(完整版)动量、动量定理
动量、冲量及动量守恒定律
动量、冲量及动量守恒定律动量和动量定理一、动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v;2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小).4.与动能的区别与联系:(1)区别:动量是矢量,动能是标量.(2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k.二、动量定理1.冲量(1)定义:力与力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量.(2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲)题组一对动量和冲量的理解1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的动能不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大2.如图所示,在倾角α=37°的斜面上,有一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2s的时间内,物体所受各力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)3.(2014·西安高二期末)下列说法正确的是() A.动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动能不变,物体的动量一定不变4.如图所示,质量为m的小滑块沿倾角为θ的斜面向上滑动,经过时间t1速度为零然后又下滑,经过时间t2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F1.在整个过程中,重力对滑块的总冲量为()A.mg sin θ(t1+t2) B.mg sin θ(t1-t2) C.mg(t1+t2) D.05.在任何相等时间内,物体动量的变化总是相等的运动可能是()A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动题组二动量定理的理解及定性分析1跳远时,跳在沙坑里比跳在水泥地上安全,这是由于()A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小2.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是()A.引起小钢球动量变化的是地面给小钢球的弹力的冲量B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C.若选向上为正方向,则小钢球受到的合冲量是-1 N·sD.若选向上为正方向,则小钢球的动量变化是1 kg·m/s3.如图所示,一铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉到地面上的P点,若以2v速度抽出纸条,则铁块落地点为()A.仍在P点B.在P点左侧C.在P点右侧不远处D.在P点右侧原水平位移的两倍处题组三动量定理的有关计算1.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m,据测算两车相撞前速度约为30 m/s,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大?动量守恒定律一、系统、内力与外力1.系统:相互作用的两个或多个物体组成一个力学系统.2.内力:系统中,物体间的相互作用力.3.外力:系统外部物体对系统内物体的作用力.二、动量守恒定律1.内容:如果一个系统不受外力或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式:对两个物体组成的系统,常写成:p1+p2p1′+p2′或m1v1+m2v2m1v1′+m2v2′.3.成立条件(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.三、动量守恒定律的普适性动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域.四、对动量守恒定律的理解1.研究对象相互作用的物体组成的系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,合外力也不为零,但合外力远远小于内力.此时动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.3.动量守恒定律的几个性质(1)矢量性.公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.(2)相对性.速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.(3)同时性.相互作用前的总动量,这个“前”是指相互作用前的某一时刻,v1、v2均是此时刻的瞬时速度;同理,v1′、v2′应是相互作用后的同一时刻的瞬时速度.例1如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C 组成系统的动量守恒针对训练下列情形中,满足动量守恒条件的是()A.用铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑桌面上的木块的过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒2.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力使弹簧压缩,如图所示.当撤去外力后,下列说法正确的是()A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a和b组成的系统动量守恒D.a离开墙壁后,a和b组成的系统动量不守恒五、动量守恒定律简单的应用1.动量守恒定律不同表现形式的表达式的含义(1)p=p′:(2)Δp1=-Δp2(3)Δp=0 (4)m1v1+m2v2=m1v1′+m2v2′2.应用动量守恒定律的解题步骤(1)确定相互作用的系统为研究对象;(2)分析研究对象所受的外力;(3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号;(5)根据动量守恒定律列式求解.例2将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图所示.(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?题组一对动量守恒条件的理解1.关于系统动量守恒的条件,下列说法中正确的是()A.只要系统内存在摩擦力,系统的动量就不可能守恒B.只要系统中有一个物体具有加速度,系统的动量就不守恒C.只要系统所受的合外力为零,系统的动量就守恒D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒2.如图所示,物体A的质量是B的2倍,中间有一压缩弹簧,放在光滑水平面上,由静止同时放开两物体后一小段时间内() A.A的速度是B的一半B.A的动量大于B的动量C.A受的力大于B受的力D.总动量为零3.在光滑水平面上A、B两小车中间有一弹簧,如图所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看成一个系统,下面说法正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零题组二动量守恒定律的简单应用4.在高速公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一辆质量为3 000 kg向北行驶的卡车,碰撞后两辆车接在一起,并向南滑行了一小段距离后停下,根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰撞前的行驶速率()A.小于10 m/s B.大于20 m/s,小于30 m/sC.大于10 m/s,小于20 m/s D.大于30 m/s,小于40 m/s5.将静置在地面上质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A. m M v 0B. M m v 0C. M M -mv 0 D. m M -mv 0 6.质量为M 的木块在光滑水平面上以速度v 1向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( )A.(M +m )v 1m v 2B.M v 1(M +m )v 2C.M v 1m v 2D.m v 1M v 27.质量为M 的小船以速度v 0行驶,船上有两个质量均为m 的小孩a 和b ,分别静止站在船头和船尾.现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中,则小孩b 跃出后小船的速度方向________,大小为________(水的阻力不计).题组三 综合应用8.光滑水平面上一平板车质量为M =50 kg ,上面站着质量m=70 kg的人,共同以速度v0匀速前进,若人相对车以速度v=2 m/s向后跑,问人跑动后车的速度改变了多少?。
(完整版)动量基本知识
而动量变化等于末动量(包括大小和方向)减去初动量 (包括大小和方向)。
例题1——动量变化的一维计算
一个质量是0.1kg的钢球,以6m/s的速度水平向 右运动,碰到一块坚硬的障碍物后被弹回,沿 着同一直线以6 m/s的速度水平向左运动,碰撞 前后钢球的动量有没有变化?变化了多少?
