振动与波习题课及课后作业解答
大学物理振动与波练习题与答案

【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2
大学物理 第5章 振动和波动习题解答

第5章 振动和波动5-1 解:(1))s rad (105.050===m kωmax 222max 100.040.4(m/s)100.044(m/s )v A a A ωω==⨯===⨯=(2) 设cos()x A t ωϕ=+,则d sin()d xv A t tωωϕ==-+ 2222d cos()d x a A t x t ωωϕω==-+=-当x=0.02m 时,cos()1/2,sin()3/2t t ωϕωϕ+=+=±,所以20.230.346(m/s)2(m/s )1(N)v a F ma =⨯==-==-(3) 作旋转矢量图,可知:π2ϕ=-π0.04c o s (10)2x t =-5 解:A=0.04(m) 0.7(rad/s)0.3(rad)10.11(Hz)8.98(s)2πT ωϕωνν==-====5-3 证明:如图所示的振动系统的振动频率为1212πk k mυ+=式中12,k k 分别为两个弹簧的劲度系数,m为物体的质量。
解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有0202101=+-x k x k当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为11022012()()()F k x x k x x k k x =-++-=-+由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++=上式表明此振动系统的振动为简谐振动,且振动的圆频率为12k k x mω+=振动的频率为 1212π2πk k mων+==5-4解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:22ππ242d d g F x g x ρρ=-⋅⋅=-振动角频率 2π2d gm ρω=振动周期 222ππmT d gρ=5-5解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机习题5-4 图械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
振动与波练习(题目与解答)

振动与波练习(解答) ★(P150) 51.求ϕ三方法:解析法;曲线法;旋转矢量法。
(1)解析法已知:t = 0时x0 = A/2υ0 > 0由x0 = A cosϕυ= -ωA sinϕ得ϕ = -π/3(2)曲线法先画辅助曲线(ϕ辅= 0)然后比较辅助曲线和已知曲线:已知的曲线时间落后T/6,则位相落后π/3,故已知振动的初相ϕ = -π/3(3)旋转矢量法由图ϕ = -π/3。
2.求a、b点的位相·a点:ξa = A;υa = 0,可得位相= 0。
·b点:ξb = 0;υb = -ωA,可得位相= π/2。
由解析法亦可。
3.求从t = 0到a、b两态的时间由旋转矢量图知,·从t = 0到a态,矢量转过π/3,故∆t a = T/6·从t = 0到b态,矢量转过π/3 + π/2,故 ∆t b = 5T /12 ★ (动力学解题两方法:受力法;能量法。
1.受力法:分析物体在任一位置时受力对m对轮 TR - fR = J β (2) 另 f = k ( y 0 + y ) f 0 = k y 0 = mg a = β Rd 2y d t 2 mg - T = m (1)可得说明振动是SHM ,其角频率为2.能量法:分析物体在任一位置时系统的能量。
·势能零点:平衡位置。
· 两边求导,并用 k y 0 = mg ;υ = ω角R , 可得d t 2 + ( ) y = 0 d 2ykR 2J + mR 2kR 2J + mR 2 ω = √m ( )2 + J ω角2 - m gy+ k (y 0+ y )2 = const.d y d t1 2 1 2 12d t 2 + ( ) y = 0 d 2y kR 2J + mR 2★(P151) 7 用能量法· 势能零点:平衡位置。
· 势能:(ρSy )gy · 系统能量:·两边求导,得 ·角频率为L 为液体总长度,m = ρSLyd y d tm ( )2+ ρS gy 2 = const. 1 2 d t 2 + ( ) y = 0d 2y 2ρSgm 2ρSg m ω = √ 2gL=√★(P160) 2已知x = 0处质元(波源)的振动曲线t(s)此曲线初相= ?1.画x = 25m处质元的振动曲线·由图T = 4 s ;知λ = uT = 20m·x = 0处质元的初相ϕo = - π/2·x = 25m处质元的初相x = 25m处质元的位相比x = 0处质元的落后多少?∆ϕ = k⋅25 = 2.5π,(波数k = 2π/λ = π/10) x = 25m处质元的初相ϕ 25 = - 3π = - π·x = 25m处质元也可先列出振动表达式再画振动曲线:·x = 0处质元(波源)的振动表达式ξ(0, t) = 2 cos(ωt - π/2) cm·x = 25m处质元的振动表达式ξ(25, t) = 2 cos(ωt - π/2- k⋅25) cm= 2 cos(ωt - 3π) cm= 2 cos(ωt - π) cm由此也可画x = 25m处质元的振动曲线。
第5章 振动和波动课后答案

