将军饮马专题(学生版)
初中数学 几何最值之将军饮马(学生版+解析版)
几何最值之将军饮马一.选择题(共14小题)1.如图,已知等边△ABC的边长为4,面积为4√3,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3B.4√2C.2√3D.4√32.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB 的最小值为()A.3B.4C.5D.2√53.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.√6B.2√3C.3D.2√64.如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.2B.2√3C.4D.2√3+25.如图,菱形ABCD的的边长为6,∠ABC=60°,对角线BD上有两个动点E、F(点E 在点F的左侧),若EF=2,则AE+CF的最小值为()A.2√10B.4√2C.6D.86.如图,在四边形ABCD中,DA⊥AB.DA=6cm,∠B+∠C=150°.CD与BA的延长线交于E点,A刚好是EB中点,P、Q分别是线段CE、BE上的动点,则BP+PQ最小值是()A.12B.15C.16D.187.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=12S△PCD,则PC+PD的最小值是()A.4√3B.4√5C.2√13D.2√298.如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA 和射线OB上的动点,则△PMN周长的最小值为()A.5B.6C.8D.109.如图,正方形ABCD的边长是4,M在DC上,且DM=1,N是AC边上的一动点,则△DMN 周长的最小值是( )A .3B .4C .5D .610.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC CB =13,点D为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .(52,52)C .(83,83)D .(3,3)11.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P是AB 上的动点,则PC +PD 的最小值为( )A .4B .5C .6D .712.如图,在菱形ABCD 中,AC =6√2,BD =6,E 是BC 边的中点,P ,M 分别是AC ,AB上的动点,连接PE ,PM ,则PE +PM 的最小值是( )A .6B .3√3C .2√6D .4.513.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,53)C .(0,2)D .(0,103)14.如图,在等边△ABC 中,AB =9,N 为AB 上一点,且AN =3,BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连接BM ,MN ,则BM +MN 的最小值是( )A .6√2B .9√32C .10√73D .3√7二.填空题(共4小题)15.如图,在Rt △ABC 中,AB =BC =4,D 为BC 的中点,在AC 边上存在一点E ,连接ED ,EB ,则△BDE 周长的最小值为 .16.如图,在菱形ABCD 中,对角线AC =6,BD =8,点E 、F 分别是边AB 、BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是 .17.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.18.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=度.三.解答题(共3小题)19.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值.20.如图,在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.21.如图,河两岸有甲、乙两村庄,现准备建一座桥,桥必须与河岸垂直,问桥应建在何处才能使由甲到乙的路程最短?请作出图形,并说明理由.几何最值之将军饮马参考答案与试题解析一.选择题(共14小题)1.如图,已知等边△ABC的边长为4,面积为4√3,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3B.4√2C.2√3D.4√3【解答】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是√AC2−EC2=√42−22=2√3.故选:C.2.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB 的最小值为()A.3B.4C.5D.2√5【解答】解:连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中,DE=√CD2+CE2=√42+22=2√5.故选:D.3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.√6B.2√3C.3D.2√6【解答】解:连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2√3,又∵△ABE是等边三角形,∴BE=AB=2√3,故所求最小值为2√3.故选:B.4.如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.2B.2√3C.4D.2√3+2【解答】解:作点P关于BD的对称点P′,作P′Q⊥CD交BD于K,交CD于Q,∵AB=4,∠A=120°,∴点P′到CD的距离为4×√32=2√3,∴PK+QK的最小值为2√3,故选:B.5.