北师大版《数学》(七年级下册)概念总结

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]

1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]

北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形【答案】D;解析:A、两个等腰三角形的45°不一定同是底角或顶角,还缺少对应边相等,所以,两个三角形不一定全等,故本选项错误;B、两个等边三角形的边长不一定相等,所以,两个三角形不一定全等,故本选项错误;C、40°角不一定是两个三角形的顶角,所以,两个三角形不一定全等,故本选项错误;D、腰和顶角对应相等的两个等腰三角形可以利用“边角边”证明全等,故本选项正确.类型二、全等三角形的对应边,对应角2、(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【思路点拨】由全等三角形的性质:对应角相等即可得到问题的选项【答案与解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【思路点拨】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE ,都减去∠ACE 即可.【答案与解析】解:AB 的对应边为DE ,∵△ABC ≌△DEC ,∴∠ACB=∠DCE ,∴∠ACB —∠ACE=∠DCE —∠ACE ,即∠BCE=∠DCA=40°.【总结升华】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。

七年级下册数学各章知识点总结

七年级下册数学各章知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

北师大版《数学》(七年级下册)概念总结

北师大版《数学》(七年级下册)概念总结

北师大版《数学》(七年级下册)概念总结第一章整式的乘除1.同底数幂相乘,底数不变,指数相加。

2.幂的乘方,底数不变,指数相乘。

3.积的乘方等于积中每一个因式分别乘方。

4.同底数幂相除,底数不变,指数相加。

5.除0外的任何数的零次方都是一6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把所得的积相加。

8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

9.平方差公式:两数和与这两数差的积,等于与他们的平方差。

10.完全平方公式:11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。

12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

第二章相交线与平行线1.在同一平面内,两条直线的位置关系有相交和平行。

2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。

3.在同一平面内,不相交的两条直线叫平行线。

4.对顶角相等。

5.如果两个角的和是180°,称这两个角互为补角。

6.如果两个角的和是90°,称这两个角互为余角。

7.同角或等角的余角相等,同角或等角的补角相等。

8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

9,平面内,过一点有且只有一条直线与已知直线垂直。

10.垂线线段最短。

11、在同一平面内:同位角相等内错角相等两直线平行同旁内角互补.12.过直线外一点有且只有一条直线与已知直线平行。

平行于同一条直线的两只线平行。

13.平行线的定义:同位角相等两直线平行内错角相等同旁内角互补第三章三角形1三角形的内角和是180°。

2直角三角形的两个锐角互余。

北师大版七年级下册数学各章知识点总结复习整理

北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

完整word版,北师大版七年级数学下册 第四章知识点汇总(全)

完整word版,北师大版七年级数学下册     第四章知识点汇总(全)

第四章 三角形三角形三边关系三角形 三角形内角和定理角平分线三条重要线段 中线高线全等图形的概念全等三角形的性质SSS三角形 SAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。

2、顶点是A 、B 、C 的三角形,记作“ΔABC ”,读作“三角形ABC ”。

3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

用字母可表示为a+b>c,a+c>b,b+c>a ;a-b<c,a-c<b,b-c<a 。

2、判断三条线段a,b,c 能否组成三角形:当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形:即三角形的三个内角都是锐角的三角形;(2)直角三角形:即有一个内角是直角的三角形,我们通常用“Rt Δ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,其余两边称为直角三角形的直角边。

直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形:即有一个内角是钝角的三角形。

a b c a b -<<+3、判定一个三角形的形状主要看三角形中最大角的度数。

4、直角三角形的面积等于两直角边乘积的一半。

四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线。

北师大版数学七年级下册知识点总结

北师大版数学七年级下册知识点总结

第一章:整式的运算单项式式多项式同底数幂的乘法a m﹒a n=a m+n a m+n = a m﹒a n幂的乘方(a m)n =a mn积的乘方(ab)n=a n b n a n b n =(ab)n同底数幂的除法a m÷a n=a m-n(a≠0)零指数幂a0=1(a≠0)负指数幂1(0)ppaa a-=≠整式的加减单项式与单项式相乘单项式与多项式相乘m(a+b+c)=ma+mb+mc。

