期望 方差公式的证明全集
泊松分布的期望方差
泊松分布的期望方差1.泊松分布的期望和方差公式及详细证明过程如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证。
典型的有:2.泊松分布均值和方差怎么求?X~P(λ) 期望E(X)=λ,方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!P表示概率,x表示某种函数关系,k表示数量,扩展资料应用场景:例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等。
以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
3.设X服从λ=2的泊松分布,则X的数学期望和方差分别是多少?期望为λ,方差也为λ。
4.poisson分布的母函数怕p(s)=exp{λ(s-1)},求数学期望和方差期望为λ,方差也为λ,这可以根据泊松分布的定义求,可以根据矩母函数或者特征函数导函数与矩的关系求。
5.设随机变量x服从参数0.2的泊松分布,则随机变量x的期望和方差分别为你好!泊松分布的的期望与方差都等于参数的值,经济数学团队帮你解答。
6.概率论泊松分布,λ=0.03,怎么求期望和方差Var(X)=入7.在求无偏估计量的方差下界中I是如何求的,即求其期望的具体过程是什么如果ξ~P(λ),那么E(ξ)= D(ξ)= λ其中P(λ)表示泊松分布无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ,则称ξ∧是ξ的无偏估计量下面说明题目中的四个估计量都是λ的无偏估计量。
因为ξ1、ξ2、ξ3 都是取自参数为λ的泊松总体的样本,所以它们的期望和方差都是λ,则(1)无偏性E(λ1∧)= E(ξ1)= λE(λ2∧)= E[(ξ1+ξ2)/2 = λE(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+λ+λ)/即最小方差性D(λ1∧)= D(ξ1)= λD(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4 = λ/2D(λ3∧)= D[(ξ1+2*ξ2)/3]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/。
期望方差公式-V1
期望方差公式-V1期望方差公式是统计学中的一个重要公式,用来计算一个随机变量与其期望之间的偏离程度,也是许多概率论和数理统计中的基本工具。
在此,我们重新整理一下期望方差公式,希望能够更好地理解和应用。
一、期望的定义期望是随机变量的平均值,表示某个随机变量可能取到不同取值时的平均预期结果。
设随机变量为 $X$,$X$ 取 $n$ 个不同的取值$x_1,x_2,\cdots,x_n$,概率分别为$p(x_1),p(x_2),\cdots,p(x_n)$,则 $X$ 的期望为:$$E(X)=\sum_{i=1}^{n} x_i p(x_i)$$二、方差的定义方差是随机变量与其期望值之间差异程度的度量,是对随机变量分布的离散程度的一个度量。
它的计算公式为:$$Var(X)=E[(X-E(X))^2]=E(X^2)-[E(X)]^2$$其中,$E(X^2)$ 表示 $X^2$ 的期望。
三、期望方差公式根据期望和方差的定义,可以得到期望方差公式:$$Var(X)=E(X^2)-[E(X)]^2=\sum_{i=1}^{n} x_i^2 p(x_i) -[\sum_{i=1}^{n} x_i p(x_i)]^2$$即方差是每个取值平方与概率的乘积之和减去期望的平方。
四、应用举例假设现有一批产品,生产厂家声称其产品的尺寸标准差为 $0.5$,而消费者却认为实际标准差应该在 $0.3$ 左右。
通过对产品进行抽样测量,可得到随机变量 $X$ 的取值,表示产品尺寸与标准尺寸偏差的大小,此时就可以使用期望方差公式来计算产品尺寸的标准差。
假设样本的大小为 $n=100$,那么相应地,$X$ 的期望可以表示为:$$E(X)=\frac{1}{100}\sum_{i=1}^{100} x_i$$同时,$X^2$ 的期望可以表示为:$$E(X^2)=\frac{1}{100}\sum_{i=1}^{100} (x_i)^2$$根据期望方差公式,可以计算出随机变量 $X$ 的标准差为:SD(X)=\sqrt{Var(X)}=\sqrt{E(X^2)-[E(X)]^2}$$对于本例中的产品尺寸样本,应当将 $n$ 设置成实际样本数量,并代入以上公式进行计算,进而得到标准差的值,以判断产品尺寸是否符合承诺。
期望与方差公式汇总