如图,菱形ABCD的的边长为6,∠ABC=60°,对角线BD上有两个动点E、F(点E 在点F的左侧),若EF=2,则AE+CF的最小值为()A.2√10B.4√2C.6D.8【解答】解:如图,连接AC,作AM⊥AC,使得AM=EF=2,连接CM交BD于F,∵AC,BD是菱形ABCD的对角线,∴BD⊥AC,∵AM⊥AC,∴AM∥BD,∴AM∥EF,∵AM=EF,AM∥EF,∴四边形AEFM是平行四边形,∴AE=FM,∴AE+CF=FM+FC=CM,根据两点之间线段最短可知,此时AE+FC最短,∵四边形ABCD是菱形,AB=6,∠ABC=60°∴BC=AB,∴△ABC是等边三角形,∴AC=AB=6,在Rt△CAM中,CM=√AM2+AC2=√22+62=2√10∴AE+CF的最小值为2√10.故选:A.6.如图,在四边形ABCD中,DA⊥AB.DA=6cm,∠B+∠C=150°.CD与BA的延长线交于E点,A刚好是EB中点,P、Q分别是线段CE、BE上的动点,则BP+PQ最小值是()A.12B.15C.16D.18【解答】解:如图,作点B关于CE的对称点F,连接BF,EF,则EB=EF,∵∠B+∠C=150°,∴∠BEC=30°,∴∠BEF=60°,∴△BEF是等边三角形,连接BP,PF,PQ,则BP=FP,∴BP+QP=FP+PQ,∴当F,P,Q在同一直线上且FQ⊥EB时,BP+PQ的最小值为FQ的长,此时,Q为EB的中点,故与A重合,∵DA⊥AB.DA=6cm,∴AE=6√3cm,∴Rt△QEF中,FQ=√3AE=18,∴BP+PQ最小值值为18,故选:D.7.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=12S△PCD,则PC+PD的最小值是()A.4√3B.4√5C.2√13D.2√29【解答】解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC 都是矩形,∴AB ∥CD ,AB =CD =4,BC =AD =6,∵S △P AB =12S △PCD ,∴12×4×x =12×12×4×(6﹣x ), ∴x =2,∴AM =2,DM =EM =4,在Rt △ECD 中,EC =√CD 2+DE 2=4√5,∵PM 垂直平分线段DE ,∴PD =PE ,∴PC +PD =PC +PE ≥EC ,∴PD +PC ≥4√5,∴PD +PC 的最小值为4√5.故选:B .8.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA和射线OB 上的动点,则△PMN 周长的最小值为( )A .5B .6C .8D .10【解答】解:分别作点P 关于OA 、OB 的对称点D 、C ,连接CD ,分别交OA 、OB 于点M 、N ,连接OP 、OC 、OD 、PM 、PN .∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM =CM ,OP =OC ,∠COA =∠POA ;∵点P 关于OB 的对称点为C ,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8,故选:C.9.如图,正方形ABCD的边长是4,M在DC上,且DM=1,N是AC边上的一动点,则△DMN周长的最小值是()A.3B.4C.5D.6【解答】解:∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD﹣DM=4﹣1=3,在Rt△BCM中,BM=√CM2+BC2=√32+42=5,故△DMN周长的最小值=5+1=6,故选:D.10.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC CB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .(52,52)C .(83,83)D .(3,3)【解答】解:∵在Rt △ABO 中,∠OBA =90°,A (4,4),∴AB =OB =4,∠AOB =45°,∵AC CB =13,点D 为OB 的中点,∴BC =3,OD =BD =2,∴D (2,0),C (4,3),作D 关于直线OA 的对称点E ,连接EC 交OA 于P ,则此时,四边形PDBC 周长最小,E (0,2),∵直线OA 的解析式为y =x ,设直线EC 的解析式为y =kx +b ,∴{b =24k +b =3,解得:{k =14b =2, ∴直线EC 的解析式为y =14x +2,解{y =x y =14x +2得,{x =83y =83,∴P (83,83),故选:C .11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P 是AB上的动点,则PC+PD的最小值为()A.4B.5C.6D.7【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=√BC′2+BD2=√32+42=5.故选:B.12.如图,在菱形ABCD中,AC=6√2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3√3C.2√6D.4.5【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M使PE+PM取得最小值,PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6√2,BD=6,∴AB=√(3√2)2+32=3√3,由S菱形ABCD=12AC•BD=AB•E′M得12×6√2×6=3√3•E′M,解得:E′M=2√6,即PE+PM的最小值是2√6,故选:C.13.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,43)B .(0,53)C .(0,2)D .