整式的乘法多项式与多项式相乘(m+n)(a+b)=ma+mb+na+nb平方差公式(a+b)(a-b)=a2-b2 a2-b2=(a+b)(a-b) 完全平方公式222222()2,()2,a b a ab b a b a ab b+=++-=-+单项式除以单项式整式的除法多项式除以单项式第二章平行线与相交线余角:两个角的和是直角余角补角补角:两个角的和是平角角两线相交对顶角:对顶角相等同位角F三线八角内错角Z同旁内角U平行线的判定:同位角相等,两直线平行内错角相等,两直线平行平行线同旁内角互补,两直线平行平行线的性质 : 两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补。

尺规作图熟练掌握以下作图语言:(1)作射线××;(2)在射线上截取××=××;(3)在射线××上依次截取××=××=××;(4)以点×为圆心,××为半径画弧,交××于点×;(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;(6)过点×和点×画直线××(或画射线××);(7)在∠×××的外部(或内部)画∠×××=∠×××;第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象第四章 三角形三角形三边关系:三角形 三角形任意两边之和大于第三边,任意两边之差小于第三边三角形内角和定理:三角形的三个内角的和等于1800角平分线三条重要线段 中线高线三角形全等图形的概念:能够重合的两个三角形是全等三角形,用符号“≌”全等三角形 全等三角形的性质: 全等三角形的对应边、对应角相等全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。

北师大七年级数学下册知识点总结

北师大七年级数学下册知识点总结

北师大版七年级数学下册知识点总结第一章 整式的运算一、整式1、单项式:表示数与字母的积的代数式。

另外规定单独的一个数或字母也是单项式。

单项式中的数字因数叫做单项式的系数。

注意系数包括前面的符号,系数是1时通常省略,π是系数,72xyz -的系数是72- 单项式的次数是指所有字母的指数的和。

2、多项式:几个单项式的和叫做多项式。

(几次几项式)每一个单项式叫做多项式的项,注意项包括前面的符号。

多项式的次数:多项式中次数最高的项的次数。

项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

3、整式;单项式与多项式统称为整式。

(最明显的特征:分母中不含字母)4、排列多项式:①按某一个字母降幂排列:某一个字母的指数由大到小排列; ②按某一个字母升幂排列:某一个字母的指数由小到大排列。

二、整式的加减:①先去括号; (注意括号前有数字因数)②再合并同类项。

(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。

m n m n a a a +=•2、幂的乘方:底数不变,指数相乘。

nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

n n n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。

10=a (0≠a ) 注意00没有意义。

5、负整数指数幂: p p a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。

m n m n a a a -=÷注意:以上公式的正反两方面的应用。

常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。

五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

(完整版)北师大版七年级数学下册数学各章节知识点总结

(完整版)北师大版七年级数学下册数学各章节知识点总结
一个角的补角。
in 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置
无关。
s 4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 g 5、余角和补角的性质用数学语言可表示为: in (1) 1 2 900 (1800 ), 1 3 900 (1800 ), 则 2 3(同角的余角
3
ethin (6)过点×和点×画直线××(或画射线××); m (7)在∠×××的外部(或内部)画∠×××=∠×××; o 6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概 s 括叙述就可以了。 r (1)画线段××=××; (2)画∠×××=∠×××;
等于它们的平方和,加上(或减去)它们的积的 2 倍。
2、公式中的 a,b 可以是单项式,也可以是多项式。
3、掌握理解完全平方公式的变形公式:
(1) (2)
a2 (a
b2 (a b)2 2ab b)2 (a b)2 4ab
(a
b)2
2ab
1 2
[(a
b)2
(a
b)2 ]
(3)
ab
1 4
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an 的结果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再 运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相