第5章振动和波动5-1一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1)振动的角频率、最大速度和最大加速度;(2)振子对平衡位置的位移为x =0.02m 时的瞬时速度、加速度和回复力; (3)以速度具有正的最大值的时刻为计时起点,写出振动方程。
解:(1))s rad (105.050===m kω(2) 设当(3) 5-2解:ν=5-3式中1,k10x ,弹簧2所受的合外力为由牛顿第二定律得2122d ()d xm k k x t =-+即有2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为振动的频率为2πων==5-4如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。
振动周期5-55-6如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为R 、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。
习题解:设任意时刻t ,物体m 离平衡位置的位移为x ,速率为v ,则振动系统的总机械能 式中于是5-7已知5-8平衡位置距O '点为:000l x l k+=+以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x 处时,弹簧的伸长量就是x x +0,所以物体所受的合外力为物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为5-9两质点分别作简谐振动,其频率、振幅均相等,振动方向平行。
在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。
求它们相差,并用旋转矢量图表示出来。
习题5-6图解:根据题意,两质点分别在2A x =和2Ax -=处相向通过,由此可以画出相应的旋转矢量图,从旋转矢量图可得两个简谐振动的相位差为π34π或32==ϕϕ∆∆5-10一简谐振动的振幅A =24c m、周期T =3s ,以振子位移x =12cm 、并向负方向运动时为计时起点,作出振5-11(1)x (2)x当以(1)x 轴正向向上时:πϕ=-=)(01.00m x振动方程为))(1010cos(01.0m t x π+= (2)x 轴正向向下时:0)(01.00==ϕm x振动方程为))(1010cos(01.0m t x =5-12劲度系数为k 的轻弹簧,上端与质量为m 的平板相联,下端与地面相联。
大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
振动和波课后习题答案

− kxc − f = mxc
(1)
fR = (1 mR2 )θ = 1 mR2 xc
2
2R
(2)
由(2)式可得
f
=
1 2 mxc
代入(1)式得:
−
kxc
−
1 2
mxc
=
mxc
推出
3 2
mxc
+
kxc
=
0
k
m
题 6.9 图
ω = 2k 3m
6.10 如题 6.10 图所示,弹簧的倔强系数为 k,定滑轮的质量为 m’,半径为 R,转动惯量为 I,物体的质量为 m。轴处摩擦不计,弹簧和绳的质量也不计,绳与滑轮间无相对滑 动。(1)试求这一振动系统的振动频率,(2)如果在弹簧处于原长时由静止释放物体 m,m 向下具有最大速度时开始计时,并令 m 向下运动为 x 的正坐标,试写出 m 的振 动表达式。
2
2
(4) < Ek
>=< E p
>=
E 2
=
1 KA2 4
=
1 mω 2A2 4
=
4 ×10−6π 2 (J )
ห้องสมุดไป่ตู้
(5) t = 0.1s 时,ϕ = 8π + π = 25 π ; 33
t = 10s 时,ϕ = 80π + π = 241π 。 33
6.14 在阻尼振动中,量τ = 1 叫做弛豫时间。(1)证明 τ 的量纲是时间;(2)经过时间 τ δ
∵ m1 x1 = m2 x2
x
=
m1 + m2 m2
x1
Δx1 + Δx2 = Δx
mm1
振动和波动课后答案

精心整理第5章 振动和波动5-1 一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为x = 0.02m 时的瞬时速度、加速度和回复力;(2) (3) 解:式中解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为 振动的频率为 1212π2πk k mων+== 5-4 如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。
解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:振动角频率 2π2d gmρω=振动周期 222ππmT d gρ= 5-5 如图所示,定滑轮半径为R ,转动惯量为J ,轻弹簧劲度系数为k ,物体质量为m ,现将物体从平衡位置拉下一微小距离后放手,不计一切摩擦和空气阻力。
试证明该系统作简谐振动,并求其作微小振动的周期。
习题5-4解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
设平衡时弹簧伸长0l ,有:0kl mg = (1) 物体位于x 位置时(以原点为重力势能零点): 对上式两边求导:,物体械能于是ω=5-7如图所示,质量为10g的子弹,以01000m sv=速度射入木块并嵌在木块中,使弹簧压缩从而作简谐运动,若木块质量为4.99kg,弹簧的劲度系数为3810N m⨯,求振动的振幅。
机械振动和波习题及解答.

(1)波的波速、频率和波长; (2)绳子上各质点振动时的最大速度和最大加速度; (3)求=0.2m 处质点在=1s时的位相,它是原点在哪一时刻的位相?这一 位相所代表的运动状(SI).
(1)写出=4.2 s时各波峰位置的坐标式,并求此时离原点最近一个波峰 的位置,该波峰何时通过原点? (2)画出=4.2 s时的波形曲线.
机械振动和波习题
4-4 质量为的小球与轻弹簧组成的系统,按的规律作谐振动,求: (1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动 能与势能相等? (3)与两个时刻的位相差; 4-7 有一轻弹簧,下面悬挂质量为的物体时,伸长为.用这个弹簧和 一个质量为的小球构成弹簧振子,将小球由平衡位置向下拉开后 ,给 予向上的初速度,求振动周期和振动表达式. 4-8 图为两个谐振动的曲线,试分别写出其谐振动方程.
(3)因任一时刻同一波线上两点之间的位相差为
将,及代入上式,即得 .
5-9 沿绳子传播的平面简谐波的波动方程为=0.05cos(10),式中,以米
计,以秒计.求: (1)波的波速、频率和波长; (2)绳子上各质点振动时的最大速度和最大加速度; (3)求=0.2m 处质点在=1s时的位相,它是原点在哪一时刻的位相?这一 位相所代表的运动状态在=1.25s时刻到达哪一点? 解: (1)将题给方程与标准式
题图
5-17 一平面余弦波,沿直径为14cm的圆柱形管传播,波的强度为
18.0×10-3J·m-2·s-1,频率为300 Hz,波速为300m·s-1,求 : (1)波的平均能量密度和最大能量密度? (2)两个相邻同相面之间有多少波的能量?
机械振动和波习题及解答
振动和波习题课