V
结论:2.运动物体的作用效果还与速度有关。
所以,考虑运动物体的作用效果,要同时考虑 其速度及质量,从而引入了一个新的物理量—— 动量。
一、动量——动量是描述物体运动状态的物理量 (1)定义: 物体的质量m和速度V的乘积mV. (2)大小: P=mV V——该状态的瞬时速度。
P是状态量 (3)方向:动量是矢量。
与功的区别
600
例题2——关于抛体运动物体的重力冲量
质量为5kg的小球,从距地面高为20m处 水平抛出,初速度为10m/s,从抛出到落 地过程中,重力的冲量是(C ).
A.60N·s
B.80N·s
C.100N·s D.120N·s
动量定理
实验一
让鸡蛋从一米多高的地方落到地板上肯定 会被打破。现在,在地板上放一块泡沫塑 料垫(一定厚度的软纸)。尽可能把鸡蛋 举得高高的,然后放开手,让鸡蛋落到泡 沫上(纸上)看看鸡蛋会不会被打破。
实验二:
用细线悬挂一个重物,把重物拿到一定高度, 释放后重物下落可以把细线拉断,如果在细线 上端拴一段皮筋,再从同样的高度释放,就不 会断了。
问题:
如图,质量为m,初速度为v小车,受到一个水
平向右的力F,则经过时间t后,速度为V‘,
合力对小车的冲量与小车的动量变化之间有什
么关系? F ma
a F
思考:动量与动能有什 么区别?
(完整版)动量和动量定理课件
矢 量
N·S
力的时间积累 使动量发生变化
标 量
N·m(J)
力的空间积累 使动能发生变化
3.质量为5kg的小球,从距地面高为20m处水平抛
出,初速度为10m/s,不计空气阻力,g=10m/s2,
从抛出到落地过程中,重力的冲量是( C )
A、60N·s B、80N·s C、100N·s D、120N·s
沙坑中,经Δt2=0.1 s停下,则沙坑对运动员的平 均冲力约为多少?(g取10 m/s2)
4.(动量定理的理解和应用)质量为60kg的建筑工
人,不慎从高空跌下,幸好弹性安全带的保护使
他悬挂起来. 已知弹性安全带的缓冲时间是1.5 s,
安全带自然长度为5 m,g取10 m/s2,则安全带所
受的平均冲力的大小为( D )
课本习题:如图所示,一个质量为0.18kg的垒球, 以25m/s的水平速度飞向球棒,被球棒打击后反 向水平飞回,速度大小变为45m/s,设球棒与垒 球的作用时间 为0.01s。求球棒对垒球的平均作用
力。
P5,质量m=70 kg的撑竿跳高运动员从h=5.0 m高
处落到海绵垫上,经Δt1=1 s后停止,则该运动员 身体受到的平均冲力约为多少?如果是落到普通
1、动量和动能都是描述物体运动过程中某一时刻的状态
2、动量是矢量,动能是标量
3、定量关系
EK
1 mv 2 2
p2 2m
p 2mEk
动量发生变化时,动能不一定发生变化,
动能发生变化时,动量一定发生变化
动量发 生变化
速度大小改变方向不变 速度大小不变方向改变 速度大小和方向都改变
动能改变 动能不变 动能改变
A.500 N
动量和动量定理课件
2.动量定理的应用 (1)定性解释有关现象: ①物体的动量变化量一定时,此时力的作用时间越短,力 就越大;力的作用时间越长,力就越小。如:冲床冲压工件时, 缩短力的作用时间,产生很大的作用力,而在轮渡码头上装有 橡皮轮胎,搬运玻璃等易碎物品时,包装箱内放些碎纸、刨花、 塑料等,都是为了延长作用时间,减小作用力。
(3)动量定理的应用: 碰撞时可产生冲击力,根据动量定理,在动量变化量 相同的情况下要增大这种冲击力就要设法 减少冲击力的作 用时间。要防止冲击力带来的危害,就要减小冲击力,设 法延长其作用时间。 [关键一点] 同一物体与不同接触面碰撞时,要分析 它们的作用力大小,必须在物体的动量变化量相同的条件 下考虑作用时间。
[名师点睛] (1)应用动量定理解题时,一定要对物体进行受力分析, 明确各个力和合力是正确应动量定理的前提。 (2)列方程时一定要先选定正方向,严格使用矢量式。 (3)变力的冲量一般通过求动量的变化量来求解。
[名师点睛] (1)冲量是矢量,求冲量的大小时一定要注意是力与 其对应的时间的乘积。 (2)冲量的计算公式I=Ft适用于计算某个恒力的冲量。 若力为同一方向上均匀变化的力,该力的冲量可以用平均 力计算,若力为一般的变力则不能直接计算冲量。
1.对动量定理的理解 (1)动量定理反映了合外力的冲量与动量的变化量之间的 因果关系,即合外力的冲量是原因,物体动量的变化量是结果。 (2)由动量定理可以得出 F=pt′ ′- -tp,它说明动量的变化率 决定于物体所受的合外力。
