有理数知识点清单及易错题
(易错题精选)初中数学有理数的运算知识点复习
(易错题精选)初中数学有理数的运算知识点复习一、选择题1.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.2018年汕头市龙湖区的GDP 总量约为389亿元,其中389亿用科学记数法表示为( ) A .3.89×1011B .0.389×1011C .3.89×1010D .38.9×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】389亿用科学记数法表示为89×1010.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0.点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.8.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.9.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81 B.508 C.928 D.1324【答案】B【解析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.11.下列用科学记数法表示正确的是( )A .10.000567 5.6710-=-⨯B .40.0012312.310=⨯C .20.0808.010-=⨯D .5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.据资料显示,地球的海洋面积约为36000万平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( ).A .73610⨯B .83.610⨯C .90.3610⨯D .43.610⨯【答案】B【解析】【分析】先将36000万平方千米化为360000000平方千米,再根据科学计数法的概念进行表示,即可得到答案.【详解】36000万平方千米=360000000平方千米,将360000000用科学记数法表示为83.610⨯,则用科学记数法表示地球海洋面积约为83.610⨯平方千米,故选:B .【点睛】本题考查科学计数法.科学记数法的形式为:10n a ⨯,其中110a ≤≤,n 为整数.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.一根1m 长的小棒,第一次截去它的12 ,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是( ) A .12m B .15m C .116m D .132m 【答案】D【解析】【分析】 根据题意和乘方的定义可以解答本题.【详解】 解:第一次是12m ,第二次是211112224⎛⎫⨯== ⎪⎝⎭m ,第三次是31111122228⎛⎫⨯⨯== ⎪⎝⎭m ,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m ,故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
有理数概念十大易错题-解析
1、绝对值等于本身的数是,绝对值是相反数的数是。
答案:非负数;非正数解析:绝对值等于本身的数是非负数,绝对值是相反数的数是非正数。
2、下列说法中正确的是()A.平方是它本身的数是正数 B.绝对值是它本身的数是零C.立方是它本身的数是±1D.倒数是它本身的数是±1答案:选 D解析:∵平方是它本身的数是 1 和 0;绝对值是它本身的数是零和正数;立方是它本身的数是±1 和 0;倒数是它本身的数是±1,∴正确的答案为 D.3、下列说法中正确的是①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④ 0 是偶数,也是自然数。
答案:①②④解析:第③项错误,整数和分数统称为有理数。
4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。
答案:①②③解析:①:0 的相反数是0,故本选项错误;②:一个非正数的绝对值还可能为0,故本选项错误;③:有理数的绝对值还可能为0,故本选项错误;④:任何有理数的绝对值都不是负数,故本选项正确.5、下列说法正确的有①.整数包括正整数、负整数;②.0 是整数,也是自然数;③.分数包括正分数、负分数和 0;④.有理数中,不是负数就是正数答案:②解析:整数包括正、负整数和 0;分数包括正分数和负分数;有理数中,除了负数和正数还有 0.6、下列各组量中,具有相反意义的量是①节约汽油 10 升和浪费粮食 10 千克;② 向东走 10 公里和向北走 8 公里;③盈利 100 元和支出 200 元;④增加 10%与减少 20%。
答案:④7、在−22,3.1415926,0,−1.234 ⋯,˙,π,有理数的个数是().7 0. 3 2A . 2B . 3C . 4D . 5答案: C解析:−22,3.1415926,0,˙是有理数.7 0. 38、下列说法正确的是① 带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。
《易错题》七年级数学上册第一单元《有理数》-选择题专项知识点总结(含答案)
一、选择题1.在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.2.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.4.把实数36.1210-⨯用小数表示为()A.0.0612 B.6120 C.0.00612 D.612000C解析:C绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A.m>0 B.n<0 C.mn<0 D.m-n>0C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.6.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.7.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.9.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.11.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A【分析】根据题意确定出a ,b ,c 中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a 、b 、c 为非零有理数,且a+b+c=0∴a 、b 、c 只能为两正一负或一正两负.①当a 、b 、c 为两正一负时,设a 、b 为正,c 为负,原式=1+1+(-1)+(-1)=0,②当a 、b 、c 为一正两负时,设a 为正,b 、c 为负原式1+(-1)+(-1)+1=0, 综上,a b c abc a b c abc+++的值为0, 故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.12.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .4C 解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .13.下列结论错误的是( )A .若a ,b 异号,则a ·b <0,a b <0 B .若a ,b 同号,则a ·b >0,a b >0 C .a b -=a b -=-a b D .a b--=-a b D 解析:D【解析】根据有理数的乘法和除法法则可得选项A 、B 正确;根据有理数的除法法则可得选项C 正确;根据有理数的除法法则可得选项D 原式=a b,选项D 错误,故选D. 14.