0,即有(x﹣1)e x﹣2=1,令m(x)=(x﹣1)e x﹣2,则m'(x)=e x﹣2+(x ﹣1)e x﹣2=xe x﹣2,当x>0 时,m'(x)=xe x﹣2>0,∴m(x)在(0,+∞)上单调递增,又∵m(2)=(2﹣1)e2﹣2=1,∴(x﹣1)e x﹣2=1有且仅有一个根x=2,当x∈(2,+∞)时,h'(x)>0,h(x)单调递增,当x∈(0,2)时,h'(x)<0,h (x)单调递减,∴当x=2 时,h(x)取得最小值,为h(2)=,∴m≤2,∴实数m的取值范围(﹣∞,2].请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=cos().(Ⅰ)求直线l的普通方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|.【分析】(Ⅰ)直接利用转换关系把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用求出结果.解:(Ⅰ)直线l的参数方程为(t为参数).转换为直角坐标方程为:.圆C的极坐标方程为ρ=cos().转换为直角坐标方程为:.(Ⅱ)由于:直线l与圆C相交于A,B两点,故:圆心()到直线的距离d=,则:=.[选修4-5不等式选讲]23.已知函数f(x)=|x+2|.(1)求不等式f(2x)﹣f(x﹣4)>2的解集;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,求实数a的取值范围.【分析】(1))利用函数f(2x)﹣f(x﹣4)=|2x+2|﹣|x﹣2|=,分段解不等式f(2x)﹣f(x﹣4)>2即可;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,利用绝对值不等式的意义,可得⇔,f(ax)+af(x)=|ax+2|+|ax+2a|≥|(ax+2)﹣(ax+2a|=|2a﹣2|,再解|2a﹣2|≥a+1即可.解:(1))函数f(2x)﹣f(x﹣4)=|2x+2|﹣|x﹣2|=,当x<﹣1时,不等式即﹣x﹣4>2,求得x<﹣6,∴x<﹣6;当﹣1≤x<2时,不等式即3x>2,求得x>,<x<2;当x≥2时,不等式即x+4>2,求得x>﹣2,∴x≥2.综上所述,不等式的解集为{x|>或x<﹣6}.(2)当a>0时,f(ax)+af(x)=|ax+2|+a|x+2|=|ax+2|+|ax+2a|≥|(ax+2)﹣(ax+2a|=|2a﹣2|,∵不等式f(ax)+af(x)≥a+1恒成立,∴|2a﹣2|≥a+1,2a﹣2≥a+1或2a﹣2≤﹣1﹣a,解得a≥3或0<a≤,∴实数a的取值范围为(0,]∪[3,+∞).。
2020高考数学模拟试题(理)《立体几何》分类汇编(含答案)
2020高考数学模拟试题(理)《立体几何》分类汇编1.(2020•广州一模)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722)π+B .(1022)π+C .(1042)π+D .(1142)π+2.(2020•桥东区校级模拟)胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以2倍的塔高,恰好为祖冲之发现的密率355113π≈.若胡夫金字塔的高为h ,则该金字塔的侧棱长为( )A .221h π+B .224h π+C .216hπ+ D .2216h π+ 3.(2020•桥东区校级模拟)已知P 为一圆锥的顶点,AB 为底面圆的直径,PA PB ⊥,点M 在底面圆周上,若M 为¶AB 的中点,则异面直线AM 与PB 所成角的大小为( )A .6πB .4πC .3πD .2π 4.(2020•梅河口市校级模拟)如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关5.(2020•东宝区校级模拟)如图,已知四面体ABCD 为正四面体,22AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .1B 2C .2D .226.(2020•宜昌模拟)已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( )A .3πB .23πC .πD .43π 7.(2020•龙岩一模)已知四棱锥S ABCD -的所有顶点都在球O 的球面上,SA SB =,SA SB ⊥,底面ABCD 是等腰梯形,//AB CD ,且满足222AB AD DC ===,则球O 的表面积是( )A .43πB .823C .4πD .8π8.(2020•眉山模拟)已知腰长为3,底边长2为的等腰三角形ABC ,D 为底边BC 的中点,以AD 为折痕,将三角形ABD 翻折,使BD CD ⊥,则经过A ,B ,C ,D 的球的表面积为( )A .10πB .12πC .16πD .20π9.(2020•五华区校级模拟)已知圆锥SO 的底面半径为3,母线长为5.若球1O 在圆锥SO 内,则球1O 的体积的最大值为( )A .92πB .9πC .323πD .12π10.(2020•垫江县校级模拟)过球的一条半径的中点,作与该半径所在直线成30︒的平面,则所得截面的面积与球的表面积的比为( )A .15256B .45256C .1564D .456411.(2020•内蒙古模拟)如图:空间四边形P ABC -中,13PM AN PB AC ==,4PA BC ==,3MN =,异面直线PA 与BC 所成角的余弦值为( )A .14-B .164-C .164D .1412.(2020•凯里市校级模拟)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?“其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的体积为( )A .140立方尺B .280立方尺C .2803立方尺D .1403立方尺 13.(2020•龙岩一模)已知正三棱柱111ABC A B C -的底面边长为2,用一平面截此棱柱与侧棱1AA ,1BB ,1CC 分别交于M ,N ,Q ,若MNQ ∆为直角三角形,则MNQ ∆面积的最小值为( )A 7B .3C .27D .614.(2020•咸阳二模)正四棱锥P ABCD -的五个顶点在同一个球面上,6,高为3,则它的外接球的表面积为( )A .4πB .8πC .16πD .20π15.(2020•重庆模拟)如图,四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E ,F 分别在线段DB ,1DD 上,且112DE DF EB FD ==,G 在1CC 上且平面//AEF 平面1BD G ,则1(CG CC = )A .12B .13C .23D .1416.(2020•邯郸模拟)如图一,在ABC ∆中,AB AC =,120A ∠=︒,D 为BC 中点,DE AC ⊥,将CDE ∆沿DE 翻折,得到直二面角C DE B --,连接BC ,F 是BC 中点,连接AF ,如图二,则下列结论正确的是( )A .AD CD ⊥B .//AF DEC .DE ⊥平面ACED .//AF 平面CDE17.(2020•福清市一模)已知正方体1111ABCD A B C D -的棱长为2,1AC ⊥平面α.平面α截此正方体所得的截面有以下四个结论:①截面形状可能是正三角形②截面的形状可能是正方形③截面形状可能是正五边形④截面面积最大值为33则正确结论的编号是( )A .①④B .①③C .②③D .②④18.(2020•道里区校级一模)已知三棱锥S ABC -的外接球为球O ,SA 为球O 的直径,且2SA =,若面SAC ⊥面SAB ,则三棱锥S ABC -的体积最大值为( )A .13B .23C .1D .219.(2020•焦作一模)某三棱柱的平面展开图如图,网格中的小正方形的边长均为1,K 是线段DI 上的点,则在原三棱柱中,AK CK +的最小值为( )A .65B .73C .45D .8920.(2020•吉林二模)等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD ∆沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A .3B .2C .3D .2321.(2020•眉山模拟)如图,在长方体1111ABCD A B C D -中,1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r ,F 为MC 的中点. (1)求证://EF 平面1A DC ;(2)求三棱锥1C FCN -的体积;(3)求直线1A D 与直线CF 所成角的余弦值.22.如图,在长方体1111ABCD A B C D -中,1:224AB BC AA ===,E 为11A D 的中点,N 为BC的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r ,F 为MC 的中点. (1)求证://EF 平面1A DC ;(2)求二面角1N AC F --的余弦值.23.(2020•宜昌模拟)如图,在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.24.(2020•五华区校级模拟)如图所示的几何体中,正方形ABCD 所在平面垂直于平面APBQ ,四边形APBQ 为平行四边形,G 为PC 上一点,且BG ⊥平面APC ,2AB =.(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥P ABC -体积最大时,求平面APC 与平面BCQ 所成二面角的正弦值.25.(2020•龙岩一模)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,4AB =,2BC CD ==,顶点1D 在底面ABCD 内的射影恰为点C .(1)求证:BC ⊥平面1ACD ;(2)若直线1DD 与底面ABCD 所成的角为4π,求平面11ABC D 与平面ABCD 所成锐二面角的余弦值.答案解析1.(2020•广州一模)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722)π+B .(1022)π+C .(1042)π+D .(1142)π+【解答】解:由题意可知几何体的直观图如图:上部是圆柱,下部是圆锥, 几何体的表面积为:1442223(1042)2ππππ+⨯⨯+⨯=+. 故选:C .2.(2020•桥东区校级模拟)胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以2倍的塔高,恰好为祖冲之发现的密率355113π≈.若胡夫金字塔的高为h ,则该金字塔的侧棱长为( )A 221h π+B 224h π+C 216hπ+ D 2216h π+ 【解答】解:设该金字塔的底面边长为a ,则42a h π=,可得:2h a π=. ∴该金字塔的侧棱长22222222162()244a h h h ππ+=+=+⨯=. 故选:D .3.(2020•桥东区校级模拟)已知P 为一圆锥的顶点,AB 为底面圆的直径,PA PB ⊥,点M 在底面圆周上,若M 为¶AB 的中点,则异面直线AM 与PB 所成角的大小为( )A .6πB .4πC .3πD .2π 【解答】解:如图所示,建立直角坐标系.不妨设1OB =.PA PB ⊥Q ,OP OB OA ∴==,OP ⊥底面AMB .则(0O ,0,0),(0B ,1,0),(1M ,0,0),(0P ,0,1),(0A ,1-,0), ∴(1AM =u u u u r ,1,0),(0PB =u u u r ,1,1)-,cos AM ∴<u u u u r ,1222PB >==⨯u u u r , AM ∴<u u u u r ,3PB π>=u u u r , ∴异面直线AM 与PB 所成角的大小为3π. 故选:C .4.(2020•梅河口市校级模拟)如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关【解答】解:如图:还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O 在平面11ADD A 上,高为2,所以四棱锥的体积为184233⨯⨯=,所以该几何体的体积为816833-=, 故选:B .5.(2020•东宝区校级模拟)如图,已知四面体ABCD 为正四面体,22AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .1B 2C .2D .22【解答】解:把正四面体补为正方体,如图,根据题意,//KL BC ,//LM GH ,,KL AL LM BL BC AB AD AB==, 所以KL AL =,LM BL =,故22KL LM AL BL +=+=, 2()22KL LM S KL LM +=⋅=截面…,当且仅当KL LM =时成立, 故选:C .6.(2020•宜昌模拟)已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A .3πB .23π C .π D .43π 【解答】解:设圆心到截面距离为d ,截面半径为r ,由O ACM M AOC V V --=,即111112222233323AMC AOC S d S ∆∆==g g g g g g gg g ,2ACM d S ∆∴=, 122362ACM S ∆==g g故6d =221d r +=,213r ∴=,所以截面的面积为23r ππ=,故选:A .7.(2020•龙岩一模)已知四棱锥S ABCD -的所有顶点都在球O 的球面上,SA SB =,SA SB ⊥,底面ABCD 是等腰梯形,//AB CD ,且满足222AB AD DC ===,则球O 的表面积是( ) A .43πB 82C .4πD .8π【解答】解:底面ABCD 是等腰梯形,//AB CD ,且满足222AB AD DC ===, 可知底面ABCD 的外心为AB 的中点O ,到顶点的距离为1,因为SA SB =,SA SB ⊥,2AB =,所以2SA SB ==,AB 的中点O 到S 的距离为1, 所以O 是四棱锥的外接球的球心,外接球的半径为1, 所以球O 的表面积是:2414ππ⨯=. 故选:C .8.(2020•眉山模拟)已知腰长为3,底边长2为的等腰三角形ABC ,D 为底边BC 的中点,以AD 为折痕,将三角形ABD 翻折,使BD CD ⊥,则经过A ,B ,C ,D 的球的表面积为( ) A .10πB .12πC .16πD .20π【解答】解:如图所示,由题意可得:DB ,DC ,DA 两两相互垂直. 222318AD =-=.设经过A ,B ,C ,D 的球的半径为R . 则222411810R =++=.∴球的表面积10π=.故选:A .9.(2020•五华区校级模拟)已知圆锥SO 的底面半径为3,母线长为5.若球1O 在圆锥SO 内,则球1O 的体积的最大值为( ) A .92πB .9πC .323πD .12π【解答】解:设圆锥SO 的轴截面为等腰SAB ∆,则球1O 的体积最大时,球1O 的轴截面是SAB ∆ 的内切圆,所以11()22SAB S AB SO SA SB AB r ∆==++g g g , 解得:32r =,所以球1O 的体积的最大值为3439()322ππ=,故选:A.10.(2020•垫江县校级模拟)过球的一条半径的中点,作与该半径所在直线成30︒的平面,则所得截面的面积与球的表面积的比为()A.15256B.45256C.1564D.4564【解答】解:画大圆O,设半径为R,取半径OB的中点A,过A做截面,CD为直径,取中点E,连接OE,OE⊥截面CD,由题意可得30OAE∠=︒,所以33132224AE OA R R===g,在三角形OAC中,2222cosOC OA AC OA AC OAC=+-∠g g g,即222()2cos15022R RR AC AC=+-︒g g g,整理可得:2242330AC R AC R+-=g,解得:23124831584R RAC R-++-+==,所以331515444CE AC AE R R R-+=+=+=,所以所得截面的面积与球的表面积的比为2215()154464RRπ=,故选:C.11.