(0,103)【解答】解:作A 关于y 轴的对称点A ′,连接A ′D 交y 轴于E ,则此时,△ADE 的周长最小,∵四边形ABOC 是矩形,∴AC ∥OB ,AC =OB ,∵A 的坐标为(﹣4,5),∴A ′(4,5),B (﹣4,0),∵D 是OB 的中点,∴D (﹣2,0),设直线DA ′的解析式为y =kx +b ,∴{5=4k +b 0=−2k +b, ∴{k =56b =53, ∴直线DA ′的解析式为y =56x +53,当x =0时,y =53,∴E (0,53), 故选:B .14.如图,在等边△ABC 中,AB =9,N 为AB 上一点,且AN =3,BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连接BM ,MN ,则BM +MN 的最小值是( )A .6√2B .9√32C .10√73D .3√7【解答】解:连接CN ,与AD 交于点M .则CN 就是BM +MN 的最小值.取BN 中点E ,连接DE ,∵等边△ABC 的边长为9,AN =3,∴BN =AC ﹣AN =9﹣3=6,∴BE =EN =AN =3,又∵AD ⊥BC ,∴DE 是△BCN 的中位线,∴CN =2DE ,CN ∥DE ,又∵N 为AE 的中点,∴M 为AD 的中点,∴MN 是△ADE 的中位线,∴DE =2MN ,∴CN =2DE =4MN ,∴CM =34CN .在直角△CDM 中,CD =12BC =4.5,DM =12AD =9√34, ∴CM =√CD 2+MD 2=9√74,∴CN =3√7.∵BM +MN =CN ,∴BM +MN 的最小值为3√7.故选:D .二.填空题(共4小题)15.如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为2√5+2.【解答】解:过B作BO⊥AC于O,延长BO至B′,使BO=B′O,连接B′D,交AC 于E,连接BE、B′C,∴AC为BB′的垂直平分线,∴BE=B′E,B′C=BC=4,此时△BDE的周长为最小,∵∠B′BC=45°,∴∠BB′C=45°,∴∠BCB′=90°,∵D为BC的中点,∴BD=DC=2,∴B′D=√B′C2+CD2=√42+22=2√5,∴△BDE的周长=BD+DE+BE=B′E+DE+BD=DB′+DB=2√5+2,故答案为:2√5+2.16.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是 5 .【解答】解:AC 交BD 于O , 作E 关于AC 的对称点N ,连接NF ,交AC 于P ,则此时EP +FP 的值最小, ∴PN =PE ,∵四边形ABCD 是菱形,∴∠DAB =∠BCD ,AD =AB =BC =CD ,OA =OC ,OB =OD ,AD ∥BC ,∵E 为AB 的中点,∴N 在AD 上,且N 为AD 的中点,∵AD ∥CB ,∴∠ANP =∠CFP ,∠NAP =∠FCP ,∵AD =BC ,N 为AD 中点,F 为BC 中点,∴AN =CF ,在△ANP 和△CFP 中{∠ANP =∠CFP AN =CF ∠NAP =∠CFP,∴△ANP ≌△CFP (ASA ),∴AP =CP ,即NF 过O 点,∵AN∥BF,AN=BF,∴四边形ANFB是平行四边形,∴NF=AB,∵菱形ABCD,∴AC⊥BD,OA=12AC=3,BO=12BD=4,由勾股定理得:AB=√AO2+BO2=5,故答案为:5.17.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是2√2.【解答】解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2√2,即DQ+PQ的最小值为2√2,故答案为:2√2.18.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30度.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.三.解答题(共3小题)19.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值.【解答】解:设∠POA=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM 延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10.故答案为:10.20.如图,在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=4√2,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=4√2×√22=4.故CM+MN的最小值为4.21.如图,河两岸有甲、乙两村庄,现准备建一座桥,桥必须与河岸垂直,问桥应建在何处才能使由甲到乙的路程最短?请作出图形,并说明理由.【解答】解:设桥为CD,则这个问题中的路线为AC、CD、DB三条线段之和.怎样转化为两点间的一条线段呢?经观察,不难发现其中的线段CD是定值,因此只需要考虑使AC+DB最短.它们是分散的两条线段,故先将其中一条平移,如图平移DB到CB′,此时连接AB′交l于P,得桥址.。
第13讲.轴对称及“将军饮马”问题.学生版