20000 5 2 S 1.6 10 J / m s 2 4 10000
10)入射波方程为y1=Acos2 (t/T+x/ ),在自由 端x=0处发生反射后形成驻波,设反射后波的强度 不变,则反射波方程为 ,在x=2/3处 质点合振动的振幅为 。
自由端:在反射点没有半波损失。
波动
1.理解机械波产生的条件;掌握描述平面简谐波 的各物理量及各量间的关系;掌握由已知质点 的简谐振动方程得出平面简谐波的波函数的方 法;能运用波形图线分析和解决问题。 2.理解波的能量传播特征及能流密度概念。 3.了解电磁波的性质。 4.理解惠更斯原理和波的叠加原理;掌握波的相 干条件。能运用相位差和波程差分析、确定相 干波叠加后振幅加强或减弱的条件。 5.理解驻波的概念及其形成条件,能确定波腹和 波节的位置。 6.能用多普勒频移公式计算。
振动练习
1)一弹簧振子作简谐振动,当其偏离平衡位置 的位移大小为振幅的1/4时,其动能为振动总能量的 [E ] (A)7/16
(B)9/16
(C)11/16
(D)13/16
(E)15/16
1 2 2 2 E k m A si n (t 0 ) 2 1 m 2 ( A2 x 2 ) 2
(D)1:1:2
1 1 1 弹簧的串并联: 串联时等效劲度系数 k k1 k 2
并联时等效劲度系数 k k1 k2
4)用余弦函数描述一简谐振动,速度V与时间t的 关系曲线如图所示,则振动初位相为[ A ] ( A) / 6 (B) /3 (C) /2 (D) 2/3 (E) 5/6
Байду номын сангаас振动
1.掌握描述简谐振动的各物理量,特别是相位, 及各物理量之间的关系。掌握位移-时间曲线, 掌握旋转矢量法。能根据给定的初始条件,写 出一维简谐振动的运动方程,并理解其物理意 义;能比较同频率的不同谐振动的相位差。 2.掌握简谐振动的动力学特征,能建立一维简谐 振动(弹簧振子、单摆、复摆等)的微分方程。 3.掌握同方向、同频率的两个简谐振动的合成规 律;了解拍和拍频;了解相互垂直、同频率的 两个简谐振动的合成情况。
II2_振动和波+详细解答

振动1. 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T (B )1T (C )1T /2 (D )1T /2 (E )1T /4(C )弹簧的弹性系数问题:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。
为什么?因为我们知道胡克定律为:f kx =(力的大小),即 f k x=。
下面两根弹簧,本来材料、长度、弹性系数都是完全一样的,但是把其中的一根截短,加上相等的拉力f ,截短以后的弹簧伸长量要小于原来长度的弹簧的伸长量,弹性系数k 增大了。
f12T = 22k k =,下端挂一质量为12m的物体,则系统振动周期2T 为:2T 1112222T π⎛=== ⎝2. 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线。
(B )曲线2、1、3分别表示x 、v 、a 曲线。
(C )曲线1、3、2分别表示x 、v 、a 曲线。
(D )曲线2、3、1分别表示x 、v 、a 曲线。
(E )曲线1、2、3分别表示x 、v 、a 曲线。
(E )位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线; 曲线2比1超前了2π,1是位移曲线。
3. 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) 。
关键是写出初位相,用旋转矢量法最方便:0v (a)(b)t(a )φ= -π/2(b )φ= π/2(c )φ= π所以: (1)Y=Acos (t T π2-2π) (2)Y=Acos (t T π2+2π) (3)Y=Acos (t Tπ2+π)4.一系统作谐振动,周期为T ,以余弦函数表达振动时,初位相为零,在0≤t ≤T /2范围内,系统在t = 、 时刻动能和势能相等。
振动和波习题课