(2020•内蒙古模拟)如图:空间四边形P ABC-中,13PM ANPB AC==,4PA BC==,3MN=,异面直线PA与BC所成角的余弦值为()A .14-B .164-C .164D .14【解答】解:如图,过N 作//ND BC ,交AB 于D ,并连接MD ,则AN ADAC AB=, Q13PM AN PB AC ==, ∴13PM AD PB AB ==, //MD AP ∴,23MD PA =,13DN BC =, ∴84,33MD DN ==,且3MN =, MDN ∴∠为异面直线PA 与BC 所成角或其补角,∴在MDN ∆中,根据余弦定理得,64169199cos 8464233MDN +-∠==-⨯⨯,∴异面直线PA 与BC 所成角的余弦值为164. 故选:C .12.(2020•凯里市校级模拟)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?“其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的体积为( ) A .140立方尺B .280立方尺C .2803立方尺 D .1403立方尺 【解答】解:由题意可得:这个四棱锥的体积128075833=⨯⨯⨯=立方尺,故选:C .13.(2020•龙岩一模)已知正三棱柱111ABC A B C -的底面边长为2,用一平面截此棱柱与侧棱1AA ,1BB ,1CC 分别交于M ,N ,Q ,若MNQ ∆为直角三角形,则MNQ ∆面积的最小值为( ) A .7B .3C .27D .6【解答】解:如图,以AC 中点O 为坐标原点,OB 所在直线为x 轴,AC 所在直线为y 轴, 建立空间直角坐标系,设(0M ,1-,)a ,(3N ,0,)b ,(0Q ,1,)c , 不妨设N 为直角,(3,1,)MN b a =-u u u u r ,(3,1,)QN b c =--u u u r, ∴()()20MN QN b a b c =--+=u u u u r u u u rg, 2211||||4()4()22S MN QN b a b c ==+-+-u u u u r u u u r g g 2221164[()()][()()]2b a bc b a b c =+-+-+-- 11616432++=…. 故选:B .14.(2020•咸阳二模)正四棱锥P ABCD -的五个顶点在同一个球面上,6,高为3,则它的外接球的表面积为( ) A .4πB .8πC .16πD .20π【解答】解:正四棱锥P ABCD -的五个顶点在同一个球面上,6,高为3,设它的外接球的半径为R ,球心为O ,底面ABCD 的中心为M . 设OM x =.则222(3)R x =+,3R x +=.解得:24R =. 可得球的表面积为16π. 故选:C .15.(2020•重庆模拟)如图,四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E ,F 分别在线段DB ,1DD 上,且112DE DF EB FD ==,G 在1CC 上且平面//AEF 平面1BD G ,则1(CGCC =)A .12B .13C .23D .14【解答】解:Q 四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E ,F 分别在线段DB ,1DD 上,且112DE DF EB FD ==, 1//EF BD ∴,平面11//ADD A 平面11BCC B ,G Q 在1CC 上且平面//AEF 平面1BD G ,//AF BG ∴,∴1113CG DE CC DD ==. 故选:B .16.(2020•邯郸模拟)如图一,在ABC ∆中,AB AC =,120A ∠=︒,D 为BC 中点,DE AC ⊥,将CDE ∆沿DE 翻折,得到直二面角C DE B --,连接BC ,F 是BC 中点,连接AF ,如图二,则下列结论正确的是()A .AD CD ⊥B .//AF DEC .DE ⊥平面ACED .//AF 平面CDE【解答】解:Q 在ABC ∆中,AB AC =,120A ∠=︒,D 为BC 中点,DE AC ⊥, 将CDE ∆沿DE 翻折,得到直二面角C DE B --,连接BC ,F 是BC 中点,连接AF ,DE AE ∴⊥,DE CE ⊥,AE CE E =Q I ,DE ∴⊥平面ACE .故选:C .17.(2020•福清市一模)已知正方体1111ABCD A B C D -的棱长为2,1AC ⊥平面α.平面α截此正方体所得的截面有以下四个结论: ①截面形状可能是正三角形 ②截面的形状可能是正方形 ③截面形状可能是正五边形 ④截面面积最大值为33 则正确结论的编号是( ) A .①④B .①③C .②③D .②④【解答】解:对①当α截此正方体所得截面为11B CD 时满足,故①正确.对②,由对称性得截面形状不可能为正方形,故②错误. 对③,由对称性得截面形状不可能是正五边形,故③错误. 对④,当截面为正六边形时面积最大,为36233=故选:A .18.(2020•道里区校级一模)已知三棱锥S ABC -的外接球为球O ,SA 为球O 的直径,且2SA =,若面SAC ⊥面SAB ,则三棱锥S ABC -的体积最大值为( )A .13B .23C .1D .2【解答】解:如图,连接OC ,OB ,则S ABC S OBC A OBC V V V ---=+, 两三棱锥高的和的最大值为2SA =. 要使三棱锥S ABC-的体积最大,则OBC ∆面积最大为111sin 111222OB OC BOC ⨯⨯⨯∠=⨯⨯⨯=. ∴三棱锥S ABC -的体积最大值为1112323⨯⨯=. 故选:A .19.(2020•焦作一模)某三棱柱的平面展开图如图,网格中的小正方形的边长均为1,K 是线段DI 上的点,则在原三棱柱中,AK CK +的最小值为( )A .65B .73C .45D .89【解答】解:将展开图折成立体图形,如图①,然后再把空间最短距离问题转化为平面两点间的距离最短问题,如图②所示. 因为8AJ =,3CJ =,所以223873AC =+=,即AK CK +的最小值为73. 故选:B .20.(2020•吉林二模)等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD ∆沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A 3B 2C 3D 23【解答】解:设E 为BD 中点,连接AE 、CE , 由题可知AE BD ⊥,CE BD ⊥, 所以BD ⊥平面AEC ,过A 作AO CE ⊥于点O ,连接DO ,则AO ⊥平面BDC , 所以ADO ∠即为直线AD 与平面BCD 所成角的平面角, 所以2sin 2AOADO AD∠==,可得32AO = 在AOE ∆中可得3OE =, 又132OC BD ==,即点O 与点C 重合,此时有AC ⊥平面BCD , 过C 作CF AE ⊥于点F ,又BD ⊥平面AEC ,所以BD CF ⊥, 所以CF ⊥平面ABD ,从而CAE ∠即为直线AC 与平面ABD 所成角,33sin 333CE CAE AE ∠===. 故选:A .21.(2020•眉山模拟)如图,在长方体1111ABCD A B C D -中,1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r,F 为MC 的中点.(1)求证://EF 平面1A DC ; (2)求三棱锥1C FCN -的体积;(3)求直线1A D 与直线CF 所成角的余弦值.【解答】(1)证明:在长方体1111ABCD A B C D -中,建立如图所示空间直角坐标系, 由1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r ,得(0D ,0,0),(1E ,0,2),(0F ,72,1),1(2A ,0,2),(0C ,4,0),1(2,0,2)DA =u u u u r ,(0DC =,4,0),(1EF =-u u u r ,72,1)-.设平面1A DC 的一个法向量为(,,)n x y z =r.由122040n DA x z n DC y ⎧=+=⎪⎨==⎪⎩u u u u r r g u u u r r g ,取1z =-,得(1,0,1)n =-r , Q 0EF n =u u u r rg ,且EF ⊂/平面1A DC ,//EF ∴平面1A DC ;(2)解:设F 到平面1CC N 的距离为d ,则12d =. ∴111111111233226C FCN F CC N CC N V V S d --===⨯⨯⨯⨯=V g ; (3)解:由(1)知,1(2,0,2)DA =u u u u r,又1(0,,1)2CF =-u u u r ,11110cos ,||||5222DA CF DA CF DA CF ∴<>===⨯u u u u r u u u ru u u u r u u u r g u u uu r u u u r g . ∴直线1A D 与直线CF 所成角的余弦值10.22.如图,在长方体1111ABCD A B C D -中,1:224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r,F 为MC 的中点.(1)求证://EF 平面1A DC ; (2)求二面角1N AC F --的余弦值.【解答】解:(1)证明:作1DD 的中点H ,连接EH ,FH , 又E 为11A D 的中点,EH ∴为△11A DD 的中位线,1//EH A D ∴,又F 为MC 的中点,FH ∴为梯形1D DCM 的中位线,//FH CD ∴,在平面1A DC 中,1A D CD D =I ,在平面EHF 中,EH FH H =I ,∴平面1//A DC 平面EHF ,又EF 在平面EHF 内, //EF ∴平面1A DC .(2)以点D 为坐标原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则17(1,4,0),(2,0,2),(0,4,0),(0,,1)2N A C F ,设平面1A CN 的一个法向量为(,,)m x y z =r ,则11(,,)(1,4,2)420(,,)(2,4,2)2420m A N x y z x y z m AC x y z x y z ⎧=--=-+-=⎪⎨=--=-+-=⎪⎩u u u u r r g g u u u u rr g g ,可取(0,1,2)m =r,同理可求得平面1A FC 的一个法向量为(3,2,1)n =r,∴270cos ,||||m n m n m n <>==r r g r rr r ,又二面角1N AC F --的平面角为钝角,故二面角1N AC F --的余弦值为27023.(2020•宜昌模拟)如图,在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.【解答】(1)证明:Q 在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,22MB MD ==222AB AM BM ∴+=,222AD AM DM +=,AB AM ∴⊥,AD AM ⊥,AD AB A =Q I ,AM ∴⊥平面ABCD .(2)解:AB AD ⊥Q ,AM ⊥平面ABCD ,∴以A 为原点,AD 为x 轴,AM 为y 轴,AB 为z 轴,建立空间直角坐标系,//CD AB Q ,2CD AB =,E 为线段BM 上一点,且2BE EM =,2AB AM AD ===,22MB MD ==.(0E ∴,43,2)3,(2C ,0,1),(2D ,0,0),(0B ,0,2),(0M ,2,0), (2EC =u u u r ,43-,1)3,(2BD =u u u r ,0,2)-,(0BM =u u u u r ,2,2)-,设平面BDM 的法向量(m x =r,y ,)z ,则220220m BD x z m BM y z ⎧=-=⎪⎨=-=⎪⎩u u u r r g u u u u r r g ,取1x =,得(1m =r ,1,1), 设直线EC 与平面BDM 所成角为θ, 则直线EC 与平面BDM 所成角的正弦值为:||159sin ||||5339m EC m EC θ===u u u r r g u u u r r g g.24.(2020•五华区校级模拟)如图所示的几何体中,正方形ABCD 所在平面垂直于平面APBQ ,四边形APBQ 为平行四边形,G 为PC 上一点,且BG ⊥平面APC ,2AB =.(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥P ABC -体积最大时,求平面APC 与平面BCQ 所成二面角的正弦值.【解答】(1)证明:因为平面ABCD ⊥平面APBQ ,平面APBQ ⋂平面ABCD AB =, 四边形ABCD 为为正方形,即BC AB ⊥,BC ⊂平面ABCD , 所以BC ⊥平面APBQ ,又因为AP ⊂平面APBQ ,所以AP BC ⊥, 因为BG ⊥面APC ,AP ⊂平面PAC , 所以AP BG ⊥,因为BC BG B =I ,BC ,BG ⊂平面PBC , 所以AP ⊥平面PBC , 因为AP ⊂平面PAD , 所以平面PAD ⊥平面PBC .(2)解:111323P ABC C APB V V PA PB BC PA PB --===g g g g ,求三棱锥P ABC -体积的最大值,只需求PA PB g 的最大值. 令PA m =,PB n =, 由(1)知AP PB ⊥,所以224m n +=,当且仅当2m n = 即2PA PB =时,22112()3323P ABC minm n V mn -+==g …. 以AB 中点O 为坐标原点建立空间直角坐标系如图,则 (0A ,1-,0),(0B ,1,0),(0C ,1,2),(1P ,0,0). 设1(,,)n x y z =u u r为平面APC 的一个法向量,则110220n AP x y n BP x z ⎧=+=⎪⎨=+=⎪⎩u u r u u u r g u u r u u u r g ,可取1x =,则1(1,1,1)n =-u u r,因为四边形APBQ 为平行四边形,APB ∆为等腰直角三角形,所以四边形APBQ 为正方形,取平面BCQ 的一个法向量为2(1,1,0)n BP ==-u u r u u u r,所以1cos n <u u r ,1221263||||n n n n n >==u u r u u ru u r g u u r u u r g ,所以1sin n <u u r ,233n >=u u r ,即平面APC 与平面BCQ 所成二面角的正弦值为3325.(2020•龙岩一模)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,4AB =,2BC CD ==,顶点1D 在底面ABCD 内的射影恰为点C .(1)求证:BC ⊥平面1ACD ;(2)若直线1DD 与底面ABCD 所成的角为4π,求平面11ABC D 与平面ABCD 所成锐二面角的余弦值.【解答】解:(1)证明:如图,连接1D C ,则1D C ⊥平面ABCD , BC ⊂Q 平面ABCD ,1BC D C ∴⊥,在等腰梯形ABCD 中,连接AC ,过点C 作CG AB ⊥于点G ,4AB =Q ,2BC CD ==,//AB CD ,则3AG =,1BG =,CG =AG ∴=, 因此满足22216AC BC AB +==,BC AC ∴⊥, 又1D C ,AC ⊂平面1AD C ,1D C AC C =I , BC ∴⊥平面1AD C .(2)解:由(1)知AC ,BC ,1D C 两两垂直, 1D C ⊥Q 平面ABCD ,∴14D DC π∠=,12D C CD ∴==,以C 为坐标原点,分别以CA ,CB ,1CD ,所在直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系,则(0C ,0,0),A ,0,0),(0B ,2,0),1(0D ,0,2),∴(AB =-u u u r ,2,0),1(AD =-u u u u r 0,2),设平面11ABC D 的法向量(n x =r,y ,)z ,由12020AB n y AD n z ⎧=-+=⎪⎨=-+=⎪⎩u u u r r g u u u u r r g ,取1x =,得n =r , 又1(0CD =u u u u r ,0,2)为平面ABCD 的一个法向量,设平面11ABC D 与平面ABCD 所成锐二面角为θ,则11||cos 7||||CD n CD n θ===u u u u r rg u u u u r r g .∴平面11ABC D 与平面ABCD所成锐二面角的余弦值为7.。
