SPSS非参数检验之一卡方检验

合集下载

医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作卡方检验(Chi-Square Test)是一种常用的统计方法,用于比较两个或多个分类变量的分布是否存在差异。

该方法主要用于处理分类数据,例如比较男女性别和吸烟与否对癌症发生的关系。

在SPSS(Statistical Package for the Social Sciences)软件中,进行卡方检验的操作主要分为数据准备、假设设定和计算步骤。

第一步:数据准备首先,需要在SPSS中导入数据。

假设我们需要在一个样本中比较男女性别和吸烟与否的关系,我们可以将性别和吸烟状况作为两个分类变量,分别用“Male”和“Female”表示性别,“Smoker”和“Non-smoker”表示吸烟状况。

将这些数据输入到SPSS中的一个数据表中。

第二步:假设设定接下来,需要设置假设。

在卡方检验中,我们通常有一个原假设和一个备择假设:-原假设(H0):两个或多个分类变量之间没有显著差异。

-备择假设(H1):两个或多个分类变量之间存在显著差异。

在本例中,原假设可以是“性别和吸烟状况之间没有显著差异”,备择假设可以是“性别和吸烟状况之间存在显著差异”。

第三步:计算步骤进行卡方检验的计算步骤如下:1.打开SPSS软件并导入数据。

2. 选择“分析(Analyse)”菜单,然后选择“非参数检验(Nonparametric Tests)”子菜单,最后选择“卡方(Chi-Square)”选项。

3.在弹出的对话框中选择两个分类变量(性别和吸烟状况),并将它们添加到变量列表中。

4.点击“确定(OK)”按钮,开始进行卡方检验的计算。

5.SPSS将计算卡方统计量的值和相关的P值。

如果P值小于指定的显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。

这样,就完成了卡方检验的SPSS操作。

需要注意的是,卡方检验是一种只能说明变量之间是否存在关系的方法,不能用于确定因果关系。

此外,在进行卡方检验之前,需要确保样本符合一些假设,例如每个单元格的期望频数应该大于5、如果不满足这些假设,可以考虑使用其他适用的统计方法。

SPSS应用之非参数检验

SPSS应用之非参数检验

SPSS应⽤之⾮参数检验统计学的假设检验可以分为参数检验和⾮参数检验,参数检验是根据⼀些假设条件推算⽽来,当这些假设条件⽆法满⾜的时候,参数检验的效能会⼤打折扣,甚⾄出现错误的结果,⽽⾮参数检验通常是没有假设条件的,因此应⽤范围⽐参数检验要⼴。

⾮参数检验在不做任何假设的情况下,最⼤限度的使⽤样本信息,利⽤统计学、数学的⽅法和技巧构造统计量并加以检验,在某些情况下,⾮参数检验⽐参数检验拥有更⾼的效能,尽管如此,我们也不能⼀味的使⽤⾮参数检验,毕竟参数检验更加严谨,通常都是在数据不符合参数检验的条件是,才使⽤⾮参数检验,因此,对于数据的前期观察是⾮常重要的。

⾮参数检验⽅法⾮常多,但是绝⼤部分⾮参数检验⽅法都是基于秩和结来构造统计量的,中⾮参数检验是⼀个独⽴的过程,也保留了旧对话框,新对话框按照样本情况分类,根据样本情况来选择⽅法,并且更倾向于⾃动化分析,旧对话框的分类则不是很明确,分我们按照新对话框来进⾏介绍分析—⾮参数检验—单样本⼀、单样本1.⼆项式检验⼆项式检验也称为⼆项分布检验,⽤来检验样本是否来⾃⼆项分布,也就是检查样本的观测值的频数与某⼀特定⼆项分布下的期望频数是否⼀致。

不仅可以针对于⼆分类变量,对于连续变量也可以当做⼆分类变量来处理,例如成绩的及格与否,产品的合格与否等。

本例中是想检验三门学科的及格率是否都在95%以上2.卡⽅检验卡⽅检验是最常⽤的多分类⾮参数检验,卡⽅统计量也⼴泛被其他检验所引⽤,卡⽅检验依据卡⽅分布,主要包括适应性检验和独⽴性检验,适应性检验⽤于检验实际观察频数与期望频数是否⼀致,独⽴性检验⽤于检验两组或多组计数资料是否相互独⽴。