若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M+|-20|=|M|+|20|,∴M≥0,为非负数.故答案为B.【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.15.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.16.按如图所示的运算程序,能使输出的结果为12的是()A.x=-4,y=-2 B.x=3, y=3 C.x=2,y=4 D.x=4,y=0C解析:C【分析】根据y的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x2-2y,结果得20,故不选A;当x=3,y=3时,3>0,故代入x2+2y,结果得15,故不选B;当x=2,y=4时,4>0,故代入x2+2y,结果得12,C正确;当x=4,y=0时,00≥,故代入x2+2y,结果得16,故不选D;故选C.【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.17.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.18.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.19.计算4(8)(4)(1)+-÷---的结果是()A.2 B.3 C.7 D.4 3 C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++7=,故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.21.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为5⨯3.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5⨯,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.22.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.23.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.24.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍A解析:A根据题意列出乘法算式,计算即可.【详解】设一个因数为a ,另一个因数为b∴两数乘积为ab 根据题意,得1110202ab ab = 故选A .【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.25.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.26.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.27.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A 解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.28.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 29.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b 判断出a 和b 异号. 30.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数,故选:A .【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.。
《有理数》易错题
初学有理数的常见错误剖析 对于初学有理数者,在解题中出现错误是难免的,也是正常的,但必须弄清产生错误的原因,掌握正确的解答方法,只有这样才能逐步形成数学基本技能和能力,本文就有理数这一部分中的解题易犯错误归纳剖析如下.一、答案不完整例1.若一个有理数的:①倒数②绝对值③平方④立方,等于它本身,则这个数分别是⑴ ;(2) ;(3) ;(4) .错误答案:⑴ 1 ⑵ 正数 ⑶ 1 ⑷±1 .分析:给出的答案不完整,漏掉了一些符合条件的数,产生错误的原因主要是把数的认识局限在正数范围之内,忽视0和才引进的负数,对数的范围的拓宽不适应,另外由于对负数、倒数、绝对值等概念没有完全正确理解而造成的错误. 正确答案是:⑴ ±1 ⑵ 正数和0 ⑶ 1和0 ⑷ ±1和0.二、分类不明确例2.有理数中,⑴最小的正整数是 ;⑵最小的整数是 ;⑶绝对值最小的数是 ;⑷最小的正数是 .错误答案:⑴ 0 ⑵ 1 ⑶ 1 ⑷ 1 .分析:产生错误的原因,一是对有理数的分类没有弄清楚,二是“任意两个有理数之间总至少存在一个有理数”的性质不理解,当然也有一部分同学因“正数”和“整数”的概念混淆而导致错误.正确答案:⑴ 1 ⑵ 不存在 ⑶ 0 ⑷ 不存在 .三、概念不清晰例3.判断正误:(1)任何一个有理数的相反数和它的绝对值都不可能相等( )(2)任何一个有理数的相反数都不会等于它的倒数( ) 错误答案:⑴ ∨ ⑵ × .分析:第(1)小题失误原因,一是误认为一个有理数a 的相反数-a 总是负数; 二是误认为a 能够等于a ,而得到a ≠-a ,究其根源是对“相反数”和“绝对值”的概念还没弄明白.第(2)小题失误原因是对一个有理数和它的倒数,以及相反数的符号之间的关系不清晰所致.正确答案:⑴ × ⑵∨.四、运算不准确1.运算符号错误例4.计算)15(120)4()25.6(-÷--⨯-错解:原式=25-8=17.剖析:此解将120前面的“-”号既视为运算符号,又视为性质符号,以致出错.应当注意“-”号在运算中只能当作二者中的一种.正解:原式=25-(-8)=33.例5.计算5)6(42-----错解:原式=16+6-5=17.剖析:此解忽略了24-与2)4(-的区别,24-表示4的平方的相反数,其结果为-16,2)4(-表示两个-4相乘,其结果为16。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是数学中的一个重要概念,它是整数和分数的统称。
在初中数学的学习中,有理数占据着基础且关键的地位。
接下来,我们将对有理数的知识点、考点和难点进行详细的总结归纳。
一、有理数的定义和分类有理数是能够表示为两个整数之比的数,包括整数、有限小数和无限循环小数。
按照符号分类,有理数可以分为正有理数、零和负有理数。
正有理数包括正整数和正分数,负有理数包括负整数和负分数。
需要注意的是,零既不是正数也不是负数,但它是有理数。
二、有理数的数轴表示数轴是一条规定了原点、正方向和单位长度的直线。
任何一个有理数都可以在数轴上找到对应的点,反过来,数轴上的点也都对应着一个有理数。
在数轴上,右边的数总比左边的数大。
利用数轴可以比较有理数的大小,也可以进行有理数的加减运算。
三、有理数的相反数只有符号不同的两个数互为相反数。
例如,5 的相反数是-5,-3 的相反数是 3。
零的相反数是零。
互为相反数的两个数之和为零。
四、有理数的绝对值绝对值的定义是:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
例如,|5| = 5,|-3| = 3,|0| = 0。
绝对值具有非负性,即任何有理数的绝对值总是大于或等于零。
五、有理数的比较大小正数大于零,零大于负数,正数大于负数。
两个负数比较大小,绝对值大的反而小。
例如,比较-5 和-3 的大小,因为|-5| = 5,|-3| = 3,5 > 3,所以-5 <-3。