2.冲量的计算 (1)某个力的冲量:仅由该力的大小和作用时间共同决定, 与其他力是否存在及物体的运动状态无关,例如,一个物体 受几个恒力作用处于静止或匀速直线运动状态,其中每一个 力的冲量均不为零。 (2)求合冲量: ①如果是一维情形,可以化为代数和,如果不在一条直 线上,求合冲量遵循平行四边形定则或用正交分解法求出。 ②两种方法:可分别求每一个力的冲量,再求各冲量 的矢量和,I合=F1Δt1+F2Δt2+F3Δt3+…;如果各力的作用 时间相同,也可以先求合力,再用I合=F合Δt求解。 (3)变力的冲量可用动量定理求解。
(完整版)动量知识总结
动量知识总结第一单元 动量和动量定理一、动量、冲量1.动量(1)定义:运动物体的质量和速度的乘积叫做动量,p =mv ,动量的单位:kg ·m/s.(2速度为瞬时速度,通常以地面为参考系.(3)动量是矢量,其方向与速度v 的方向相同(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是:p 2=2mE k .2.动量的变化量(1)Δp =p t -p 0.(2)动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同(3)求动量变化量的方法:①Δp =p t -p 0=mv 2-mv 1;②Δp =Ft .3.冲量(1)定义:力和力的作用时间的乘积,叫做该力的冲量,I =Ft ,冲量的单位:N ·s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.(4)求冲量的方法:①I =Ft (适用于求恒力的冲量,力可以是合力也可能是某个力);②I =Δp .(可以是恒力也可是变力)二、动量定理(1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理.表达式为:Ft =p p -'或Ft =mv v m -'(2)动量定理的研究对象一般是单个物体(3)动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力对作用时间的平均值.(4)动量定理公式中的F Δt 是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.在所研究的物理过程中,如果作用在研究对象上的各个外力的作用时间相同,求合外力的冲量时,可以先按矢量合成法则求所有外力的合力,然后再乘以力的作用时间;也可以先求每个外力在作用时间内的冲量,然后再按矢量合成法则求所有外力冲量的矢量和;如果作用在研究对象上的各个力的作用时间不相同,就只能求每个力在相应时间内的冲量,然后再求所有外力冲量的矢量和.三.用动量定理解题的基本思路(1)明确研究对象和研究过程.研究对象一般是一个物体,研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)规定正方向.(3)进行受力分析,写出总冲量的表达式,如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(4)写出研究对象的初、末动量.(5)根据动量定理列式求解四、典型题1、动量和动量的变化例1 一个质量为m =40g 的乒乓球自高处落下,以速度v =1m/s 碰地,竖直向上弹回,碰撞时间极短,离地的速率为v '=0.5m/s 。
动量和动量定理
•动 能
Ek= mv2/2
•标 kg·m2/s2 量 (J)
若速度变化, 则p一定变化
若速度变化, Ek不一定变化
动量与动能关系:
(1)由于动量是矢量,动能是标量,物体的动量变化时,动能不
一定变化;物体的动能变化时,其动量一定变化。
(2)大小关系:
EK
mv2 2
m2v2 2m
p2 2m
EK
P2 2m
3.对动量定理的说明:
(1)冲量的效果是改变受力物体的动量,因 此动量定理是一个关于过程的规律。冲量的大 小总等于动量变化量的大小;冲量的方向总跟 动量变化量的方向一致。
(2)当几个力同时作用于物体时,表达式中 的冲量理解为各个力的合冲量,也是合力的冲 量。它表明物体所受合外力是物体动量变化的 原因,物体动量的变化是由它受到的合外力经 过一段时间积累的结果。
p=mv
Ek= mv2/2
(2) 质量为 2 kg 的物体,速度由向东的 3 m/s 变为向西的 3
m/s,它的动量和动能是否变化了?如果变化了,变化量各是多
少?
规定正方向
V=3m/s
V ′=3m/s
Δ p = P ʹ - P= -12 kg.m/s
Δ Ek=0
(3) A物体质量是2 kg,速度是3 m/s,方向向东;B物体质量是3 kg,速度是4 m/s,方向向西。它们的动量的矢量和是多少?它 们的动能之和是多少?