期望与方差公式汇总
期望与方差是统计学中最基本的概念,它们是用来衡量随机变量分布特征的两个重要指标。
期望是概率分布的数学期望,它反映了随机变量的期望值,即随机变量取值的期望值。
期望的计算公式为:E(X)=∑xP(X),其中x表示随机变量的取值,P(X)表示随机变量取值x
的概率。
方差是概率分布的数学期望,它反映了随机变量的变异程度,即随机变量取值的变异程度。
方差的计算公式为:D(X)=∑(x-E(X))^2P(X),其中x表示随机变量的取值,E(X)表示随机
变量的期望值,P(X)表示随机变量取值x的概率。
期望与方差是统计学中最基本的概念,它们可以帮助我们了解随机变量的分布特征。
期望与方差的计算公式分别为E(X)=∑xP(X)和D(X)=∑(x-E(X))^2P(X)。
高中数学 二项分布-超几何分布数学期望与方差公式的推导
x ) m 的二项展开式中 xk 的系数相等可证.
一、二项分布
在独立重复实验中, 某结 果发生 的概率 均为 p (不 发生
的概率为 q, 有 p + q = 1), 那么在 n次 实验中 该结果 发生的
次数 的概率分布为:
0
1
2
3
P C0n qn C1npqn - 1 C2np2 qn- 2 Cn3p3 qn- 3
Cin--
2 2
p
i-
2
qn
-
i
+
i= 2
n
np
Cin--
1 12p 2
i= 1
= p 2n ( n - 1) ( p + q ) n- 2 + np ( p + q ) n- 1 - n2p 2
= p 2n ( n - 1) + np - n2p2
= np - p2 n
= np ( 1- p ). 二、超几何分布
二项分布、超几何分布数学期望
与方差公式的推导
韩晓东 (江苏省淮阴中 学 223002)
高中教材中 对二 项分布、超 几何 分布数 学期 望与 方差
公式没有给出推 导过 程, 现 笔者 给出 一推导 过程 仅供 读者
参考.
预备公式 1
iCni
=
n
Cin--
1 1
(n
1), 利用组合数计算公式即可证明.
=
M CNn
l
iCMi --11
CNn
-
i M
-
i= 1
Mn 2 N
=
M CNn
l i= 1
(
i-
1)
C C i- 1 n- i M- 1 N -M
期望方差公式
期望-方差公式期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为ip (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
期望-方差公式-方差和期望公式
期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
正态分布的期望和方差公式
正态分布的期望和方差公式
期望:Eξ=x1p1+x2p2+……+xnpn
方差公式:s=1/n{(x1-x)+(x2-x)+……+(xn-x)}。
正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力
扩展资料:当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。
标准差为方差的算术平方根,用S表示。
期望-方差公式
期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义 2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
期望值和方差的公式
期望值和方差的公式一、期望值概念:期望值是随机变量取值与其概率的加权平均,用来表示随机变量的平均取值。
1.离散型随机变量的期望值:设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分别为p1,p2,...,pn,则随机变量X的期望值E(X)定义为:E(X) = x1*p1 + x2*p2 + ... + xn*pn2.连续型随机变量的期望值:设X是一个连续型随机变量,其概率密度函数为f(x),则随机变量X 的期望值E(X)定义为:E(X) = ∫xf(x)dx性质:1.期望值的线性性质:对于任意的常数a和b,以及随机变量X和Y,有:E(aX+bY)=aE(X)+bE(Y)2.期望值的保序性:如果随机变量X的取值总是大于等于随机变量Y的取值,则有:E(X)≥E(Y)二、方差概念:方差是用来度量随机变量与其期望值之间的偏离程度或波动程度。
