如何选取正确的晶振

合集下载

晶振选型指南

晶振选型指南

恒温晶振、温补晶振选用指南晶体振荡器被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。

它有多种封装,特点是电气性能规范多种多样。

它有好几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。

如果您需要使您的设备即开即用,您就必须选用VCXO或温补晶振,如果要求稳定度在0.5ppm以上,则需选择数字温补晶振(MCXO)。

模拟温补晶振适用于稳定度要求在5ppm~0.5ppm之间的需求。

VCXO只适合于稳定度要求在5ppm以下的产品。

在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm 的,可选用OCXO。

频率稳定性的考虑晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。

稳定性愈高或温度范围愈宽,器件的价格亦愈高。

工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。

设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。

指标过高意味着花钱愈多。

晶体老化是造成频率变化的又一重要因素。

根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。

晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。

例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。

采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。

与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。

对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。

晶振主要规格参数

晶振主要规格参数

晶振主要规格参数
晶振是一种用于产生稳定时钟信号的元件,它在电子产品中得到了广泛的应用。

晶振的主要规格参数包括以下内容:
1. 频率:晶振的频率是其最重要的规格参数之一,通常以赫兹(Hz)为单位表示。

不同的电子设备需要不同的频率的晶振来产生时钟信号。

2. 精度:晶振的精度是指其输出频率与标准频率之间的偏差,通常以PPM(百万分之一)为单位表示。

精度越高,晶振产生的时钟信号越稳定,适用范围也越广。

3. 工作温度范围:晶振的工作温度范围是指其可以正常工作的温度范围。

不同的晶振具有不同的工作温度范围,通常为-40℃至85℃之间。

4. 尺寸:晶振的尺寸通常以外形尺寸来表示,包括长、宽、高等参数。

晶振的尺寸越小,适用范围越广。

5. 驱动方式:晶振的驱动方式分为串行和并行两种。

串行晶振采用串行接口通信方式,适合于小型系统;并行晶振采用并行接口通信方式,适合于大型系统。

总之,晶振的规格参数决定了其适用范围和性能表现,对于不同的电子设备来说,选择合适的晶振是十分重要的。

- 1 -。

晶振怎么选?有哪些注意点?这里有详细说明!

晶振怎么选?有哪些注意点?这里有详细说明!