(完整版)北师大版七年级数学下册数学各章节知识点总结

(完整版)北师大版七年级数学下册数学各章节知识点总结

北七下知识要点分章梳理第一章:整式的运算单项式整 式多项式同底数幂的乘法幂的乘方 积的乘方3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘 4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:一、单项式整式的乘法多项式与多项式相乘 整式运算平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式(1) 列出代数式:用括号把每个整式括起来,再用加减号连接。

(2) 按去括号法则去括号。

(3) 合并同类项。

4、代数式求值的一般步骤:(1) 代数式化简。

(2) 代入计算(3) 对于某些特殊的代数式,可采用“整体代入”进行计算。

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是 1 或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是 0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是 1 或―1 时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结一、整式的乘除。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n(m、n 为正整数)。

- 例如:2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m、n为正整数)。

- 例如:(3^2)^3 = 3^2×3=3^6。

3. 积的乘方。

- 法则:积的乘方等于乘方的积。

即(ab)^n=a^n b^n(n为正整数)。

- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。

4. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

- 例如:5^5÷5^3 = 5^5 - 3=5^2。

5. 零指数幂。

- 规定:a^0 = 1(a≠0)。

6. 负整数指数幂。

- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。

- 例如:2^-3=(1)/(2^3)=(1)/(8)。

7. 整式的乘法。

- 单项式乘以单项式:系数相乘,同底数幂相乘。

例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。

- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(x + 3)=2x^2+6x。

- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。

8. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。

- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。

(完整版)北师大版七年级下册数学各章知识点总结

(完整版)北师大版七年级下册数学各章知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

2024年北师大版七年级数学下册知识点总结(二篇)

2024年北师大版七年级数学下册知识点总结(二篇)

2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。

方程的解是使得方程成立的数。

2.解方程:通过变量的运算和移项,求出方程的解。

3.解一元一次方程:如ax+b=0,解得x=-b/a。

4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。

5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。

6.解不等式:通过移项,求出不等式的解的范围。

7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。

第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。

2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。

3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。

第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。

2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。

3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。

4.正多边形:具有相等边长和相等内角的多边形。

5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。

6.图形的相似性:具有相等比例关系的图形称为相似图形。

7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。

第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。

2.梯形:有两个底边,两个腰。

3.平行四边形:具有相对边平行的四边形。

4.矩形:具有四个直角的四边形,对角线相等。

5.菱形:具有四个相等边的四边形,对角线互相垂直。

6.正方形:具有四个相等边且具有对称性的四边形。

第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。

比值相等时称为成比例。

2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。

北师大版七年级数学下册《概率初步》知识点汇总

北师大版七年级数学下册《概率初步》知识点汇总

北师大版七年级数学下册《概率初步》知识点汇总北师大版七年级数学下册《概率初步》知识点汇总1.在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不会发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。

有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。

2.在试验次数很大时,不确定事件发生的频率都会在一个常数附近摆动,这就是频率的稳定性。

一般地,把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).3.注意:在大量重复试验中,我们常用不确定事件发生的频率来估计事件发生的概率说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.4.事件A发生的概率记作P(A)则:0≤P(A)≤1。

必然事件发生的概率为1,不可能事件发生的概率为0,不确定事件发生的概率P(A)为0与1之间的一个常数。

5.等可能事件概率(1)一次试验中,可能出现的结果有限多个.(2)一次试验中,各种结果发生的可能性相等.设一个实验的所有可能的结果有n种,每次试验有且只有其中的一种结果出现,如果每种结果出现的可能性相同,那么我们就称这个实验的结果是等可能的。

一般地,如果一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)=m/n 注意:0≤P(A)≤1一共有n种结果,每种结果出现的可能性都相同,事件A 出现的结果有m种,所以事件A发生的概率为P(A)=m/n 6.游戏是否公平:游戏对双方公平是指双方获胜的可能性相同,即获胜概率相同。

养成良好的学习习惯,掌握适当的学习方法是提高学习成绩的最佳途径,将会一生受益,我们可以共同探讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版《数学》(七年级下册)概念总结第一章整式的乘除
1.同底数幂相乘,底数不变,指数相加。