1.离散型随机变量的方差:设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分别为p1,p2,...,pn,则随机变量X的方差Var(X)定义为:Var(X) = E((X - E(X))^2) = (x1 - E(X))^2*p1 + (x2 -E(X))^2*p2 + ... + (xn - E(X))^2*pn2.连续型随机变量的方差:设X是一个连续型随机变量,其概率密度函数为f(x),则随机变量X 的方差Var(X)定义为:Var(X) = E((X - E(X))^2) = ∫(x - E(X))^2f(x)dx性质:1.方差的线性性质:对于任意的常数a和b,以及随机变量X和Y,有:Var(aX + bY) = a^2Var(X) + b^2Var(Y)2.方差的非负性:对于任意的随机变量X,有:Var(X) ≥ 03.方差的可加性:对于独立随机变量X和Y,有:Var(X + Y) = Var(X) + Var(Y)三、期望值和方差的计算公式1.对离散型随机变量的期望值和方差的计算公式:(1)期望值:E(X) = x1*p1 + x2*p2 + ... + xn*pn(2)方差:Var(X) = (x1 - E(X))^2*p1 + (x2 - E(X))^2*p2 + ... + (xn -E(X))^2*pn2.对连续型随机变量的期望值和方差的计算公式:(1)期望值:E(X) = ∫xf(x)dx(2)方差:Var(X) = ∫(x - E(X))^2f(x)dx总结:期望值和方差是概率论中重要的概念,用于描述随机变量的分布特征。
二项分布的期望和方差的详细证明
二项分布的期望的方差的证明山西大学附属中学 韩永权离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(0,1,2k n = p q -=1)称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记k n k k n q p C -=b(k ;n ,p).1 求证:服从二项分布的随机变量ξ的期望E np ξ=.证明如下:预备公式: 11k k n n kc nc --=100110220211(1)()11011111()(......)n n n n k k n n k n n n n n n n p q c p q c p q c p q c p q c p q ----------------+=++++++因为()(1),k k n k k k n kn np k c p p c p q ξ--==-= 所以 001112220012......n n n k k n k n nn n n n n E c p q c p q c p q k c p q nc p q ξ---=⨯+⨯++⨯++⨯++ =00110220211(1)()11011111(......)n n n k k n n k n n n n n n n np c p q c p q c p q c p q c pq ---------------++++++ =1()n np p q np -+= 所以E np ξ= 方法二:证明:若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。
若设⎩⎨⎧=次试验失败如第次试验成功如第i i X i 01 1,2,i n =则12...n X X X X =+++,因为 P X P i ==)1(,q P X P i =-==1)0( 所以p p q X E i =*+*=10)(,则=)(X E np X E X E ni i ni i ==∑∑==11)(][可见,服从参数为n 和p 的二项分布的随机变量X 的数学期望是np 需要指出,不是所有的随机变量都存在数学期望。
数学期望与方差的公式
数学期望与方差的公式数学中,期望和方差是两个重要的概念。
它们是统计学和概率论中的核心概念,用于描述和衡量概率分布的特性和不确定性。
在本文中,我们将详细介绍数学中期望和方差的定义和计算公式,并对其性质和应用进行详细讨论。
首先,让我们从期望开始。
期望是概率分布的平均值,表示对概率分布的中心位置的度量。
对于一个离散随机变量X,其期望E(X)可以用以下公式来计算:E(X)=Σ(x*P(X=x))其中,x是随机变量X可能取的值,P(X=x)是X取值为x的概率。
对于一个连续随机变量X,其期望E(X)可以用以下公式来计算:E(X) = ∫(x * f(x))dx其中,f(x)是X的概率密度函数。
期望有很多重要的性质。
首先,期望是线性的,即对于常数a和b,E(aX+b)=aE(X)+b。
这意味着我们可以将常数系数从一个随机变量中提取出来。
此外,期望还满足E(c)=c,其中c是一个常数。
这意味着一个常数的期望就是它本身。
接下来,让我们来讨论方差。
方差衡量了随机变量偏离其期望值的程度。