习题:1. 下面关于声波的说法中正确的是 ( )A. 同一种声波在水中传播时的波长要比空气中传播时的波长要大B. 声波的传播速度与介质的种类及声源的振动频率有关C. 声波不论在什么介质中传播都是纵波D. 声波可以发生反射,也可以发生干涉和衍射2. 右图,两单摆的摆长相同,平衡时两球刚好接触,现将摆球A 向左拉开一小角度后释放,相碰后,两球分开各自做简谐振动。
以m A ,m B 分别代表A ,B 的质量,则: ( )A. 如果m A >m B ,下一次碰撞将发生在平衡位置的右侧。
B. 如果m A <m B ,下一次碰撞将发生在平衡位置的左侧。
C. 无论两球的质量之比是多少,下一次碰撞都不可能在平衡位置的右侧。
D. 无论两球的质量之比是多少,下一次碰撞都不可能在平衡位置的左侧。
3. 单摆的摆长为L ,最大摆角为θ(θ>5º),摆球的质量为m ,摆球由最大位移向平衡位置运动过程中:( ) A. 重力的冲量为gL m 2π B. 合力的冲量为gL m )cos 1(θπ-C. 合力的冲量为)cos 1(2θ-gL mD. 合力的冲量为gL m2π 4. 在波的传播方向上有M 、N 两个质点,相距3.0米。
(小于一个波长)右图为这两个质点的振动图象。
其中实线为M 质点的振动图象,虚线为N 质点的振动图象,则这列波的传播方向和传播速度可能为( )A. 向右传播,v =3米/秒B. 向右传播,v =1米/秒C. 向左传播,v =3米/秒D. 向左传播,v =1米/秒5. 水平弹簧振子的振动图线如图7所示,弹簧振子在1.0s 时的弹性势能是0.40J ,若振子的质量是0.20kg ,则振子在4.0s 时的速度大小是 ;方向是 ;加速度的大小是 。
6. 轻质线绳od的悬点与一单摆的悬点o´相靠近,且处于同一水平线上,如右图所示。
在悬线上穿着一个小球B,它可沿悬线滑动,将单摆的摆球A由偏角小于5º处释放,与此同时将B球由悬点o释放,当A第一次通过它的平衡位置时,正好与滑行中的B球相碰,求B球与悬线之间的摩擦力与B球所受重力之比。
医用物理学 课后习题解答

后是否仍为简谐振动?②合振动的周期是多少?
解: ①由于分振动的频率不同,所以它们合成后将不是简谐振动。②合振动的频率为 100Hz,
周期
T=
1 100
s=0.01s。
8-7 弹簧振子作简谐振动时,若其振幅增为原来的两倍,而频率降为原来的一半,它们的能 量怎样改变?
答:
弹簧振子作简谐振动时,其能量为 E
x A cos( t )
(a)
①第一种情况:位于平衡点右侧 6cm 处,这时位移 x=6cm,将 t=0,A=6cm,x=6cm 代 入(a)式得
6 6 cos 6
解之得, =0。已知 T=2 秒,则
2 2
,将 A、ω、值代入(a)式可得第一种情况
的位移表达式为
x 6 cos t (cm)
x=-A, v=0, a=Aω2
8-3 一个作简谐振动的质点,在 t=0 时,离开平衡位置 6cm 处,速度为零,振动周期为 2s, 求该简谐振动的位移、速度、加速度的表达式。 解:根据题意,t=0 时,质点速度为零,离开平衡位置 6cm,这说明该振动的振幅为 A=6cm, 这时质点可能位于平衡点右侧 6cm 处,或位于平衡点左侧 6cm 处。下面分这两种情况进行 讨论,设该振动方程为:
解:
①已知波源 O 的振动方程为
y
0.06
cos
9
t ,则其振幅为 A=0.06m,角频率
9
,
又知 u=2m·s -1 ,则该波的波动方程为
s
0.06
cos
9
(t
x 2
)
由它可得 x=10m 处的质点振动方程为
y
0.06
cos
9
b 2
振动与波习题课

6、简谐振动的合成: 简谐振动的合成: 同方向、同频率的简谐振动的合成: 同方向、同频率的简谐振动的合成:
v A2
ϕ2 ϕ ϕ1
v A
v A1
x1
x (t ) = x1 (t ) + x2 (t )
= A cos(ωt + ϕ )
o
合成结果仍为同频率的简谐运动
x2
x
x
A=
2 A12 + A2 + 2 A1 A2 cos( ϕ 2 − ϕ 1 )
2π (r2 − r1 ) = ±2kπ k = 0,1,2,3,.....
λ 相消干涉: 相消干涉:∆ϕ = (ϕ20 − ϕ10 ) − 2π (r2 − r1 ) = ±(2k + 1)π k = 0,1,2,3,..... λ
相位、相位差和初相位的求法: 相位、相位差和初相位的求法:
解析法和 常用方法为解析法 旋转矢量法。 常用方法为解析法和旋转矢量法。 1、由已知的初条件求初相位: 、由已知的初条件求初相位: 已知初位置的大小、正负以及初速度的正负。 ①已知初位置的大小、正负以及初速度的正负。 A [例1]已知某质点振动的初位置 y0 = 且v0 > 0 。 例 已知某质点振动的初位置 2 y = A cos( ω t + ϕ )
A1 sin ϕ 1 + A2 sin ϕ 2 ϕ = arctg A1 cos ϕ 1 + A2 cos ϕ 2
机械波: 二、机械波:
1、产生的条件:波源及弹性媒质。 产生的条件:波源及弹性媒质。 2、描述波的物理量: 、描述波的物理量: 波长: 波传播时, 在同一波线上两个相邻的相位差为2 波长 波传播时 在同一波线上两个相邻的相位差为 π 的 质元之间的距离 ( λ )。 周期:波前进一个波长的距离所需的时间( 周期:波前进一个波长的距离所需的时间(T )。 频率:单位时间内波动传播距离中所包含的完整波长的数目(ν)。 频率:单位时间内波动传播距离中所包含的完整波长的数目 。 波速: 波在介质中的传播速度为波速。( 。(u 波速 波在介质中的传播速度为波速。( ) 各物理量间的关系: 各物理量间的关系:
高中物理练习振动与波(习题含答案)