2.幂的乘方,底数不变,指数相乘。

3.积的乘方等于积中每一个因式分别乘方。

4.同底数幂相除,底数不变,指数相加。

5.除0外的任何数的零次方都是一
6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连
同它的指数不变,作为积的因式。

7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把
所得的积相加。

8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,
再把所得的积相加。

9.平方差公式:两数和与这两数差的积,等于与他们的平方差。

10.完全平方公式:
11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。

12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

第二章相交线与平行线
1.在同一平面内,两条直线的位置关系有相交和平行。

2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。

3.在同一平面内,不相交的两条直线叫平行线。

4.对顶角相等。

5.如果两个角的和是180°,称这两个角互为补角。

6.如果两个角的和是90°,称这两个角互为余角。

7.同角或等角的余角相等,同角或等角的补角相等。

8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

9,平面内,过一点有且只有一条直线与已知直线垂直。

10.垂线线段最短。

11、在同一平面内:同位角相等
内错角相等两直线平行
同旁内角互补.
12.过直线外一点有且只有一条直线与已知直线平行。

平行于同一条直线的两只线平行。

13.平行线的定义:同位角相等
两直线平行内错角相等
同旁内角互补
第三章三角形
1三角形的内角和是180°。

2直角三角形的两个锐角互余。

3.三角形任意两边之和大于第三边,三角形任意两边之和小于第三边。

4.在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线,
5.三角形的三条中线交于一点,这个点成为三角形的重心。

6.在三角形中,一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的角平分线交于一点。

7.从三角形的一个顶点向他的对边所在直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。

三角形的三条高所在的直线交于一点。

8.能够完全重合的两个图形成为全等图形。

9.全等三角形的形状和大小都相同。

10.能够完全重合的三角形叫做全等三角形。

全等三角形的对应边相等,对应角相等。

11.三边分别相等的两个三角形全等,简写“边边边”或“SSS”.
12.两边及其夹角分别相等的两个三角形,简写“角边角”或“ASA”.
13.两边分别相等且其中一组对边等角的对边相等的两个三角形,简写“角角边”或“AAS”。

14.两边及其夹角分别相等的两个三角形,简写“边角边”或“SAS”。

第四章变量之间的关系
1.事物A随着事物B的变化而变化,A是自变量,B是因变量。

在变化过程中始终不变化的量叫做常量。

2.可以用:①关系式②图象来表示变量之间的关系。

3.用图象表示变量之间的关系时,通常用横轴上的点表示自变量,用竖轴上的数表示因变量。

第五章生活中的对称轴
1.如果一个平面图形沿一条直线折叠后,直线两边的部分能够互相重合,那么这个图形为轴对称图形,这条直线叫做对称轴。

2.如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。

3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。

4.等腰三角形是轴对称图形。

等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),他们所在的直线都是等腰三角形的对称轴。

等腰三角形的两个底角相等。

5.线段是轴对称图形,垂直且平分线段的直线是它的一条对称轴。

6.垂直于一套直线,并且平分这条线段的直线,叫做这条线段的垂直平分线。

7.线段垂直平分线上的点到这条线段两个短点的距离相等。

8.角是轴对称图形,角平分线所在的直线就是他的对称轴。

9,角平分线上的点到这个角的两边的距离相等。

第六章概率初步
1.在一定条件下,有些事情我们事先肯定他一定发生,这些事情称为必然事件。

2.有些事情我们事先能肯定他一定不会发生,这些事情称为不可能事件。

3,必然事件与不可能事件统称确定事件。

4.有许多时间我们事先无法肯定他发生不发生,这些事称为不可能事件,也称随机事件。

5.在试验次数很大时的频率都会在一个常数附近摆动,这就是频率的稳定性。

6.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。

7.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数。

8.如果一个试验有N种等可能的结果,事件A包含其中的M种结果,那么事件A发生的概率是为:P(A)=。

相关文档
最新文档