2020年高考数学(理科)全国2卷高考模拟试卷(3)
2020年高考数学(理科)全国2卷高考模拟试卷(3)一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞) 2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√33.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( ) A .若a ∥α,b ∥β,a ∥b ,则α∥β B .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2 D .34√26.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√347.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( )A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关 12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1 D .x 29−y 216=1二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 .14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 条.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 km 处,最少费用为 万元.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为 cm .三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a2+a3=a5﹣b1,②a2•a3=2a7,③S3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n}的公差d>0,前n项和为S n,若_______,数列{b n}满足b1=1,b2=1 3,a nb n+1=nb n﹣b n+1.(1)求{a n}的通项公式;(2)求{b n}的前n项和T n.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n(单位:笼,n∈N),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X为一天的包子需求量,求X的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子?(Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y为当天的利润(单位:元),求Y的分布列和数学期望.19.(12分)如图所示,在四棱锥P﹣ABCD中,四边形ABCD为菱形,∠DAB=60°,AB =2,△P AD为等边三角形,平面P AD⊥平面ABCD.(1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.2020年高考数学(理科)全国2卷高考模拟试卷(3)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)【解答】解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√3【解答】解:由1−2i z=1+i ,得z =1−2i1+i =(1−2i)(1−i)(1+i)(1−i)=−12−32i ,∴|z |=|z |=√(−12)2+(−32)2=√102.故选:C .3.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:因为在△ABC 中AB →•AC →=BA →•BC →等价于AB →•AC →−BA →•BC →=0等价于AB →•(AC →+BC →)=0,因为AC →+BC →的方向为AB 边上的中线的方向.即AB 与AB 边上的中线相互垂直,则△ABC 为等腰三角形,故AC =BC , 即|AC|→=|BC →|,所以为充分必要条件. 故选:C .4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( )A .若a ∥α,b ∥β,a ∥b ,则α∥βB .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β【解答】解:A .若a ∥α,b ∥β,a ∥b ,则α∥β,不正确,可能相交; B .若α⊥β,a ⊥α,则a ∥β或a ⊂β,因此不正确; C .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥α,正确;证明:设α∩β=b ,α∩γ=c ,取P ∈α,过点P 分别作m ⊥b ,n ⊥c , 则m ⊥β,n ⊥γ,∴m ⊥a ,n ⊥a ,又m ∩n =P ,∴a ⊥α. D .若α∥β,a ∥α,则a ∥β或a ⊂β. 故选:C .5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2D .34√2【解答】解:由题意三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,棱锥的高为P A ,可得16=8+P A 2,所以P A =2√2,所以三棱锥的体积为:13×12×AB ×AC ×PA =√23•AB •AC ≤√23⋅AB 2+AC 22=4√23,当且仅当AB =AC =2时,三棱锥的体积取得最大值. 故选:C .6.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√34【解答】解:设|AF |=a ,|BF |=b ,A 、B 在准线上的射影点分别为Q 、P , 连接AQ 、BQ由抛物线定义,得|AF |=|AQ |且|BF |=|BP |,在梯形ABPQ 中根据中位线定理,得2|MN |=|AQ |+|BP |=a +b . 由余弦定理得|AB |2=a 2+b 2﹣2ab cos 2π3=a 2+b 2+ab ,配方得|AB |2=(a +b )2﹣ab , 又∵ab ≤(a+b 2) 2,∴(a +b )2﹣ab ≥(a +b )2﹣( a+b 2) 2=34(a +b )2得到|AB |≥√32(a +b ). 所以|MN||AB|≤a+b2√32(a+b)=√33, 即|MN||AB|的最大值为√33. 故选:C .7.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]【解答】解:设sin x +cos x =t (−√2≤t ≤√2)所以:sinxcosx =t 2−12则:f (x )=sin x +cos x +sin x •cos x=t +t 2−12=12(t +1)2−1当t =√2时,函数取最大值:f(x)max =f(√2)=√2+12 当t =﹣1时,函数取最小值:f (x )min =f (﹣1)=﹣1 所以函数的值域为:[−1,√2+12] 故选:B .8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .【解答】解:∵x 3+4>0,∴x 3>﹣4,解得x >−√43,∴函数的定义域为{x |x >−√43}, 当x →−√43时,f (x )→﹣∞,∴排除选项A ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f ′(x)=3x 2x 3+4−e x−1, f (0)=ln (0+4)﹣e ﹣1=ln 4﹣e ﹣1>0,∴排除选项C ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f '(0)=﹣e ﹣1<0,即x =0在函数的单调递减区间内,∴排除选项D .故选:B .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变【解答】解:由图可知A =1,T =π, ∴ω=2,又−π6ω+φ=2k π(k ∈Z ),∴φ=2k π+π3(k ∈Z ),又0<ϕ<π2, ∴φ=π3,∴y =sin (2x +π3).∴为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有向左平移π3个长度单位,得到y =sin (x +π3)的图象,再将y =sin (x +π3)的图象上各点的横坐标变为原来的12(纵坐标不变)即可.故选:A .10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米【解答】解:在△ABC 中,∠ACB =180°﹣75°﹣45°=60°, 由正弦定理得:AB sin∠ACB=AC sin∠ABC,∴AC =AB⋅sin∠ABC sin∠ACB=120×√22√32=40√6,∴S △ABC =12AB •AC •sin ∠CAB =12×120×40√6×sin75°≈5703.6, ∴C 到AB 的距离d =2S △ABC AB=2×5703.6120≈95. 故选:C .11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关【解答】解:频率是随机的,随实验而变化,但概率是唯一确定的一个值. 故选:C .12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1D .x 29−y 216=1【解答】解:若(F 2F 1→+F 2A →)•F 1A →=0,即为若(F 2F 1→+F 2A →)•(−F 2F 1→+F 2A →)=0, 可得AF 2→2=F 2F 1→2,即有|AF 2|=|F 2F 1|=2c , 由双曲线的定义可得|AF 1|=2a +2c ,在等腰三角形AF 1F 2中,tan ∠AF 2F 1=−247,cos ∠AF 2F 1=−725=4c 2+4c 2−(2a+2c)22⋅2c⋅2c,化为3c =5a , 即a =35c ,b =45c ,可得a :b =3:4,a 2:b 2=9:16. 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 9 .【解答】解:∵函数f (x )={x 2,0≤x <5f(x −5),x ≥5,∴f (18)=f (3×5+3)=f (3)=32=9. 故答案为:9.14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 400 条.【解答】解:为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘, 几天后,随机打捞40条鱼,其中带有标记的共5条. 设池塘中原来有鱼n 条,则540=50n,解得n =400. 故答案为:400.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 5 km 处,最少费用为 8 万元.【解答】解:设x 为仓库与车站距离,由题意可设y 1=k 1x,y 2=k 2x , 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8, ∴y 1=20x ,y 2=0.8x费用之和y =y 1+y 2=0.8x +20x ≥2√20x ×0.8x =2×4=8, 当且仅当0.8x =20x ,即x =5时等号成立.当仓库建在离车站5km 处两项费用之和最小.最少费用为8万元. 故答案为:5,8.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为165cm .【解答】解:连接OG 交CD 于点M ,则OG ⊥DC ,点M 为CD 的中点,连接OC , △OCM 为直角三角形,设正方形的边长为2x ,则OM =x ,由圆的半径 为4,则MG =4﹣x ,设额E ,F ,G ,H 重合于点P ,则PM =MG =4﹣x >x 则0x <2,高PO =√(4−x)2−x 2=√16−8x , V =13(2x)2√16−8x =8√23√2x 4−x 5, 设y =2x 4﹣x 5,y ′=8x 3﹣5x 4=x 3(8﹣5x ),当0<x <85时,y ′>0,y =2x 4﹣x 5单调递增;当85<x <2时,y ′<0,y =2x 4﹣x 5单调递减,所以当x =85时,V 取得最大值,此时,2x =165. 即正方形ABCD 的边长为165时,四棱锥体积取得最大值.三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a 2+a 3=a 5﹣b 1,②a 2•a 3=2a 7,③S 3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差d >0,前n 项和为S n ,若 _______,数列{b n }满足b 1=1,b 2=13,a n b n +1=nb n ﹣b n +1. (1)求{a n }的通项公式; (2)求{b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解答】解:若选①:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2+a 3=a 5﹣b 1,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n). 若选②:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2•a 3=2a 7,∴(2+d )(2+2d )=2(2+6d ),∵d >0,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 若选③:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵S 3=15,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n (单位:笼,n ∈N ),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X 为一天的包子需求量,求X 的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子? (Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y 为当天的利润(单位:元),求Y 的分布列和数学期望.