晶振怎么选?有哪些注意点?这里有详细说明!1.引言1.1 概述晶振是一种电子元件,广泛应用于电子设备中的时钟电路、计时器、通信系统等领域。

它主要用于产生稳定的时钟信号,确保电子设备的正常运行。

在电子设备中,晶振起到了至关重要的作用。

它能够提供稳定、准确的时钟信号,使得电子设备能够按照预定的时序工作。

通过晶振产生的时钟信号,我们可以精确地控制各个元器件的工作状态,从而保证整个电子系统的稳定性和可靠性。

在选择晶振的时候,需要考虑一些注意点。

首先,需要确定所需的频率范围。

不同的应用场景对晶振的频率要求是不同的,因此我们需要根据具体的需求来选择适合的频率范围。

其次,需要考虑晶振的稳定性和准确性。

晶振的稳定度和准确度决定了时钟信号的精度,对于一些对时间要求较高的应用场景,我们需要选择稳定性和准确度较高的晶振。

此外,还需要考虑晶振的尺寸和功耗。

不同的应用场景对晶振的尺寸和功耗要求也是不同的,我们需要根据具体的应用来选择适合的晶振类型。

总结起来,选择晶振时需要考虑频率范围、稳定性、准确性、尺寸和功耗等因素。

根据具体的应用需求,在这些因素中找到一个平衡点,选择合适的晶振,将有助于确保电子设备的正常运行和稳定性。

在进行晶振选择时,我们可以参考一些相关的技术规范和数据手册,以便更好地理解和评估不同晶振的性能指标,从而做出明智的决策。

1.2文章结构1.2 文章结构本文将按照以下结构进行叙述,以便读者更好地了解晶振的选择要点和注意事项。

第一部分是引言。

在引言中,我们将概述晶振的作用,并明确本文的目的。

第二部分是正文。

正文将分为两个小节,分别介绍晶振的作用以及晶振的选择要点。

在2.1小节中,我们将详细介绍晶振的作用。

晶振作为电子设备中的重要元件,其作用十分关键。

我们将从频率稳定性、时钟精确性以及电路可靠性等方面逐一进行讲解,以帮助读者充分了解晶振的重要性。

在2.2小节中,我们将重点介绍晶振的选择要点。

在选择晶振时,需要考虑多种因素,如频率稳定性、温度特性、功耗以及封装形式等。

晶振好坏的判定方法

晶振好坏的判定方法

晶振好坏的判定方法晶振是现代电子设备中常用的一种元器件,它具有稳定输出频率的特点,因此在数字电路、计算机、通信等领域得到广泛应用。

那么如何判定一个晶振的好坏呢?下面就介绍几种晶振好坏的判定方法。

1. 观察晶振外观和标识晶振一般有明显的型号、频率等标识,这些标识应清晰可见,没有模糊或掉色现象。

此外,晶振的体积、形状、引脚排列等方面也应符合规格要求。

如果外观和标识存在问题,那么很可能是质量不好的产品。

2. 用万用表测试参数用万用表测试晶振的参数如频率、阻抗、寄生电容等,这些参数的测量值应该在规定范围内。

如果测量值过大或过小,就说明晶振质量有问题。

特别注意的是,万用表测试时应选择合适的档位防止烧毁。

3. 应用软件测试在实际应用中,可以使用适当的测试软件对晶振进行测试。

例如,可以用示波器观察晶振产生的波形是否稳定、周期是否准确;也可以使用频率计测量晶振输出的频率是否稳定等。

如果测试结果不符合要求,说明晶振有问题。

4. 参考经验在行业内,有一些经验可以用来判断晶振的好坏。

例如,看晶振品牌是否有口碑,看晶振的产地和生产厂家是否有认证等。

这些信息可以从官方网站、相关论坛等渠道获取。

总之,判断晶振是否好坏需要综合考虑多方面因素,同时需要具备一定的专业知识和实践经验。

如果不确定自己的判断结果,可以向专业人士咨询。

晶振的好坏直接影响到整个电路的稳定性,因此在使用晶振时需要对其质量进行判断。

以下详细介绍几种判断方法:1. 观察晶振外观和标识在购买晶振时,首先要仔细观察晶振的外观和标识。

晶振一般有明显的型号、频率等标识,这些标识应清晰可见,没有模糊或掉色现象。

此外,晶振的体积、形状、引脚排列等方面也应符合规格要求。

如果外观和标识存在问题,那么很可能是质量不好的产品。

2. 用万用表测试参数用万用表测试晶振的参数也是一种常见的判断方法。

万用表测试时可以选择阻抗档、电容档或者电压档进行测试。

测试晶振的频率、阻抗、寄生电容等,这些参数的测量值应该在规定范围内。

判断晶振好坏的简单方法

判断晶振好坏的简单方法

判断晶振好坏的简单方法晶振是现代电子设备中常见的一种元器件,它的主要作用是提供稳定的时钟信号,使设备能够准确地进行计时、计数等操作。

然而,在使用晶振的过程中,我们有时会遇到一些问题,比如设备无法启动、运行不稳定等,这很可能是由于晶振出现了问题所致。