对于一个离散随机变量X,其方差Var(X)可以用以下公式来计算:Var(X) = Σ((x - E(X))^2 * P(X = x))同样,对于一个连续随机变量X,其方差Var(X)可以用以下公式来计算:Var(X) = ∫((x - E(X))^2 * f(x))dx方差也有一些重要的性质。
首先,方差可以用来度量概率分布的离散程度。
方差越大,随机变量的取值就越分散。
其次,方差是非负的,即Var(X) ≥ 0,且只有当X是常数时,方差才为0。
最后,方差具有一个重要的线性性质,即对于常数a和b,Var(aX + b) = a^2 * Var(X)。
这意味着我们可以通过常数系数的平方来调整随机变量的方差。
除了期望和方差,还有一些其他的重要的概念与它们相关。
例如,协方差是用来度量两个随机变量之间线性关系的程度。
Cov(X,Y) = E((X - E(X)) * (Y - E(Y)))协方差的符号可以表明随机变量之间的关系是正相关还是负相关。
正态分布期望和方差的计算公式
正态分布期望和方差的计算公式
期望:Eξ=x1p1+x2p2+……+xnpn,方差公式:s=1/n{(x1-x)+(x2-x)+……+(xn-x)}。
正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
扩展资料:当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。
标准差为方差的算术平方根,用S表示。
(完整word版)期望 方差公式的证明全集(word文档良心出品)
期望与方差的相关公式的证明-、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
二项分布的期望与方差的证明
二项分布的期望与方差的证明第一篇:二项分布的期望与方差的证明二项分布的期望与方差的证明二项分布是概率统计里面常见的分布,是指相互独立事件n次试验发生x次的概率分布,比较常见的例子。
种子萌发试验,有n颗种子,每颗种子萌发的概率是p,发芽了x颗的概率就服从二项分布。
如果还是迷茫,就听我说说故事,在古代,大概明末清初的时候,瑞士有个家族,叫伯努利家族,出了很多数学家,有一位叫詹姆斯·伯努利(James Bernoulli)的,比较喜欢做试验,他的试验有特点,是一系列的试验,没发生就是失败,而且每次的成功概率都是p,若果失败了就是q=(1-p),只有这两种情况,后来人们给了这除了成功就是失败的性质一个比较抽象的名称,叫相互对立事件。
在这些试验中,每次得出的结果与其他次试验都不发生关系,同样人们也给了这种不发生关系的性质一个比较抽象的名称,叫相互独立事件,同时把这种试验叫做伯努利试验。
在n次伯努利试验中,发生x次的概率满足二项分布。
如果令q=(1-p),那么很容易得出发生x次的概率为C{x,n}*p^x*q^(n-x),因为决定该分布的只有n、p,所以为了简单起见,人们把x服从n,p的二项分布记做x~B(n,p)。
现在的目标是计算二项分布的期望和方差,在网上寻找二项分布的期望和方差大都给一个结果,np、npq,很难找到它是怎么来的。
好不容易查到,还是花钱才能看的,就那几步过程,有必要藏着盖着吗?今天我把过程写出来,让大家都了解了解,都是原创,互相学习,希望支持。
首先,不厌其烦地说一下期望与方差的关系,以便清晰思路。
期望用E表示,方差用D表示,一般把自变量记做ξ,如果对于结果为ξ的概率为Pξ那么,其期望为Eξ=∑ξ*Pξ,方差为Dξ=∑(ξ-Eξ)^2*Pξ,另外还有一个常见的量叫做标准差,一般用σ表示,σξ=√Dξ,根据方差的概念,可知:Dξ=∑(ξ-Eξ)^2*Pξ=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ 因为∑Pξ=1而且Eξ=∑ξ*Pξ 所以Dξ=∑ξ^2*Pξ-Eξ^2 而∑ξ^2*Pξ,表示E(ξ^2)所以Dξ =E(ξ^2)-Eξ^2 下面计算数学期望, Eξ=∑{ξ =0,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ) =∑{ξ =0,n}ξ*n!/ξ!/(n-ξ)!*p^ξ *q^(n-ξ)=∑{ξ =1,n}n!/(ξ-1)!/(n-ξ)!*p^ξ *q^(n-ξ)=n*p*∑{ξ =1,n}C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)=n*p*(p+q)^(n-1)=n*p如果要计算方差,根据公式Dξ =E(ξ^2)-Eξ^2可得出结果,过程如下,Dξ =E(ξ^2)-Eξ^2=∑{ξ =0,n}ξ^2*C{ξ,n}*p^ξ *q^(n-ξ)-n*p*∑{ξ =0,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)=n*p*∑{ξ =1,n}ξ*(n-1)!