【解答】解:(Ⅰ)由题意得,X 的数学期望为E(X)=16×1060+17×1560+18×2060+19×1060+20×560=17.75. (Ⅱ)因为P(n ≤18)=34<0.8,P(n ≤19)=1112>0.8, 所以包子店每天至少要做19笼包子.(Ⅲ)当n =16时,Y =16×40﹣2×20=600; 当n =17时,Y =17×40﹣20=660; 当n ≥18时,Y =18×40=720. 所以Y 的可能取值为600,660,720,P(Y =600)=16,P(Y =660)=14,P(Y =720)=1−16−14=712. 所以Y 的分布列为Y 600660720P1614712所以Y 的数学期望为E(Y)=600×16+660×14+720×712=685.19.(12分)如图所示,在四棱锥P ﹣ABCD 中,四边形ABCD 为菱形,∠DAB =60°,AB =2,△P AD 为等边三角形,平面P AD ⊥平面ABCD . (1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.【解答】(1)证明:取AD 中点O ,连接PO ,OB ,因为平面P AD ⊥平面ABCD ,△P AD 为等边三角形,O 为AD 的中点, 所以PO ⊥平面ABCD ,PO ⊥AD因为四边形ABCD 为菱形,且∠DAB =60°,O 为AD 中点, 所以BO ⊥AD因为PO ∩BO =O ,所以AD ⊥面PBO ,所以AD ⊥PB ;(2)解:在△OCD 中,OC =√1+4−2×1×2×(−12)=√7,∴PC =√10, ∴S △PCD =12×√10×√62=√152设A 到平面PCD 的距离为h ,则13×12×2×2×sin120°×√3=13×√152h ,∴h =2√155, ∵DF 与平面PDC 所成角的正弦值为2√55, ∴2√155DF=2√55,∴DF =√3,∴F 是AB 的中点,AF =1.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 【解答】解:(1)根据椭圆的对称性,不妨设M (x 0,y 0),(﹣2√3<x 0<2√3,0<y 0≤2),过点M 作MH ⊥x 轴,垂足为H ,则H (x 0,0)(0<y 0≤2), 于是又tan ∠AMH =|AH||MH|=x 0+2√3y 0,tan ∠BMH =|BH||MH|=2√3−x 0y 0, ∴tan ∠AMB =tan (∠AMH +∠BMH )=tan∠AMH+tan∠BMH1−tan∠AMHtan∠BMH =4√3y 0x 02+y 02−12,因为点M (x 0,y 0)在椭圆C 上,所以x 0212+y 024=1,所以x 02=12﹣3y 02, 所以tan ∠AMB =−2√3y 0,而0<y 0≤2, 所以tan ∠AMB =−2√3y 0≤−√3,因为0<∠AMB <π, 所以∠AMB 的最大值为2π3,此时y 0=2,即M 为椭圆的上顶点,由椭圆的对称性,当M 为椭圆的短轴的顶点时,∠AMB 取最大值,且最大值为2π3;(2)设直线BM 的斜率为k '.M (x 0,y 0),则k =0x 0+2√3,k '=0x 0−2√3,所以kk '=y 02x 02−12,又x 0212+y 024=1,所以x 02=12﹣3y 02,所以kk '=−13.因为−12<k <−13,所以k '∈(23,1)所以直线BM 的斜率的取值范围.(23,1).21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 【解答】解:(Ⅰ)当λ=﹣1时,f (x )=xlnx +λx 2,则f ′(x )=lnx +1﹣2x . 故f ′(1)=﹣1,又f (1)=﹣1.故所求期限的方程为y ﹣(﹣1)=﹣1•(x ﹣1),即x +y =0; (Ⅱ)由题意得,xlnx +λx 2≤λ在[1,+∞)上恒成立, 设函数g (x )=xlnx +λ(x 2﹣1). 则g ′(x )=lnx +1+2λx .故对任意x ∈[1,+∞),不等式g (x )≤0=g (1)恒成立, ①当g ′(x )≤0,即lnx+1x≤−2λ恒成立时,函数g (x )在[1,+∞)上单调递减,设r (x )=lnx+1x ,则r ′(x )=−lnxx2≤0, ∴r (x )max =r (1),即1≤﹣2λ,解得λ≤−12,符合题意;②当λ≥0时,g ′(x )≥0恒成立,此时函数g (x )在[1,+∞)上单调递增, 则不等式g (x )≥g (1)=0对任意x ∈[1,+∞)恒成立,不符合题意; ③当−12<λ<0时,设q (x )=g ′(x )=lnx +1+2λx ,则q ′(x )=1x +2λ, 令q (x )=0,解得x =−12λ>1, 故当x ∈(1,−12λ)时,函数g (x )单调递增, ∴当x ∈(1,−12λ)时,g (x )>0成立,不符合题意, 综上所述,实数λ的取值范围为(﹣∞,−12]. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值.【解答】解:(Ⅰ)参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C :x 24+y 2=1;曲线D 的极坐标方程为ρsin(θ+π4)=3√102.转化为直角坐标方程为:x +y −3√5=0; (Ⅱ)设点P (2cos θ,sin θ)到直线x +y ﹣3√5=0的距离d =√5|√2=√5sin(θ+α)−3√5|√2,当sin (θ+α)=1时,d min =√10. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.【解答】解:(1)当x <0时,则f (x )=﹣3x +2≤4,解得:−23≤x <0, 当0≤x ≤2时,则f (x )=x +2≤4,解得:0≤x ≤2, 当x >2时,则f (x )=3x ﹣2≤4,此时无解, 综上,不等式的解集是{x |−23≤x ≤2};(2)由(1)知,当x <0时,f (x )=﹣3x +2>2, 当0≤x ≤2时,则f (x )=x +2≥2, 当x >2时,则f (x )=3x ﹣2>4, 故函数f (x )的最小值是2, 故m =2,即a 2+b 2=4, 则4a 2+1b 2+1=15(a 2+b 2+1)(4a 2+1b 2+1)第21页(共21页)=15[5+4(b 2+1)a 2+a 2b 2+1] ≥15(5+2√4(b 2+1)a 2⋅a 2b 2+1)≥95, 当且仅当4(b 2+1)a 2=a 2b 2+1且a 2+b 2=4, 即a 2=103,b 2=23取“=”, 故4a 2+1b 2+1的最小值是95.。
2020年江西省南昌市高考数学三模试卷(理科) (解析版)
2020年高考数学三模试卷(理科)一、选择题(共12小题).1.已知(1+i)z=i(i为虚数单位),在复平面内,复数z的共轭复数z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合A={x||x﹣a|=1},B={﹣1,0,b}(b>0),若A⊆B,则对应的实数(a,b)有()A.1对B.2对C.3对D.4对3.为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(10分制)的频数分布表如表:得分345678910频数231063222设得分的中位数为m e,众数为m0,平均数为x,则()A.m e=m0=x B.m e=m0<x C.m e<m0<x D.m0<m e<x 4.某几何体的三视图如图所示,则该几何体的体积为()A.3πB.9πC.12πD.36π5.在△ABC中,D为线段AB上一点,且BD=3AD,若CD→=λCA→+μCB→,则λμ=()A.13B.3C.14D.46.在△ABC中,角A,B,C所对应的边分别为a,b,c,c a+b+b a+c=1,则下列说法不一定成立的是()A.△ABC可能为正三角形B.角A,B,C为等差数列C.角B可能小于π3D.角B+C为定值7.已知函数f(x)=2sin2ωx(ω>0)的最小正周期为π,若将其图象沿x轴向右平移m(m>0)个单位,所得图象关于x=π3对称,则实数m的最小值为()A.π4B.π3C.3π4D.π8.函数f(x)=(x−1x)cos x(﹣π≤x≤π且x≠0)的图象可能为()A.B.C.D.9.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1.则甲以3:1取得胜利的概率为()A.0.162B.0.18C.0.168D.0.17410.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.若|F1F2|=4|AB|,则C的渐近线方程为()A.√3x±y=0B.x±√3y=0C.2x±y=0D.x±2y=011.将正整数20分解成两个正整数的乘积有1×20,2×10,4×5三种,其中4×5是这三种分解中两数差的绝对值最小的.我们称4×5为20的最佳分解.当p×q(p≤q且p,q∈N+)是正整数n的最佳分解时,定义函数f(n)=q﹣p,则数列{f(3n)}(n∈N+)的前100项和S100为()A.350+1B.350﹣1C.350−12D.350+1212.已知函数f(x)=ln(e|2x|−4+1),g(x)={a+x−2(x≥0)a−x−2(x<0),若存在a∈[n,n+1](n∈Z)使得方程f(x)=g(x)有四个实根.则n的最大值为()A.2B.1C.0D.﹣1二.填空题:本题共4小题,每小题5分共20分.13.执行如图所示的框图程序,输出的结果S=.14.已知函数f(x)=2|x|+x2,m=f(log213),n=f(7−0.1),p=f(log425),则m,n,p的大小关系是.15.已知sin(α+π6)=13,则cos(α−5π6)tan(π3−α)=.16.已知长方体ABCD﹣A1B1C1D1,AB=32,AD=2,AA1=2√3,已知P是矩形ABCD内一动点,PA1与平面ABCD所成角为π3,设P点形成的轨迹长度为α,则tanα=;当C1P的长度最短时,三棱锥D1﹣DPC的外接球的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知数列{a n}中,a1=2,a n a n+1=2pn+1(p为常数).(Ⅰ)若﹣a1,12a2,a4成等差数列,求p的值;(Ⅱ)是否存在p,使得{a n}为等比数列?若存在,求{a n}的前n项和S n;若不存在,请说明理由.18.三棱柱ABC﹣A1B1C1中,AB=2,BC=√2,AC=2,四边形ABB1A1为菱形,且∠ABB1=60o,AC⊥CC1.(Ⅰ)求证:平面ABB1A1⊥平面BB1C1C;(Ⅱ)求BB1与平面ABC的夹角正弦值.19.在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如下的频率分布直方图.(1)若甲解密成功所需时间的中位数为47,求a、b的值,并求出甲在1分钟内解密成功的频率;(2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为P n=P1(910)n﹣1+n−110(n=1,2,3),其中P i表示第i个出场选手解密成功的概率,并且P1定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.①求该团队挑战成功的概率;②该团队以P i从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目X的分布列与数学期望.20.在直角坐标系xOy上取两个定点A1(−√6,0),A2(√6,0),再取两个动点N1(0,m),N2(0,n),且mn=2.(Ⅰ)求直线A1N1与A2N2交点M的轨迹C的方程;(Ⅱ)过R(3,0)的直线与轨迹C交于P,Q,过P作PN⊥x轴且与轨迹C交于另一点N,F为轨迹C的右焦点,若RP→=λRQ→(λ>1),求证:NF→=λFQ→.21.已知函数f(x)=alnx+12(a−1)x2+1(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=﹣1时,对任意的x1,x2∈(0,+∞),且x1≠x2,都有|x1f(x2)−x2f(x1)x1−x2|>mx1x2,求实数m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标系中,曲线C:ρ=4cosθ,以极点O为旋转中心,将曲线C逆时针旋转π3得到曲线C′.(Ⅰ)求曲线C’的极坐标方程;(Ⅱ)求曲线C与曲线C′的公共部分面积.[选修4-5:不等式选讲]23.已知f(x)=k|x|+|x﹣1|.(Ⅰ)若k=2,解不等式f(x)≤5.(Ⅱ)若关于x的不等式f(x)≤|x+1|+|2x﹣2|的充分条件是x∈[12,2],求k的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(1+i )z =i (i 为虚数单位),在复平面内,复数z 的共轭复数z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z 的坐标得答案. 解:由(1+i )z =i , 得z =i 1+i =i(1−i)2=12+12i , ∴复数z 的共轭复数z 对应的点是(12,−12),在第四象限. 故选:D .【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.设集合A ={x ||x ﹣a |=1},B ={﹣1,0,b }(b >0),若A ⊆B ,则对应的实数(a ,b )有( ) A .1对B .2对C .3对D .4对【分析】解方程得集合A 有两元素,由A ⊆B 得A 中元素属于B ,可解出a ,b . 解:∵集合A ={x ||x ﹣a |=1}={a ﹣1,a +1}⊆{﹣1,0,b }(b >0),若a ≤0,则a ﹣1=﹣1,即a =0,所以b =1;若a >0,a ﹣1=﹣1或a ﹣1=0,则a =1,所以b =2, 则{a =0b =1或{a =1b =2则对应的实数(a ,b )有2对. 故选:B .【点评】本题考查的知识点是集合的包含关系及应用,属于基础题.3.为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(10分制)的频数分布表如表: 得分 3 4 5 6 7 8 9 10 频数231063222设得分的中位数为m e ,众数为m 0,平均数为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x【分析】由频率分步表求出众数、中位数和平均数,比较即可. 解:由图知,众数是m 0=5;中位数是第15个数与第16个数的平均值,由图知将数据从大到小排第15 个数是5,第16个数是6, 所以中位数是m e =5+62=5.5; 平均数是x =130×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈6; ∴m 0<m e <x . 故选:D .【点评】本题考查了求出一组数据的众数、中位数、平均值的应用问题,是基础题. 4.某几何体的三视图如图所示,则该几何体的体积为( )A .3πB .9πC .12πD .36π【分析】由三视图还原原几何体,可知该几何体为一个圆锥的四分之一,其中圆锥的底面半径为3,高为4,再由圆锥体积公式求解. 解:由三视图还原原几何体如图,该几何体为一个圆锥的四分之一,其中圆锥的底面半径为3,高为4. ∴该几何体的体积为14×13π×32×4=3π.故选:A .【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题. 5.在△ABC 中,D 为线段AB 上一点,且BD =3AD ,若CD →=λCA →+μCB →,则λμ=( )A .13B .3C .14D .4【分析】由已知结合向量的线性运算可分别求出λμ,从而可求. 解:因为BD =3AD ,所以CD →=CB →+BD →=CB →+34BA →=CB →+34(CA →−CB →)=34CA →+14CB →,由CD →=λCA →+μCB →可得λ=34,μ=14,则λμ=3.