那么,如何判断晶振的好坏呢?本文将介绍一种简单易行的方法,帮助大家快速准确地判断晶振的质量。

第一步:检查晶振的外观首先,我们需要检查晶振的外观。

正常的晶振应该是一个小巧玲珑的金属盒子,外表光滑、无划痕、无变形、无氧化等痕迹,如果出现了这些问题,那么很可能是晶振已经损坏了。

此外,我们还需要检查晶振的引脚是否有松动、断裂等现象,这也会影响晶振的使用效果。

第二步:测量晶振的频率如果晶振的外观没有问题,那么我们就需要测量它的频率了。

这个过程需要用到一个频率计,它可以帮助我们准确地测量晶振的频率。

首先,我们需要将晶振的引脚连接到频率计的输入端口上,然后将频率计调至合适的测量范围,开始测量晶振的频率。

正常的晶振频率应该在指定的范围内,如果频率偏高或偏低,那么就说明晶振存在问题。

第三步:检查晶振的质量等级除了测量晶振的频率,我们还可以查看晶振的质量等级。

晶振的质量等级通常用字母来表示,如A、B、C、D等。

其中,A等级晶振的质量最好,而D等级晶振的质量相对较差。

在购买晶振时,我们应该尽量选择质量等级较高的产品,以保证设备的稳定性和可靠性。

第四步:使用示波器检测晶振波形最后,我们可以使用示波器来检测晶振的波形。

示波器可以显示晶振输出的波形,从而帮助我们判断晶振是否正常工作。

正常的晶振波形应该是稳定的正弦波,如果波形出现了明显的扭曲、变形等现象,那么就说明晶振存在问题。

总结通过以上几个步骤,我们可以快速准确地判断晶振的好坏。

在实际应用中,我们应该尽量选择质量好、性能稳定的晶振产品,并严格按照使用说明进行操作,以确保设备的正常运行。

同时,我们也需要定期检查晶振的状态,及时更换损坏的晶振,以保证设备的长期稳定性和可靠性。

epson晶振选型手册

epson晶振选型手册

Epson晶振选型手册引言概述:Epson晶振选型手册是一本提供关于Epson晶振选型的专业指导手册。

晶振作为一种重要的电子钟振装置,广泛应用于各类电子设备中,对于设备的稳定性和精准性起到关键作用。

本手册将从多个方面介绍Epson晶振的选型原则和方法,以帮助读者准确选型和应用。

正文内容:1. 晶振的基本原理1.1 晶振的作用与功能1.1.1 提供时钟信号1.1.2 稳定电子设备的工作频率1.1.3 控制和同步各设备之间的通信1.1.4 精确计时和定时功能1.2 晶振的工作原理1.2.1 晶体振荡原理1.2.2 纯谐振条件与频率稳定性1.2.3 晶振的构造与材料选择2. Epson晶振的特点与优势2.1 高稳定性和低功耗2.1.1 稳定性与频率偏移2.1.2 低功耗对电池寿命的影响2.2 宽温度范围和长寿命2.2.1 温度对晶振频率的影响2.2.2 长期使用的可靠性和稳定性2.3 大容量和小封装尺寸2.3.1 容量对数据传输速率的影响2.3.2 封装尺寸对电路板设计的要求3. Epson晶振选型原则3.1 需求分析和参数确定3.1.1 设备类型和用途3.1.2 工作频率和精度要求3.1.3 温度范围和环境影响3.2 选择适合的晶振类型3.2.1 晶振频率范围和精度等级3.2.2 温度补偿和温度响应特性3.2.3 封装尺寸和安装要求3.3 参考设计和测试验证3.3.1 参考电路设计3.3.2 振荡电路测试和频率测量3.3.3 选型结果评估和优化4. Epson晶振选型案例分析4.1 移动方式晶振选型4.1.1 高稳定性和小封装尺寸的需求4.1.2 多频段应用的选择考虑4.2 电子表计晶振选型4.2.1 长期使用和温度范围要求4.2.2 低功耗和电池寿命的平衡4.3 工业自动化控制晶振选型4.3.1 高频率和精度要求4.3.2 多通道同步和控制4.3.3 长寿命和可靠性的考虑5. Epson晶振应用注意事项5.1 环境温度和封装要求5.2 抗振动和抗干扰性能5.3 防静电措施和电源干扰5.4 长期使用和老化问题结语:本手册全面介绍了Epson晶振的选型原则和方法,包括晶振的基本原理、Epson晶振的特点与优势、选型原则、案例分析以及应用注意事项。

晶振的主要参数有哪些?

晶振的主要参数有哪些?

目前来说说晶振的标称频率在1 ~ 200 MHz之间,如3.2768MHz、8MHz、12MHz、24MHz、125MHz等,这些都是晶振的参数。

对于更高的输出频率,通常使用PLL将低频倍频至1GHz以上,这些都是常见的晶振参数的,当然对于详细的参数,建议大家可以直接询问我们客服,我们可以根据用户的需求进行推荐或定制适合您的参数,因为现在晶振的参数有很多种哦。