1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。
对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。
以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。
若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。
振动与波动(习题与答案)

第10章振动与波动一.基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即由它可导出物体的振动速度)=tAv-ω+ωsin(ϕ物体的振动加速度)=tAa2cos(ϕ-+ωω3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相ϕ,t=t时刻它与x 轴的夹角为谐振动的相位ϕω+t 。
高中物理:振动和波练习及详解

高中物理振动和波练习及详解一、单项选择题1.一个单摆从甲地到乙地,发现振动变快了,为了调整到原来的快慢,下述说法正确的是( ) A. 因 g 甲>g 乙,故应缩短摆长 B. 因为g 甲>g 乙,故应加长摆长 C. 因为g 甲<g 乙,故应缩短摆长 D. 因为g 甲<g 乙,故应加长摆长 【答案】D【详解】一单摆因从甲地移到乙地,振动变快了,即周期减小了,根据2T =,得到g增大,T 才会减小,所以甲地的重力加速度小于乙地的重力加速度,即g 甲<g 乙;要使T 还要恢复,只要增大T ,故只能将摆长适当增长,故D 正确,ABC 错误.2.如图所示,弹簧左端固定,右端系一物块,物块可以在粗糙水平桌面上滑动,物块与水平面各处动摩擦因数相同,弹簧原长时物块位于O 点.当先后分别把物块拉到P1和P2点由静止释放后,物块都能运动到O 点左方,设两次运动过程中物块速度最大时的位置分别为Q1和Q2点,则这两点( )A. 都在O 点右方,且Q1离O 点较近B. 都在O 点右方,且Q2离O 点较近C. 都在O 点右方,且Q1、Q2为同一位置D. 都正好与O 点重合 【答案】C【详解】先后分别把物块拉到P1和P2点由静止释放,开始弹簧的弹力大于摩擦力的大小,物体做加速运动,加速度逐渐减小,当加速度减小到零时,即F=kx=f 时,速度最大,此时弹簧的形变量f x k=,知Q1和Q2点都在O 点右方,且Q1、Q2在同一位置,故C 正确,ABD错误.3.在相同的时间内单摆甲作了10次全振动,单摆乙作了6次全振动,两个单摆的摆长相差16cm ,则甲摆的摆长为( ) A. 25cm B. 9cm C. 18cm D. 12cm 【答案】B【详解】在相同时间内单摆甲做了n1=10次全振动,单摆乙做了n2=6次全振动,知甲乙单摆的周期比为3:5,根据2T =224gT L π=,则有:211222925L T L T ==,又L2-L1=16cm .所以L1=9cm ,L2=25cm ,故B 正确,ACD 错误.4.一个质量分布均匀的空心小球,用一根长线把它悬挂起来,球中充满水,然后让球小角度摆动起来,摆动过程中水在小孔中缓慢均匀漏出,那么,它的摆动周期将( ) A. 变大 B. 变小C. 先变大后变小D. 先变小后变大 【答案】C【详解】单摆在摆角小于5°时的振动是简谐运动,其周期是2T =球,重心在球心,当水从底部的小孔流出,直到流完的过程,金属球(包括水)的重心先下降,水流完后,重心升高,回到球心,则摆长先增大,后减小,最后恢复到原来的长度,所以单摆的周期先变大后变小,最终恢复到原来的大小,故C 正确,ABD 错误. 5.一弹簧振子做简谐运动,周期为T( )A. 若t 时刻和(t+△t)时刻振子位移相同,则△t 一定等于T 的整数倍B. 若t 时刻和(t+△t)时刻振子运动速度大小相等、方向相反,则△t 一定等于T/2的整数倍C. 若△t=T/2,则在t 时刻和(t+△t)时刻弹簧的长度一定相等D. 若△t=T/2,则在t 时刻和(t+△t)时刻振子运动的加速度大小一定相等 【答案】D【详解】在t 时刻和(t+△t )时刻振子的位移相同,所以这两时刻振子通过同一个位置,而每一个周期内,振子两次出现在同一个位置上.所以当速度方向相同时,则△t 可以等于T 的整数;当速度方向相反时,则△t 不等于T 的整数,故A 错误;若t 时刻和(t+△t )时刻振子运动速度大小相等,方向相反,则△t可能等于2T的整数倍,也可能大于2T的整数倍,也可能小于 的整数倍,故B 错误;若△t=2T ,则在t 时刻和(t+△t )时刻振子的位置关于平衡位置对称或经过平衡位置,所以这两时刻位移的大小一定相等,由kxa m =-知加速度大小一定相等.但弹簧的状态不一定相同,则长度不一定相等,故D 正确,C 错误.所以D 正确,ABC 错误.6.关于机械振动和机械波,下列说法中正确的是( )A. 