动量变化的三种情况:
G
大小变化、方向改变或大小和方向都改变。
5. 动量的变化量( Δ p)
(1) 定义:物体在某段时间内的末动量与初动量之矢量差
(2) 表达式: Δ p = P ʹ - P= mv ʹ - mv =mΔv
高中物理必修二第八章—16.2动量和动量定理
F作用t1=2 s后撤去,撤去F后又经t2=2 s物体与竖 直墙壁相碰,若物体与墙壁作用时间t3=0.1 s,碰 撞后反向弹回的速度v=6 m/s,求墙壁对物体的平 均作用力.(g取10 m/s2)
F=280N
例题12:水平推力F1和F2(F1>F2)分别作用在置于同一 水平地面上完全相同的两个物体上,使两物体由静止 开始运动。F1和F2各自作用一段时间后撤去,两物体 最终都停止运动。如果两物体运动过程中的位移相同, 两次相比较下列说法中正确的是:( C ) A、F1 的冲量较大。 B、F1 做的功较多。 C、推力F2那次,摩擦力的冲量较大。 D、推力F2那次,物体获得的最大速度较大。
例题3:从同一高度以相同的速率抛出质量相同的三 个小球,a球竖直上抛,b球竖直下抛,c球水平抛 出,不计空气阻力,下列说法中正确的是:( B )
A、三球落地时的动量相同。 B、三球落地时的动能相同。 C、运动过程中,三球受到的冲量相同。 D、运动过程中,三球动量变化的大小相同。
主意动量大小的变化和动量变化的大小的区别
⑶动量定理的研究对象可以是单个的物体,也可以是 多个物体组成的系统(各物体的速度可不同)。由于 内力总是成对出现,产生的冲量总是等大反向的。 故系统内相互作用的内力产生冲量矢量和一定为零。 系统动量的变化也只决定于系统所受合外力的冲量。
4、牛顿第二定律、动能定理、动量定理三个规律 的比较。
方程
方程 性质 研究 对象 适用 条件
③定量关系:
Ek
p2 ;p 2m
2mE k
例题1:关于物体的动能与动量的说法,正确的有: (ACE )
A、物体的动能发生变化时,物体的动量一定变化。 B、物体的动量发生变化时,物体的动能一定变化。 C、物体所受合外力不为零时,物体的动量一定变化。 D、合外力对物体不做功时或做功的代数和为零时,
(完整版)知识讲解动量动量定理(基础)
物理总复习:动量 动量定理编稿:刘学【考纲要求】1、理解动量的概念;2、理解冲量的概念并会计算;2、理解动量变化量的概念,会解决一维的问题;3、理解动量定理,熟练应用动量定理解决问题。
【知识网络】【考点梳理】考点一、动量和冲量1、动量(1)定义:运动物体的质量与速度的乘积。
(2)表达式:p mv =。
单位:/kg m s ⋅(3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。
(4)动量的变化量:21p p p ∆=-,p ∆是矢量,方向与v ∆一致。
(5)动量与动能的关系:2221()222k mv p E mv m m=== 2k p mE =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。
对“p ∆是矢量,方向与v ∆一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ∆=--=,方向向上,动量的变化量为:2p mv ∆=方向向上。
2、冲量(1)定义:力与力的作用时间的乘积。
(2)表达式:I Ft = 单位: N s ⋅(3)冲量是矢量:它由力的方向决定考点二、动量定理(1)内容:物体所受的合外力的冲量等于它的动量的变化量。
(2)表达式:21Ft p p =- 或 Ft p =∆(3)动量的变化率:根据牛顿第二定律 2121v v p p F ma mt t --===∆∆ 即 p F t∆=∆,这是动量的变化率,物体所受合外力等于动量的变化率。
如平抛运动物体动量的变化率等于重力mg 。
要点诠释:(1)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。
完整版)动量、动量守恒定律知识点总结
完整版)动量、动量守恒定律知识点总结龙文教育动量知识点总结一、对冲量的理解冲量是力在时间上的积累作用,可以用公式I=Ft计算XXX或平均力F的冲量。
对于变力的冲量,常用动量定理求。
对于合力的冲量,有两种求法:若物体受到的各个力作用的时间相同,且都为XXX,则I合=F合.t;若不同阶段受力不同,则I合为各个阶段冲量的矢量和。
二、对动量定理的理解动量定理指出,冲量等于物体动量的变化量,即I合=Δp=p2-p1=mΔv=mv2-mv1.冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。
需要注意的是,ΔP的方向由Δv决定,与p1、p2无必然的联系,计算时先规定正方向。
三、对动量守恒定律的理解动量守恒定律指出,相互作用的物体所组成的系统的总动量在相互作用前后保持不变。
需要注意的是,动量守恒定律的条件有三种:理想条件、近似条件和单方向守恒。
在满足这些条件的前提下,可以应用动量守恒定律求解问题。
四、碰撞类型及其遵循的规律碰撞类型包括一般的碰撞、完全弹性碰撞和完全非弹性碰撞。
对于这些碰撞类型,需要遵循相应的规律,如系统动量守恒、系统动能守恒等。
需要特别注意的是,在等质量弹性正碰时,两者速度交换,这是根据动量守恒和动能守恒得出的结论。
五、判断碰撞结果是否可能的方法判断碰撞结果是否可能,需要检查碰撞前后系统动量是否守恒,系统的动能是否增加,以及速度是否符合物理情景。
动能和动量之间的关系是EK=p=2mEK/2m。
六、反冲运动反冲运动是指静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象。
在反冲运动中,系统动量守恒。
人船模型是反冲运动的典型例子,需要满足动量守恒的条件。
七、临界条件处理“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的关键是,系统各组成部分具有共同的速度v。
八、动力学规律的选择依据在选择动力学规律时,需要根据题目涉及的时间t和物体间相互作用的情况进行选择。
如果涉及时间t,优先选择动量定理;如果涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒。
一、动量 冲量 动量定理(一)
Fµ
★★★★可从哪些角度考?★★★★ 可从哪些角度考? 可从哪些角度考