板块考试要求A 级要求B 级要求C 级要求轴对称了解图形的轴对称,理解对应点所连的线段被对称轴垂直平分的性质;了解物体的镜面对称能按要求作出简单平面图形经过一次或两次轴对称后的图形;掌握简单图形之间的轴对称关系,并能指出对称轴;能运用轴对称进行图案设计轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称. 如下图,ABC ∆是轴对称图形.两个图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如下图,ABC ∆与'''A B C ∆关于直线l 对称,l 叫做对称轴.A 和'A ,B 和'B ,C 和'C 是对称点.知识点睛中考要求第十三讲 轴对称及“将军饮马”问题对称轴的性质:对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.即:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如图,直线l 经过线段AB 的中点O ,并且垂直于线段AB ,则直线l 就是线段AB 的垂直平分线.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 如图,点P 是线段AB 垂直平分线上的点,则PA PB .线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 成轴对称的两个图形的对称轴的画法:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴. 成轴对称的两个图形的主要性质: ①成轴对称的两个图形全等②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线 轴对称变换的方法应用:轴对称变换是通过作图形关于一直线的对称图形的手段,把图形中的某一图形对称地移动到一个新的位置上,使图形中的分散条件和结论有机地联系起来.常用的辅助线有角平分线条件时的各种辅助线,本质上都是对称变换的思想.轴对称变换应用时有下面两种情况:⑴图形中有轴对称图形条件时,可考虑用此变换;轴对称图形 两个图形轴对称区别 图形的个数 1个图形 2个图形 对称轴的条数 一条或多条 只有1条联系 二者都的关于对称轴对称的⑵图形中有垂线条件时,可考虑用此变换.重、难点重点:理解轴对称的概念,并且熟悉掌握轴对称的性质以及作图,同时理解轴对称变换的概念,能很好的做出轴对称变换的图形,并能很好的利用轴对称的知识来解决题目难点:运用轴对称变换来解决实际题目,以及轴对称的生活中的实际运用例题精讲板块一、轴对称与轴对称图形的认识【例 1】下列”QQ表情”中属于轴对称图形的是( )A.B.C.D.【巩固】(08年广东省)下列图形中是轴对称图形的是()【例 2】(09湖南株洲)下列四个图形中,不是轴对称图形的是( )A.B.C.D.【巩固】(2004泸州)下列各种图形不是轴对称图形的是()【巩固】(2003吉林)下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.答:图形__________;理由是__________.【例 3】如图,它们都是对称图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.【例 4】(09黑龙江哈尔滨)下列图形中,既是轴对称图形,又是中心对称图形的是()【巩固】(2004北京)下列图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等腰梯形C.正方形D.平行四边形【例 5】(2003四川)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下列我国四大银行的商标图案中是轴对称图形而不是中心对称图形的是()【例 6】(2003北京市海淀区)羊年话”羊”字象征着美好和吉祥,•下列图案都与”羊”字有关,其中是轴对称图形的个数是()A.1;B.2;B.3;D.4【巩固】⑴(08山东省青岛市)下列图形中,轴对称图形的个数是()A.1B.2C.3D.4⑵如图所示的图案是我国几家银行标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【例 7】(上海)正六边形是轴对称图形,它有条对称轴.【巩固】(2003河北省)下列图案中,有且只有三条对称轴的是()【巩固】⑴(08苏州)下列图形中,轴对称图形.....的是⑵下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段【例 8】作出下图所示的图形的对称轴:【巩固】作出下图所示的成轴对称图形的对称轴:【例 9】求作线段AB的垂直平分线BA【例10】已知:如图,ABC∠及两点M、N.求作:点P,使得PM PN=,且P点到ABC∠两边所在的直线的距离相等.NM CBA【例11】(2003长沙)如图,请根据小文在镜中的像写出他的运动衣上的实际号码:_______.【例12】 (2004河南)如图,直线L 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:①AB CD ∥ ②AC BD ⊥ ③AO OC = ④AB BC ⊥,其中正确的结论有_______.lODCBA【巩固】(2003安徽)如图,L 是四边形ABCD 的对称轴,如果AD BC ∥,有下列结论:①AB CD ∥ ②AB BC = ③AB BC ⊥ ④AO OC =.其中正确的结论是_________.(•把你认为正确的结论的序号都填上)【例13】 (2003南宁市)尺规:把右图(实线部分)补成以虚线L 为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法、保留作图痕迹).板块二、轴对称的应用【例14】 如图,ABC ∆和'''A B C ∆关于直线l 对称,且90B ∠=︒,''6cm A B =,求'B ∠的度数和AB 的长.L C'B'A'CBA【例15】 如图,有一块三角形田地,10cm AB AC ==,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得ABC ∆的周长为17m ,请你替测量人员计算BC 的长.【巩固】如图,ABC ∆中,BC 边的垂直平分线DE 交BC 于D ,交AC 于E ,5BE =厘米,BCE ∆的周长是18厘米,则BC 等于多少厘米?【例16】 如图,已知40AOB ∠=︒,CD 为OA 的垂直平分线,求ACB ∠的度数.CAD【例17】 (2004陕西)已知:如图,在ABC ∆中,2AB BC ==,120ABC ∠=︒,BC 平行于x 轴,点B •的坐标是(3,1)-.⑴画出ABC∆;A B C∆关于y轴对称的'''⑵求以点A、B、'B、'A为顶点的四边形的面积.