物体作机械振动时,一定产生机械波B. 没有机械振动,也可能形成机械波C. 有机械波,一定有质点作机械振动D. 机械振动和机械波的产生无关 【答案】C【详解】机械振动在介质中的传播称为机械波,所以有机械波必有机械振动,而有机械振动若没介质不会形成机械波,故C 正确,ABD 错误. 7.关于波长,下列说法中正确的是( )A. 横波的两个波峰之间的距离等于一个波长B. 一个周期内介质质点通过的路程是一个波长C. 横波上相邻的波峰和波谷间的距离等于一个波长D. 波源开始振动后,在振动的一个周期里波传播的距离等于一个波长 【答案】D 【详解】横波的两个波峰之间的距离等于若干个波长,只有相邻两个波峰之间的距离等于一个波长,故A 错误;质点只在自由的平衡位置附近做简谐运动,通过一个周期内介质质点通过的路程是四个振幅,与波长没有关系,故B 错误;横波上相邻的波峰和波谷间的距离等于半个波长,故C 错误;波源开始振动后,在振动的一个周期里波传播的距离等于一个波长,故D 正确.所以D 正确,ABC 错误.8.关于波的叠加和干涉,下列说法中正确的是( )A. 两列频率不相同的波相遇时,因为没有稳定的干涉图样,所以波没有叠加B. 两列频率相同的波相遇时,振动加强的点只是波峰与波峰相遇的点C. 两列频率相同的波相遇时,如果介质中的某点振动是加强的,某时刻该质点的位移可能是零D. 两列频率相同的波相遇时,振动加强点的位移总是比振动减弱点的位移大 【答案】C【解析】根据波的叠加原理,只要两列波相遇就会叠加,所以选项A 错误.两列频率相同的波相遇时,振动加强的点是波峰与波峰、波谷与波谷相遇,所以B 选项错.振动加强的点仅是振幅加大,但仍在平衡位置附近振动,也一定有位移为零的时刻,所以选项C 正确,D 错误.故选C.二、多项选择题9.关于简谐运动的位移、速度、加速度的关系,下列说法正确的是( ) A. 加速度增大时,速度必减小 B. 速度、加速度方向始终相反C. 通过平衡位置时,v 、a 均改变方向D. 远离平衡位置时,v 、a 方向相反 【答案】AD 【详解】加速度满足kx a m =-,所以加速度增大时,位移也增大,所以速度必减小,故A 正确;向平衡位置运动时,速度、加速度方向相同,故B 错误;通过平衡位置时,速度方向不改变,故C 错误;远离平衡位置时,加速度方向指向平衡位置,速度方向背离平衡位置,即v 、a 方向相反,故D 正确.所以D 正确,BC 错误.10.如图所示,在O 点悬一根细长直杆,杆上串有一个小球A,用长为l 的细线系着另一个小球B,上端也固定在O 点,将B 拉开,使细线偏离竖直方向一个小角度,将A 停在距O 点L/2处,同时释放,若B 第一次回到平衡位置时与A 正好相碰(g 取10m/s2,π2取10),则( ) A. A 球与细杆之间不应有摩擦力 B. A 球的加速度必须等于4m/s2C. A 球受到的摩擦力等于其重力的0.6倍D. 只有知道细线偏离竖直方向的角度大小才能求出A 球受到的摩擦力【答案】BC【详解】球B 是单摆,根据单摆的周期公式2T =B 第一次回到平衡位置过程的时间:4T t =,球A匀加速下降,根据位移时间关系公式,有2122L at=,解得:2244/ga m s π=≈ ,故B 正确;球A 匀加速下降,根据牛顿第二定律,有:mg-f=ma ,解得:f=m (g-a )=0.6mg ,A 球受到的摩擦力等于其重力的0.6倍,故AD 错误,C 正确.所以BC 正确,AD 错误. 11.一弹簧振子做简谐振动,t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻一定相同的物理量有( ) A. 速度 B. 加速度 C. 位移 D. 机械能 【答案】AD【详解】t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻质点位置关于平衡位置对称,此时速度和机械能相同,加速度和位移方向相反,故AD 正确,BC 错误.12.细长轻绳下端拴一小球构成单摆,在悬挂点正下方1/2摆长处有一个能挡住摆线的钉子A ,如图所示.现将单摆向左拉开一个小角度,无初速度释放.对于以后的运动,下列说法正确的是( )A. 摆球往返一次的时间比无钉子时短B. 摆球往左右两侧上升的最大高度相同C. 摆球往在平衡位置左右两侧走过的最大弧长相等D. 摆球往在平衡位置右侧的最大摆角是左侧最大摆角的两倍. 【答案】AB【详解】无钉子时,单摆的周期2T =,有钉子后,在半个周期内绕悬挂点摆动,半个周期内绕钉子摆动,周期T '=A 正确;根据机械能守恒定律,左右两侧上升的高度相同.有钉子子时走过的弧长小于无钉子走过的弧长.摆角不是2倍关系,故B 正确,CD 错误.所以AB 正确,CD 错误.13.关于机械波,下列说法不正确的是( ) A. 在传播过程中能传递能量 B. 频率由波源决定C. 能产生干涉、衍射现象D. 能在真空中传播 【答案】D【详解】A .波传播振动这种运动形式的同时传递能量,故A 正确,不符合题意; B .波的频率是由波源决定的,故B 正确,不符合题意; C .干涉、衍射是波的特有现象,机械波在一定条件下也能发生干涉和衍射现象,故C 正确,不符合题意;D .机械波传播要借助于介质,真空中不能传播,故D 错误,符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π