在水平方向上, 在水平方向上,第一次将 纸迅速抽出木块受到的是滑动 Fµ 摩擦力, 摩擦力,第二次将纸慢慢抽出 木块受到的是静摩擦力, 木块受到的是静摩擦力,滑动 摩擦力接近最大滑动摩擦力, 摩擦力接近最大滑动摩擦力, 所以木块第一次受到的摩擦力 大于第二次受到的摩擦力; 大于第二次受到的摩擦力; 但第一次力的作用时间极短, 但第一次力的作用时间极短,摩擦力的冲 量小,因此木块没有明显的动量变化, 量小,因此木块没有明显的动量变化,几乎不 第二次摩擦力虽然较小, 动。第二次摩擦力虽然较小,但它的作用时间 摩擦力的冲量反而大, 长,摩擦力的冲量反而大,因此木块会有明显 的动量变化。 的动量变化。
√ √ √
★★★★可从哪些角度考?★★★★ 可从哪些角度考? 可从哪些角度考
2.动量定理的定性应用 动量定理的定性应用 用动量定理解释的现象一般可分为两类: 用动量定理解释的现象一般可分为两类: (1)物体的动量变化一定时,力的作用时间越短,力就 物体的动量变化一定时,力的作用时间越短, 物体的动量变化一定时 越大;时间越长,力就越小。 越大;时间越长,力就越小。 (2)当作用力一定时,力的作用时间越长,动量变化 当作用力一定时, 当作用力一定时 力的作用时间越长, 越大;力的作用时间越短,动量变化越小, 越大;力的作用时间越短,动量变化越小,分析问 题时,要把哪个量一定,哪个量变化搞清楚。 题时,要把哪个量一定,哪个量变化搞清楚。 【例6】某同学要把压在木块下的纸抽出来。第一 】某同学要把压在木块下的纸抽出来。 次他将纸迅速抽出,木块几乎不动; 次他将纸迅速抽出,木块几乎不动;第二次他将纸 较慢地抽出,木块反而被拉动了。这是为什么? 较慢地抽出,木块反而被拉动了。这是为什么? 解:物体动量的改变不是取决于合 物体动量的改变不是取决于合 力的大小, 力的大小,而是取决于合力冲量 的大小。 的大小。
动量和动量定理
第十四章 动量守恒定律 16.2动量和动量定理【自主预习】一、动量(1)动量的定义:物体的质量和运动速度的乘积叫做物体的动量,记作p =mv 。
动量是动力学中反映物体运动状态的物理量,是状态量。
在谈及动量时,必须明确是物体在哪个时刻或哪个状态所具有的动量。
(2)动量的矢量性:动量是矢量,它的方向与物体的速度方向相同,服从矢量运算法则。
(3)动量的单位:动量的单位由质量和速度的单位决定。
在国际单位制中,动量的单位是千克·米/秒,符号为kg·m/s。
(4)动量的变化Δp :动量是矢量,它的大小p =mv ,方向与速度的方向相同。
因此,速度发生变化时,物体的动量也发生变化。
设物体的初动量p =mv ,末动量p ′=mv ′,则物体动量的变化Δp =p ′-p =mv ′-mv 。
由于动量是矢量,因此,上式是矢量式。
二、冲量(1)定义:力和力的作用时间的乘积叫做力的冲量。
(2)冲量是描述力在某段时间内累积效果的物理量。
其大小由力和作用时间共同决定,是过程量,它与物体的运动状态没有关系,在计算时必须明确是哪一个力在哪一段时间上的冲量。
三、动量定理(1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
(2)表达式:p ′-p =I 或mv ′-mv =F (t ′-t )(3)理解①它反映了物体所受冲量与其动量变化量两个矢量间的关系,式子中的“=”包括大小相等和方向相同(注意I 合与初末动量无必然联系)。
②式子中的Ft 应是总冲量,它可以是合力的冲量,也可以是各力冲量的矢量和,还可以是外力在不同阶段冲量的矢量和。
③动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同都适用。
④动量定理反映了动量变化量与合外力冲量的因果关系:冲量是因,动量变化是果。
(4)应用动量定理定性分析有关现象由F =Δp t可知:Δp 一定时,t 越小,F 越大;t 越大,F 越小。
30 第七章 第1讲 动量和动量定理
√A.0到t1时间内,墙对B的冲量等于mAv0
C.B运动后,弹簧的最大形变量等于x
√B.mA>mB √D.S1-S2=S3
ABD [0到t1时间内,对A物体由动量定理得I=mAv0,而B物体处于 静止状态,墙壁对B的冲量等于弹簧弹力对A的冲量I,A正确;t1时 刻后,B物体离开墙壁,t2时刻A、B两物体的加速度大小均达到最大, 弹簧拉伸到最长,二者速度相同,由于此时A、B两物体所受弹簧弹 力大小相等,而B的加速度大于A的,故由牛顿第二定律可知, mA>mB,B正确;B运动后,由题图可知任意时刻A的加速度小于其 初始时刻的加速度,因此弹簧的形变量始终小于初始时刻的形变量x, C错误;t2时刻A、B共速,图线与坐标轴所围面积表示速度的变化量 的大小,故有S1-S2=S3,D正确。]
考向3 动量定理与图像的综合 例3 (多选)(2021·湖南高考)如图(a),质量分别为mA、mB的A、B两物体 用轻弹簧连接构成一个系统,外力F作用在A上,系统静止在光滑水平 面上(B靠墙面),此时弹簧形变量为x。撤去外力并开始计时,A、B两 物体运动的a -t图像如图(b)所示,S1表示0到t1时间内A的a -t图线与坐 标轴所围面积的大小,S2、S3分别表示t1到t2时间内A、B的a-t图线与坐 标轴所围面积的大小。A在t1时刻的速度为v0。下列说法正确的是
我国蹦床运动员朱雪莹在东京奥运会上一举夺冠,为
祖国争了光。如图所示为朱雪莹比赛时的情景,比赛
中某个过程,她自距离水平网面高3.2 m处由静止下
落,与网作用后,竖直向上弹离水平网面的最大高度为5 m,朱雪莹
与网面作用过程中所用时间为0.7 s。不考虑空气阻力,重力加速度取
10 m/s2,则若朱雪莹质量为60 kg,则网面对她的冲量大小为
动量定理
例题 11 如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽 的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口 A 点的正 上方从静止开始下落,与半圆槽相切并从 A 点入槽内.则下列说法正确 的 ( ) A.小球离开右侧槽口以后,将做竖直上抛运动 B.小球在槽内运动的全过程中,只有重力对小球做功 C.小球在槽内运动的全过程中,小球与槽组成的系统机械能 守恒 D.小球在槽内运动的全过程中,小球与槽组成的系统水平方 向上的动量不守恒 例题 12 如图中滑块和小球的质量均为 m, 滑块可在水平放置的光滑固定 导轨上自由滑动,小球与滑块上的悬点 O 由一不可伸长的轻绳相连,轻 绳长为 l。开始时,轻绳处于水平拉直状态,小球和滑块均静止。现将 小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘住物 质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动, 当轻绳与竖直方向的夹角θ=60°时小球达到最高点。求:
θ
例题 7 离子推进器是新一代航天动力装置,可用于卫星姿态控制和轨道 修正。推进剂从图中 P 处注入,在 A 处电离出正离子,BC 之间加有恒定 电压,正离子进入 B 时的速度忽略不计,经加速后形成电流为 I 的离子 束后喷出。 已知推进器获得的推力为 F, 单位时间内喷出的离子质量为 J。 为研究问题方便,假定离子推进器在太空中飞行时不受其他外力,忽略 推进器运动速度。
m1 v1 t+m2 v2 t=0 m1 S1 +m2 S2 =0 或者可以表示为两个物体的合质心保持不变, 每个物体的 质心到合质心的距离与其质量成反比。 例题 13 在静止的湖面上有一质量 M=100kg 的小船, 船上站立质量 m=50kg 的人,船长 L=6m,最初人和船静止.当人从船头走到船尾(如图),船后 例题 15
(完整)动量、动量定理教学设计
动量、动量定理教学设计一、教学目标与要求:1. 动量的意义:为研究运动物体的作用效果。
举例一般都是碰撞之类,这也是教材为什么先研究碰撞的原因 所在吧. 2. 动量、动量的变化:突出它们的矢量性. 3. 冲量的定义及矢量性。
4. 动量定理-力在时间上的积累所产生的效果. 5. 动量定理的简单应用.二、教学重点与难点:动量变化的矢量性原则;合外力的冲量,其效果是动量的变化而不是产生动量。
三、教学过程:(一) 碰撞:运动物体的作用效果.举例.钉子为什么是用鲫头敲而不是压?等等。
(二)动量的定义:物体的速度与质量的乘积,是矢量。
p mv ,其中p 为小写,目的是与压强P 区别开来。
动量的改变(变化):也是矢量,象速度的变化一样,遵循矢量的平行四边形定则。
一般情况下,我们只研究同一直线上的动量变化。
例: 小球与墙壁碰撞过程的动量变化(三)引起动量变化的原因:我们知道,引起物体动能变化的原因是外力对物体做了功,那么,引起物体动量的变化原因是什么呢? 有人说是力,你是否同意?为什么? 动量定理的推导:光滑的水平面上,质量为m 的物体在水平拉力F 的作用下,经t时间其动量变化为多少?v v v 0v tFt mv - mv厂1 F > □t 0/ / // / / / / /(四)冲量:我们把力与时间的乘积称为冲量.冲量的方向:由力的方向决定。
(五)动量定理:1 . 定理内容:合外力的冲量等于物体动量的变化。
定理是在假设恒力的情况下导出的,但它同样适用于变力 的情况,从这一点来说,它比牛顿第二定律加运动学公式的应用范围要广,这也正是动量定理存在的必要 性。
2 .表达式:Ft mv — mv (矢量式) t 03,单位:冲量的单位N ・s ,动量的单位KgWs ,其中1 N ・s =1 KgWs 。
但是在具体问题中,我们总习惯把 冲量的单位写成N ・s ,而把动量或动量变化的单位写成KgWs 。
实验一:为什么迅速抽走纸条时,砝码不会滑落?如果缓慢地拉 砝码受的作用力是否相同?为什么却有不同的效果? 实验二:如图所示,用同样的细线将钢球按图示方式悬挂起来,当迅速用力拉动下面 Q条线哪一条会断? 如果缓慢地拉呢? 分析一下,为什么会这样?鸡蛋实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[目标定位] 1.理解动量的概念,知道动量和动量变化量均为矢量,会计算一维情况下的动量变化量.2.知道冲量的概念,知道冲量是矢量.3.理解动量定理的确切含义,掌握其表达式.4.会用动量定理解释碰撞、缓冲等生活中的现象.一、动量1.定义运动物体的质量和速度的乘积叫动量;公式p=m v;单位:千克·米/秒,符号:kg·m/s.2.矢量性方向与速度的方向相同.运算遵循平行四边形定则.3.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量都用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小). 深度思考质量相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动量是矢量,有方向,而动能是标量,无方向.质量相同的两个物体动能相同,速度大小一定相同,但速度方向不一定相同.例1关于动量的概念,下列说法中正确的是()A.动量大的物体,惯性一定大B.动量大的物体,运动一定快C.动量相同的物体,运动方向一定相同D.动量相同的物体,动能也一定相同解析物体的动量由质量及速度共同决定,动量大的物体质量不一定大,惯性也不一定大,A错;动量大的物体速度不一定大,B错;动量相同指的是动量的大小和方向都相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C对;有动量和动能的关系p=2mE k知,只有质量相同的物体动量相同时,动能才相同,故D错.答案 C动量与动能的区别与联系:(1)区别:动量是矢量,动能是标量,质量相同的两物体,动量相同时动能一定相同,但动能相同时,动量不一定相同.(2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k.例2质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为()A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同解析以原来的运动方向为正方向,由定义式Δp=m v′-m v得Δp=(-7×0.5-3×0.5) kg·m/s=-5 kg·m/s,负号表示Δp的方向与原运动方向相反.答案 A关于动量变化量的求解(1)若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.(2)若初、末动量不在同一直线上,运算时应遵循平行四边形定则.二、冲量1.定义:力与力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.2.矢量性:方向与力的方向相同.3.物理意义:反映力的作用对时间的积累.深度思考水平面上的物体所受水平拉力F随时间t的变化情况如图1所示,求0~8 s时间内拉力的冲量.图1答案变力的冲量的计算:图中给出了力随时间变化的图象,可用面积法求变力的冲量.0~8 s时间内拉力的冲量I=F1Δt1+F2Δt2+F3Δt3=18 N·s.