六、有理数的加法同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同零相加,仍得这个数。
例如,3 + 5 = 8,-3 +(-5) =-8,3 +(-5) =-2,-3 + 5 = 2,0 + 5 = 5。
七、有理数的减法减去一个数,等于加上这个数的相反数。
七年级上《有理数》难题易错题型归纳
七年级上《有理数》难题易错题型归纳01 对有理数的概念理解不清例题1:下列说法正确的是()A.最小的正整数是0;B.-a是负数C.符号不同的两个数互为相反数;D.-a的相反数是a分析:0既不是正数也不是负数,0是整数;-a可能是正数、负数,也可能是0;相反数需要满足两个条件:(1)符号不同;(2)绝对值相等,仅仅满足符号不同的两个数不一定互为相反数,比如-1与2、-2与3等等;-a的相反数是a,a的相反数为-a,没有问题。
在数学上,定义类问题让很多同学忽视,觉得不重要,但是在做题目时,却往往犯各种各样的错误,要特别注意。
02|a|化简出错,忽略分类讨论思想例题2:如果一个数的绝对值等于它本身,那么这个数一定是()分析:正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数,即绝对值等于它本身的数为正数或0.注意:当a≥0时,|a|=a;当a≤0时,|a|=-a.03对括号使用不当引起的错误例题3:-10-(-2+3-5)分析:在计算时要注意括号,如果括号前面是负号,去括号时要注意变号;如果括号前面是加号,可以直接去掉括号。
比如本题,原式=-10+2-3+5=-6。
04忽略或不注意运算顺序分析:在计算时,注意运算顺序,先乘方、后乘除、再加减,有括号的先算括号里面的,如果是同级运算,按照从左到右的顺序依次计算。
比如本题,不要看到中间两项互为倒数乘积为1,直接进行计算。
本题为同级运算,按照从左往右的顺序依次计算即可。
05除法没有分配律乘法具有分配律,括号外面的数要与括号中的任意一个数都相乘,然后求和。
除法不具有分配律,不能按照乘法分配律的方法进行求解,可以先将括号内的方程先求出,再利用除法法则运算。
分析:不要使用简便运算进行运算。
初一数学有理数知识点与经典例题
初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
有理数知识点清单及易错题
期末复习有理数易错题专项复习一、 知识点复习1、有理数的定义:________和________统称为有理数;2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________;3、数轴的定义:规定了________、________和________的________叫数轴;4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可;5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大;6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值;7、绝对值的表示方法如下:2-的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________;8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________;9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________,32-的相反数可表示为________; 10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________; ③一个数与0相加,________;11、有理数减法法则:减去一个数,等于____________;12、有理数加法运算律:加法交换律:=+b a ________;加法结合律:=++cb a )(________;13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________;14、多个非零的有理数相乘,积的符号是由________的个数决定的:当________的个数是奇数个时,积为________;当________的个数为偶数个时,积为________;15、有理数除法法则:除以一个数,等于________________; 16、乘方的定义:________________的运算叫做乘方;17、对于式子na ,________是指数,________是底数,________是幂,它表示的意义是________________;18、乘方的符号法则:正数的________次幂都是正数;负数的________次幂是负数,负数的________次幂是正数;19、科学记数法的定义:把一个大于10的数记成a ⨯n10的形式,其中a 的范围是________,n 是______,这样的记数法叫做科学记数法;科学计数法中,10的指数等于原数的整数位数减去_______; 20、有理数混合运算的顺序:先________,再________,最后________;若有括号,先________________;同级运算应该________依次计算;对于多重括号应该遵循________依次去括号; 二、选择1.下列说法正确的是A .有理数就是正有理数和负有理数的统称B .最小的有理数是0C .有理数都可以在数轴上找到一个表示它的点D .整数不能写成分数形式2.温度上升3-度后,又下降2度实际上就是A .上升1度B .上升5 度C .下降1 度D .下降5度 3.下列说法错误的个数有 个;①任何正整数都可以看做是由若干个“1”组成的; ②正数、和负数组成了全体有理数;③如果收入增加300元记作30+那么“500-元”表示的意义是支出减少500元;④任意一然数m 加上正整数n 等于m 进行n 次加1运算; B. 34.下列说法正确的是A .没有最大的正数,却有最大的负数B .数轴上离原点越远,表示数越大C .0大于一切非负数D .在原点左边离原点越远,数就5.下列说法正确的个数是①一个数的绝对值的相反数一定是负数;②正数和零的绝对等于它本身;③只有负数的绝对值是它的相反数;④互为相的两个数的绝对值一定相等;⑤任何一个有理数一定不大于绝对值;A .5个B .4个C .3个D .2个 6.下列说法中:①a -一定是负数;②a-一定是正数;数等它本身的数是±1;④绝对值等于它本身的数是1;其中的个数是A .1个B .2个C .3个D .4个 7.如果b a ,都代表有理数,并且0=+b a ,那么A .b a ,都是0B .b a ,两个数至少有一个为0C .b a ,互为相反数D .b a ,互为倒数 8.a 代表有理数,那么a 和a -的大小关系是A .a 大于a -B .a 小于a -C .a 大于a -或a 小于a -D .a 不一定大于a-9.如果b a ,互为相反数,那么下面结论中不一定正确的是A .0=+b aB .1-=baC .2a ab -=D .a =10.若a a -=-22,则数a 在数轴上的对应点在A .表示数2的点的左侧B .表示数2的点的右侧C .表示数2的点或表示数2的点的左侧D .表示数2的点或表示数2的点的右侧 11.下列说法正确的是 A .两数的和大于每一个加数B .两个数的和为负数,则这两个数都是负数C .两个数的和为0,则两个数都是0D .两个数互为相反数,则这两个数的和为0 12.算式53--不能读作A .3-与5的差B .3-与5-的和C .3-与5-的差D .3-减去513.几个有理数相乘,若负因数的个数为奇数个,则积为 A .正数 B .负数 C .非正数 D .非负数 14.一个有理数和它的相反数相乘,积为A .正数B .负数C .正数或0D .负数或0 15.