参数一:精度要求SMD 晶振的最高精度通常是10PPM,这是相当常见的。

特殊精度要求需要订单。

其次依次分布15ppm、20ppm、25ppm、30ppm、50ppm 的等级。

插件晶振以气缸晶振为例。

5ppm是钢瓶晶振的最高精度,其次是10ppm、20ppm和30ppm。

参数二:负载电容负载电容有时候是一个很重要的参数。

如果晶振的负载电容与晶振外接两端连接的电容参数匹配不正确,容易造成频率偏移、精度误差等。

这将导致产品无法满足最终精度要求。

当然也有厂家对负载电容的参数要求不是特别严格。

那么我们来说一个音叉晶体。

常见的负载电容有6PF、7PF、9PF、12.5PF;20PF和12PF是MHZ 晶振中最常见的负载电容,其次是8PF、9PF、15PF和18PF。

负载电容CL是电路中晶体两端的总有效电容,不是晶振外部匹配电容,主要影响负载谐振频率和等效负载谐振电阻,并与晶体一起决定振荡器电路的工作频率。

通过调整负载电容,振荡器的工作频率可以微调到标称值。

参数三:频率单位通常分为KHZ和MHZ。

对于有源晶振和无源晶振,32.768既有KHZ 单位,也有MHZ单位,所以频率单位必须标准明确。

标称频率(正常频率)标准频率,如8MHz、26MHz、32.768KHz等。

参数四:温度频率差表示特定温度范围内工作频率与参考温度的允许偏差,单位为ppm。

值越小,精确度越高。

1MHz是晶振,1 PPM是1Hz的偏差。

负载电容CL负载电容是指晶振正常振荡所需的电容。

为了使晶体正常工作,需要在晶体两端连接外部电容,以匹配晶体的负载电容。

单片机外部晶振的使用

单片机外部晶振的使用

单片机外部晶振的使用
1. 晶振的选取:选择符合单片机频率需求的晶振,一般为1.2MHz 至12MHz之间,对于不同的系统要求,应选用不同频率的晶振。

2. 晶振的接入:将晶振接入单片机的XTAL1和XTAL2引脚,这两个引脚是用于外部时钟输入和输出。

在接入时,需要注意晶振的正负极接入方式,并保证稳定可靠地连接。

3. 外部时钟源的连接:如果使用外部时钟源,可以通过HSE、HSI或LSE、LSI等引脚接入。

根据需要选择合适的引脚连接方式,如使用HSE引脚时,需要将OSCSEL置为1。

4. 时钟频率的配置:根据实际需求,可以通过编程来配置单片机的工作频率。

在C8051F系列单片机中,可以通过设置SCLCR寄存器来配置系统时钟频率。

5. 启动外部晶振:在接入外部晶振后,需要启动晶振才能使单片机正常工作。

启动方法可以通过在单片机程序中设置相应的控制位或通过外部硬件电路控制。

需要注意的是,在使用外部晶振时,应保证晶振的稳定性和可靠性,避免因晶振问题导致系统不稳定或性能下降。

同时,还需要注意外部时钟源的接入方式和频率配置,以确保系统正常工作。

有源晶振电容大小选取规则_概述说明以及解释

有源晶振电容大小选取规则_概述说明以及解释

有源晶振电容大小选取规则概述说明以及解释1. 引言1.1 概述本文旨在探讨有源晶振电容大小选取规则,并对其进行概述和说明。

有源晶振是一种常见的电子元器件,广泛应用于各种电路中。

而电容作为有源晶振中重要的组成部分,其大小的选取对有源晶振的性能至关重要。

1.2 文章结构本文分为四个主要部分:引言、正文、有源晶振电容大小选取规则和结论。

引言部分将介绍本文的目的和主要内容,正文部分将深入探讨相关理论知识。

而在有源晶振电容大小选取规则部分,我们将详细解释电容大小的作用,并列举一些常见的选取规则,同时考虑实际因素及应用场景。

最后,在结论部分,我们将总结全文并提出未来研究方向。

1.3 目的本文的目标是帮助读者更好地理解有源晶振电容大小选取规则,并提供一些实用指导。

通过阐述不同情况下选择合适大小的电容可以提升有源晶振性能,并减少可能出现的问题。

同时,我们也希望激发读者对有源晶振电容大小的更深入研究,并为未来相关领域的发展提供一些建议。

以上是文章“1. 引言”部分的详细内容,希望对您有所帮助!2. 正文在设计电路板时,选择合适的有源晶振电容大小至关重要。

有源晶振电容的大小直接影响到晶振的稳定性、频率精度和启动时间等方面。

本节将详细探讨有源晶振电容大小的选取规则。

在确定有源晶振电容大小之前,首先需要了解晶振所处的应用场景和系统要求。

不同的应用场景和系统对于有源晶振电容大小可能会有不同的要求。

一般来说,较大的电容可以提高晶振的稳定性,并降低由温度变化、供电波动和负载变化引起的频率误差。

然而,选择过大的电容也可能导致启动时间延长和功耗增加。

为了确定合适的有源晶振电容大小,可以考虑以下几个因素:首先是工作频率范围。

根据实际需求选择相应频率范围内的有源晶振,并参考其数据手册中给出的推荐电容范围。

其次是系统要求对频率精度及稳定性的要求。

如果系统对频率精度和稳定性要求较高,则可以选择较大的电容值。

此外,还需要考虑晶振的启动时间和功耗。

单片机晶振频率

单片机晶振频率

单片机晶振频率一、晶振频率的概念及作用晶振频率是指晶体振荡器的震荡频率,也就是单片机内部时钟的频率。

在单片机中,晶振频率起到了非常重要的作用。

它决定了单片机内部时钟的频率,从而影响了单片机的运行速度和精度。

因此,选择合适的晶振频率非常重要。

二、常见的晶振频率目前,市面上常见的晶振频率有4MHz、8MHz、16MHz等。

其中,4MHz和8MHz适用于一些低功耗应用场合,而16MHz则适用于一些高速运算场合。

当然,在一些特殊场合下也会使用其他频率的晶振。

三、如何选择合适的晶振频率1. 根据单片机型号选择不同型号的单片机支持不同范围内的晶振频率。

因此,在选择晶振时需要根据具体型号来确定可选范围。

2. 根据应用场景选择在实际应用中,需要根据具体应用场景来选择合适的晶振频率。

如果需要实现高速计算或者数据传输等操作,则需要使用较高频率的晶振;而如果需要实现低功耗应用,则可以选择较低频率的晶振。

3. 考虑外设设备在一些需要与外设设备进行通信的应用中,需要根据外设设备的要求来选择晶振频率。

例如,如果外设设备要求使用特定的时钟频率进行通信,则需要选择与之匹配的晶振频率。

四、晶振频率与系统时钟频率在单片机中,晶振频率和系统时钟频率是两个不同的概念。