3.K-S检验全称为Kolmogorov-Smirnow检验,在探索性中,也曾出现过⽤它来检验是否服从正态分布。

该检验属于⾮参数检验,⽤来检验某⼀单样本是否服从某⼀理论分布。

4.Wilcoxon符号秩检验该检验将符号和秩相结合,效能⽐单纯的符号检验和秩和检验都⾼,因此⽐较常⽤5.游程检验我们知道样本的随机性很重要,⽽游程检验就是⽤来检验样本数据是否是随机抽取的。

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。

它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。

卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。

卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。

卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。

二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。

原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。

2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。

3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。

4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。

5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。

6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。

三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。

下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。

我们想要检验性别与吸烟习惯之间是否存在关联。

1.打开SPSS软件,导入数据。

2.选择"分析"菜单,点击"拟合度优度检验"。

3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。

4.点击"统计"按钮,勾选"卡方拟合度"。

SPSS 非参数检验

SPSS 非参数检验

Step07单击【OK】按钮,结束操作,SPSS软件自动输
出结果。
实例图文分析:人员结构的调动
• 1. 实例内容 某公司经营多年,形成了一套成熟的企业文化和管理体系, 例如根据多年的运营经验,经理层、监察员、办事员三种职务 类别人员比例大约在15:5:80为宜,这样运行效率最高。目 前公司进行人事调整,公司人员结构发生变动,有员工担心是 否人事调整已经导致职务类型比例的失调。请利用数据文件61.sav来解决该问题。 三种职务的期望构成比为15%、5%和80%。而目前样本中 观察到的三种职务的人数比为84:27:363,构成比分别是17. 7%、5.7%和76.6%,和理论值有差异。那么这种差异是由随 机误差造成的,还是真的构成比和以前有所变化?该问题就可 以用χ2检验来实现。相应的假设检验如下。 H0:目前三个职业的总体构成比仍然是15%、5%和80%。 H1:目前三个职业的总体构成比不再是15%、5%和80% 。
实例结果及分析
(1)频数表
SPSS的结果报告中列出了期望频数和实际频数。 显然残差值越小,说明实际频数与期望频数越接近。
Observed N-Expected N
Observed N Clerical 363 27 84 474 Expected N 379.2 23.7 71.1 Residual -16.2 3.3 12.9
0.63 0.95 0.95 0.95 0.91 没有可比较的基 础
1 SPSS 在卡方检验中的应用
1.使用目的 卡方检验(Chi-Squar Test)也称为卡方拟合优度检验,是K.Pearso n给出的一种最常用的非参数检验方法。它用于检验观测数据是否与某 种概率分布的理论数值相符合,进而推断观测数据是否是来自于该分 布的样本的问题。 2.基本原理 H 0样本X来自的总体分布服从期 进行卡方检验时,首先提出零假设 : 望分布或某一理论分布。接着,利用实际观测值的频数与理论的期望 c 2,它描述了观察值和理论值之间的 频数之间的差异来构造检验统计量 偏离程度。 3.软件使用方法 SPSS会自动计算出χ2统计量及对应的相伴概率P值。

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验

SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验在得到一批样本数据后,在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。

这可以通过绘制样本数据直方图的方法来进行粗略的判断。

略的判断。

如果需要进行比较准确的判断,如果需要进行比较准确的判断,如果需要进行比较准确的判断,则需要使用非参数检验的方法。

则需要使用非参数检验的方法。

则需要使用非参数检验的方法。

其中其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。

检验)就是一种比较好的方法。

一、定义总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。

它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。

总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。

的总体分布。

因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q ()21ki i i iO E Q E =-=å其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。

可见Q 值越大,表示观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。

SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。

统计量所对应的相伴概率值。

如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设HO ,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。

SPSS学习笔记非参数检验

SPSS学习笔记非参数检验

学习必备欢迎下载总体分布未知,不会涉及有关总体分布的参数1.单样本非参数检验:卡方分布,二项分布,K-S检验,变量值随机性检验2.两独立样本非参数检验:两独立样本所来自的总体分布是否存在显著差异3.两配对样本非参数检验4.多独立样本非参数检验5.多配对样本非参数检验得到样本数据后,判断总体分布:直方图、P-P图、Q-Q图,或非参数检验1.1 卡方检验:根据样本数据,推断总体分布于期望分布或某一理论分布是否存在显著性差异,是一种吻合性检验,离散型数据。