故选:B .【点评】本题考查了平面向量的线性运算的应用及平面向量基本定理的应用. 6.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,c a+b +b a+c=1,则下列说法不一定成立的是( ) A .△ABC 可能为正三角形 B .角A ,B ,C 为等差数列 C .角B 可能小于π3D .角B +C 为定值【分析】化简ca+b+b a+c=1,利用余弦定理求出A 的值,再判断选项中的命题是否正确.解:△ABC 中,ca+b+b a+c=1,(a +c )c +(a +b )b =(a +b )(a +c ), c 2+b 2﹣a 2=cb ,cos A =c 2+b 2−a 22cb =cb 2cb =12,A ∈(0,π), A =π3, B +C =2A =2π3, 所以B 、A 、C 成等差数列,B 错误. 当a =b =c 时,△ABC 是正三角形,A 正确; 由B +C =2π3知,选项C 、D 正确. 故选:B .【点评】本题考查了解三角形的应用问题,也考查了分析问题解决问题的能力,是中档题.7.已知函数f (x )=2sin 2ωx (ω>0)的最小正周期为π,若将其图象沿x 轴向右平移m (m >0)个单位,所得图象关于x =π3对称,则实数m 的最小值为( ) A .π4B .π3C .3π4D .π【分析】先利用降幂公式将函数式化简为y =A cos (ωx +φ)+k 的形式,然后利用图象变换的规律求出变换后的解析式,最后利用函数的最值的性质求出m 的值.解:f (x )=﹣cos2ωx +1,由其最小正周期为π,∴ω=1,所以f (x )=﹣cos2x +1, 将其图象沿x 轴向右平移m (m >0)个单位,所得图象对应函数为y =﹣cos (2x ﹣2m )+1,因为其图象关于x =π3对称,则有cos(2π3−2m)=±1,∴2π3−2m =kπ,k ∈Z ,解得m =π3−kπ2, 由m >0,实数m 的最小值为π3. 故选:B .【点评】本题考查考生对正弦型三角函数的图象与性质(对称性、周期性、单调性)的掌握情况.考查考生对三角函数三种表征(零点、对称轴、单调性)的理解与转换.考查考生对三角函数的数形结合思想、基于三角函数的逻辑推理能力及运算求解能力. 8.函数f (x )=(x −1x)cos x (﹣π≤x ≤π且x ≠0)的图象可能为( )A .B .C .D .【分析】由条件可得函数f (x )为奇函数,故它的图象关于原点对称;再根据但是当x 趋向于0时,f (x )>0,结合所给的选项,得出结论.解:对于函数f(x)=(1x−x)cos x(﹣π≤x≤π且x≠0),由于它的定义域关于原点对称,且满足f(﹣x)=(−1x+x)cos x=﹣f(x),故函数f(x)为奇函数,故它的图象关于原点对称.故排除A、B.当x=π,f(x)<0,故排除C,但是当x趋向于0时,f(x)<0,故选:D.【点评】本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题.9.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1.则甲以3:1取得胜利的概率为()A.0.162B.0.18C.0.168D.0.174【分析】先列出甲以3:1取得胜利的所有情况,再利用相互独立事件的乘法运算求解每种情况的概率,最后利用互斥事件概率的加法公式计算即可.解:甲以3:1取得胜利的所有情况为:赢赢输赢,赢输赢赢,输赢赢赢,对应的概率分别为:0.5×0.6×0.3×0.6=0.054,0.5×0.4×0.5×0.6=0.06,0.5×0.4×0.5×0.6=0.06,所以甲以3:1取得胜利的概率为:0.054+0.06+0.06=0.174.故选:D.【点评】本题主要考查相互独立事件的概率,互斥事件的概率,考查运算求解能力和分析问题,解决问题的能力.10.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.若|F1F2|=4|AB|,则C的渐近线方程为()A.√3x±y=0B.x±√3y=0C.2x±y=0D.x±2y=0【分析】由双曲线的定义和内切圆的切线性质:圆外一点向圆引切线,则切线长相等,结合双曲线的定义,转化求解渐近线方程即可.解:双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.与MF1的切点为N,如图:设AB=n,MB=m,BF2=t,由双曲线的定义可知:m+2n+t﹣m﹣t=2a,可得n =a,若|F1F2|=4|AB|,所以2c=4a,c=2a,则b=√3a.所以双曲线的渐近线方程为:√3x±y=0.故选:A.【点评】本题考查双曲线的方程和性质,主要是离心率的求法,注意运用圆的切线长相等,以及方程思想,考查运算能力,属于中档题.11.将正整数20分解成两个正整数的乘积有1×20,2×10,4×5三种,其中4×5是这三种分解中两数差的绝对值最小的.我们称4×5为20的最佳分解.当p×q(p≤q且p,q∈N+)是正整数n的最佳分解时,定义函数f(n)=q﹣p,则数列{f(3n)}(n∈N+)的前100项和S100为()A.350+1B.350﹣1C.350−12D.350+12【分析】先写出数列{f(3n)}(n∈N+)的前几项,根据前几项归纳出:f(32k﹣1)=3k ﹣3k﹣1=2×3k﹣1,f(32k)=3k﹣3k=0,再求出其前100项和.解:根据题意,知:f(3)=3﹣1=2,f(32)=3﹣3=0,f(33)=32﹣3=6,f(34)=32﹣32=0,…,f(32k﹣1)=3k﹣3k﹣1=2×3k﹣1,f (32k )=3k ﹣3k =0.∴数列{f (3n )}(n ∈N +)的前100项和S 100为2×30+0+2×31+0+…+2×349+0=2(30+31+32+…+349)=2×1−3501−3=350﹣1. 故选:B .【点评】本题主要考查等比数列、及其数列的求和,属于中档题. 12.已知函数f(x)=ln(e|2x|−4+1),g(x)={a +x −2(x ≥0)a −x −2(x <0),若存在a ∈[n ,n +1](n ∈Z )使得方程f (x )=g (x )有四个实根.则n 的最大值为( ) A .2B .1C .0D .﹣1【分析】依题意,转化可得函数F(x)={ln(e x−2+e 2−x ),x ≥0ln(e −x−2+e x+2),x <0与直线y =a 有且仅有四个不同的交点,且易发现函数F (x )为偶函数,利用导数研究函数F (x )的性质,作出函数图象,观察图象可得实数a 的取值范围,进而得到n 的最大值.解:令h(x)=f(x)−g(x)={ln(e 2x−4+1)−(x −2)−a ,x ≥0ln(e −2x−4+1)+(x +2)−a ,x <0,则h(x)={ln(e 2x−4+1e x−2)−a =ln(e x−2+e 2−x )−a ,x ≥0ln[(e −2x−4+1)(e x+2)]−a =ln(e −x−2+e x+2)−a ,x <0, 依题意,函数F(x)={ln(e x−2+e 2−x ),x ≥0ln(e −x−2+e x+2),x <0与直线y =a 有且仅有四个不同的交点,易知函数F (x )为偶函数,故先研究x ≥0时的情况, 当x ≥0时,F′(x)=e x−2−e 2−xe x−2+e 2−x,令F ′(x )<0,解得0≤x <2,令F ′(x )>0,解得x >2,故函数F (x )在(0,2)上单调递减,在(2,+∞)上单调递增,且F (x )极小值=F (2)=ln 2,由偶函数的对称性,可作出函数F (x )的图象,如下图所示,由图可知,a∈(ln2,ln(e﹣2+e2)),又0<ln2<1,2<ln(e﹣2+e2)<3,∴n的最大值为2.故选:A.【点评】本题考查函数与导数的综合运用,考查函数零点与方程根的关系,考查转化思想与数形结合思想,将问题转化为函数F(x)的图象与直线y=a有且仅有四个不同的交点,进而通过数形结合确定实数a的取值范围是解题的关键,属于中档题.二.填空题:本题共4小题,每小题5分共20分.13.执行如图所示的框图程序,输出的结果S=5.【分析】模拟程序的运行过程可知:该程序的功能是利用循环结构计算并输出变量s=0﹣1+2﹣3+…+10的值,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量s=0﹣1+2﹣3+…+10的值,可得s=0﹣1+2﹣3+…+10=(2+4+…+10)﹣(1+3+…+9)=5.故答案为:5.【点评】本题主要考查伪代码(算法语句)的应用,属于基础题.14.已知函数f(x)=2|x|+x2,m=f(log213),n=f(7−0.1),p=f(log425),则m,n,p的大小关系是p>m>n.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.解:∵f(x)=2|x|+x2,则f(﹣x)=2|﹣x|+(﹣x)2=f(x),即f(x)为偶函数,因为x>0时,f(x)=2x+x2单调递增,m =f (log213)=f (log 23),n =f (0.7﹣0.1),p =f (log 425)=f (log 25),因为log 25>2>log 23>1>7﹣0.1>0, 故p >m >n 故答案为:p >m >n【点评】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.15.已知sin(α+π6)=13,则cos(α−5π6)tan(π3−α)= −13 . 【分析】直接利用三角函数关系式的恒等变换和诱导公式的应用求出结果.解:已知sin(α+π6)=13.故:cos(α−5π6)tan(π3−α)=−cos[π−(α+π6)]1tan(α+π6)=−sin(α+π6)=−13.故答案为:−13.【点评】本题考查的知识要点:三角函数关系式的恒等变换,诱导公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.16.已知长方体ABCD ﹣A 1B 1C 1D 1,AB =32,AD =2,AA 1=2√3,已知P 是矩形ABCD内一动点,PA 1与平面ABCD 所成角为π3,设P 点形成的轨迹长度为α,则tan α= ﹣3√7 ;当C 1P 的长度最短时,三棱锥D 1﹣DPC 的外接球的表面积为 17π . 【分析】因为PA 1与平面ABCD 所成角θ为π3,所以可得AP =2,即P 点的轨迹为以A为圆心,以2为半径的圆与矩形ABCD 的交点即DÊ,由矩形的边长可得DE ̂的值,进而求出它的正切值,当C 1P 的长度最短时,而C 1P =√CC 12+CP 2,所以当CP 最小时,C 1P 最小,而当A ,P ,C 1三点共线时,CP 最小,求出CP 的值,进而由余弦定理求出DP ,求出三角形DCP 的外接圆的半径,由DD 1⊥面CDP ,所以三棱锥D 1﹣DCP 的外接球的球心为过底面三角形DCP 的外接圆的圆心的垂线与中截面的交点,由外接球的半径,和高的一半,由勾股定理可得R 的值,进而求出外接球的表面积. 解:在长方体的底面矩形ABCD 内一动点P ,连接AP ,因为PA 1与平面ABCD 所成角θ为π3,AA 1=2√3,所以tan θ=AA 1AP =2√3AP =√3,所以AP =2,所以P点的轨迹为以A为圆心,以2为半径的圆,与底面矩形BC的交点为E,D,即P的轨迹为圆弧DÊ,连接AE,在△ABE中,cos∠EAB=ABAE =322=34,所以sin∠DAE=cos∠EAB=34,所以arcsin∠DAE=3 4,所以α=DÊ=2•∠DAE,可得α为钝角,所以sinα=sin(2arcsin∠DAE)=2•34⋅√74=3√78,∴cosα=−18,所以tanα=﹣3√7;当C1P的长度最短时,而C1P=√CC12+CP2,所以当CP最小时,C1P最小,而当A,P,C1三点共线时,CP=AC﹣AP=√22+(32)2−2=12最小,连接DP,由于cos∠DCP=CDAC=32√2+(32)2=35,所以在三角形CDP中,由余弦定理可得DP=√CD2+CP2−2CD⋅CP⋅cos∠DCP=√9 4+14−2×32×12×35=4√1010,而sin∠DCP=45,设三角形CDP的外接圆的半径为r,则2r=DPsin∠DCP=4√101045=√102,所以r=√104,由DD1⊥面CDP,所以三棱锥D1﹣DCP的外接球的球心为过底面三角形DCP的外接圆的圆心的垂线与中截面的交点,设外接球的半径为R,则R2=r2+(DD12)2=1016+3=174,所以外接球的表面积S=4πR2=17π.故答案为:﹣3√7,17π.【点评】本题考查求点的轨迹,及三棱锥的棱长与外接球的半径的关系和球的表面积公式,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知数列{a n}中,a1=2,a n a n+1=2pn+1(p为常数).(Ⅰ)若﹣a1,12a2,a4成等差数列,求p的值;(Ⅱ)是否存在p,使得{a n}为等比数列?若存在,求{a n}的前n项和S n;若不存在,请说明理由.【分析】(Ⅰ)根据条件求出a2和a4,然后由﹣a1,12a2,a4成等差数列,得到关于p的方程,再求出p即可;(Ⅱ)若{a n}为等比数列,则由a1>0,a2>0,可知数列的首项和公比均为正数,然后根据条件求出{a n}前n项和S n即可.解:(Ⅰ)∵a n a n+1=2pn+1(p为常数),∴a n+1a n+2=2pn+p+1∴当n=1时,a1a2=2p+1,∵a1=2,∴a2=2p,∴a n+2a n=2p,∴a4=2p a2=(2p)2,∵a4=2p a2=(2p)2,∴a4﹣2=a2,∴(2p)2﹣2=2p,∴p=1.(Ⅱ)若{a n}为等比数列,则由a1>0,a2>0,∴数列的首项和公比均为正数,设其公比为q,则q=2p2,∴2p2=a2a1=2p2,∴p=2,∴a1=2,q=2,∴a n=2n故a n a n+1=22n+1,而2pn+1=22n+1,∴p=2时,{a n}为等比数列,∴{a n}的前n项和S n=2(1−2n)1−2=2n+1−2.【点评】本题考查了等比数列和等差数列的性质,等比数列的前n项和公式,考查了方程思想和转化思想,属中档题.18.三棱柱ABC﹣A1B1C1中,AB=2,BC=√2,AC=2,四边形ABB1A1为菱形,且∠ABB1=60o,AC⊥CC1.(Ⅰ)求证:平面ABB1A1⊥平面BB1C1C;(Ⅱ)求BB1与平面ABC的夹角正弦值.【分析】(Ⅰ)取BB1的中点O,连接AB1,OA,OC,由已知可得OA⊥BB1,再由BB1∥CC1,AC⊥CC1,得AC⊥BB1,得到BB1⊥平面AOC,则BB1⊥CO,求解三角形证明CO⊥AO.可得AO⊥平面BB1C1C,进一步得到平面ABB1A1⊥平面BB1C1C;(Ⅱ)以O为坐标原点,建立如图所示空间直角坐标系,求出平面ABC的一个法向量m→,再求出BB1上的单位向量n→.由m→与n→所成角的余弦值可得BB1与平面ABC的夹角正弦值.【解答】(Ⅰ)证明:取BB1的中点O,连接AB1,OA,OC,在菱形ABB1A1中,∠ABB1=60o,故三角形ABB1是等边三角形,则OA⊥BB1,OB=1,OA=√3.又BB1∥CC1,AC⊥CC1,∴AC⊥BB1,又AO⊥BB1,且AO∩AC=A,∴BB1⊥平面AOC,则BB1⊥CO.在Rt△BOC中,CO=√BC2−BO2=1,∴CO2+AO2=AC2,故CO⊥AO.又CO∩BB1=O,∴AO⊥平面BB1C1C.∵AO⊂平面ABB1A1,∴平面ABB1A1⊥平面BB1C1C;(Ⅱ)解:以O为坐标原点,建立如图所示空间直角坐标系.则A(√3,0,0),B(0,1,0),C(0,0,1),BA →=(√3,−1,0),BC →=(0,−1,1). 设平面ABC 的一个法向量为m →=(x ,y ,z).由{m →⋅BA →=√3x −y =0m →⋅BC →=−y +z =0,取x =√3,得m →=(√3,3,3). 设BB 1上的单位向量为n →=(0,1,0).