晶振频率是指晶体振荡器震荡的频率,而系统时钟频率则是由单片机内部时钟分频器控制的。

因此,在选择晶振时需要考虑到系统时钟分频系数等因素。

五、常见问题及解决方法1. 晶振不工作可能原因:电路连接不良、晶体损坏、电源电压不稳定等。

解决方法:检查电路连接是否正确、更换新的晶体、检查电源是否稳定等。

2. 晶振工作不稳定可能原因:温度变化、电源波动等。

解决方法:加装温度补偿电路或者使用温度补偿型晶体;使用稳定可靠的电源等。

3. 晶振频率偏差过大可能原因:晶体参数不匹配、电容不匹配等。

解决方法:更换频率相近的晶体、更换合适的电容等。

六、总结在单片机应用中,选择合适的晶振频率非常重要。

需要根据单片机型号、应用场景、外设设备要求等因素来选择合适的晶振频率。

村田无源晶振使用指南及注意事项

村田无源晶振使用指南及注意事项

村田无源晶振使用指南及注意事项大家好,我是你们的好朋友小智。

今天我要给大家普及一下村田无源晶振的使用指南及注意事项,让大家在使用过程中更加得心应手。

我们要明确什么是无源晶振,它有什么作用?简单来说,无源晶振就是没有外部电源驱动的晶振,它的作用是提供一个稳定的频率信号给电路。

那么,接下来就让我们一起来看看如何正确使用村田无源晶振吧!1.1 选择合适的晶振型号在使用村田无源晶振之前,我们需要先了解自己的电路需要什么样的频率。

一般来说,晶振的频率有不同的范围,如2.4MHz、3.5MHz、40MHz等。

我们可以根据自己的需求来选择合适的晶振型号。

例如,如果你的电路需要一个2.4MHz的频率,那么你就需要选择一个2.4MHz的村田无源晶振。

1.2 安装晶振在选择了合适的晶振型号之后,我们就可以开始安装了。

要确定晶振的引脚方向。

一般来说,晶振有两个引脚,一个是VCC(电压),一个是GND(地)。

我们需要将这两个引脚分别连接到电路中的相应位置。

注意,连接时要确保接触良好,避免出现接触不良的情况。

1.3 调整频率在安装好晶振之后,我们还需要对晶振的频率进行调整。

这是因为不同型号的晶振可能存在一定的频率偏差,所以我们需要通过调整来使其达到最佳的工作状态。

调整频率的方法有很多种,这里给大家推荐一种简单的方法:使用示波器观察晶振的工作波形,根据波形来调整频率。

这种方法需要一定的电子基础知识和操作技巧,如果大家不熟悉的话,可以请教专业的电子工程师。

2.1 防止过热在使用村田无源晶振的过程中,我们还需要注意防止过热的问题。

因为晶振在工作过程中会产生热量,如果热量过大,可能会导致晶振损坏甚至失效。

为了防止这种情况的发生,我们可以采取以下措施:保持通风良好的环境。

不要长时间连续使用晶振。

在高温环境下尽量减少对晶振的使用。

2.2 避免静电干扰静电干扰也是影响村田无源晶振正常工作的一个重要因素。

为了避免静电干扰,我们可以采取以下措施:在操作过程中尽量避免触摸晶振。

晶振的精度参数详解

晶振的精度参数详解

晶振的精度参数详解以晶振的精度参数详解为题,我们将详细介绍晶振的精度参数,包括频率精度和稳定度。

一、频率精度:晶振的频率精度是指晶振输出的频率与其标称频率之间的差异。

频率精度通常以ppm(百万分之一)或ppb(十亿分之一)为单位进行表示。

频率精度越高,晶振输出的频率与标称频率的差异越小,晶振的性能越好。

频率精度受到多种因素的影响,主要包括晶振的制造工艺、晶体材料的质量以及外部环境的温度和压力等。

制造工艺的不同会导致晶振的频率精度有所差异,而晶体材料的质量也会直接影响晶振的频率稳定性。

二、稳定度:晶振的稳定度是指晶振输出频率在一定时间范围内的变化程度。

稳定度通常以ppm为单位进行表示。

稳定度越高,晶振的频率变化越小,晶振的性能越好。

稳定度受到多种因素的影响,主要包括晶振的温度特性、老化效应以及外部环境的温度和压力等。

晶振的温度特性是指晶振频率随温度变化的规律,一般情况下,晶振频率会随温度的升高而增加。

晶振的老化效应是指晶振的频率在长时间使用过程中会发生变化,通常情况下,晶振的频率会随时间的推移而逐渐降低。

为了提高晶振的频率精度和稳定度,制造商通常会采用一些技术手段。

例如,采用高精度的晶体材料、优化晶振的制造工艺、加入温度补偿电路等。

这些技术手段可以有效地提高晶振的性能,使其在各种应用场景下都能够稳定可靠地工作。

总结起来,晶振的精度参数包括频率精度和稳定度。

频率精度是指晶振输出的频率与其标称频率之间的差异,而稳定度是指晶振输出频率在一定时间范围内的变化程度。

这些参数对于晶振的性能至关重要,制造商通常会通过优化晶振的制造工艺和采用一些技术手段来提高晶振的频率精度和稳定度。

只有在频率精度和稳定度都达到要求的情况下,晶振才能在各种应用场景下稳定可靠地工作。

万用表测晶振的方法

万用表测晶振的方法

万用表测晶振的方法
1. 首先需要将万用表拨至电阻档位,选择200欧姆档位。

2. 将晶振两端的引脚与多用表的两个探头分别接触,注意不要触碰到晶振外壳。

3. 读取显示屏上的电阻值,晶振的电阻值通常在数十欧姆到几百欧姆之间。

4. 如果测出的电阻值超出了晶振的正常范围,说明晶振可能已经损坏,需要更换。

5. 如果测出的电阻值在正常范围内,可以继续进行震荡测试。

6. 将万用表拨至交流电压档位,选择2V或20V档位。

7. 将晶振两端的引脚与多用表的两个探头分别接触,注意万用表的正负极也需要对应。

如果测试不清楚根据晶振型号进行测试时需要查看晶振型号的数据手册。

8. 读取显示屏上的电压值,晶振的电压通常在几V到几十V 之间。

9. 如果测出的电压值超出了晶振的正常范围,说明晶振可能已经损坏,需要更换。

10. 如果测出的电压值在正常范围内,说明晶振正常工作,数据可以被信号调制解析。

晶振测试标准

晶振测试标准

晶振测试标准
晶振(晶体振荡器)是电子设备中常用的一种时钟源,它的主要功能是产生稳定和精确的时钟信号。

晶振的测试标准主要涉及到其频率的稳定性、准确度、温度系数、负载电容等因素。

1. 频率稳定性:这是晶振最重要的性能指标之一,通常用频率的长期漂移来衡量。

好的晶振其频率稳定性应该在每年小于100ppm(百万分比一)。