一个非零的有理数与它的相反数的商是 A .-1 B .1 C .0 D .无法确定16.两个不为零的有理数相除,如果交换被除数与除数的位置们的商不变,那么这两个数A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数17.一个有理数的平方是正数,则这个数的立方是A .正数B .负数C .正数或负数D .奇数 18.若a 是负数,则下列各式不正确的是 A .22)(a a -= B .22a a =C .33)(a a-= D .)(33a a --=19.n 为正整数时,n)1(-+1)1(+-n 的值是A .2B .-2C .0D .不能确定20.两个有理数互为相反数,那么它们的n 次幂的值A .相等B .不相等C .绝对值相等D .没有任何关系 三、 填空1.到原点的距离不大于2的整数有___个,它们是_____;到原点的距离大于3且不大于6的整数有_____个,它们是__________; 2.数轴上A 、B 两点对应的数分别为2-和m ,且线段3=AB ,则m =_______;3. 找出所有符合条件的整数x ,使得25++-x x 最小,这样的整数是________________;4.在数轴上表示数a 的点到原点的距离为3,则=-3a ________;5.在数轴上,点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是15,则两点表示的数分别是________和________;6.平方得4的数是________;若2542=m ,则=m ________;7.一个数的绝对值等于它本身,则这个数是________;一个数的相反数等于它本身,则这个数是________;一个数的平方等于它本身,则这个数是________;一个数的立方等于它本身,则这个数是________;一个数的倒数等于它本身,则这个数是________;8.已知n 为正整数,一个数的15次幂是负数,那么这个数的2003次幂是______,它的12+n 次幂是______填“正数”或者“负数”; 9.观察下列算式发现规律:771=,4972=,34373=,,240174=,1680775=,11764976=,……,用你所发现的规律写出:20117的末位数字是________; 四、计算【一】 有理数概念的应用:1.已知︱a ︱=5,︱b ︱=8,且︱a+b ︱= -a+b,试求a+b 的值;【二】 有理数的混合运算:一 有理数的加减:1.计算: +-252--156二 有理数的乘除:1. 计算:32×-36三有理数的乘方:1.2)43(-2.2)43(-3.2)43(--4.432-5.243-四知识延伸:1.计算:1()⎪⎭⎫ ⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-81441222.已知()0422=-++y x ,求y x ⋅的值;【三】 有理数的混合运算易错点解析:一通过运算,回顾运算法则和运算经验例1:计算: )31()2(618-⨯-÷-2例2:计算: ⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2五、简答1.把下列各数填在相应的集合内;7,322,5-,3.0-,81,0,21-,6.8,431-,151,-38,π 正数集合{ };负数集合{ }; 正整数集合{ };整数集合{ }; 负整数集合{ };分数集合{ };2.已知3个互不相等的有理数可以写为0、a 、b ,也可以1、ab、b a +,且b a >;求a 、b 的值; 3.在数轴上标出b a ,的相反数,并用“<”把这四个数连来;4.已知3||=a ,5||=b ,且b a <,求b a +的值;5. 03|4|=-++b a ,求b a 2+的值;6. 已知a 是非零的有理数,求aa 的值;7.已知|2|-a 与|3|-b 互为相反数,求b a 23+的值; 8.已知c b a 、、均为非零的有理数,且-=++cc bb aa abcabc 的值;变式:已知c b a 、、均为非零的有理数,且1-=abcabc ,求cc bb aa ++的值;。
有理数必考43个知识点
有理数必考43个知识点一、有理数的基本概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如,3是正整数,属于有理数;0.5是有限小数,也是有理数; - 2是负整数,同样是有理数。
2. 有理数的分类。
- 按定义分类:有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。
- 按性质分类:有理数可分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
原点表示0,原点右边为正数,左边为负数。
例如,在数轴上表示 - 3,就是在原点左边距离原点3个单位长度的点。
- 数轴上的点与有理数的关系:每一个有理数都可以用数轴上的一个点来表示,但数轴上的点不都表示有理数(还有无理数)。
4. 相反数。
- 只有符号不同的两个数叫做互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
- 互为相反数的两个数在数轴上的对应点关于原点对称。
- 若a与b互为相反数,则a + b=0。
5. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。
例如,3 = 3,- 3 = 3。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即当a>0时,a = a;当a = 0时,a = 0;当a<0时,a=-a。
6. 倒数。
- 乘积为1的两个数互为倒数。
例如,2的倒数是1/2, - 3的倒数是 - 1/3,0没有倒数。
- 若a与b互为倒数,则ab = 1。
二、有理数的运算。
7. 有理数的加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如,2+3 = 5,( - 2)+( - 3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,2+( - 3)= - 1,3+( - 2)=1。
有理数知识点清单及易错题
一、重点考点概念 *分数包括有限小数和无限循环小数。
反过来,任意一个有限小数和无限循环小数都可以表示成分数1) 正整数、0和负整数统称整数2) 正分数和负分数统称分数3) 整数和分数统称有理数; 正有理数、0和负有理数统称有理数● 数轴的三要素:原点,正方向,单位长度 ● 所有的有理数都可以用数轴上的点来表示 绝对值的求法去绝对值符号时,必须遵循“先判后去”的顺序,即先判定“| |”内是正数、零还是负数,再由绝对值的代数定义去掉绝对值符号“| |”。