板块三、轴对称在几何最值问题中的应用【例18】已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由.【例19】如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?Ba【巩固】若此题改成,在a上找到M、N两点,且10MN=,M在N的左边,使四边形ABMN的周长最短.Ba【例20】(”五羊杯”邀请赛试题)如图,45AOB∠=︒,角内有点P,在角的两边有两点Q、R(均不同于O 点),求作Q、R,使得PQR∆的周长的最小.POBA【巩固】如图,M 、N 为ABC ∆的边AC 、BC 上的两个定点,在AB 上求一点P ,使PMN ∆的周长最短.NMCB【例21】 (2000年全国数学联赛)如图,设正ABC ∆的边长为2,M 是AB 边上的中点,P 是BC 边上的任意一点,PA PM +的最大值和最小值分别记为s 和t .求22s t -的值.MPA【例22】 已知如图,点M 在锐角AOB ∠的内部,在OB 边上求作一点P ,使点P 到点M 的距离与点P 到OA 的边的距离和最小.OMBA【例23】 已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.【巩固】已知:A 、B 两点在直线l 的同侧,在l 上求作一点M ,使得||BM AM -最大.【例24】 (07年三帆中学期中试题)如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.NMD CB A【巩固】例题中的条件不变,求DN MN -的最小值与最大值.【巩固】(黑龙江省中考题)如图,已知正方形ABCD 的边长为8,M 在DC 上,且2DM =,N 是AC 上的一个动点,则DN MN +的最小值是CBA【例25】 (2004郸县改编)某供电部门准备在输电主干线l 上连接一个分支线路同时向新落成的A 、B 两个居民小区送电,分支点为M ,已知居民小区A 、B 到主干线l 的距离分别为12AA =千米,12BB =千米,且114A B =千米.⑴ 居民小区A 、B 在主干线l 的两旁如图⑴所示,那么分支点M 在什么地方时总线路最短?最短线路的长度是多少千米?⑵ 如果居民小区A 、B 在主干线l 的同旁,如图⑵所示,那么分支点M 在什么地方时总线路最短?此时分支点M 与1A 距离多少千米?l (1)ABA 1B 1l (2)ABA 1B 1【例26】 (09山东临沂)如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离1km AC =,B 村到公路l 的距离2km BD =,B 村在A 村的南偏东45︒方向上. ⑴ 求出A ,B 两村之间的距离;⑵ 为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置(保留清晰的作图痕迹,简明书写作法).【习题1】(08苏州)下列图形中,轴对称图形.....的是北东BACDl家庭作业【习题2】⑴(09湖南株洲)下列四个图形中,不是轴对称图形的是( )A .B .C .D .⑵(08山东烟台)下列交通标志中,不是轴对称图形的是( )⑶(08年广东省)下列图形中是轴对称图形的是 ( )【习题3】如图,ABC ∆中,90A ∠=︒,BD 为ABC ∠的平分线,DE BC ⊥,E 是BC 的中点,求C ∠的度数.EDCBA【习题4】(四川省竞赛题)如图,在等腰Rt ABC ∆中,3CA CB ==,E 的BC 上一点,满足2BE =,在斜边AB上求作一点P 使得PC PE +长度之和最小.PECBA【习题5】在正方形ABCD 中,E 在BC 上,2BE =,1CE =,P 在BD 上,求PE 和PC 的长度之和的最小值.E PDCB A【备选1】(2004天津)在下列图形中,既是轴对称图形,又是中心对称图形的是( )【备选2】判断下列图形(图)是否为轴对称图形?如果是,说出它有几条对称轴.⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼【备选3】(2008年荆门市中考题)如图,菱形ABCD 的两条对角线分别长6和8,点M 、N 分别是变AB 、BC的中点,在对角线AC 求作一点P 使得PM PN 的值最小.PNMDCBA月测备选。
专题33 将军饮马模型--2024年中考数学核心几何模型重点突破(学生版)
4.如图,在直线 两侧各有一个定点,分别是点 A、B,怎样在直线 l 上找到一点 P,使得
的值最大?
构图:作点 B 关于直线 l 的对称点 B’,连接 AB’并延长与 l 的交点即为点 P,如图所示:
5.如图,在直线 同侧有 A、B 两个定点,怎样在直线 上找到一点 P,使得
的
值最小?
构图:连接 AB,作 AB 的垂直平分线与直线 l 交于点 P,此时
12.如图,等边 ABC 的边长为 4,点 E 是 AC 边的中点,点 P 是 ABC 的中线 AD 上的动点, 则 EP CP 的最小值是_____.
13.如图,等边三角形 ABC 的边 BC 上的高为 6, AD 是 BC 边上的中线,M 是线段 AD 上的 -一个动点,E 是 AC 中点,则 EM CM 的最小值为_________.
一、单选题 1.如图,点 M 是菱形 ABCD 的边 BC 的中点,P 为对角线 BD 上的动点,若 AB=2,∠A =120°,则 PM+PC 的最小值为( )
A.2
B. 3
C. 2
D.1
2.已知线段 AB 及直线 l,在直线 l 上确定一点 P ,使 PA PB 最小,则下图中哪一种作图方
法满足条件( ).
构图:分别作点 P、Q 关于 OA、OB 的对称点 P’、Q’,连接 P’Q’分别交 OA、OB 于点 C、 D,此时△PCD 的周长最小值为 PQ+P’Q’,如图所示:
【模型 3】两点两线 在直线 m、n 上分别找两点 P、Q,使得 PA+PQ+QB 的值最小. 1.A、B 两点都在直线的外侧
2.一个点在内侧,一个点在外侧
14.如图,正方形 ABCD 的边长为 8,点 M 在 DC 上且 DM=2,N 是 AC 上的一动点,则 DN+MN 的最小值是______.