2π
λ
2OB π = 5π
2π
= 入 反 = π
λ
x (5π +
2π
λ
x) = 6π
4π
2kπ , 波腹 = (2k + 1)π , 波节
0≤x≤1.25λ ≤ ≤ λ
λ
x
3. 空气中声速为 空气中声速为340m/s, 一列车以 一列车以72km/h的速度行驶 车上旅客 的速度行驶, 的速度行驶 听到汽笛声频率为360Hz, 则目送此火车离去的站台上的旅客听到 听到汽笛声频率为 此汽笛声的频率为( 此汽笛声的频率为 B) (A) 360Hz (B) 340Hz (C) 382.5Hz (D) 405Hz 解:
t = ( / 2π )T = T / 12 6
A/2 -π/3
π
ω
x
A
2. 如图为用余弦函数表示的一质点作谐振动曲线 振动圆频率 如图为用余弦函数表示的一质点作谐振动曲线, ,从初始状态到达状态 所需时间为 2s 从初始状态到达状态a所需时间为 . 为 7π/6 π 从初始状态到达状态 分析: 分析:本题的关键是确定各时刻 X(m) 6 的位相, 的位相,在振动曲线上由位移和 3 速度方向(斜率的正负) 速度方向(斜率的正负)定 0 t=0时: -3 X0=A/2,v0<0 = π/3 t=1时: X=0,v>0 ωt+= 3π/2
u vs
s
u = 334m s 1 (3)
u v0 ( 4) λ ′ = ν′ 334 65 = = 0.190m 1418
ω
t = 0, v0 = ωA sin 0 = 10cm / s
3 ∴0 = π 2
3 ∴ x = 2 cos(5t + π )cm 2
波动三(46) 波动三 1. 某时刻驻波波形曲线如图所示 则a,b两的位相差是 ) 某时刻驻波波形曲线如图所示, 两的位相差是(A 两的位相差是 (A) π (B) π/2 (C) π/4 (D) 0 两波节之间的点同相,一个波节两侧的点反相. 两波节之间的点同相,一个波节两侧的点反相.
π
5. 劲度为 1的轻弹簧与劲度为 2的弹簧如图连接 在K2 的下端挂 劲度为K 的轻弹簧与劲度为K 的弹簧如图连接, 一质量为m的物体 的物体, 证明当m在竖直方向发生微小位移后 在竖直方向发生微小位移后, 一质量为 的物体 (1) 证明当 在竖直方向发生微小位移后 系统 作谐振动. 作谐振动. (2) 将m从静止位置向上移动 然后释放任其运动 写出振动方程 从静止位置向上移动a, 从静止位置向上移动 然后释放任其运动, (取物体开始运动为计时起点 X轴向下为正方向 取物体开始运动为计时起点, 轴向下为正方向) 取物体开始运动为计时起点 轴向下为正方向
v 0 = 65m s 1 u = 334m s 1
(1)声源运动的前方 声源运动的前方: 声源运动的前方 u vs 334 30 λ1 = = = 0.281m ν 1080 声源运动的后方: 声源运动的后方 u + vs 334 + 30 λ2 = = = 0.337 m ν 1080
334 + 65 = × 1080 = 1418 Hz 334 30
vm=0.8π=2.51m/s am=6.4π2=63.1m/s2
k = mω 2 = 0.1× (8π ) 2 = 63.1N / m
Fm=kA=6.31N
1 2 E = kA = 0.316 J 2
4. 一质点在 轴上作简谐振动 选取该质点向右运动通过 点时 一质点在X轴上作简谐振动 选取该质点向右运动通过A点时 轴上作简谐振动, 作为计时起点(t=0), 经过 秒后质点第一次经过 点, 再经过 秒 经过2秒后质点第一次经过 秒后质点第一次经过B点 再经过2秒 作为计时起点 后质点第二次经过B点 若已知该质点在A, 两点具有相同的速 后质点第二次经过 点, 若已知该质点在 ,B两点具有相同的速 率, 且AB=10cm, 求 A,B两点关于原点对称 (1) 质点的振动方程 t=4 B t=2 X A t=0 O (2) 质点在 点处的速率 质点在A点处的速率 点处的速率.
(2) 设振动方程为
x = A cos(ωt + 0 )
vm = Aω = 10cm / s
10
0
∴ v = Aω sin(ωt + 0 )
由v—t图知 图知: 图知
V(cm/s)
2π 4 T = π ∴ ω = = 5rad s 1 10 T vm A= = 2cm
1
2
3
4
t(π/10)s -10
-6
2
1
t(s) a
a点: X0=-A/2,v0<0
3 π π 2 3 = 7π ω= 1 0 6