加法运算率:a+b=b+a a+(b+c)=(a+b)+c 乘方的符号法则: (1)正数的任何次幂是正数;(2)负数的奇次幂是负数,偶次幂是正数.(3)0的任何次幂是0(-a)2n =a 2n (-a)2n+1=-a 2n+11.有理数加法法则:⑴如果a >0,b >0,那么a +b =+(│a │+│b │);⑵如果a <0,b <0,那么a +b =-(│a │+│b │); ⑶如果a >0,b <0,│a │>│b │,那么a +b =+(│a │-│b │);⑷如果a >0,b <0,│a │<│b │,那么a +b =-(│b │-│a │);⑸如果a >0,b <0,│a │=│b │,那么a +b =0;⑹a +0=a .2.有理数减法法则:a -b =a +(-b )33. 两数相加,如果比每个加数都小,那么这两个数是( )A .同为正数B .同为负数C .一个正数,一个负数 D .0和一个负数34.在数轴上表示的数8与-2这两个点之间的距离是 ( )A .6B .10C .-10D .-635.计算:()()()(1) 5.36 3.36+--+--(+)12(2)511233---+--()()⑶()1130.2535844⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑸(+335)+(+434)-(+125)+(-334)⑹[1.8-(-1.2+2.1)-0.2]-(-1.5)3.有理数乘法法则: ⑴如果a >0,b >0,那么a •b =+(│a │•│b │);⑵如果a <0,b <0,那么a •b = +(│a │•│b │); ⑶如果a >0,b <0,那么a •b =- (│a │•│b │);⑷a •0=0.4.有理数除法法则:a ÷b =a •1b5.有理数的乘方: 求 的积的运算,叫做有理数的乘方.即:a n =aa …a (有n 个a ) 从运算上看式子a n ,可以读作 ;从结果上看式子a n 可以读作 .6.有理数混合运算顺序: ⑴ ⑵ ⑶ 36. 两个非零有理数的和为零,则它们的商是( ) A .0 B .-1 C .+1 D .不能确定 37.一个数和它的倒数相等,则这个数是( ) A .1 B .-1 C . ±1 D . ±1和0 38. (-2)11+(-2)10的值是( ) A .-2 B .(-2)21 C .0 D .-210 39. 下列说法正确的是( ) A .如果a b >,那么22a b > B .如果22a b >,那么a b >C .如果a b >,那么22a b >D .如果a b >,那么a b >40.若a 、b 互为相反数,c 、d 互为倒数,则⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a(a +b )3-3(cd )4=________.41.平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________. 42. 1-2+3-4+5-6+……+2001-2002的值是____________.43. 已知a =3,2b =4,且a b >,求a b +的值.44.计算:⑴12-(-18)+(-7)-15 ⑵3342293⎛⎫-÷⨯- ⎪⎝⎭⑶ (-1)10×2+(-2)3÷4⑷ (-10)4+[(-4)2-(3+32)×2] ⑸25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦⑹ 2310110.25(0.5)()(1)82-÷-+-⨯-科学记数法、近似数及有效数字 ⑴把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.⑵对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
有理数知识点总结与典型例题(人教版初中数学)
有理数知识点目录一、正数和负数 (2)考向1:正数和负数的概念 (2)考向2:正数和负数的相反意义 (2)二、有理数 (3)考向3:有理数的分类 (3)三、数轴 (4)考向4:数轴的定义 (5)考向5:利用数轴比较两数的大小 (5)四、相反数 (6)考向6:相反数 (6)五、绝对值 (6)考向7:求一个数的绝对值 (7)考向8:有理数的大小比较 (7)六、有理数的加法 (9)考向9:有理数的加法 (9)七、有理数的减法 (10)考向10:有理数的减法 (10)八、有理数的乘法 (12)考向11:有理数的乘法 (12)九、有理数的除法 (14)考向12:有理数的除法 (14)十、乘方 (16)考向13:乘方的运算 (16)十一、有理数的混合运算 (18)十二、科学计数法 (18)考向14:科学计数法 (18)十三、近似数 (19)考向15:近似数 (19)参考答案: (21)有理数知识点总结与典型例题一、正数和负数1、正数和负数的概念:⑴比0大的数叫做正数;⑵比0小的数叫做负数;⑶0既不是正数,也不是负数,0是正数与负数的分界(0的意义已不仅是表示“没有”). 说明:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a是正数;当a 表示0时,-a 仍是0。
(带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断);②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号.2、正数和负数的意义:在同一个问题中,分别用正数与负数表示的量具有相反的意义.例如:零上3℃记作+3℃,零下2℃可记作-2℃.※典型例题考向1:正数和负数的概念1、下列各数:+3,31-,0.154,-2.5,π,21中,正数有( ) A .1个 B .2个C .3个D .4个 2、在1,-2,-5.5,0,34,75-,3.14中,负数的个数为( ) A .3个 B .4个 C .5个 D .6个3、在5,23,-1,0.001这四个数中,小于0的数是( ) A .5 B .23 C .0.001 D .-1 4、在2,21,43,-1四个数中,与其余三个不同的是( ) A .2 B .21 C. 43 D .-1 考向2:正数和负数的相反意义5、如果收入80元记作+80元,那么支出20元记作( )A .+20元B .-20元C .+100元D .-100元6、若火箭发射点火前10秒记为-10秒,那么火箭发射点火后5秒应记为( )A .-5秒B .-10秒C .+5秒D .+10秒7、如果+30m 表示向东走30m ,那么向西走40m 表示为( )A .+30mB .-30mC .+40mD .-40m8、如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作( )A .+0.02克B .-0.02克C .0克D .+0.04克9、向东运动记作“+”,向西运动记作“-”,下列说法正确的是( )A .-5表示向东运动了5米B .向西运动5米表示向东运动了-5米C .+5表示向西运动了5米D .向西运动5米也可以记作向西运动-5米二、有理数1、有理数的概念:⑴整数和分数统称为有理数;⑵正整数、0、负整数统称为整数(0和正整数统称为自然数);⑶正分数和负分数统称为分数.说明:①由于整数可以看成是分母为1的分数,所以有理数可以用pq (q p ,是整数,0 q )表示;②只有能化成分数的数才是有理数;③π是无限不循环小数,不能写成分数形式,不是有理数;④有限小数和无限循环小数都可化成分数,都是有理数。
(易错题精选)初中数学有理数知识点训练含答案
(易错题精选)初中数学有理数知识点训练含答案一、选择题1.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.2.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确. 故选D. 【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;3=, 故错误;D. ()66=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2,2a)在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.7.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.8.如图所示,数轴上点P所表示的数可能是()A30B15C10D8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<49P16∴满足条件的为B、C图中,点P 比较靠近4,∴P 应选B 、C 中较大的一个故选:B .【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.9.