/(ξ-1)!/(n-ξ)!*p^(ξ-1)*q^(n-ξ)-n*p*∑{ξ =1,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)=n*p*∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*(C{ξ-1,n-1}-C{ξ,n}+C{ξ,n}*q)=n*p*∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*[C{ξ,n}*q-(C{ξ,n}-C{ξ-1,n-1})]=n*p*[∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n}*q-∑{ξ =1,n-1}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n-1}]=n*p*[∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*n!/(ξ-1)!/(n-ξ)!*q-∑{ξ =1,n-1}p^(ξ-1)*q^(n-ξ)*(n-1)!/(ξ-1)!/(n-1-ξ)!]=n*p*[∑{ξ =1,n}n*q*C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)-∑{ξ =1,n-1}(n-1)*q*C{ξ-1,n-2}*p^(ξ-1)*q^(n-ξ-1)]=n*p*[n*q*(p+q)^(n-1)-(n-1)*q*(p+q)^(n-2)]=n*p*[n*q-(n-1)*q]=n*p*q以上就是二项分布的期望与方差的证明,过程比较简单,就是一个思路,要想更深入的领悟,就须要自己亲自地证明一遍了,也许你的方法将会更简单……第二篇:二项分布的期望和方差的详细证明二项分布的期望的方差的证明山西大学附属中学韩永权离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是Pn(ξ=k)=Cnkpkqn-k,(k=0,1,2n q=1-p)称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p 为参数,并记Cnkpkqn-k=b(k;n,p).求证:服从二项分布的随机变量ξ的期望Eξ=np.kk-1证明如下:预备公式:kcn=ncn-1 00n-10n-220n-2k-1k-1(n-1)-(n-k)n-1n-10(p+q)n-1=(cn+c 1+cn+...+cnq+...+cnq)-1pqn-1pq-1pq-1p-1pkkkkn-k因为p(ξ=k)=cnp(1-p)n-k=cnpq,00n1n-122n-2kkn-kn0n所以Eξ=0⨯cnpq+1⨯c1++2⨯cnpq+...+k⨯cnpq+...+ncnpq npq 00n-110n-220n-2k-1k-1(n-1)-(n-k)n-1n-10=np(cnpq+cpq +cpq+...+cpq+...+cq)-1n-1n-1n-1n-1p=np(p+q)n-1=np所以Eξ=np方法二:证明:若X~B(n,p),则X表示n重贝努里试验中的“成功” 次数,现在我们来求X的数学期望。
均匀分布期望和方差计算公式
均匀分布期望和方差计算公式
均匀分布期望和方差的计算公式:
(1)期望:
均匀分布期望的计算公式为:E(X) = (Xmax + Xmin) / 2,即期望为两个边界均匀分布数值之和除以2。
(2)方差:
均匀分布方差的计算公式为:V(X) = (Xmax - Xmin)2 / 12,即方差为两个边界均匀分布数值差的平方除以12。
均匀分布期望和方差的计算非常简单,但是在实际应用过程中有必要明确知道这些计算公式。
在进行实际的计算的时候,首先需要确定计算范围,即Xmax和Xmin之间的两个数值,一般情况下我们以Xmax-Xmin为数值范围,然后将其用计算公式代入,就可以得到均匀分布期望和方差。
期望E(X)是表示该数据中心位置分布的值,而方差V(X)是表示其方差的值。
可以看出,均匀分布期望和方差的计算可以很容易地求出,计算过程也比较简单,因此在实际应用中时常被用作统计分析的指标之一。
同时,明确了均匀分布期望和方差的计算公式,剩余的就是要从被处理
的数据中确定边界的最大数值和最小数值,根据这些信息计算出期望和方差,完成计算任务即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期望与方差的相关公式的证明-、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