例3如图2所示,在倾角α=37°的斜面上,有一质量为5 kg 的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s的时间内,物体所受各力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)图2解析重力的冲量:I G=G·t=mg·t=5×10×2 N·s=100 N·s,方向竖直向下.支持力的冲量:I F N=F N·t=mg cos α·t=5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上.摩擦力的冲量:I F f=F f·t=μmg cos α·t=0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上. 答案见解析求各力的冲量或者合力的冲量,首先判断是否是恒力,若是恒力,可直接用力与作用时间的乘积,若是变力,可考虑以下方法求解:(1)利用动量定理求解.(2)若力与时间成线性关系变化,则可用平均力求变力的冲量.(3)若给出了力随时间变化的图象,可用面积法求变力的冲理.三、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.2.公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的理解:(1)动量定理的表达式m v′-m v=F·Δt是矢量(填“矢量”或“标量”)式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.深度思考在日常生活中,有不少这样的例子:跳高时在下落处要放厚厚的海绵垫子,跳远时要跳在沙坑中,这样做的目的是什么?答案物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小,这样做可以延长作用的时间,以减小地面对人的冲击力.例4篮球运动员通常要伸出两臂迎接传来的篮球.接球时,两臂随球迅速收缩至胸前,这样做可以()A.减小球对手的冲量B.减小球对人的冲击力C.减小球的动量变化量D.减小球的动能变化量解析篮球运动员接球的过程中,手对球的冲量等于球的动量的变化量,大小等于球入手时的动量,接球时,两臂随球迅速收缩至胸前,并没有减小球对手的冲量,也没有减小球的动量变化量,更没有减小球的动能变化量,而是因延长了手与球的作用时间,从而减小了球对人的冲击力,B正确.答案 B利用动量定理解释现象的问题主要有三类:(1)Δp一定,t短则F大,t长则F小.(2)F一定,t短则Δp小,t长则Δp大.(3)t一定,F大则Δp大,F小则Δp小.例5质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s后停止,则该运动员身体受到的平均冲力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s停下,则沙坑对运动员的平均冲力约为多少?(g取10 m/s2)解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间=1 s是t=2hg从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.答案 1 400 N7 700 N应用动量定理定量计算的一般步骤:(1)选定研究对象,明确运动过程.(2)进行受力分析和运动的初、末状态分析.(3)选定正方向,根据动量定理列方程求解.1.(对动量的理解)关于动量,下列说法正确的是()A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体运动的速度大小不变,物体的动量也保持不变D.质量一定的物体,动量变化越大,该物体的速度变化一定越大答案 D解析动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,选项A、B均错误;动量是矢量,只要速度方向变化,动量也发生变化,选项C错误;由Δp=mΔv知D正确.2.(对冲量的理解)如图3所示,质量为m的小滑块沿倾角为θ的斜面向上滑动,经过时间t1速度为零然后又下滑,经过时间t2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F1.在整个过程中,重力对滑块的总冲量为()图3A.mg sin θ(t1+t2)B.mg sin θ(t1-t2)C.mg(t1+t2)D.0答案 C解析 谈到冲量必须明确是哪一个力的冲量,此题中要求的是重力对滑块的总冲量,根据冲量的定义式I =Ft ,因此重力对滑块的总冲量应为重力乘以作用时间,所以I G =mg (t 1+t 2),即C 正确.3.(动量定理的理解和应用)(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s ,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A.引起小钢球动量变化的是地面给小钢球的弹力的冲量B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C.若选向上为正方向,则小钢球受到的合冲量是-1 N·sD.若选向上为正方向,则小钢球的动量变化是1 kg·m/s答案 BD4.(动量定理的理解和应用)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚刚产生作用前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力多大?答案 m 2gh t+mg 解析 对自由落体运动,有:h =12gt 21解得:t 1=2h g规定向下为正方向,对运动的全过程,根据动量定理,有:mg (t 1+t )-Ft =0解得:F =m 2gh t+mg .题组一 对动量和冲量的理解1.(多选)下列关于动量的说法中,正确的是( )A.动能不变,物体的动量一定不变B.做匀速圆周运动的物体,其动量不变C.一个物体的速率改变,它的动量一定改变D.一个物体的运动状态发生变化,它的动量一定改变答案CD解析动能不变,若速度的方向变化,动量就变化,选项A错误.做匀速圆周运动的物体的速度方向时刻变化,所以其动量时刻变化,B错.速度的大小、方向有一个量发生变化都认为速度变化,动量也变化,C对.运动状态发生变化即速度发生变化,D对.2.下列说法正确的是()A.