将军饮马18道典型习题
将军饮马18道典型习题将军饮马"是一个古希腊数学问题,源于2000多年前。
当时,一位将军向城里的著名数学家海伦请教:他每天早上都要骑马到河边让马喝水,然后到河岸同一侧的一块草地上让马吃草。
将军想知道,在河岸的哪个具体位置让马喝水,可以让他和马儿走的路程最短。
经过思考,海伦给出了答案,这就是"将军饮马"问题。
以下是"将军饮马"问题的五种常见模型:1.一动两定(和最小)模型:假设点A是将军和马儿居住的营帐,点B是指定的草地,小河L在两点之间流过。
问题是,将军和马儿在哪个具体位置喝水,可以让他们走的路程最短?解决方法是,做A点关于L的对称点A',连接A'B,与L的交点即为P点。
这时,PA+PB最小。
为什么呢?因为在L 上任意取一点M(不与P重合),根据几何原理,PA+PB=A'P+PB=A'B,AM+MB>A'B,所以动点P在A'B与L 交点处时,PA+PB最小。
2.一定两动模型:假设点A和小河L1与第一种模型一样,但是这次,草地不是指定的点,而是由L2代表的一片草地。
问题是,在哪个具体位置喝水和吃草,可以让将军和马儿走的路程最短?解决方法是,做A点关于L1的对称点A',做A点关于L2的对称点A'',连接A'A'',与L1和L2的交点即为P、Q。
这时,AP+PQ+QA的和最小。
为什么呢?因为在L1上取点M(不与P重合),在L2上取点N(不与Q重合),根据几何原理,AP+PQ+AQ=A'P+PQ+A''Q=A'A'',AM+MN+AN>A'A'',所以动点P和Q在A'A''与L1、L2的交点处时,AP+PQ+QA的和最小。
3.两动一定模型:假设点A和小河L1与第一种模型一样,但是这次,将军要骑马到L2代表的一片草地吃草,然后再回到营帐。
轴对称与将军饮马问题(基础篇)专题练习(学生版)
轴对称与将军饮马问题(基础篇)专题练习一、两定点一动点1、如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B’.②连接AB’与直线l相交于点C,则点C 为所求作的点.在解决这个问题时没有运用到的知识或方法是().A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角2、如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD 最小时,∠PCD的度数是().A. 30°B. 45°C. 60°D. 无法确定3、如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是().A. 30°B. 45°C. 60°D. 90°4、如图,PQ为△ABC边上的两个定点,在BC边上求作一点M,使PM+QM最短.(保留作图痕迹,不写作法,无需证明)5、如图,解答下列问题:①画出△ABC关于y轴对称的图形△A1B1C1.②在x轴上找出点P,使得点P到点A、点B的距离之和最短.(保留作图痕迹)6、在平面直角坐标系中,已知点A(2,6),B(4,0),在y轴上求一点P,使△ABP的周长最小.(1)在坐标系中画出A、B两点的位置.(2)画出点P的位置.(3)求出点P的坐标.7、在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,B,C的坐标分别是(-4,6),(-2,2),(-1,4).(1)请画出△ABC关于y轴对称的△A1B1C1,其中A,B,C的对称点分别为A1,B1,C1.(2)请在y轴上求作一点P,使△PBC的周长最小.8、如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).(1)画出△AOB关于直线x=-1轴对称后图形△A’O’B’.(2)点P在x轴上使△APB周长最小时,在图中画出点P.(请保留作图痕迹)(3)求出△AOB的面积.二、一定点两动点9、如图,∠AOB =a ,点P 是∠AOB 内的一定点,点M 、N 分别在OA 、OB 上移动,当△PMN 的周长最小时,∠MPN 的值为( ).A. 90°+a .B. 90°+12a .C. 180°-a .D. 180°-2a .10、如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是6cm ,则∠AOB 的度数是( ).A. 15B. 30C. 45D. 6011、如图,在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,在AB ,BC 上分别找一点E 、F ,使△DEF 的周长最小,此时,∠EDF =( ).A. αB. 90°-12αC. 2D. 180°-2α12、如图,点P 关于OA 、OB 的对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N ,若CD =18cm ,则△PMN 的周长为______cm .13、如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是______ cm.14、已知:如图,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点N,P1P2=15,则△PMN的周长为______;若∠O=40°,则∠MPN=______°.15、如图,等腰△ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC 于点F,垂足为E,若M为BC边上一动点,D为EF上一动点,则BD+MD的最小值为______cm.16、如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=______.17、如图,在四边形ABCD中,∠B=∠D=90°,∠C=65°,M、N分别是边BC,CD上的动点,当△AMN的周长最小时,∠MAN=______.18、如图,D是∠ABC内一点,BD=4,∠ABC=30°,设M是射线BA上一点,N是射线BC上一点,则△MND的周长的最小值是______.19、如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为______.20、如图,在等腰△ABC中,AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、线段AD上的动点,则MN+BN的最小值是______.21、如图,在锐角△ABC中,AC=6,△ABC的面积为15,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是______.22、如图,∠AOB=30°,OC=2,在OA上找一点M,在OB上找一点N,使得CM+MN最小,求出此最小值.23、如图,已知点A是锐角∠MON内的一点.(1)按要求画图:(不写作法,尺规作图,保留作图痕迹)①分别作点A关于OM,ON的对称点A’,A’’.②试分别在OM、ON上确定点B,点C,使△ABC的周长最小.(2)若∠MON=45°时,试判断△ABC的形状,并说明理由.24、如图,∠AOB=30°,点P是∠AOB内一点,PO=8,在∠AOB的两边有点R、Q(均不同于O),求△PQR周长的最小值.25、某班举行晚会,桌子摆成两条直条(如图中的AO,BO),AO桌面上摆满了桔子,BO桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短.26、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,求PC+PQ的最小值.。
13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册