原假设:样本来自总体的分布与期望分布或某一理论分布无显著性差异。

Eg:心脏病猝死人数与日期。

1.2二项分布检验:检验总体是否服从指定概率为P的二项分布,原假设:样本来自的总体与指定的二项分布无显著差异。

用于:二值型数据,性别,是否合格,是否为三好学生,硬币正反面等,用01表示。

注:检验概率值(检验比例)1.3单样本K-S检验:样本来自的总体是否与某一理论分布有显著差异,是一种拟合优度的检验方法。

用于:探索连续性变量的分布。

正态分布(normal)、均匀分布(uniform)、指数分布(ex.)、泊松分布。

原假设:样本来自的总体与指定的理论分布无显著差异。

另外,对于数据量很大的连续型变量,可以用图形直观判断。

P-P图:数据与理论分布一致时,各个数据点应落在对角线上。

Q-Q图:如果数据与理论分布无显著差异,点应分布在0横线附近。

(没找到啊?)2 Test type:Mann-Whitney: 秩:变量值排序的名次或位置K-S检验:游程检验Wald-wolfwitz Runs极端反应检验Moses Extreme Reactions:踢出极端值前后P值变化情况,是否踢出。

注:不同分析方法对同批数据的分析,结论可能不相同,要反复进行探索性分析,还要注意方法本身侧重点上的差异性。

4 中位数检验强调位置,Kruskal-Wallis检验侧重分析平均秩,Jonckheere比较同相对数。

spss参数与非参数检验实验报告

spss参数与非参数检验实验报告
基本思路:
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验

用SPSS对问卷资料进行卡方检验

用SPSS对问卷资料进行卡方检验

用SPSS‎对问卷资料‎进行卡方检‎验1.调查结果如‎果按类别统‎计的人数或‎个数(即计数数据‎),有两种检验‎方法:一种是比率‎检验法,一种是χ2‎检验法。

比率检验法‎只适合两项‎分类问题(含单因素问‎题和双因素‎问题)。

2.一切计数数‎据均可运用‎χ2检验。

有时为了研‎究简便,遇到两项分‎类问题时,也可转化为‎将数据转换‎为比率检验‎法。

3.SPSS中‎的χ2检验‎可进入“分析”-“非参数检验‎”中进行处理‎。

3.关于多项分‎类问题,用χ2检验‎法。

如果问卷中‎属于多项分‎类资料,如学生成绩‎“好、中、差”、身体状况“上、中、下”等,用χ2检验‎法。

分两种情况‎:如果是单因‎素问题,用配合度检‎验(例1);如果是双因‎素问题,用独立性检‎验(例2)。

例1.“你认为教师‎最重要的能‎力是:A.自学能力 B.教学能力 C.科研能力”问卷结果如‎下表。

问:对这三种能‎力的看法是‎否有差异?哪种能力最‎重要?(只考察教师‎能力,属多项分类‎问题中的单‎因素问题,用χ2检验‎中的配合度‎检验。

)例2:关于学制改‎革向家长调‎查:“你对新学制‎的态度是:A.赞成 B.反对C不知‎道”。

结果如下表‎(人数与比例‎):(看不同阶层‎家长对学制‎的态度,属多项分类‎问题中的双‎因素问题,用χ2检验‎中的独立性‎检验。

)4.两项分类问‎题与比率检‎验问卷中,对于非此即‎彼的两项分‎类资料,可转换成相‎对比率,进行比率的‎显著性或比‎率的差异性‎显著性检验‎。

分为两种情‎况:如果是单因‎素问题,用比率的显‎著性检验(例3);如果是双因‎素问题,进行两样本‎差异的显著‎性检验(例4、例5、例6)。

例3:今年高考某‎校升学率为‎45%,甲班共45‎人,23人考入‎大学,甲班的升学‎率为51.1%。

试问甲班的‎升学率水平‎是否明显高‎于全校平均‎水平?(这类教学效‎果评价属两‎项分类问题‎中的单因素‎问题,用比率的显‎著性检验)例4:对不同专业‎学生“专业思想”的差异调查‎,问卷结果见‎下表。