则BB 1与平面ABC 的夹角正弦值为|cos <m →,n →>|=|m →⋅n →||m →|⋅|n →|=√217.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.19.在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如下的频率分布直方图.(1)若甲解密成功所需时间的中位数为47,求a 、b 的值,并求出甲在1分钟内解密成功的频率;(2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为P n =P 1(910)n ﹣1+n−110(n =1,2,3),其中P i 表示第i 个出场选手解密成功的概率,并且P 1定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立. ①求该团队挑战成功的概率;②该团队以P i 从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目X 的分布列与数学期望.【分析】(1)由甲解密成功所需时间的中位数为47,利用频率分布直方图的性质能求出a,b,由此能求出甲在1分钟内解密成功的频率.(2)①由题意及(1)可知第一个出场选手解密成功的概率为p1=0.9,第二个出场选手解密成功的概率为p2=0.9×910+110×1=0.91,第三个出场选手解密成功的概率为p3=0.9×(910)2+110×2=0.929,由此能求出该团队挑战成功的概率.②根据题意知X的可能取值为1,2,3,分别求出相应的概率,由此能求出团队挑战成功所需派出的人员数目X的分布列和E(X).解:(1)甲解密成功所需时间的中位数为47,∴0.01×5+0.014×5+b×5+0.034×5+0.04×(47﹣45)=0.5,解得b=0.026,∴0.04×3+0.032×5+a×5+0.010×10=0.5.解得a=0.024.∴甲在1分钟内解密成功的频率是f=1﹣0.01×10=0.9.(2)①由题意及(1)可知第一个出场选手解密成功的概率为p1=0.9,第二个出场选手解密成功的概率为p2=0.9×910+110×1=0.91,第三个出场选手解密成功的概率为p3=0.9×(910)2+110×2=0.929,∴该团队挑战成功的概率为p=0.9+0.1×0.91+0.1×0.09×0.929=0.999361.②由①知按P i从小到大的顺序的概率分别为p1,p2,p3,根据题意知X的可能取值为1,2,3,则P(X=1)=0.9,P(X=2)=(1﹣0.9)×0.91=0.091,P(X=3)=(1﹣0.9)(1﹣0.91)=0.009,∴团队挑战成功所需派出的人员数目X的分布列为:X 1 2 3 P0.90.0910.009E (X )=1×0.9+2×0.091+3×0.009=1.109.【点评】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、互斥事件概率加法公式和相互独立事件概率加法公式等基础知识,考查运算求解能力,是中档题.20.在直角坐标系xOy 上取两个定点A 1(−√6,0),A 2(√6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(Ⅰ)求直线A 1N 1与A 2N 2交点M 的轨迹C 的方程;(Ⅱ)过R (3,0)的直线与轨迹C 交于P ,Q ,过P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.【分析】(I )由直线方程的点斜式列出A 1N 1和A 2N 2的方程,联解并结合mn =2化简整理得方程,再由N 1、N 2不与原点重合,可得直线A 1N 1与A 2N 2交点的轨迹C 的方程; (II )设l :x =ty +3,代入椭圆方程消去x ,得(3+t 2)y 2+6ty +3=0,利用分析法进行证明.【解答】(I )解:依题意知直线A 1N 1的方程为:y =6(x +√6)…①; 直线A 2N 2的方程为:y =n√6(x −√6)…②设Q (x ,y )是直线A 1N 1与A 2N 2交点,①、②相乘,得y 2=−mn6(x 2﹣6) 由mn =2整理得:x 26+y 22=1∵N 1、N 2不与原点重合,可得点A 1,A 2不在轨迹M 上, ∴轨迹C 的方程为x 26+y 22=1(x ≠±√6).(Ⅱ)证明:设l :x =ty +3,代入椭圆方程消去x ,得(3+t 2)y 2+6ty +3=0. 设P (x 1,y 1),Q (x 2,y 2),N (x 1,﹣y 1),可得y 1+y 2=−6t t 2+3且y 1y 2=3t 2+3, RP →=λRQ →,可得(x 1﹣3,y 1)=λ(x 2﹣3,y 2),∴x 1﹣3=λ(x 2﹣3),y 1=λy 2, 证明NF →=λFQ →,只要证明(2﹣x 1,y 1)=λ(x 2﹣2,y 2),∴2﹣x 1=λ(x 2﹣2), 只要证明x 1−3x 2−3=−x 1−2x 2−2,只要证明2t 2y 1y 2+t (y 1+y 2)=0,由y1+y2=−6tt2+3且y1y2=3t2+3,代入可得2t2y1y2+t(y1+y2)=0,∴NF→=λFQ→.【点评】本题着重考查了动点轨迹的求法、椭圆的标准方程与简单几何性质、直线与圆锥曲线的位置关系和一元二次方程根与系数的关系等知识,属于中档题.21.已知函数f(x)=alnx+12(a−1)x2+1(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=﹣1时,对任意的x1,x2∈(0,+∞),且x1≠x2,都有|x1f(x2)−x2f(x1)x1−x2|>mx1x2,求实数m的取值范围.【分析】(Ⅰ)求出导函数,通过①当a≥1时,②当0<a<1时,③当a≤0时,判断导函数的符号,判断函数的单调性即可.(Ⅱ)当a=﹣1时,f(x)=﹣lnx﹣x2+1,不妨设0<x1<x2,则|x1f(x2)−x2f(x1)x1−x2|>mx1x2等价于|f(x2)x2−f(x1)x1|>m(x2−x1),考察函数g(x)=f(x)x,求出导函数,令h(x)=lnx−x2−2x2,再求解导函数,判断函数的单调性.求出函数的最值,说明g(x)在(0,+∞)上单调递减.得到g(x1)+mx1>g(x2)+mx2恒成立,设φ(x)=g(x)+mx,则φ(x)在(0,+∞)上恒为单调递减函数,然后转化求解m的范围即可.解:(Ⅰ)f′(x)=ax +(a−1)x=(a−1)x2+ax(x>0).①当a≥1时,f'(x)>0,f(x)在(0,+∞)上单调递增;②当0<a<1时,f′(x)=(a−1)(x+√−aa−1)(x−√−a a−1) x,所以当x>√−aa−1时,f'(x)<0,当0<x<√−aa−1时,f'(x)>0,所以f(x)在(0,√−aa−1)上单调递增,在(√−a a−1,+∞)上单调递减;③当a≤0时,f'(x)<0,f(x)在(0,+∞)上单调递减,(Ⅱ)当a=﹣1时,f(x)=﹣lnx﹣x2+1,不妨设0<x1<x2,则|x1f(x2)−x2f(x1)x1−x2|>mx1x2等价于|f(x2)x2−f(x1)x1|>m(x2−x1),考察函数g(x)=f(x)x,得g′(x)=lnx−x2−2x2,令h(x)=lnx−x2−2x2,h′(x)=5−2lnxx3,则x∈(0,e52)时,h'(x)>0,x ∈(e 52,+∞)时,h '(x )<0,所以h (x )在区间(0,e 52)上是单调递增函数,在区间(e 52,+∞)上是单调递减函数.故g′(x)≤g′(e 52)=12e5−1<0,所以g (x )在(0,+∞)上单调递减. 从而g (x 1)>g (x 2),即f(x 2)x 2<f(x 1)x 1,故f(x 1)x 1−f(x 2)x 2>m(x 2−x 1),所以f(x 1)x 1+mx 1>f(x 2)x 2+mx 2,即g (x 1)+mx 1>g (x 2)+mx 2恒成立,设φ(x )=g (x )+mx ,则φ(x )在(0,+∞)上恒为单调递减函数, 从而φ′(x )=g ′(x )+m ≤0恒成立,故φ′(x )=g ′(x )+m ≤12e 5−1+m ≤0, 故m ≤1−12e 5. 【点评】本题考查导数公式和导数运算法则以及恒成立的思想,考查考生灵活运用导数工具分析问题、解决问题的能力,综合考查考生的分类讨论思想以及逻辑推理能力、运算求解能力和推理论证能力.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标系中,曲线C :ρ=4cos θ,以极点O 为旋转中心,将曲线C 逆时针旋转π3得到曲线C ′.(Ⅰ)求曲线C ’的极坐标方程;(Ⅱ)求曲线C 与曲线C ′的公共部分面积.【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用三角函数关系式的恒等变换和正弦型函数的性质的应用及二次函数的性质的应用求出结果.解:(Ⅰ)设极点(ρ,θ)旋转之后的极点为(ρ′,θ′),故:{ρ′=ρθ′=θ+π3,代入ρ=4cosθ,得到ρ′=4cos(θ′−π3),得到ρ=4cos(θ−π3).(Ⅱ)如图,两圆相交于点O和A,连接OA,AC,OC′,AC′.由于极径没有变,旋转的角为π3.显然四边形OC′AC为菱形,故∠OCA=2π3.所以S=2S弓形OC′A=2(S扇形OC′A﹣S△OC′A)=8π3−2√3.【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,正弦型函数性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.一、选择题23.已知f(x)=k|x|+|x﹣1|.(Ⅰ)若k=2,解不等式f(x)≤5.(Ⅱ)若关于x的不等式f(x)≤|x+1|+|2x﹣2|的充分条件是x∈[12,2],求k的取值范围.【分析】(Ⅰ)k=2时,不等式f(x)≤5可化为2|x|+|x﹣1|≤5.然后分x<0,0≤x <1,x≥1三类去绝对值求解,取并集得答案;(Ⅱ)由题意,关于x的不等式f(x)≤|x+1|+|2x﹣2|在x∈[12,2]上恒成立,分离参数k,可得k≤|x+1|+|x−1||x|在x∈[12,2]上恒成立,再由|x+1|+|x−1||x|≥|x+1+x−1||x|=2,即可得到实数k的取值范围.解:(Ⅰ)若k=2,不等式f(x)≤5可化为2|x|+|x﹣1|≤5.当x<0时,有﹣2x﹣(x﹣1)≤5,即x≥−43,∴−43≤x<0;当0≤x<1时,有2x﹣(x﹣1)≤5,即x≤4,∴0≤x<1;当x≥1时,有2x+(x﹣1)≤5,即x≤2,∴1≤x≤2.故原不等式的解集为[−43,2];(Ⅱ)由题意,关于x的不等式f(x)≤|x+1|+|2x﹣2|在x∈[12,2]上恒成立,即k |x |≤|x +1|+|2x ﹣2|﹣|x ﹣1|在x ∈[12,2]上恒成立,∴k ≤|x+1|+|x−1||x|在x ∈[12,2]上恒成立, ∵|x+1|+|x−1||x|≥|x+1+x−1||x|=2|x||x|=2,等号在x +1,x ﹣1同号或其中一项为0时成立.∴k 的取值范围是(﹣∞,2].【点评】本题考查绝对值不等式的解法,考查分类讨论与数学转化思想方法,训练了绝对值不等式的应用,是中档题.。
2020年陕西省商洛市山阳中学高考数学模拟试卷(二)(3月份)(有答案解析)
2020年陕西省商洛市山阳中学高考数学模拟试卷(二)(3月份)一、选择题(本大题共12小题,共60.0分)1.设集合,B={1,2,3,4},则A∩B=()A. {1}B. ∅C. {3,4}D. {2,3,4}2.已知命题,命题q:B={x|y=lg(2x-a),a∈R}.若命题q是p的必要不充分条件,则a的取值范围是()A. a≥4B. a≤4C. a>4D. a<43.以下说法错误的是()A. 命题“若“x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B. “x=2”是“x2-3x+2=0”的充分不必要条件C. 若命题p:存在x0∈R,使得x02-x0+1<0,则¬p:对任意x∈R,都有x2-x+1≥0D. 若p且q为假命题,则p,q均为假命题4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是()A. 若m⊥α,m⊥n,则n∥αB. 若m⊥α,n∥β且α∥β,则m⊥nC. 若m⊂α,n⊂α且m∥β,n∥β,则α∥βD. 若直线m、n与平面α所成角相等,则m∥n5.设变量x,y满足约束条件,若目标函数z=ax+y取得最大值时的最优解不唯一,则实数a的值为()A. -1B. 2C. -1或 2D. 1或-26.已知:sin,其中,则tan2α=()A. -B. -C.D.7.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8.我国明代珠算家程大位的名著直指算法统宗中有如下问题:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问:乙应该分得白米( )A. 96石B. 78石C. 60石D. 42石9.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A-BCD的外接球的体积为()A. πB. πC. πD. π10.中国最早的天文学和数学著作周髀算经里提到了七衡,即七个等距的同心圆七衡的直径和周长都是等差数列,最里面的一圆叫内一衡,外面的圆依次叫次二衡,次三衡,设内一衡直径,衡间距为,则次二衡直径为,次三衡直径为,,执行如图程序框图,则输出的中最大的一个数为( )A. B. C. D.11.已知函数f(x)=(x∈R),若等比数列{a n}满足a1a2019=1,则f(a1)+f(a2)+f(a3)+……+f(a2019)=()A. 2019B.C. 2D.12.定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,向量,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上满足“k范围线性近似”,其中最小正实数k称为该函数的线性近似阈值.若函数定义在[1,2]上,则该函数的线性近似阈值是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.()10的展开式中含x2项的系数为______.14.谢尔宾斯基三角形(Sierpinskitriangle)是由波兰数学家谢尔宾斯基在1915年提出的,如图先作一个三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的面积,那么灰色三角形为剩下的面积(我们称灰色部分为谢尔宾斯基三角形).若通过该种方法把一个三角形挖3次,然后在原三角形内部随机取一点,则该点取自谢尔宾斯基三角形的概率为______.15.数列{a n}的前n项和为S n,若a1=1,a n≠0,3S n=a n a n+1+1,则a2019=______.16.在平面直角坐标系中,点,动点满足以为直径的圆与轴相切.过作直线的垂线,垂足为,则的最小值为__________.三、解答题(本大题共7小题,共82.0分)17.已知a,b,c分别是△ABC的三个内角A,B,C的对边,若a=10,角B是最小的内角,且3c=4a sin B+3b cos A.(Ⅰ)求sin B的值;(Ⅱ)若△ABC的面积为42,求b的值.18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求B1F与平面AEF所成角的正弦值.19.