方差的算术平方根)(X D 称为随机变量X 的标准差,记作)(X σ,即)()(X D X =σ由于)(X σ与X 具有相同的度量单位,故在实际问题中经常使用。
D ξ表示ξ对E ξ的平均偏离程度,D ξ越大表示平均偏离程度越大,说明ξ的取值越分散.方差刻画了随机变量的取值对于其数学期望的离散程度,若X 的取值相对于其数学期望比较集中,则其方差较小;若X 的取值相对于其数学期望比较分散,则方差较大。
若方差)(X D =0,则随机变量X 以概率1取常数值。
由定义4知,方差是随机变量X 的函数2)]([)(X E X X g -=的数学期望,故⎪⎩⎪⎨⎧--=⎰∑∞∞-∞=连续时当离散时当X dx x f X E x p X E x X D k k k k ,)()]([X ,)]([)(212当X 离散时, X 的概率函数为 ,2 ,1 ,)()(====k P x X P x P K K k ; 当X 连续时,X 的密度函数为)(x f 。
求证方差的一个简单公式:公式1:22)]([)()(X E X E X D -=证明一:22222)]([)(])]([)(2[]))([()(X E X E x E X XE X E X E X E X D -=+-=-=证明二:21()ni i i D x E p ξξ==-⋅∑2212211122222[2()]2()2()()()ni i ii nn ni i i i i i i i x x E E p x p E x p E p E E E E E ξξξξξξξξξ=====-+⋅=-⋅+⋅=-+=-∑∑∑∑22()D E E ξξξ∴=-可以用此公式计算常见分布的方差四、方差的性质(1)设C 是常数,则D (C )=0。
(2)若C 是常数,则)()(2X D C CX D =。
(3)若X 与Y 独立,则公式2: )()()(Y D X D Y X D +=+。
证 由数学期望的性质及求方差的公式得{}{})()()]([)()]([)()()(2)]([)]([)()(2)()()]()([]2[)]([])[()(2222222222222Y D X D Y E Y E X E X E Y E X E Y E X E Y E X E Y E X E Y E x E XY Y X E Y X E Y X E Y X D +=-+-=---++=+-++=+-+=+可推广为:若1X ,2X ,…,n X 相互独立,则∑∑===ni i ni i X D X D 11)(][∑∑===ni i i n i i i X D C X C D 121)(][(4) D (X )=0 ⇔P (X = C )=1, 这里C =E (X )。
五、常见的期望和方差公式的推导过程(一)离散型随机变量的期望和方差的计算公式与运算性质列举及证明1.由概率的性质可知,任一离散型随机变量的分布列具有下述两个性质: (1)p i ≥0,i =1,2,...; (2)p 1+p 2+ (1)2.离散型随机变量期望和方差的性质: E (a ξ+b)=a E ξ+b ,D (a ξ+b)=a 2 D ξ。
(1) 公式3:E (a ξ+b )=aE ξ+b ,证明:令a b ηξ=+ ,a b 为常数 η也为随机变量 ()()i i P ax b P x ξ+== 1,2,3...i = 所以 η的分布列为1122()()...()n n E ax b p ax b p ax b p η=++++++=112212(......)(......)n n n a x p x p x p b p p p ++++++++E η=aE b ξ+()E a b aE b ξξ+=+说明随机变量ξ的线性函数a b ηξ=+的期望等于随机变量ξ期望的线性函数(2) 公式4:D (a ξ+b )=a 2D ξ(a 、b 为常数).证法一: 因为 21()ni i i D x E p ξξ==-⋅∑2212211122222[2()]2()2()()()ni i ii nn ni i i i i i i i x x E E p x p E x p E p E E E E E ξξξξξξξξξ=====-+⋅=-⋅+⋅=-+=-∑∑∑∑22()D E E ξξξ∴=-所以有:222211()[()]()nni i ii i i D a b ax b aE b p ax E p a D ξξξξ==+=+-+⋅=-⋅=∑∑ 证毕证法二:D ξ=222221111()2()()nnnni i i i i i ii i i i x E p x p E x p E pE E ξξξξξ====-⋅=-+=-∑∑∑∑.E(aξ+b)=aEξ+b , D(aξ+b)=a 2Dξ.222211()[()]()nni i ii i i D a b ax b aE b p ax E p a D ξξξξ==+=+-+⋅=-⋅=∑∑(二)二项分布公式列举及证明1.二项分布定义:若随机变量ξ的分布列为:P (ξ=k )=C n k p k q n-k 。