第6章 SPSS非参数检验讲解

第6章 SPSS非参数检验讲解
或几个变量,将其添加至【检验变量列表】列表框中,表示需要 进行进行二项分布检验的变量。 Step03:定义二元变量
在【定义二分法】选项组中可以定义二元变量。 Step04:指定检验概率值
在【检验比例】选项组中可以指定二项分布的检验概率值。 系统默认的检验概率值是0.5,这意味着要检验的二项是服从均 匀分布的。如果所要检验的二项分布不是同概率分布,参数框中 要键入第一组序列的随机性,而不管这个序列是 怎样产生的;此外还可用来判断两个总体的分布是否相同,从而 检验出它们的位置中心有无显著差异。
3.软件使用方法
SPSS中利用游程数构造Z统计量,利用Z统计量的分布来检验 序列是否具有随机性。软件将自动计算出Z统计量的取值及对应 的概率P值。如果概率P值小于或等于用户设定的显著性水平,则 拒绝零假设,认为变量不具有随机性;相反的,如果概率P值大 于显著性水平,则认为变量出现是随机的。
在【期望全距】选项组中可以确定检验值的范围,对应有 两个单选项。 Step04:选择期望值
在【期望值】选项组中可以指定期望值 ,对应有两个单选 项。
Step05:选择计算精确概率
单击【精确】按钮,弹出【精确检验】对话框,该对话框用于选 择计算概率P值的方法 。
Step06:其他选项选择 单击【选项】按钮,弹出【选项】对话框,该对话框用于指定输 出内容和关于缺失值的处理方法
3.软件使用方法
SPSS会自动计算出χ2统计量及对应的相伴概率P值。
Step01:打开主菜单
选择菜单栏中的【分析】 →【非参数检验】→【旧对话框】→ 【卡方】命令,弹出【卡方检验】对话框。
Step02:选择检验变量
在【卡方检验】对话框左侧的候选变量列表框中选择一个 或几个变量,将其添加至【检验变量列表】列表框中,表示需 要进行进行卡方检验的变量。 Step03:确定检验范围

spss卡方检验和非参数检验

spss卡方检验和非参数检验

练习一、 为试验某止疼药物的效果,将178例患者随机分为两组,用药组90 人,对照组88人,试验结果见数据chi_ex,请根据此数据回答,此 药物止疼效果如何?
练习二、 用两种方法检查乳腺癌患者120名,甲法检出率60%,乙法检出率 50%,两法检出都阳性的是35%,请问两种方法检出率是否有差别?
H1:B≠C
Test Statisticsb
N Chi-Squarea
VAR00001 & VAR00002 410
86.449
Asymp. Sig.
.000
a. Continuity Corrected
b. McNemar Test
χ2 =86.45, P=0.000 P<0.05,拒绝H0,接受H1,差别有显著性,两种方法 检验结果不同。
二、 行×列表的χ2检验
a. 什么是行×列表 整理表的行数多于2,或者列数多于2。 四格表是为了比较两个率(构成比)是 否相等;行×列表是为了比较三组或者 三组以上的率(构成比)是否相等。
b. 行×列表χ2检验的假设: H0:各组构成相同 H1:各组构成不同或不全相同
c. 行×列表的自由度: (行数-1) ×(列数-1)
L i ne a r-b y-L i ne a r Asso ci a ti on
2.333
1
.127
N of Valid Cases
25
a. Computed only for a 2x2 table
b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1. 60.
两型慢性布氏病患者得植物血凝素皮试反应

非参数检验(卡方检验),实验报告

非参数检验(卡方检验),实验报告

非参数检验(卡方检验),实验报告评分大理大学实验报告课程名称生物医学统计分析实验名称非参数检验( 卡方检验)专业班级姓名学号实验日期实验地点20xx—20xx 学年度第2学期一、实验目得对分类资料进行卡方检验。

二、实验环境1 、硬件配置:处理器:Intel(R) Core(TM) i5-4210U CPU 1、7GHz 1、7GHz 安装内存(RAM):4、00GB系统类型:64 位操作系统 2 、软件环境:IBM SPSSStatistics 19、0 软件三、实验内容(包括本实验要完成得实验问题及需要得相关知识简单概述) (1)课本第六章得例6、1-6、5 运行一遍,注意理解结果; (2)然后将实验指导书得例1-4 运行一遍,注意理解结果。