交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基本保费)是950元,在下一年续保时,实行费率浮动制,其保费与上一年车辆发生道路交通事故情况相联系,具体浮动情况如表:类型浮动因素浮动比率A1上一年度未发生有责任的道路交通事故下浮10%A2上两年度未发生有责任的道路交通事故下浮20% A3上三年度未发生有责任的道路交通事故下浮30% A4上一年度发生一次有责任不涉及死亡的道路交通事故0%A5上一年度发生两次及以上有责任不涉及死亡的道路交通事故上浮10% A6上三年度发生有责任涉及死亡的道路交通事故上浮30%据统计,某地使用某一品牌7座以下的车大约有5000辆,随机抽取了100辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:类型A1A2A3A4A5A6数量40101020155以这辆该品牌汽车的投保类型的频率视为概率.(1)试估计该地使用该品牌汽车的一续保人本年度的保费不超过950元的该概率;(2)记ξ为某家庭的一辆该品牌车在第四年续保时的费用,求ξ的分布列和数学期望.20.已知椭圆E:+=1(a>b>0)的左,右焦点分别为F1,F2,椭圆过点(0,2),点Q为椭圆上一动点(异于左右顶点),且△QF1F2的周长为4+4.(1)求椭圆E的方程;(2)过点F1,F2分别作斜率为k1,k2的直线l1,l2,分别交椭圆E于A,B和C,D四点,且|AB|+|CD|=6,求k1k2的值.21.已知函数f(x)=(x-1)e x.(1)求函数f(x)的单调区间和零点;(2)若f(x)≥ax-e恒成立,求a的取值范围.22.已知在极坐标系中,曲线C1的极坐标方程为.以极点为原点,极轴所在直线为x轴建立平面直角坐标系,曲线C2的参数方程为(α为参数).(1)求曲线C1的直角坐标方程以及曲线C2的极坐标方程;(2)若曲线C1,C2交于M,N两点,且A(0,m),|AM|•|AN|=2,求m的值.23.已知函数f(x)=|2x-1|,x∈R.(Ⅰ)解不等式f(x)<|x|+1;(Ⅱ)若对x,y∈R,有|x-y-1|,|2y+1|,求证:f(x).-------- 答案与解析 --------1.答案:D解析:解:∵集合={x∈N|x≥2},B={1,2,3,4},∴A∩B={2,3,4}.故选:D.先分别求出集合A和B,利用交集定义直接求解.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:B解析:【分析】本题主要考查充分条件和必要条件的定义,求出集合A,B的等价条件是解决本题的关键.求出集合A,B的等价条件,结合充分条件和必要条件与集合子集关系进行求解即可.【解答】解:由题意可得A={x|2<x<3},B={x|2x-a>0}={x|x>},若命题q是p的必要不充分条件,则A B,即≤2,即a≤4,故选:B.3.答案:D解析:解:A.“若“x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,正确;B.由x2-3x+2=0,解得x=1,2,因此“x=2”是“x2-3x+2=0”的充分不必要,正确;C.命题p:存在x0∈R,使得x02-x0+1<0,则¬p:对任意x∈R,都有x2-x+1≥0,正确;D.由p且q为假命题,则p,q至少有一个为假命题,因此不正确.故选:D.A.利用逆否命题的定义即可判断出正误;B.由x2-3x+2=0,解得x=1,2,即可判断出关系;C.利用¬p的定义即可判断出;D.由p且q为假命题,则p,q至少有一个为假命题,即可判断出正误.本题考查了简易逻辑的判定方法、方程的解法,考查了推理能力与计算能力,属于中档题4.答案:B解析:解:A如图可否定A;C如图可否定C;D如图可否定D;故选:B.通过图示采用排除法可否定A,C,D,故选B.此题考查了直线,平面的位置关系,难度不大.5.答案:C解析:解:由约束条件作出可行域如图,∵目标函数z=ax+y取得最大值时的最优解不唯一,∴直线y=-ax+z与直线x-y+1=0或2x+y-4=0重合.此时-a=1或-a=-2,则a=-1或a=2.故选:C.由约束条件作出可行域,化目标函数为直线方程的斜截式,由目标函数z=ax+y取得最大值时的最优解不唯一,可知当直线y=-ax+z与直线x-y+1=0或2x+y-4=0重合时取得最大值,由此求得实数a的值.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.答案:D解析:【分析】本题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出2sinαcosα的值,再利用完全平方公式及同角三角函数间基本关系求出sinα-cosα=0,联立求出sinα与cosα的值,即可求出tanα的值,利用二倍角的正切函数公式即可计算得解.【解答】解:∵把sinα+cosα=,①,两边平方得:(sinα+cosα)2=,即1+2sinαcosα=,∴2sinαcosα=-,∵,∴sinα>0,cosα<0,sinα-cosα>0,∴(sinα-cosα)2=1-2sinαcosα=,解得:sinα-cosα=,②,①+②得:2sinα=,即sinα=,cosα=-,则tanα=-,tan2α==.故选D.7.答案:D解析:【分析】本题考查三视图求解几何体的体积,是基本知识的考查.判断几何体的形状,利用三视图的数据求解几何体的体积即可.【解答】解:几何体是半个圆柱挖去半个圆锥的几何体的直观图如图:由题意可知几何体的体积为:=.故选:D.8.答案:C解析:【分析】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题.今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,利用通项公式求和公式即可得出.【解答】解:今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,∴d==-18,3a1+3×(-18)=180,解得a1=78(石).∴乙应该分得白米78-18=60石.故选C.9.答案:C解析:【分析】本题考查四面体ABCD的外接球的体积的计算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.矩形ABCD中,由AB=4,BC=3,DB=AC=5,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O,即O为球心,因此球半径,由此能求出四面体ABCD的外接球的体积.【解答】解:矩形ABCD中,∵AB=4,BC=3,∴DB=AC=5,设DB交AC与O,则O是△ABC和△DAC的外心,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O,即O为球心,因此球半径,四面体ABCD的外接球的体积:V=.故选C.10.答案:D解析:【分析】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量T i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得i=1时,T1=a1a7=a1(a1+6d)=a12+6da1,i=2时,T2=a2a6=(a1+d)(a1+5d)=a12+6da1+5d2,i=3时,T3=a3a5=(a1+2d)(a1+4d)=a12+6da1+8d2,i=4时,T4=a4a4=(a1+3d)2=a12+6da1+9d2,可得:T4>T3>T2>T1.故选:D.11.答案:A解析:解:∵函数f(x)=(x∈R),∴f(x)+f()=+==2,∵数列{a n}为等比数列,且a1•a2019=1.∴a1a2019=a2a2018=a3a2017=…=a2019a1=1,∴f(a1)+f(a2019)=f(a2)+f(a2019)=f(a3)+f(a2017)=…=f(a2019)+f(a1)=2,∴f(a1)+f(a2)+f(a3)+……+f(a2019)=2019.故选:A.由函数f(x)=(x∈R),求出f(x)+f()=2,由数列{a n}为等比数列,且a1•a2019=1.得a1a2019=a2a2018=a3a2017=…=a2019a1=1,从而f(a1)+f(a2019)=f(a2)+f(a2019)=f(a3)+f(a2017)=…=f(a2019)+f(a1)=2,由此能求出f(a1)+f(a2)+f(a3)+……+f(a2019).本题考查函数值的求法,考查函数性质、等比数列的性质等基础知识,考查运算求解能力,是中档题.12.答案:B解析:解:由已知可得:A(1,2),B(2,1),AB直线方程为y=-x+3,由向量,因为λ+(1-λ)=1,则点N,A,B三点共线,即N(x,-x+3),又M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b,则M(x,),则|MN|=|-x+3-|=|3-(x+)|,当x∈[1,2]时,易得0≤|3-(x+)|,则k≥3-2,即k的最小值为3+2,则该函数的线性近似阈值是3-2,故选:B.先阅读理解定义,再利用重要不等式求最值即可得解.本题考查了对即时定义的理解及重要不等式,属中档题.13.答案:5解析:解:()10的展开式的通项公式为T r+1=••,令=2,求得r=2,故展开式中含x2项的系数为•=5,故答案为:5.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得含x2项的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.答案:解析:【分析】本题考查了归纳推理及几何概型中的面积型,属于基础题.先观察图象,再结合几何概型中的面积型可得.【解答】解:由图可知每次挖去的三角形的面积为上一次剩下的面积的,∴每次剩下的面积为上一次剩下的面积的,设最初的面积为1,则挖3次后剩下的面积为()3=,故该点取自谢尔宾斯基三角形的概率为,故答案为:.15.答案:3028解析:【分析】本题考查了数列的通项公式的求法及应用,分类讨论思想的应用,主要考查学生的运算能力和转化能力,属于中档题.首先利用数列的递推关系式求出数列的通项公式,进一步求出结果.【解答】解:数列{a n}的前n项和为S n,若a1=1,3S n=a n a n+1+1①,当n=1时,整理得:3S1=3a1=a1•a2+1,解得:a2=2,当n≥2时,3S n-1=a n-1•a n+1②,①-②得:3a n=a n(a n+1-a n-1),由于a n≠0,故:a n+1-a n-1=3(常数),故:数列{a n}的奇数项为首项为1,公差为3的等差数列,则:,数列{a n}的偶数项为首项为2,公差为3的等差数列,则:,所以:=3028.故答案为3028.16.答案:3-解析:【分析】本题考查抛物线的几何性质,涉及直线与圆的位置关系,关键是求出M的轨迹方程,属于综合题.根据题意,设M(x,y),又由动点M满足以MA为直径的圆与y轴相切,则有()2=(-1)2+()2,变形可得:y2=4x,即可得M的轨迹是抛物线,其焦点为A(1,0),准线为x=-1,过点M做MD与准线垂直,且交准线于点D,分析可得直线x+(m-1)y+2m-5=0经过定点(3,-2),设P(3,-2),由直线与圆的位置关系可得B在以AP为直径的圆上,由抛物线的定义可得又由|MA|=|MD|,则|MA|+|MB|=|MD|+|MB|,结合图形分析可得答案.【解答】解:根据题意,设M(x,y),以MA为直径的圆的圆心为(,),又由动点M满足以MA为直径的圆与y轴相切,则有()2=(-1)2+()2,变形可得:y2=4x,则M的轨迹是抛物线,其焦点为A(1,0),准线为x=-1,过点M作MD与准线垂直,且交准线于点D,设直线l为x+(m-1)y+2m-5=0,变形可得m(y+2)=y-x+5,分析可得直线l经过定点(3,-2),设P(3,-2),设AP的中点为C,则C的坐标为(2,-1),|CP|=,若AB⊥l,则B在以AP为直径的圆上,该圆的方程为(x-2)2+(y+1)2=2,又由|MA|=|MD|,则|MA|+|MB|=|MD|+|MB|,则当C、M、D三点共线时,|MA|+|MB|取得最小值,且|MA|+|MB|取得的最小值为圆(x-2)2+(y+1)2=2上的点到D的最小值,过点C作x=-1的垂线,垂足为D',此时(|MA|+|MB|)min=|CD'|-r=3-,故答案为:3-.17.答案:(本题满分为12分)解:(Ⅰ)由3c=4a sin B+3b cos A、A+B+C=π及正弦定理可得:3sin(A+B)=4sin A sin B+3sin B cos A,……(3分)由于sin A>0,整理可得:3cos B=4sin B,又sin B>0,因此得.……(6分)(Ⅱ)由(Ⅰ)知,又△ABC的面积为42,且a=10,从而有,解得c=14,……(8分)又角B是最小的内角,所以,且,得,……(10分)由余弦定理得,即.……(12分)解析:(Ⅰ)由正弦定理,三角形内角和定理可得3sin(A+B)=4sin A sin B+3sin B cos A,结合sin A>0,整理可得3cos B=4sin B,又sin B>0,利用同角三角函数基本关系式可求sin B的值.(Ⅱ)由(Ⅰ)及三角形的面积公式可求c的值,利用同角三角函数基本关系式可求cos B 的值,根据余弦定理可求b的值.本题主要考查了正弦定理,三角形内角和定理,同角三角函数基本关系式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.答案:解:(1)证明:∵直三棱柱ABC-A1B1C1中,AC⊥AB,∴可以以A1为顶点建立空间坐标系如图,∵AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点,取B1C1中点D,∴A1(0,0,0),D(2,2,0),E(2,0,3),F(0,2,6),在Rt△A1B1C1中,A1D⊥B1C1,∴A1D⊥平面BCC1B1,∴为平面BCC1D1的一个法向量,而,,∴=-4+4=0,∴,又EF⊄平面BCC1B1,∴EF∥平面BCC1B1;(2)易知A(0,0,6),B1(0,4,0)∴,,设是平面AEF的一个法向量,则,,取x=1,则y=0,z=,即,设B1F与平面AEF所成角为θ,则sinθ=|cos|=||==,故B1F与平面AEF所成角的正弦值为.解析:(1)建立空间坐标系,利用与平面BCC1B1的法向量垂直可证;(2)找到和平面AEF的法向量,代入公式计算即可.此题考查了线面平行,斜线与平面所成角等,难度适中.19.答案:解:(1)由题意估计该地使用该品牌汽车的一续保人本年度的保费不超过950元的该概率:p==0.8.(2)ξ为某家庭的一辆该品牌车在第四年续保时的费用,则ξ的可能取值为950×(1-30%)=665,950(1-20%)=760,950×(1-10%)=855,950,950(1+10%)=1045,950(1+30%)=1235,P(ξ=665)==0.1,P(ξ=760)==0.1,P(ξ=855)==0.4,P(ξ=950)==0.2,P(ξ=1045)==0.15,P(ξ=1235)==0.05,ξ 665760855 950 1045 1235P 0.1 0.1 0.4 0.2 0.15 0.05().解析:(1)由题意能估计该地使用该品牌汽车的一续保人本年度的保费不超过950元的该概率.(2)ξ为某家庭的一辆该品牌车在第四年续保时的费用,则ξ的可能取值为950×(1-30%)=665,950(1-20%)=760,950×(1-10%)=855,950,950(1+10%)=1045,950(1+30%)=1235,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型等基础知识,考查运算求解能力,是中档题.20.答案:解:(1)由题意可知,解之得,所以椭圆E的方程为.(2)由题意可知,F1(-2,0),F2(2,0),设直线AB的方程为y=k1(x+2),A(x1,y1),B(x2,y2)联立∴,∴=,则,==,同理联立方程,由弦长公式可知,,∵|AB|+|CD|=6,∴,化简得,则.解析:(1)根据焦点三角形周长为2a+2c,(0,2)为上顶点,构造出关于a,b,c 的方程,从而求得椭圆的方程;(2)通过弦长公式,利用k1和k2表示出|AB|和|CD|,根据|AB|+|CD|=6建立方程求解出k1k2的值.本题主要考查椭圆的方程,直线与椭圆的位置关系,属于中档题.21.