(k =0,1,2,…,n ,0<p <1,q =1-p ,则称ξ服从二项分布,记作ξ~B (n ,p ),其中n 、 p 为参数,并记C n k p k q n-k =b(k ;n ,p )。
2.对二项分布来说,概率分布的两个性质成立。
即:(1)P (ξ=k )=C n k p k q n-k >0,k =0,1,2,…,n ; (2)∑=nk 0P (ξ=k )=∑=nk 0C n k p k q n-k =(p +q) n =1。
二项分布是一种常见的离散型随机变量的分布,它有着广泛的应用。
3.服从二项分布的随机变量ξ的期望与方差公式: 若ξ~B (n ,p ),则E ξ=np ,D ξ=npq (q =1-p ).(3) 公式5:求证:E ξ=np方法一:在独立重复实验中,某结果发生的概率均为p (不发生的概率为q ,有1p q +=),那么在n 次实验中该结果发生的次数ξ的概率分布为服从二项分布的随机变量ξ的期望E np ξ=.证明如下:预备公式 11k k n n kc nc --=100110220211(1)()11011111()(......)n n n n k k n n k n n n n n n n p q c p q c p q c p q c p q c p q ----------------+=++++++ 因为()(1),k k n k k k n kn np k c p p c p q ξ--==-= 所以 001112220012......n n n k k n k n nn n n n n E c p q c p q c p q k c p q nc p q ξ---=⨯+⨯++⨯++⨯++ =00110220211(1)()11011111(......)n n n k k n n k n n n n n n n np c p q c p q c p q c p q c pq ---------------++++++ =1()n np p q np -+= 所以 E ξ= np 得证方法二: 证明:若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。
若设⎩⎨⎧=次试验失败如第次试验成功如第i i X i 01 i =1,2,…,n则12...n X X X X =+++,因为 P X P i ==)1(,q P X P i =-==1)0( 所以p p q X E i =*+*=10)(,则=)(X E np X E X E ni i ni i ==∑∑==11)(][可见,服从参数为n 和p 的二项分布的随机变量X 的数学期望是np 。
需要指出,不是所有的随机变量都存在数学期望。
公式621212(1)k k k n n n k C nC n n C ----=+-211k k n n k C knC --=1111111212[(1)1](1)(1)k n k k n n k k n n n k C nC n k C nC n n C ----------=-+=+-=+- 21212(1)k k k n n n k C nC n n C ----∴=+-求证:服从二项分布的随机变量ξ的方差公式7:D ξ=npq (q =1-p ). 方法一:证明: 220ni i n in i E i C p q ξ-==∑111212221110122211212111221122(1)(1)()(1)()(1)nnn i i n ii i n inn n i i nnn i i n in i i n in n n i i n n n n n n C pq nCp qn n C p q npqnp Cp qnpC q n n pCp q npq np p q npq n n p p q npq np npq n n p np n p -------==-----------==------=++-=+-+-=++-+-+=+-+-=+∑∑∑∑222222(1)np np p n p npq n p -=-+=+由公式1知22()D E E ξξξ=-222()npq n p np npq=+-=方法二: 设~(,)B n p ξ, 则X 表示n 重贝努里试验中的“成功” 次数。