2. 频率准确度:这是衡量晶振频率与标称值差异的指标,常用的单位是ppm。

好的晶振其频率准确度应该在±50ppm以内。

3. 温度系数:这是衡量晶振频率随温度变化量的指标,常用的单位是ppm/摄氏度。

好的晶振其温度系数应该在每年小于100ppm/摄氏度。

4. 负载电容:这是衡量晶振带负载能力的指标,常用的单位是pf。

好的晶振其负载电容应该在100pf以内。

5. 电压温度系数:这是衡量晶振电压变化时频率变化的指标,常用的单位是ppm/摄氏度。

好的晶振其电压温度系数应该在每年小于100ppm/摄氏度。

以上这些指标都是在特定的测试条件下测得的,具体的测试标准和方法可以参考国际电工委员会(IEC)的标准或者其他相关的国家标准。

晶振关键参数

晶振关键参数

晶振关键参数1、工作频率晶振的频率范围一般在1到70MHz之间。

但也有诸如通用的32.768kHz钟表晶体那样的特殊低频晶体。

晶体的物理厚度限制其频率上限。

归功于类似反向台面(inverted Mesa)等制造技术的发展,晶体的频率上限已从前些年的30MHz提升到200MHz。

工作频率一般按工作温度25°C时给出。

可利用泛频晶体实现200MHz以上输出频率的更高频率晶振。

另外,带内置PLL 频率倍增器的晶振可提供1GHz以上的频率。

当需要UHF和微波频率时,声表波(SAW)振荡器是种选择。

2、频率精度:1PPM=1/1,000,000频率精度也称频率容限,该指标度量晶振实际频率于应用要求频率值间的接近程度。

其常用的表度方法是于特定频率相比的偏移百分比或百万分之几(ppm)。

例如,对一款精度±100ppm的10MHz晶振来说,其实际频率在10MHz±1000Hz之间。

(100/1,000,000)×10,000,000=1000Hz它与下式意义相同:1000/10,000,000=0.0001=10-4或0.01%。

典型的频率精度范围在1到1000ppm,以最初的25°C 给出。

精度很高的晶振以十亿分之几(ppb)给出。

3、频率稳定性该指标量度在一个特定温度范围(如:0°C到70°C 以及-40°C到85°C)内,实际频率与标称频率的背离程度。

稳定性也以ppm给出,根据晶振种类的不同,该指标从10到1000ppm 变化很大(图2)。

4、老化老化指的是频率随时间长期流逝而产生的变化,一般以周、月或年计算。

它于温度、电压及其它条件无关。

在晶振上电使用的最初几周内,将发生主要的频率改变。

该值可在5到10ppm 间。

在最初这段时间后,老化引起的频率变化速率将趋缓至几ppm。

5、输出有提供不同种类输出信号的晶振。

输出大多是脉冲或逻辑电平,但也有正弦波和嵌位正弦波输出。

晶振的频率精度、稳定度及长期稳定度

晶振的频率精度、稳定度及长期稳定度

晶振的频率精度、稳定度及长期稳定度晶振(xtal)属于精密频率元件,可提供稳定、精确的频率信号。

但由于切片工艺、补偿方式和电路结构不同,晶振的频率特性也个不相同,选型时必须考虑三个重要参数:频率精度、频率稳定度和长期稳定度。

1. 频率精度频率精度(Frequency Tolerance)即调整频差,是晶振在常温环境下(+25℃)的输出频率fx和中心标称频率f0之间的偏差。

该参数受晶片材料和环境影响较大,一般大小在几个ppb至±100ppm范围内。

常见晶振的频率精度如下:xtal晶体谐振器:50ppm热敏晶振(thermistor xtal):±10ppmVCXO压控晶振:±20ppmTCXO温补晶振:±0.2ppm左右OCXO恒温晶振:几个ppb例如,泰晶科技的T2520热敏晶振(xtal)的25°C频率精度和-30°C ~ +85°C工作温度范围的频率稳定度均达±10ppm,这已经达到了晶振振荡器(XO)的精度,还可根据用户需求定制更高精度的产品。

图1. 晶振的频率温度特性:频率精度、稳定度及老化性能实际应用中,晶振精度有可能受电压变动有±1ppm的影响,焊接温度变化有±5ppm的影响,机械振动与冲击有±3PPM的影响,杂散电容有10~20ppm及以上的影响,工作环境温度有5~20ppm的影响。

因此,选型时需要留10ppm裕量,如需要±30ppm频率精度时,一般选择频率精度为±20PPM的晶振。

2. 频率稳定度晶振的频率稳定度(Frequency Stability)通常指的是温度稳定度,即温度频差,这是衡量晶振的输出频率在工作过程中由于温度变化而可能发生变化的短期稳定性指标。

如果频率漂移超出了应用程序的预期,定时误差可能会出现。

在所有晶振中,OCXO恒温晶振的频率稳定度最高,可达到ppb 级别(10-9),TCXO温补晶振的稳定度在1ppm以下,普通晶振的稳定度在100ppm以内。

如何选择晶振以及晶振电容

如何选择晶振以及晶振电容
(1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。 (2):在许可范围内,C1,C2值越低越好。C值偏大虽有利于振荡器的稳定,但将会增加起振时间,比较常用的为15p-30p之间。
如何选择晶振的电容
1:如何选择晶振
对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功耗)的系统。这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振。这一现象在上电复位时并不特别明显,原因是上电时电路有足够的扰动,很容易建立振荡。在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。在振荡回路中,晶体既不能过激励(容易振到高次谐波上)也不能欠激励(不容易起振)。晶体的选择至少必须考虑:谐振频点,负载电容,激励功率,温度特性,长期稳定性。一般来说某一种单片机或外围芯片都会给出一个或几个典型适用的晶振,常用的像51单片机用12M晶振,ATmega系列单片机可以用8M,16M,7.3728M等。这里有一个经验可以分享一下,如果所使用的单片机内置有PLL即锁相环,那么所使用的外部晶振都是低频率的,如32.768K的晶振等,因为可以通过PLL倍频而使单片机工作在一个很高的频率下。