13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册一.将军饮马:线段和的最小值例1.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?请你用所学的数学知识在图2中画出.例2.已知x+y=7,且x,y均为正数,则的最小值是.变式1.如图,在平面直角坐标系中,点A(﹣2,2),B(2,1),点P(x,0)是x轴上的一个动点.结合图形得出式子的最小值是()A.3B.C.5D.变式2.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+300)mC.1000m D.(300+100)m变式4.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.8变式5.如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是()A.2B.12C.5D.7二.选址造桥例3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.变式1.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.变式2.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)三.线段差最大例4.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值为.变式1.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cmC.6cm D.2cm四.角中对称问题例5.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.变式1.如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB上的动点,若PN+PM+MN的最小值是8cm,求∠AOB的度数.变式2.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,求则△PMN的周长.变式3.如图,∠AOB=60°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,求MP+PQ+QN的最小值课后练习1.如图,在△ABC中,AB=6,AC=8,EF垂直平分BC,P为直线EF上任意一点,则AP+BP的最小值是.2.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC 上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.3.如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.2+4.如图,∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.3B.C.D.65.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°6.如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC上方的一个动点,△PBC的面积等于△ABC的面积的,则当PB+PC 最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°7.如图,直线y=x+8分别与x轴、y轴交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD值最小时,点P的坐标为()A.(﹣4,0)B.(﹣3,0)B.C.(﹣2,0)D.(﹣1,0)8.如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35B.40C.50D.609.如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC 的垂直平分线,P是直线EF上的任意一点,则P A+PB的最小值是()A.6B.8C.10D.1210.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.811.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上的点,当△PMN的周长最小时,∠MPN=100°,求∠AOB.12.如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC 和BC边上的动点,当△PMN的周长最小时,求∠MPN的度数13.如图,∠AOB=30°,点P在OB上且OP=2,点M、N分别是OA、OB上的动点,求PM+MN的最小值14.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上且BD=1,AD=4,点E、F分别为边AC、AB上的动点,求△DEF的周长的最小值为.15.如图,在锐角△ABC中,∠ACB=30°,点P为边AB上的一定点,连接CP,CP=4,M,N分别为边AC和BC上的两动点,连接PM,PN,MN,则△PMN周长的最小值为;当△PMN周长的最小值时,∠MPN的度数为.16.如图,在△ABC中,AC=BC=4,∠ACB=120°,点M在边BC上,且BM=1,点N 是直线AC上一动点,点P是边AB上一动点,求PM+PN的最小值.17.如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D是线段BF上的动点,连接AD,在AD的右侧作等边△ADE,连接BE,求△ABE周长的最小值。
微专题 利用”将军饮马“解决线段最值问题-学生
微专题 利用“将军饮马”解决线段最值问题
针对训练 6. (2018陕西副题14题3分)如图,在矩形ABCD中,AB=3,AD=4,连接AC,O是AC 的中点,M是AD上一点,且MD=1,P是BC上一动点,则PM-PO的最大值为 ________.
第6题图
微专题 利用“将军饮马”解决线段最值问题
(4)异侧线段差最大值问题 模型分析 问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大. 解题思路:将异侧点转化为同侧,同“3.同侧线段差最大值问题”即可解决.
微专题 利用“将军饮马”解决线段最值问题
针对训练 2. 如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、 N分别是AD、AB上的动点,则BM+MN的最小值是________.
第2题图
第3题图
3. 如图,矩形ABCD中,AB=20,BC=10,若在AC、AB上各取一点M、N,使BM
3. 如图,在边长为2的菱形ABCD中,∠DAB=60°,E是AB边上的一点,且AE=1, 点Q为对角线AC上的动点,则△BEQ周长的最小值为________.
第3题图
第4题图
4. 如图,AB是 e O的直径,AB=8 cm, ¼AC= C»D = B»D ,M是AB上一动点,则CM +DM的最小值是________.
(3)同侧线段差最大值问题
模型分析 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大. 解题思路:当A、B、P三点不共线时,根据三角形任意两边之差小于第三边可得|PAPB|<AB,当A、B、P三点共线时,|PA-PB|=AB,则|PA-PB|的最大值为线段AB的 长.连接AB并延长,与直线l的交点即为点P.