动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动量相同的两个物体,质量大的动能大答案 B3.(多选)在任何相等时间内,物体动量的变化总是相等的运动可能是()A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动答案BCD4.如图1所示甲、乙两种情况中,人用相同大小的恒定拉力拉绳子,使人和船A均向右运动,经过相同的时间t,图甲中船A没有到岸,图乙中船A没有与船B相碰,则经过时间t()图1A.图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量小B.图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量大C.图甲中人对绳子拉力的冲量与图乙中人对绳子拉力的冲量一样大D.以上三种情况都有可能答案 C解析甲、乙两种情况下人对绳子的拉力相等,由冲量的定义式p=Ft可知,两冲量相等,只有选项C是正确的.5.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动.从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力答案 A解析 由于绳对人的作用力一直向上,故绳对人的冲量始终向上,由于人在下降中速度先增大后减小,故动量先增大后减小,故A 正确;在该过程中,拉力与运动方向始终相反,绳子的力一直做负功,但由分析可知,人的动能先增大后减小,故B 错误;绳子恰好伸直时,绳子的形变量为零,弹性势能为零,但此时人的动能不是最大,故C 错误;人在最低点时,绳子对人的拉力一定大于人受到的重力,故D 错误.题组二 动量定理的理解及定性分析6.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时,相互作用时间长答案 CD解析 杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,杯子停下,在此过程中,玻璃杯的动量变化Δp =-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =-(-m 2gh ),所以F =m 2gh Δt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎.7.(多选)下面关于动量和冲量的说法,正确的是( )A.物体所受合外力冲量越大,它的动量也越大B.物体所受合外力冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受合外力的冲量方向D.物体所受合外力冲量越大,它的动量变化就越大答案BCD解析由动量定理可知,物体所受合外力的冲量,其大小等于动量的变化量的大小,方向与动量增量的方向相同,故A项错,B、C、D项正确.8.如图2所示,一铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉到地面上的P点,若以速度2v抽出纸条,则铁块落地点为()图2A.仍在P点B.在P点左侧C.在P点右侧不远处D.在P点右侧原水平位移的两倍处答案 B解析以速度2v抽出纸条时,纸条对铁块的作用时间减短,而纸条对铁块的作用力相同,故与以速度v抽出相比,纸条对铁块的冲量I减小,铁块获得的动量减小,平抛的初速度减小,水平射程减小,故落在P点的左侧.题组三动量定理的定量计算9.质量为m的钢球自高处落下,以速度大小v1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为()A.向下,m(v1-v2)B.向下,m(v1+v2)C.向上,m(v1-v2)D.向上,m(v1+v2)答案 D解析钢球以大小为v1的竖直速度与地面碰撞后以大小为v2的速度反弹.钢球在与地面碰撞过程的初、末状态动量皆已确定.根据动量定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft-mgt=m v2-(-m v1)=m v2+m v1由于碰撞时间极短,t趋于零,则mgt趋于零.所以Ft=m(v2+v1),即弹力的冲量方向向上,大小为m(v2+v1).10.(多选)一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,设球棒与垒球的作用时间为0.01 s.下列说法正确的是()A.球棒对垒球的平均作用力大小为1 260 NB.球棒对垒球的平均作用力大小为360 NC.球棒对垒球做的功为126 JD.球棒对垒球做的功为36 J答案 AC解析 设球棒对垒球的平均作用力为F ,由动量定理得F ·t =m (v t -v 0),取末速度方向为正方向,则v t =45 m /s ,v 0=-25 m/s ,代入上式得F =1 260 N.由动能定理得W =12m v 2t -12m v 20=126 J ,故A 、C 正确.11.如图3所示,质量为1 kg 的钢球从5 m 高处自由下落,又反弹到离地面3.2 m 高处,若钢球和地面之间的作用时间为0.1 s ,求钢球对地面的平均作用力大小.(g 取10 m/s 2)图3答案 190 N解析 钢球落到地面时的速度大小为v 0=2gh 1=10 m/s ,反弹时向上运动的速度大小为v t =2gh 2=8 m/s ,分析钢球和地面的作用过程,取向上为正方向,因此有v 0的方向为负方向,v t 的方向为正方向,再根据动量定理得(F N -mg )t =m v t -(-m v 0),代入数据解得F N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.12.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度约为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力的大小;(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力的大小.答案 (1)5.4×104 N (2)1.8×103 N解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m.设运动的时间为t ,则由x =v 02t 得,t =2x v 0=130s. 根据动量定理得Ft =Δp =-m v 0,。