若x <2+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】a = 的化简得出即可.解析:∵x <2+|3﹣x|=2352x x x -+-=- .故选D.10.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b ,∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】 根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.在–2,+3.5,0,23-,–0.7,11中.负分数有( ) A .l 个B .2个C .3个D .4个 【答案】B【解析】根据负数的定义先选出负数,再选出分数即可. 解:负分数是﹣23,﹣0.7,共2个. 故选B .13.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a14.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.15.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】 【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可. 【详解】=|2a-1|,∴|2a-1|=1-2a , ∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.16.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 17.2019的倒数的相反数是()A.-2019 B.12019-C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.18.67-的绝对值是()A .67B .76-C .67-D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.19.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.数轴上的A 、B 、C 三点所表示的数分别为a 、b 、1,且|a ﹣1|+|b ﹣1|=|a ﹣b |,则下列选项中,满足A 、B 、C 三点位置关系的数轴为( )A .B .C .D .【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A 中a <1<b ,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.。
有理数运算易错题
“有理數運算”常見錯誤剖析濟寧附中李濤一、概念不清例1 a 和-a 各是什麼數?錯解:a 是正數,-a 是負數評析:帶正號の數不一定是正數,帶負號の數不一定是負數,上述解法錯在沒弄清正、負數の概念。
正解:當a 大於零時,a 是正數,-a 是負數;當a 小於零時,a 是負數,-a 是正數;當a 等於零時,a 和-a 都是零。
例2 若,m m -=則m 是( )A. 正數 B. 負數 C. 非正數 D. 非負數 錯解:選B 評析:由於“0の相反數是0”,因此“0の絕對值是0”也可以說成是“0の絕對值是它の相反數”,上述解法錯在對絕對值概念の理解不透徹。
正解:選C二、符號問題例3 計算:)21(65)53(8-⨯⨯-⨯- 錯解:原式=22165538=⨯⨯⨯ 評析:由積の符號法則可知,幾個不等於0の數相乘,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正,上述解法錯在符號上。
正解:原式=22165538-=⨯⨯⨯- 例4 計算:)23(15)4()3(-÷--⨯-錯解:原式=12―10=2評析:錯解將15前面の“―”號既視為運算符號,又視為性質符號,重複使用,以致出錯,應二選其一。
(按照順序,不要跨步; 先定符號,再定大小)正解:原式=12+10=22三、對乘方の意義理解不透徹例5 計算:364)2()1(32---⨯+-錯解:原式=―8+3×(―6)―(―6)=―8+(―18)+6=―20評析:此解有三處錯,都是把乘方運算當作底數與指數相乘,這是由不理解乘方の意義造成の。
正解:原式=―16+3×1―(―8)=―16+3+8=―5例6 計算:4)2(2322⨯--+-錯解:原式=9+4―(―8)=9+4+8=21評析:錯解忽略了24-與2)4(-の區別:24-表示4の平方の相反數,其結果為16;而2)4(-表示兩個(―4)相乘,其結果為16。
正解:原式=―9+4―(―8)=―9+4+8=3四、違背運算順序例7 計算:6―(―10)÷(―4)錯解:原式=16÷(―4)=―4評析:有理數混合運算の順序是:先算乘方,再算乘除,最後算加減;如果有括弧,先算括弧裏面の;對同一級運算,應從左至右進行。
有理数综合复习(知识梳理、重难点、易错点)
有理数综合复习一、知识梳理1.相反意义的量:一是相反意义;二是相反意义上有量;0不表示没有2.有理数分类有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数或者 有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数零负整数分数⎩⎨⎧正分数负分数⎪⎩⎪⎨⎧⎩⎨⎧无限不循环小数无限循环小数无限小数有限小数小数 注:非负数包括:正数和零;非正数包括:负数和零;非正整数包括:0和负整数;非负整数包括:0和正整数;整数包括:0和正整数、负整数;分数即小数,无限不循环小数不是分数,也不是有理数;分数包括正分数、负分数,分数包括真分数、假分数、带分数、有限小数、无限循环小数。
形如......00010000010100100010.1是有规律的无限小数,但么有循环节,找不到循环节,无法化为分数,它既不是分数,也不是有理数,它是正无理数。
3.数轴三要素:原点、正方向和单位长度;4.相反数:只有符号不同的两个数叫做互为相反数.互为相反数的两个数的和为0,互为相反数的两个代数式的和为0,0的相反数0.5.绝对值:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值.一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值等于零.互为相反数的两个数绝对值相等.非负数的绝对值等于它本身,非正数的绝对值等于它的相反数。
分数⎭⎬⎫两个负数,绝对值大的反而小.数轴上A,B两点分别表示数a,b,则两点间的距离为|a-b|或|b-a|.6.实数的运算:①加法:同号取同号,绝对值相加,异号取(绝对值)大号,绝对值(大-小)相减.计算一般步骤:先确定符号,再算绝对值.加法交换律、结合律,在有理数范围内同样适合,即:两个数相加,交换加数的位置,和不变.式子表示为a+b=b+a;三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为(a+b)+c=a+(b+c).②减法:减去一个数等于加上这个数的相反数;字母表示:a-b=a+(-b).③加减混合运算,可以先运用减法法则把加减法统一成加法运算,再写成省略加号和括号形式,然后可运用加法运算律进行简便运算;④乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.乘积为1的两个数互为倒数.先确定符号,再算绝对值.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.几个数相乘,如果其中有一个因数为0,积等于0.乘法交换律:两个数相乘,交换因数的位置,积相等.即:ab=b a.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:(ab)c =a ( b c).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.⑤除法法则:除以一个不等于0的数,等于乘这个数的倒数.有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的.⑥有理数的乘方(1)求n个相同因数的积的运算叫乘方,乘方的结果叫做幂,在式子a n中,a叫做底数,n 叫做指数.(2)式子a n 表示的意义是n 个a 相乘(3)从运算上看式子a n ,可以读作a 的n 次方,从结果上看式子a n ,可以读作a 的n 次幂. 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.⑦有理数的混合运算中,运算顺序是:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.7.科学记数法、近似数科学记数法:设N >0,则N= a ×n 10(其中1≤a <10,n 为整数)。