2:如何选择电容起振电容
从原理上讲直接将晶振接到单片机上,单片机就可以工作。但这样构成的振荡电路中会产生偕波(也就是不希望存在的其他频率的波),这个波对电路的影响不大,但会降低电路的时钟振荡器的稳定性. 为了电路的稳定性起见,建议在晶振的两引脚处接入两个瓷片电容接地来削减偕波对电路的稳定性的影响,所以晶振必须配有起振电容,但电容的具体大小没有什么 普遍意义上的计算公式,不同芯片的要求不同。

晶振进货检验规范

晶振进货检验规范

晶振进货检验规范
晶振作为电子电路中的重要组成部分,其稳定性和精度直接影响到整个电路和产品的性能。

因此,在进货时要进行严格的检验和测试,才能确保晶振的质量和可靠性。

本文将介绍晶振进货检验规范,帮助大家更好地采购和使用晶振。

一、外观品质检验
1. 晶片外观:应无裂纹、凸起、凹陷、污渍、划痕等表面缺陷,金属引脚应直、匀、对称、无扭曲、错位、弯曲及接触疏松现象。

2. 铝壳外观:应无破损、裂纹、变形等表面缺陷,标记清晰、无掉色现象。

3. 整体外观:晶片与铝壳相结合紧密,铝壳与引线连接牢固。

二、尺寸和性能检验
1. 晶片尺寸:使用显微镜等仪器测量晶片尺寸,应与生产厂家提供的产品规格一致。

2. 引脚尺寸:使用千分尺等测量工具测量引脚尺寸,应与产品规格一致。

3. 频率测量:使用频率计等测量仪器对晶振进行频率测量,检查其频率是否符合产品规格要求。

4. 静电保护性能测试:使用静电放电测试仪对晶振进行静电放电测试,检查其静电保护性能是否符合要求。

5. 抗振动性能测试:使用振动台等仪器对晶振进行抗振动性能测试,检查其是否符合产品规格要求。

6. 工作温度范围测试:使用恒温箱等温度控制设备对晶振进行工作温度范围测试,检查其是否符合产品规格要求。

三、其他检验
1. 包装检验:检查晶振的包装是否完好无损,是否符合产品规格要求。

2. 产品质量证明文件检验:检查产品质量证明文件是否齐全、完整、真实、准确。

以上就是晶振进货检验规范的内容,希望能对大家有所帮助。

在进货时,尽量选择正规的生产厂家和供应商,确保晶振产品的质量和可靠性,以提高产品的性能和稳
定性。

晶振电容的选取和计算

晶振电容的选取和计算

晶振电容的选取和计算
在电子电路中,晶振和电容是常用的元件。

晶振用于产生稳定的时钟信号,而电容则用于调整晶振的频率和稳定性。

选择合适的晶振电容对于电路的性能至关重要。

晶振电容的选取需要考虑以下几个因素:
1. 频率:晶振的频率决定了所需的电容值。

一般来说,电容值与晶振频率成反比。

较高频率的晶振需要较小的电容值,而较低频率的晶振则需要较大的电容值。

2. 容差:电容的容差会影响晶振的频率稳定性。

一般来说,选择容差较小的电容可以提高晶振的频率稳定性。

3. 温度系数:电容的温度系数也会影响晶振的频率稳定性。

选择温度系数较小的电容可以降低温度对晶振频率的影响。

4. 成本:不同容值和精度的电容价格不同,需要在满足性能要求的前提下考虑成本因素。

在实际应用中,可以使用以下公式计算晶振电容的值:
C = 1 / (2 * π * f * T)
其中,C 表示晶振电容的值,f 表示晶振的频率,T 表示电容的温度系数。

总之,选择合适的晶振电容需要考虑频率、容差、温度系数和成本等因素。

在实际应用中,可以根据具体情况进行计算和选择。

32768晶振电容大小选取规则

32768晶振电容大小选取规则

32768晶振电容大小选取规则晶振是电子设备中常用的振荡器,用于提供稳定的时钟信号。

在电路设计中,晶振的电容大小是一个重要的参数。

本文将介绍关于32768晶振电容大小选取的规则。

1. 理解晶振电容的作用晶振电容主要用于调节晶振的工作频率和稳定性。

通常情况下,晶振电容越大,晶振的频率越稳定。

因此,正确选择晶振电容大小对于确保设备正常运行非常重要。

2. 考虑晶振的工作频率32768晶振是指振荡频率为32768赫兹的晶振。

在选取晶振电容大小时,需要考虑晶振的工作频率。

一般来说,晶振电容的值应该在晶振频率的1/10至1/100之间。

3. 参考晶振厂家的推荐值不同的晶振厂家可能会有不同的推荐值。

在选取晶振电容大小时,可以参考晶振厂家提供的数据手册或技术规格,查找推荐的电容值。

这些推荐值是基于厂家的实际测试和经验总结,可以提供较好的参考。

4. 考虑电路布局和干扰在选取晶振电容大小时,还需要考虑电路布局和干扰的因素。

晶振电容的大小可能会对电路的稳定性和抗干扰能力产生影响。

因此,在设计电路时,需要综合考虑晶振电容的大小和其他因素。

5. 实际测试和优化选取晶振电容大小的最佳方法是进行实际测试和优化。

可以根据实际的电路设计和要求,在不同的电容值下进行测试,评估晶振的稳定性和性能。

通过实际测试,可以找到最合适的晶振电容大小。

总结起来,选取32768晶振电容大小的规则包括理解晶振电容的作用、考虑晶振的工作频率、参考晶振厂家的推荐值、考虑电路布局和干扰因素,以及进行实际测试和优化。

正确选择晶振电容大小可以提高电路的稳定性和性能,确保设备正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个号的晶体振荡器可以被泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。