四、实验结果与分析(包括实验原理、数据得准备、运行过程分析、源程序(代码)、图形图象界面等) 例例6 、1 表1 灭螨A A 与灭螨B B 杀灭大蜂螨效果得交叉制表效果合计杀灭未杀灭组别灭螨A 32 12 44 灭螨B 14 22 36 合计46 34 80 分析: 表1就是灭螨A与灭螨B杀灭大蜂螨效果得样本分类得频数分析表,即交叉列联表。

表2 卡方检验X2 值df 渐进Sig、(双侧) 精确Sig、(双侧) 精确Sig、(单侧) Pearson 卡方9、277a1 、002连续校正b7、944 1 、005似然比9、419 1 、002Fisher 得精确检验、003 、002 有效案例中得N 80a、0 单元格(、0%) 得期望计数少于5。

最小期望计数为15、30。

b、仅对2x2 表计算分析: 表2就是卡方检验得结果。

因为两组各自得结果互不影响,即相互独立。

对于这种频数表格式资料,在卡方检验之前必须用“加权个案”命令将频数变量定义为加权变量,才能进行卡方检验。

Pearson 卡方:皮尔逊卡方检验计算得卡方值(用于样本数n≥40且所有理论数E≥5);连续校正b : 连续性校正卡方值(df=1,只用于2*2列联表);似然比:对数似然比法计算得卡方值(类似皮尔逊卡方检验);Fisher 得精确检验:精确概率法计算得卡方值(用于理论数E 不同得资料应选用不同得卡方计算方法。

卡方检验与非参数检验

卡方检验与非参数检验

卡方检验与非参数检验卡方检验与非参数检验是统计学中常用的两种假设检验方法。

它们在样本数据不满足正态分布或方差齐性等假设条件的情况下,仍可以进行假设检验,因此被称为非参数检验方法。

本文将详细介绍卡方检验与非参数检验的原理、应用以及比较。

一、卡方检验卡方检验是一种用于检验两个或多个分类变量之间是否存在相关性的统计方法。

它将实际观察到的频数与期望的频数进行比较,从而判断两个分类变量是否存在相关性。

卡方检验主要包括卡方拟合度检验、卡方独立性检验和卡方配对检验等。

1.卡方拟合度检验卡方拟合度检验适用于比较观察到的频数与理论上期望的频数是否有显著差异。

例如,我们可以通过卡方拟合度检验来判断一组骰子的点数是否是均匀分布的。

该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。

2.卡方独立性检验卡方独立性检验适用于比较两个分类变量之间是否存在相关性。

例如,我们可以使用卡方独立性检验来判断性别与喜好类别之间是否存在相关性。

该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。

3.卡方配对检验卡方配对检验适用于比较同一组体在两个时间点或处理条件下的观测值是否有差异。

例如,我们可以使用卡方配对检验来判断一种药物在服药前后对疾病症状的治疗效果。

该方法通过比较观察值和期望值之间的差异来判断是否有显著差异。

非参数检验是一种不依赖于总体分布的统计方法,它不对总体的分布形态做出任何假设,因此适用于任何类型的数据。

常见的非参数检验方法包括Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis H检验等。

1. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于比较两组配对样本数据是否存在差异。

例如,我们可以使用Wilcoxon符号秩检验来判断一种药物在服药前后对患者血压的影响。

SPSS数据分析—卡方检验

SPSS数据分析—卡方检验

SPSS数据分析—卡方检验卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法。

SPSS中在交叉表和非参数检验中,都可调用卡方检验。

卡方检验的主要有两类应用一、拟合度检验1.检验单个无序分类变量各分类的实际观察次数和理论次数是否一致此类问题为单变量检验,首先要明确理论次数,这个理论次数是根据专业或经验已知的,原假设为观察次数与理论次数一致例】:随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。