有理数整章知识点复习、易错点分析及考点聚焦
第一章《有理数》知识复习【知识点1】正数、负数的概念◆正数:大于0的数(小学所学的所有的数)◆负数:小于0的数注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数◆易错点:1、-a一定是负数吗?2、下列说法错误的是()A、0是自然数B、0是整数C、0是偶数D、海拔0米表示没有海拔【考点聚焦】1、若400m表示向东走了400m,那么-150m表示_______________________2、若水位升高3m记为+3m,那么水位下降10m记为______________________3、在跳远测验中,合格的标准是4.00米,小明跳了4.12米,记为+0.12米,那么小华跳了3.95米,记为________________4、增加了-20%,表示的实际意思是______________5、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意思是_______________。
如果这种的原价是76元,那么现在的卖价是_________6、米袋上标有25±0.1千克,±0.1的含义是_____________________________7、某市去年元旦的最高气温是2℃,最低气温是 -8℃,那么这天的温差是_____8、某天一天中午12时的气温是7℃,过5h气温下降了4℃,又过7h气温又下降了4℃,第二天0时的气温是________________________________9、一架飞机在距离地面1500米的高空飞行,它第一次下降了 -200米,第二次又上升了 -100米,第三次再下降了300米,此时飞机距离地面有__________米【知识点2】有理数的分类有理数可以按照不同的标准进行分类,如按整数、分数来分类:1、2、3、4……整数0◆有理数-1、-2、-3……正分数(有限小数和无限循环小数)负分数还可以按正、负来进行分类:(请自己补充在右边的空白处)★★含有π的不是有理数非负数:正数和0 非负整数:正整数和0非正数:负数和0 非正整数:负整数和0★没有最大(小)的有理数有最小的正整数_______ 有最大的负整数________0是最小的非负(整)数,也是最大的非正(整)数注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率π就不是有理数了。
初中数学七年级上册数学《有理数》易错题
《有理数》易错题,附答案第1节 正数和负数1.易错点:对正数和负数的概念理解不清1、下列说法正确的是_____________(填序号)①不带“-”号的数都是正数;①一个数不是正数就是负数;①带负号的数是负数;①0℃表示没有温度;①若a 是正数,则-a 一定是负数。
参考答案1、①第2节 有理数 2.易错点:对有理数的相关概念理解不清 1、下列有关有理数的说法正确的是( ) A .有限小数和无限循环小数不是有理数 B .正整数与负整数构成整数 C .整数和分数统称为有理数 D .非负整数即为正整数 2、【变式1】下列有关有理数的说法中,正确的是( ) A .0不是有理数 B .﹣2是整数 C .0.5不是分数 D .有理数就是正数和负数 3、【变式2】下列说法:①0是最小的整数;①最大的负整数是﹣1;①正有理数和负有理数统称有理数;①无限小数不是有理数。
其中正确的有______(填序号) 参考答案 1、C 2、B 3、① 3.易错点:非负数、非正数中漏掉0 1、在-5,4.2,21 ,0,+10,3这六个数是,非负数是____________________,非负整数是_____________。
2、【变式1】比-3大的负整数有__________,比3小的非负整数是_________。
参考答案 1、4.2,0,+10,3;0,+10,3 2、-2,-1;2,1,0 4.易错点:数轴上到某点的距离为正数的点有两个 1、到原点的距离为35个单位长度的点表示的数是__________。
2、【变式1】已知在数轴上A 点表示的数是7,B 点到A 点的距离是3个单位长度,则B 点表示的数是_________。
3、【变式2】如果数轴上的点A 对应的有理数为-2,那么与点A 相距3个单位长度的点所对应的有理数为_______。
参考答案1、35或-352、4或103、-5或15.易错点:误以为数轴上的点只能表示有理数 1、下列说法正确的是( ) A .数轴上的点都表示有理数 B .数轴上右边的数不一定比左边的数大C .数轴上的点离原点越远,表示的数越大D .有理数都能在数轴上表示参考答案 1、D 6.易错点:对相反数的概念理解不清 1、-a 的相反数是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习有理数易错题专项复习一、 知识点复习1、有理数的定义:________和________统称为有理数。
2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。
3、数轴的定义:规定了________、________和________的________叫数轴。
4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。
5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。
6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。
7、绝对值的表示方法如下:2-的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。
8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。
9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________,32-的相反数可表示为________。
10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。
③一个数与0相加,________。
11、有理数减法法则:减去一个数,等于____________。
12、有理数加法运算律:加法交换律:=+b a ________;加法结合律:=++cb a )(________。
13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。
14、多个非零的有理数相乘,积的符号是由________的个数决定的:当________的个数是奇数个时,积为________;当________的个数为偶数个时,积为________。
15、有理数除法法则:除以一个数,等于________________。
16、乘方的定义:________________的运算叫做乘方。