答案:解:(1)∵函数f(x)=(x-1)e x.∴f′(x)=e x+(x-1)e x=xe x,由f′(x)=xe x=0时,x=0,由f′(x)>0,得x>0,∴f(x)的增区间为[0,+∞),当f′(x)<0时,x<0,∴f(x)的减区间为(-∞,0],由f(x)=(x-1)e x=0,得x=1,∴函数f(x)的零点是x=1.(2)∵f(x)≥ax-e恒成立,即y=f(x)的图象恒不在y=ax-e的图象下方,当它们相切时,设切点(x0,y0),∴x e=a,且a=,联立解得x0=1,∴a=e,由图可知0≤a≤ea的取值范围[0,e]解析:(1)利用到导数研究函数的单调性,解方程可得零点;(2)转化成两个函数的图象的位置关系,利用切线的斜率可得.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、构造法、等价转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.22.答案:解(1)∵,∴(ρcosθ-ρsinθ)+m=0,则曲线C1的直角坐标方程为x-y+m=0,∵(x-1)2+y2=2,∴x2+y2-2x-1=0,则曲线C2的极坐标方程为ρ2-2ρcosθ-1=0.(2)由(1)得曲线C1的参数方程为(t为参数),代入x2+y2-2x-1=0中,整理得,△=-2m2-4m+6>0,解得-3<m<1,设M,N对应的参数分别为t1,t2,则,由t的几何意义得,,解得,又-3<m<1,∴.解析:(1)∵,∴(ρcosθ-ρsinθ)+m=0,则曲线C1的直角坐标方程为x-y+m=0,∵(x-1)2+y2=2,∴x2+y2-2x-1=0,则曲线C2的极坐标方程为ρ2-2ρcosθ-1=0.(2)联立直线与圆的方程,根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(Ⅰ)因为f(x)<|x|+1,所以|2x-1|<|x|+1,即,或,或,解得≤x<2,或0<x<,或∅.所以不等式的解集为{x|0<x<2}.(Ⅱ)因为|x-y-1|,|2y+1|,所以f(x)=|2x-1|=|2(x-y-1)+(2y+1)|≤|2(x-y-1)|+|(2y+1)|≤2×+=.解析:(Ⅰ)由条件|2x-1|<|x|+1,分类讨论,求得x的范围.(Ⅱ)由条件利用绝对值三角不等式证得不等式成立.本题主要考查绝对值不等式的解法,绝对值三角不等式的应用,体现了转化的数学思想,属于基础题.。
2020-2021学年高三数学(理科)第一次高考模拟考试试题及答案解析
2020-2021学年⾼三数学(理科)第⼀次⾼考模拟考试试题及答案解析@学⽆⽌境!@绝密★启⽤前试卷类型:A 最新第⼀次⾼考模拟考试数学试卷(理科)本试卷分选择题和⾮选择题两部分,共4页,满分150分,考试时间120分钟。
注意事项:1.答卷前,考⽣要务必填写答题卷上的有关项⽬。
2.选择题每⼩题选出答案后,⽤2B 铅笔把答案填在答题卡相应的位置上。
3.⾮选择题必须⽤⿊⾊字迹的钢笔或签字笔作答,答案必须写在答题卷各题⽬指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使⽤铅笔和涂改液. 不按以上要求作答的答案⽆效。
4.考⽣必须保持答题卷的整洁,考试结束后,将答题卷交回。
第Ⅰ卷(选择题,共60分)⼀.选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的. 1.复数i215-(i为虚数单位)的虚部是()A. 2iB. 2i -C. 2-D. 22. 下列函数在其定义域上既是奇函数⼜是减函数的是()A .()2x f x =B .()sin f x x x =C .1()f x x =D .()||f x x x =- 3.已知()=-παcos 12,πα-<<,则tan α=()A.B.C. D.4.设双曲线2214y x -=上的点P到点的距离为6,则P点到(0,的距离是()@学⽆⽌境!@A .2或10 B.10 C.2 D.4或85. 下列有关命题说法正确的是()A. 命题p :“sin +cos =2x x x ?∈R ,”,则?p 是真命题 B .21560x x x =---=“”是“”的必要不充分条件 C .命题2,10x x x ?∈++的否定是:“210x x x ?∈++D .“1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件6. 将函数-=32sin )(πx x f 的图像向右平移3π个单位得到函数)(x g 的图像,则)(x g 的⼀条对称轴⽅程可以为() A. 43π=x B. 76x π= C. 127π=x D. 12π=x 7.2015年⾼中⽣技能⼤赛中三所学校分别有3名、2名、1名学⽣获奖,这6名学⽣要排成⼀排合影,则同校学⽣排在⼀起的概率是()A .130 B .115 C .110 D .158.执⾏如图8的程序框图,若输出S 的值是12,则a 的值可以为()A .2014B .2015C .2016D .20179.若某⼏何体的三视图(单位:cm )如图所⽰,则该⼏何体的体积()A.310cmB.320cmC.330cmD.340cm10.若nx x ??? ?-321的展开式中存在常数项,则n 可以为() A .8 9 C .10 D. 11 11.=∠=?==?C CA A B CA BC ABC 则中在,60,6,8, ()A .?60B .C .?150D .?120 12. 形如)0,0(||>>-=b c cx by 的函数因其图像类似于汉字中的“囧”字,故我们把其⽣动地称为“囧函数”.若函数()()2log 1a f x x x =++)1,0(≠>a a 有最⼩值,则当,c b 的值分别为⽅程222220x y x y +--+=中的,x y 时的“囧函数”与函数||log x y a =的图像交点个数为().A .1B .2C .4D .6第Ⅱ卷(⾮选择题,共90分)⼆.填空题:本⼤题共4⼩题,每⼩题 5分,共20分.13.⼀个长⽅体⾼为5,底⾯长⽅形对⾓线长为12,则它外接球的表⾯积为@学⽆⽌境!@14.如图,探照灯反射镜的纵截⾯是抛物线的⼀部分,光源在抛物线的焦点F 处,灯⼝直径AB 为60cm ,灯深(顶点O 到反射镜距离)40cm ,则光源F 到反射镜顶点O 的距离为15.已知点()y x P ,的坐标满⾜条件>-+≤≤02221y x y x ,那么()221y x ++的取值范围为 16.CD CB AD AC AD AB ,AB D ABC 3,,3,===?且的⼀个三等分点为中在,则B cos =三.解答题:本⼤题共5⼩题,每题12分共60分.解答应写出⽂字说明,证明过程或演算步骤.17.(本⼩题满分12分)已知{}n b 为单调递增的等差数列,168,266583==+b b b b ,设数列{}n a 满⾜n b n n a a a a 2222233221=++++(1)求数列{}n b 的通项; (2)求数列{}n a 的前n 项和n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伽师县第一中学2018-2019学年第一次高考模拟考试数学(国语班) 考试时间:120分钟姓名: ___ __ ___ 考场号:______座位号:__ 班级:高三( )班 一、选择题:本题共12小题,每小题5分,共60分。
1、已知集合,,则集合( )A.B.C.D.1、【解析】 根据题意,集合,且,所以,故选B .2、设复数满足,则 ( ) A . B. C.D.2、【答案】A3、已知函数,若,则 ( ) A.B. C. 或 D. 0 3、【解析】 由函数的解析式可知,当时,令,解得;当时,令,解得(舍去), 综上若,则,故选D .4、某几何体的三视图如图所示,则该几何体的体积为A.B. C. D. 1 4、【解析】由三视图可得该几何体为底面是等腰直角三角形,其中腰长为1,高为2的三棱锥,故其体积为,故选A.5、某校高二年级名学生参加数学调研测试成绩(满分120分)分布直方图如右。
已知分数在100110的学生有21人,则A. B. C. D.5、【解析】由频率分布直方图可得,分数在100110的频率为,根据,可得.选B .6、执行如图的程序框图,若输出的值是,则的值可以为( )A. 2014B. 2015C. 2016D. 20176、【解析】①,;②,;③,;④,;,故必为的整数倍. 故选C.7、设等比数列的公比,前n 项和为,则( ) A. 2 B. 4 C.D. 7、【解析】由题,故选C . 8、设,满足约束条件,则的最小值为( )A. 5B. -5C.D.8、【解析】 画出约束条件所表示的平面区域,如图所示, 由图可知,目标函数的最优解为, 由,解得,所以的最小值为,故选B .9、的常数项为A. 28B. 56C. 112D. 2249、【解析】的二项展开通项公式为.令,即.常数项为,故选C .()327,1{1ln ,1x x f x x x --<=⎛⎫≥ ⎪⎝⎭()1f m =m =1e e 1ee 1m <3271m--=0m =1m ≥1ln 1m ⎛⎫=⎪⎝⎭1m e =()1f m =0m =131223111112323V =⨯⨯⨯⨯={}n a 2q =n S 42S a =152172()44211512S q a q q -==-10、从中不放回地依次取个数,事件“第一次取到的是奇数”“第二次取到的是奇数”,则( )A. B. C. D.10、【解析】由题意得,∴.选A .11、若双曲线的焦距为,一条渐近线为,且点到的距离为,则双曲线的方程为( )A. B. C. D.11、【解析】设一条渐近线为的方程为, 点到的距离为 ∴,即,又,∴,.∴双曲线的方程为故选:C12、函数的图象大致是( )A. B. C. D.12、【解析】由题得,令得,所以函数 的增区间是. 所以排除A ,D. 当,故选C.二、填空题:本题共4小题,每小题5分,共20分。
13、若直线(k+1)x-y-3=0的倾斜角为135°,则k=__________13、【解析】由解析式可得直线的斜率为,即,得,故答案为.14、如图,有5个全等的小正方形,,则的值是__________.14、【解析】 由平面向量的运算可知,而,所以, 注意到不共线,且, 即,所以,即.15、已知某四面体的各棱长均为a,若该四面体的体积为,则a=__________ 15、【解析】设该四面体为,作面于,连接,并延长交于点,则,则有,又高,故,所以,故答案为. 16、在锐角中,,,的取值范围为__________.16、【解析】由题意可得:解得由正弦定理得:解得的取值范围为故的取值范围是三、解答题 (本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.)请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分17、已知数列的前项和(为正整数).(Ⅰ)求证:为等差数列;(Ⅱ)求数列的前项和公式.17、(Ⅰ)(方法一)当时,解得由得,当时,有代入上式得整理得,所以是以为首项,为公差的等差数列(方法二)当时,解得,设,则,当时,有代入得整理得所以即是以为首项,为公差的等差数列(Ⅱ)由(Ⅰ)得,依题意①()()22xf x x x e =-()()22x f x x e '=-()()220xf x x e =->'22x x >>-或()f x ()(),2,2,-∞+∞()0x f x →-∞>时,1k +tan1351k =+2k =-2-83ABCD AO ⊥BCD O BO CD E BE CD ⊥33BO a =63h AO a ==211368=)32233V a a ⨯⨯⨯=(22a =22上式两边同乘以,得②①-②得,所以18、已知直线PA ⊥平面ABCD, ∠BAD=90°, AB//DC//PM,AB=PA=2PM=2AD=2,CD=3. (1)若G 为线段MD 的中点,求证:MD ⊥平面BGC;(2)求二面角B-MC-D 的正弦值. 18、试题解析:(1)以为原点,以、、为、、z 轴,建立空间直角坐标系,则有:,,因为,所以,,又因为,所以平面;(2)设二面角为.因为, 设面BMC 的法向量为,则同理可得,故19、甲、乙两位学生参加数学竞赛培训,在培训期间他们参加的5次预赛成绩记录如下:甲:82,82,79,95,87 乙:95,75,80,90,85(1)用茎叶图表示这两组数据;(2)求甲、乙两人的成绩的平均数与方差;(3)若现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适说明理由? 19、解:(1)以十位数为茎,以个位数为叶,作出茎叶图如右图所示. (2)甲的成绩的平均数=(82+82+79+95+87)=85,乙的成绩的平均数=(75+95+80+90+85)=85,甲的方差=[(82﹣85)2+(82﹣85)2+(79﹣85)2+(95﹣85)2+(87﹣85)2]=31.6, 乙的方差=[(75﹣85)2+(95﹣85)2+(80﹣85)2+(90﹣85)2+(85﹣85)2]=50.(3)派甲参赛比较合理.理由是甲乙的平均分一样,证明平均成绩一样,但是甲的方差小于乙的方差,则证明甲的成绩更稳定.20、P 为椭圆上一点,、为左右焦点,若(1)求△的面积;(2)求P 点的坐标.20、试题分析:(1)由椭圆的定义,由余弦定理可得,两式结合可求得,根据三角形的面积公式,即可求得的面积;(2)由(1)可得,即可求得的值,代入椭圆方程,即可求得的值,求得点坐标.试题解析:∵a=5,b =3c =4(1)设,,则①②,由①2-②得.(2)设P,由得4,将代入椭圆方程解得,或或或21、已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.21、试题分析:(1),分,和时讨论的单调区间.(2)分,,,求和0比,求的取值范围.试题解析:(1)当时,,∴在上单调递减.当时,令,得,令,得∴的单调递减区间为,单调递增区间为,当时,令,得,令,得∴的单调递减区间为,单调递增区间为(2)当时,在上单调递减,∴,不合题意. 当时,,不合题意, 当时,,在上单调递增,∴,故满足题意.A AB AD AP x y 31(,,1)22BG =-(1,1,0),(1,1,2)BC DM ==-•0,?0DM BG DM BC ==DM BG ⊥DM BC ⊥BG BC B ⋂=MD ⊥BGC θ(2,1,2),(1,,2),(1,1,2)MC MB MD =-=--=--()1111,,n x y z =()111111220{ 2,2,120x y z n x z +-=⇒=--=()12212•250,2,1,cos =-5•n n n n n θ=∴=5sin 5θ=当时,在上单调递减,在单调递增,∴,故不满足题意.综上,的取值范围为(以下两道题中选一道题解答)22、在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设的交点为,求的面积.22、试题分析:(1)利用把普通方程化为极坐标方程;(2)利用直线参数方程的几何意义,求出,再算出的面积.试题解析:(1)因为的极坐标方程为,的极坐标方程为.(2)将代入,得,解得,因为的半径为,则的面积.23、已知函数. (1)若,求的取值集合; (2)若不等式对于恒成立,求的取值范围.23、试题解析:(1)①当时,,解得;②当时,,解得;③当时,,解得;综合①②③得的取值集合为.(2)分两种情况讨论:①当时,原不等式转化为,即恒成立,②当时,原不等式转化为,即恒成立,.综上可知:.xOy 1;2C x =-()()222:121C x y -+-=x 1C 2C 3C ()4R πθρ=∈23,C C ,M N 2C MN ∆cos ,sin x y ρθρθ==12ρρ,2C MN ∆1cos ,sin ,x y C ρθρθ==∴cos 2ρθ=-2C 22cos 4sin 40ρρθρθ--+=4πθ=22cos 4sin 40ρρθρθ--+=23240ρρ-+=121222,2,2MN ρρρρ===-=2C 12C MN ∆1121sin 4522⨯⨯⨯=。