它具有多种封装类型,最主要的特点是电气性能规范多种多样。

它有以下几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。

如果你的设备需要即开即用,您就必须选用VCXO或温补晶振,如果你的要求稳定度在0.5ppm以上,凯越翔建议你选择数字温补晶振(MCXO)。

而模拟温补晶振则适用于稳定度要求在5ppm~0.5ppm之间的需求。

VCXO只适合于稳定度要求在5ppm以下的产品。

如果你的设备在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm的,可选用OCXO。

从频率稳定性方面考虑:晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。

稳定性愈高或温度范围愈宽,器件的价格亦愈高。

工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。

所以设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。

指标过高意味着花钱愈多。

晶体老化:造成频率变化的又一重要因素。

根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。

晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。

例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。

采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。

与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。

对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。

输出:必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰(EMI)。

晶体振荡器可HCMOS/TTL兼容、ACMOS兼容、ECL和正弦波输出。

每种输出类型都有它的独特波形特性和用途。

应该关注三态或互补输出的要求。

对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定。

许多DSP和通信芯片组往往需要严格的对称性(45%至55%)和快速的上升和下降时间(小于
5ns)。

相位噪声和抖动:在频域测量获得的相位噪声是短期稳定度的真实量度。

它可测量到中心频率的1Hz之内和通常测量到1MHz。

晶体振荡器的相位噪声在远离中心频率的频率下有所改善。

TCXO和OCXO振荡器以及其它利用基波或谐波方式的晶体振荡器具有最好的相位噪声性能。

采用锁相环合成器产生输出频率的振荡器比采用非锁相环技术的振荡器一般呈现较差的相位噪声性能。

抖动与相位噪声相关,但是它在时域下测量。

以微微秒表示的抖动可用有效值或峰—峰值测出。

许多应用,例如通信网络、无线数据传输、ATM和SONET要
求必须满足严格的拌动指标。

需要密切注意在这些系统中应用的振荡器的抖动和相位噪声特性。

电源和负载的影响:振荡器的频率稳定性亦受到振荡器电源电压变动以及振荡器负载变动的影响。

正确选择振荡器可将这些影响减到最少。

设计者应在建议的电源电压容差和负载下检验振荡器的性能。

不能期望只能额定驱动15pF的振荡器在驱动50pF时会有好的表现。

在超过建议的电源电压下工作的振荡器亦会呈现较差的波形和稳定性。

凯越翔友情提示:对于需要电池供电的器件,一定要考虑功耗。

引入3.3V 的产品必然要开发在3.3V下工作的振荡器。

较低的电压允许产品在低功率下运行。

大部分市售的表面贴装振荡器在3.3V下工作。

许多采用传统5V器件的穿孔式振荡器正在重新设计,以便3.3V下工作。

封装:与其它电子元件相似,时钟振荡器亦采用愈来愈小型的封装。

根据客户的需要制作各种类型、不同尺寸的晶体振荡器(具体资料请参看产品手册)。

通常,较小型的器件比较大型的表面贴装或穿孔封装器件更昂贵。

所以,小型封装往往要在性能、输出选择和频率选择之间作出折衷。

工作环境:晶体振荡器实际应用的环境需要慎重考虑。

例如,高强度的振动或冲击会给振荡器带来问题。

除了可能产生物理损坏,振动或冲击可在某些频率下引起错误的动作。

这些外部感应的扰动会产生频率跳动、增加噪声份量以及间歇性振荡器失效。

对于要求特殊EMI兼容的应用,EMI是另一个要优先考虑的问题。

除了采用合适的PC母板布局技术,重要的是选择可提供辐射量最小的时钟振荡器。

一般来说,具有较慢上升/下降时间的振荡器呈现较好的EMI特性。

检测:对于晶振的检测,通常仅能用示波器(需要通过电路板给予加电)或频率计实现。

万用表或其它测试仪等是无法测量的。

如果没有条件或没有办法判断其好坏时,那只能采用代换法了,这也是行之有效的。

晶振常见的故障有:(a)内部漏电;(b)内部开路;(c)变质频偏;(d)与其相连的外围电容漏电。

从这些故障看,使用万用表的高阻档和测试仪的VI曲线功能应能检查出(C),(D)项的故障,但这将取决于它的损坏程度。

总结:器件选型时一般都要仔细查看晶振的PPm一般误差不要>20PPM,以保证产品的可靠性。

选用较高档的器件可以进一步降低失效概率,带来潜在的效益,这一点在比较产品价格的时候也要考虑到。

要使振荡器的"整体性能"趋于平衡、合理,这就需要权衡诸如稳定度、工作温度范围、晶体老化效应、相位噪声、成本等多方面因素,这里的成本不仅仅包含器件的价格,而且包含产品全寿命的使用成本。

相关文档
最新文档