17、对于式子na ,________是指数,________是底数,________是幂,它表示的意义是________________。
18、乘方的符号法则:正数的________次幂都是正数;负数的________次幂是负数,负数的________次幂是正数。
19、科学记数法的定义:把一个大于10的数记成a ⨯n10的形式,其中a 的范围是________,n 是______,这样的记数法叫做科学记数法。
科学计数法中,10的指数等于原数的整数位数减去_______。
20、有理数混合运算的顺序:先________,再________,最后________;若有括号,先________________。
同级运算应该________依次计算;对于多重括号应该遵循________依次去括号。
二、选择1.下列说法正确的是( )A .有理数就是正有理数和负有理数的统称B .最小的有理数是0C .有理数都可以在数轴上找到一个表示它的点D .整数不能写成分数形式2.温度上升3-度后,又下降2度实际上就是( ) A .上升1度 B .上升5 度 C .下降1 度 D .下降5度 3.下列说法错误的个数有( )个。
①任何正整数都可以看做是由若干个“1”组成的。
②正数、零和负数组成了全体有理数。
③如果收入增加300元记作300+元,那么“500-元”表示的意义是支出减少500元。
④任意一个自然数m 加上正整数n 等于m 进行n 次加1运算。
A.4B. 3C.2D.14.下列说法正确的是( )A .没有最大的正数,却有最大的负数B .数轴上离原点越远,表示数越大C .0大于一切非负数D .在原点左边离原点越远,数就越小 5.下列说法正确的个数是( )①一个数的绝对值的相反数一定是负数;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④互为相反数的两个数的绝对值一定相等;⑤任何一个有理数一定不大于它的绝对值。
A .5个B .4个C .3个D .2个6.下列说法中:①a -一定是负数;②a-一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1。
其中正确的个数是( )A .1个B .2个C .3个D .4个 7.如果b a ,都代表有理数,并且0=+b a ,那么( ) A .b a ,都是0 B .b a ,两个数至少有一个为0 C .b a ,互为相反数 D .b a ,互为倒数 8.a 代表有理数,那么a 和a -的大小关系是( )A .a 大于a -B .a 小于a -C .a 大于a -或a 小于a -D .a 不一定大于a - 9.如果b a ,互为相反数,那么下面结论中不一定正确的是( )A .0=+b aB .1-=baC .2a ab -=D .b a = 10.若a a -=-22,则数a 在数轴上的对应点在( )A .表示数2的点的左侧B .表示数2的点的右侧C .表示数2的点或表示数2的点的左侧D .表示数2的点或表示数2的点的右侧 11.下列说法正确的是( ) A .两数的和大于每一个加数B .两个数的和为负数,则这两个数都是负数C .两个数的和为0,则两个数都是0D .两个数互为相反数,则这两个数的和为0 12.算式53--不能读作( )A .3-与5的差B .3-与5-的和C .3-与5-的差D .3-减去513.几个有理数相乘,若负因数的个数为奇数个,则积为( ) A .正数 B .负数 C .非正数 D .非负数 14.一个有理数和它的相反数相乘,积为( ) A .正数 B .负数 C .正数或0 D .负数或0 15.一个非零的有理数与它的相反数的商是( ) A .-1 B .1 C .0 D .无法确定16.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( ) A .一定相等 B .一定互为倒数 C .一定互为相反数 D .相等或互为相反数17.一个有理数的平方是正数,则这个数的立方是( )A .正数B .负数C .正数或负数D .奇数 18.若a 是负数,则下列各式不正确的是( ) A .22)(a a -= B .22a a =C .33)(a a-= D .)(33a a --=19.n 为正整数时,n)1(-+1)1(+-n 的值是( )A .2B .-2C .0D .不能确定20.两个有理数互为相反数,那么它们的n 次幂的值( )A .相等B .不相等C .绝对值相等D .没有任何关系 三、 填空1.到原点的距离不大于2的整数有___个,它们是_____;到原点的距离大于3且不大于6的整数有_____个,它们是__________。
2.数轴上A 、B 两点对应的数分别为2-和m ,且线段3=AB ,则m =_______。
3. 找出所有符合条件的整数x ,使得25++-x x 最小,这样的整数是________________。
4.在数轴上表示数a 的点到原点的距离为3,则=-3a ________。
5.在数轴上,点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是15,则两点表示的数分别是________和________。
6.平方得4的数是________;若2542=m ,则=m ________。
7.一个数的绝对值等于它本身,则这个数是________;一个数的相反数等于它本身,则这个数是________;一个数的平方等于它本身,则这个数是________;一个数的立方等于它本身,则这个数是________;一个数的倒数等于它本身,则这个数是________。
8.已知n 为正整数,一个数的15次幂是负数,那么这个数的2003次幂是______,它的12+n 次幂是______(填“正数”或者“负数”)。
9.观察下列算式发现规律:771=,4972=,34373=,,240174=,1680775=,11764976=,……,用你所发现的规律写出:20117的末位数字是________。
四、计算【一】 有理数概念的应用:1.已知︱a ︱=5,︱b ︱=8,且︱a+b ︱= -(a+b),试求a+b 的值。
【二】 有理数的混合运算:(一) 有理数的加减:1.计算: 3-7.4+(-252)-(-156)(二) 有理数的乘除:1. 计算:(1.25-32)×(-36)(三)有理数的乘方:1.2)43(-2.2)43(-3.2)43(--4.432-5.243-(四)知识延伸:1.计算:(1)()⎪⎭⎫ ⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-81441222.已知()0422=-++y x ,求y x ⋅的值。
【三】 有理数的混合运算易错点解析:(一)通过运算,回顾运算法则和运算经验 例1:计算: )31()2(618-⨯-÷-2例2:计算: ⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2五、简答1.把下列各数填在相应的集合内。
7,322,5-,3.0-,81,0,21-,6.8,431-,151,32-,38,π正数集合{ };负数集合{ }; 正整数集合{ };整数集合{ }; 负整数集合{ };分数集合{ }。
2.已知3个互不相等的有理数可以写为0、a 、b ,也可以写为1、ab、b a +,且b a >。
求a 、b 的值。
3.在数轴上标出b a ,的相反数,并用“<”把这四个数连接起来。
4.已知3||=a ,5||=b ,且b a <,求b a +的值。
5. 03|4|=-++b a ,求b a 2+的值。
6. 已知a 是非零的有理数,求aa 的值。
7.已知|2|-a 与|3|-b 互为相反数,求b a 23+的值。
8.已知c b a 、、均为非零的有理数,且1-=++cc bb aa ,求abcabc 的值。
变式:已知c b a 、、均为非零的有理数,且1-=abcabc ,求cc bb aa ++的值。