分析:如果意见没有差异,那么赞成反对的人数应该各半,即30次,因此理论次数为30例】:一周内各日患忧郁症的人数漫衍如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1例】:一个骰子投掷120次,记录掷得每个点数的次数,问该骰子是否存在问题如果骰子是正常的,那么每个点数掷得的概率应该相等,操作方法和前面一样,也使用非参数检验过程,选择默认的所有类别相等卡方检验主要用于分类变量,但是也可以用于对连续变量的拟合度检验上,此类问题的基本思想是:将总体X的取值范围分成k个互不重叠的小区间A1.A2.Ak,把落入第i个小区间的样本值个数作为实际频数,所有实际频数之和等于样本容量,根据理论分布,可以算出总体X的值落入每个小区间Ai的概率Pi,于是nPi就是落入Ai的样本值的理论频数。

有了实际频数和理论频数,就可以计算卡方统计量并进行卡方检验了。

二、独立性检验独立性检验分析两变量之间是否相互独立或有无分歧,也可以在控制某种因素之后,分析两变量之间是否相互独立或有无分歧。

原假设为两变量相互独立或两变量间的相互作用没有分歧。

对于两变量一般采用列联表的形式记录观察数据,分为四格表和R*C列联表,根据卡方统计量和分类变量的类型,又衍生出一些相关系数,这在相关分析中已经讲过。

例】:为了解男女在公开场合禁烟上的态度,随机调查100名男性和80名女性。

spss学习系列24.卡方检验

spss学习系列24.卡方检验

卡方检验,是针对无序分类变量的一种非参数检验,其理论依据是:实际观察频数f 0与理论频数f e (又称期望频数)之差的平方再除以理论频数所得的统计量,近似服从2χ分布,即)(n f f f ee 2202~)(χχ∑-= 卡方检验的一般是用来检验无序分类变量的实际观察频数和理论频数分布之间是否存在显著差异,二者差异越小,2χ值越小。

卡方检验要求:(1)分类相互排斥,互不包容; (2)观察值相互独立;(3) 样本容量不宜太小,理论频数≥5,否则需要进行校正(合并单元格、增加样本数、去除样本法、使用校正公式校正卡方值)。

卡方校正公式为:∑--=ee f f f 202)5.0(χ卡方检验的原假设H 0: 2χ= 0; 备择假设H 1: 2χ≠0; 卡方检验的用途:(1)检验某连续变量的数据是否服从某种分布(拟合优度检验); (2)检验某分类变量各类的出现概率是否等于指定概率; (3)检验两个分类变量是否相互独立(关联性检验); (4)检验控制某几个分类因素之后,其余两个分类变量是否相互独立;(5)检验两种方法的结果是否一致,例如两种方法对同一批人进行诊断,其结果是否一致。

(一)检验单样本某水平概率是否等于某指定概率一、单样本案例例如,检验彩票中奖号码的分布是否服从均匀分布(概率=某常值);检验某产品市场份额是否比以前更大;检验某疾病的发病率是否比以前降低。

有数据文件:检验“性别”的男女比例是否相同(各占1/2)。

1. 【分析】——【非参数检验】——【单样本】,打开“单样本非参数检验”窗口,【目标】界面勾选“自动比较观察数据和假设数据”2.【字段】界面,勾选“使用定制字段分配”,将变量“性别”选入【检验字段】框;注意:变量“性别”的度量标准必须改为“名义”类型。

3. 【设置】界面,选择“自定义检验”,勾选“比较观察可能性和假设可能性(卡方检验)”;4. 点【选项】,打开“卡方检验选项”子窗口,本例要检验男女概率都=,勾选“所有类别概率相等”;注:若有类别概率不等,需要勾选“自定义期望概率”,在其表中设置各类别水平及相应概率。

卡方检验检验SPSS实现

卡方检验检验SPSS实现

结果解释
数据准备
定义变量名4个(store: sex: 1=男性,2=女性; contact:1=寻求,2=不寻求;freq ,) 加权频数( Data菜单选Weight Cases,点击 Freq使之进入Frequency Variable框)
统计分析
分析 描述统计 交叉表 sex进入行框, contact进入列框, Store进入分层框 选择统计量(cochran’and MantelHaenszel ) 确定
轻度
5
中度
2
重度
0
合计
31
轻度
中度 重度
4
1 1
18
3 2
2
18 5
1
2 12
25
24 20
合计
302827Fra bibliotek15100
练习五
月份 新病例数
63 78 140 117
某地收集了 5年中各月份 的脊髓灰质炎 新病例数资料 见表,,问发 病各月有无差 别?
1 2 3 4
5
6 7
105
101 144
8
9
127
79
10
11 12
87
58 48
定义变量名3个(顾问1:1=差,2=中, 3=好; 顾问2: 1=差,2=中, 3=好;freq ,) 加权频数( Data菜单选Weight Cases,点击 Freq使之进入Frequency Variable框)
统计分析
分析 描述统计 交叉表 顾问1进入行框,顾问2进入列框 选择统计量(Kappa) 确定
结果解释
Chi-Square过程
主要功能
调用此过程可对样本数据的分布进行卡 方检验。主要用于分析实际频数与某理 论频数是否相符。