或由曲线的 ωta+ = 2π/3+2π 对称性从初 始到1s时刻 始到 时刻 8 π 和从1s到 状 π 和从 到a状 3 = 2 s 态应经历相 ta = 3 7 同的时间 π 6
3. 质量为 质量为0.1kg的小球与轻弹簧组成的弹簧振子 按X=0.1 的小球与轻弹簧组成的弹簧振子, 的小球与轻弹簧组成的弹簧振子 cos(8πt+2π/3)的规律作谐振动 的规律作谐振动,(SI), 求: + 的规律作谐振动 (1) 振动周期,振幅,初相及速度,加速度的最大值; 振动周期,振幅,初相及速度,加速度的最大值; (2) 求最大弹性力及振动能量 求最大弹性力及振动能量. 解:由振动方程知A=0.1m, ω=8π, =2π/3 v=-0. 8πsin(8πt+2π/3) + a=-6.4π2sin(8πt+2π/3) + T=2π/ω=0.25s
( x ≥ 0)
λ
2 ; (k = 0,1, LL)
波腹
π A = 2 A cos 2λ = 2 A
∴x = k
π 波节: 波节 A = 2 A cos 2λ = 0
x = (2k + 1) λ ; (k = 0,1, LL) 4
5.一声源的频率为 一声源的频率为1080Hz,相对于地以 相对于地以30m/s的速率向右运动 在其 的速率向右运动, 一声源的频率为 相对于地以 的速率向右运动 右方有一反射面相对于地以65m/s的速率向左运动 设空气的声速为 的速率向左运动, 右方有一反射面相对于地以 的速率向左运动 334m/s, 求: (1) 声源在空气中发出声音的波长; 声源在空气中发出声音的波长 (2) 每秒钟到达反射面的波数 每秒钟到达反射面的波数; (3) 反射波的速率 反射波的速率; (4) 反射波的波长 1 u + v0 解: ν = 1080Hz v s = 30m s (2) ν ′ = ν
2 A v0 > 0 t=0: x0 = 2 = 2 π = 4 t=1: x = 0 v < 0 π 3π ωt + = ω= 2 4
X(m) 2 0 1
t(s)
3. 两个同方向同频率的谐振动 其合振幅为 两个同方向同频率的谐振动, 其合振幅为20cm, 合振动周相 与第一个振动的周相差为60° 第一个振动的振幅为 第一个振动的振幅为A 与第一个振动的周相差为 °,第一个振动的振幅为 1=10cm , 则第一振动与第二振动的周相差为(B 则第一振动与第二振动的周相差为 ) A (A) 0 (B) π/2 (C) π/3 (D) π/4 A2
Y a 9λ/8 λ/2 b X
2. 如图 在X=0处有一平面余弦波波源 其振动方程是 如图, 处有一平面余弦波波源, 处有一平面余弦波波源 Y=Acos(ωt+π), 在距 点为 在距O点为 点为1.25λ处有一波密媒质界面 处有一波密媒质界面MN, 则O, 处有一波密媒质界面 , λ 3λ 5λ B间产生的驻波波节的坐标是 间产生的驻波波节的坐标是 ; ; . 4 4 4 M ,波腹的坐标是 λ 0; ; λ . 2 反射波在O点的初相: 反射波在 点的初相: 点的初相
.
u = 340m s 1
vs = 72km / h = 20m s 1
ν = 360 Hz
∴ν ′ =
u ν = 340 Hz u + vs
4. 设入射波的波动方程为 1=Acos2π(t/T+x/λ), 在x=0处发生反射 设入射波的波动方程为Y 处发生反射, 处发生反射 反射点为一自由端,求 反射点为一自由端 求: (1) 反射波的波动方程 (2) 合成波的方程 并由合成波方程说明哪些点是波腹 哪些点 合成波的方程,并由合成波方程说明哪些点是波腹 并由合成波方程说明哪些点是波腹,哪些点 是波节. 是波节 y20 = A cos(2πt / T ) 反射波在反射点0点振动方程为 解:(1)反射波在反射点 点振动方程为 反射波在反射点 点振动方程为:
1 1 1 = + K 2 K1 K 2 2 K1 K 2 K= 2 K1 + K 2
K1 K2 m K1
平衡位置 Kx0 = mg
d 2x 任意位置 F = K ( x + x0 ) + mg = Kx = m 2#43; π )
振动习题课后作业(43) 振动习题课后作业 1. 当谐振子的振幅增大到 时, 它的周期不变 速度最大值变为 当谐振子的振幅增大到2A时 它的周期不变 速度最大值变为 不变, 原来的2倍 加速度最大值变为原来的 变为原来的2倍 填增大 减小, 原来的 倍, 加速度最大值变为原来的 倍.(填增大 ,减小,不变 或变几倍) 或变几倍 2. 如图所示质点的谐振动曲线所对应的振动方程 如图所示质点的谐振动曲线所对应的振动方程(D) (A) X=2cos(3t/4+π/4) (m) (B) X=2cos(πt/4+5π/4) (m) (C) X=2cos(πt-π/4) (m) (D) X=2cos(3πt/4-π/4) (m) - -