SPSS非参数检验

SPSS非参数检验

SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。

参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。

但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。

非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。

一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。

它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。

例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。

当天的比例近似为2.8:1:1:1:1:1:1。

现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。

2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。

在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。

通常将这样的二值分别用1或0表示。

如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。

如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。

从某产品中随机抽取23个样品进行检测并得到检测结果。

非参数检验的SPSS操作

非参数检验的SPSS操作

第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。

这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。

一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。

若数据不满足这样的条件,强行进行T检验容易造成错误的结论。

在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。

与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。

1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。

2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。

2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。

在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。

SPSS第6章 非参数检验

SPSS第6章 非参数检验
Test)
•现实生活中有很多现象的数据取值仅分两类,例如:学生可以按性别 分成男生和女生,产品可以按质量分成合格和不合格,投掷硬币实验的 结果可能出现正面或反面等。这时,如果某一类情况出现的概率是P, 则另一类情况出现的概率就是Q(即1-P),这种分布称为二项分布。 •【例6-3】根据过去的观察,用旧方法生产某种产品,其不合格率为1%。 现采用新方法,在600件产品中,发现了2件不合格品,问是否可以认为 新方法的不合格率明显低于旧方法的不合格率? •1、方法基本思路 •二项检验属于拟合优度检验,适用于数据只能划分为两类的总体。二 项检验是检验是否认为从样本中观察到的两类比例来自具有指定P的总 体。H0:样本所属总体的分布形态与指定的二项分布无显著差异。 •就例6-3而言,H0:样本所属总体分布是P=1%的二项分布。 •SPSS中的二项分布检验,在样本数小于等于30时,按照计算二项分布概 率的公式进行计算;在样本数大于30时,计算的是Z统计量。SPSS将自 动计算Z统计量,并给出其所对应的概率值。如果Z值对应的概率值小于 或等于给定的显著性水平α,则应拒绝H0,认为样本所属的总体分布形 态与指定的二项分布存在显著差异;如果对应的概率值大于给定的显著 性水平α,则没有足够理由拒绝H0,认为样本所属的总体分布形态与指 定的二项分布无显著差异。
•c.“Expected Values”选项区可设定总体的各类别构成。若选用默认值则表示 所有各类构成比都相等;在“Values”框中可自行定义设定总体的各类构成, 输入的数值的个数和排放次序应和数据文件中的相对应。本例选用默认值。
•d. 单击图6.2主对话框中的“Options”按钮进行统计,“Statistics”用于确定 是否需要输出描述统计指标和分位数。
3、简要评论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验
在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。

这可以通过绘制样本数据直方图的方法来进行粗略的判断。

如果需要进行比较准确的判断,则需要使用非参数检验的方法。

其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。

一、定义
总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总
体分布与期望分布或理论分布是否有显著差异。

它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。

总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。

因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q
()
2
1
k
i i i i
O E Q E =-=∑
其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。

可见Q 值越大,表示观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。

SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。

如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大
于显著性水平,则不能拒绝零假设HO,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。

因此,总体分布的卡方检验是一种吻合性检验,比较适用于一个因素的多项分类数据分析。

总体分布的卡方检验的数据是实际收集到的样本数据,而非频数数据。

二、实例
某地一周内各日患忧郁症的人数分布如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1。

实施步骤:
1、打开SPSS 20.0,导入数据。

2、数据--加权个案,如下图所示。

3、分析--非参数检验--旧对话框--卡方检验
将要检验的一周内各日人们忧郁数比例1:1:2:2:1:1:1输入到SPSS中。

由结果可知P=0.331>0.05,不能拒绝原假设,因此可以得出结论:一周内各日人们忧郁数比例为1:1:2:2:1:1:1。

如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档