利用轴对称的性质解决有关将军饮马问题之压轴题四种模型全攻略(学生版)
利用轴对称的性质解决有关将军饮马问题之压轴题四种模型全攻略【考点导航】目录【典型例题】【类型一几何图形中的最小值问题】【类型二实际问题中的最短路径问题】【类型三一次函数中线段和最小值问题】【类型四一次函数中线段差最大值问题】【典型例题】【类型一几何图形中的最小值问题】1(2023·浙江·八年级假期作业)如图,CD是△ABC的角平分线,△ABC的面积为12,BC长为6,点E,F 分别是CD,AC上的动点,则AE+EF的最小值是()A.6B.4C.3D.2【变式训练】1(2023春·山东济南·七年级统考期末)如图,在△ABC中,AB=AC,BC=4,面积是10;AB的垂直平分线ED分别交AC,AB边于E、D两点,若点F为BC边的中点,点P为线段ED上一动点,则△PBF 周长的最小值为()A.7B.9C.10D.142(2023秋·河南许昌·八年级许昌市第一中学校联考期末)如图,等腰三角形ABC的底边BC长为4,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点C为线段EF上一动点,则△CDG周长的最小值为()A.4B.9C.11D.133(2022春·七年级单元测试)如图,△ABC 中,∠ACB =90°,AC =BC ,AB =4,点E 在BC 上,且BE =2,点P 在∠ABC 的平分线BD 上运动,则PE +PC 的长度最小值为()A.1B.2C.3D.44(2023秋·甘肃·八年级统考期末)如图,∠AOB =15°,M 是边OA 上的一个定点,且OM =12cm ,N ,P 分别是边OA 、OB 上的动点,则PM +PN 的最小值是.5(2023春·广东揭阳·七年级惠来县第一中学校考期末)如图,在等腰△ABC 中,AB =AC ,BC =7,作AD ⊥BC 于点D ,AD =12AB ,点E 为AC 边上的中点,点P 为BC 上一动点,则PA +PE 的最小值为.6(2023春·广东深圳·七年级统考期末)如图,点C ,D 分别是角∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是.7(2023春·广东佛山·八年级校考期中)如图,已知△ABC ≌△CDA ,将△ABC 沿AC 所在的直线折叠至△AB C的位置,点B的对应点为B ,连结BB .(1)直接填空:B B与AC的位置关系是;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB E是直角三角形?8(2023春·广东深圳·七年级统考期末)【初步感知】(1)如图1,已知△ABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边△ADE,连接CE.求证:△ABD≌△ACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:.【拓展应用】(3)如图3,在等边△ABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP为边向右侧作等边△DPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【类型二实际问题中的最短路径问题】1(2023春·广东广州·八年级华南师大附中校考期中)如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为AC=2km,BD=5km,CD=6km,现在要在河岸CD上建一水厂E向A、B两村输送自来水,要求水厂E到A、B两村的距离之和最短.(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E到A、B两村的距离之和的最小值.【变式训练】1(2023春·八年级课时练习)如图,A,B两个村庄在河CD的同侧,两村庄的距离为a千米,a2=13,它们到河CD的距离分别是1千米和3千米.为了解决这两个村庄的饮水问题,乡政府决定在河CD边上修建一水厂向A,B两村输送水.(1)在图上作出向A,B两村铺设水管所用材料最省时的水厂位置M.(只需作图,不需要证明)(2)经预算,修建水厂需20万元,铺设水管的所有费用平均每千米为3万元,其他费用需5万元,求完成这项工程乡政府投入的资金至少为多少万元.2(2021秋·江苏苏州·八年级校考阶段练习)如图,小区A与公路l的距离AC=200米,小区B与公路l的距离BD=400米,已知CD=800米,(1)政府准备在公路边建造一座公交站台Q,使Q到A、B两小区的路程相等,求CQ的长;(2)现要在公路旁建造一利民超市P,使P到A、B两小区的路程之和最短,求PA+PB的最小值,并求CP的长度.3(2023春·全国·七年级专题练习)问题情境:老师在黑板上出了这样一道题:直线l同旁有两个定点A,B,在直线l上是否存在点P,使得PA+PB的值最小?小明的解法如下:如图,作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且PA+ PB的最小值为A B.问题提出:(1)如图,等腰Rt△ABC的直角边长为4,E是斜边AB的中点,P是AC边上的一动点,求PB+PE的最小值.问题解决:(2)如图,为了解决A,B两村的村民饮用水问题,A,B两村计划在一水渠上建造一个蓄水池M,从蓄水池M处向A,B两村引水,A,B两村到河边的距离分别为AC=3千米,BD=9千米,CD=9千米.若蓄水池往两村铺设水管的工程费用为每千米15000元,请你在水渠CD上选择蓄水池M的位置,使铺设水管的费用最少,并求出最少的铺设水管的费用.【类型三一次函数中线段和最小值问题】1(2023春·山东德州·八年级校考阶段练习)如图,一次函数y=12x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(可能用到的公式:若A(x1,y1),B(x2,y2),①AB中点坐标为x1+x22,y1+y22;②AB=x1-x22+y1-y22(1)求线段AB的长;(2)过B、C两点的直线对应的函数表达式.(3)点D是BC中点,在直线AB上是否存在一点P,使得PC+PD有最小值?若存在,则求出此最小值;若不存在,则说明理由.【变式训练】1(2023春·河北石家庄·八年级石家庄市第四十一中学校考期中)一次函数y=kx+b的图像经过两点A4,0,B0,8.点D m,4在这个函数图像上(1)求这个一次函数表达式;(2)求m的值;(3)点C为OA的中点,点P为OB上一动点,求PC+PD的最小值.2(2023春·湖南长沙·八年级校联考期中)如图,直线l1经过点A4,0,与直线l2:y=x交于点B a,43.(1)求a的值和直线l1的解析式;(2)直线l1与y轴交于点C,求△BOC的面积;(3)在y轴上是否存在点P,使得PB+PA的值最小,若存在,请求出PB+PA的最小值,若不存在,请说明理由.3(2023春·重庆万州·九年级重庆市万州第一中学校联考期中)如图1,直线l1:y=-14x+1与x轴,y轴分别交于A,B两点,直线l2与x轴,y轴分别交于C,D两点,两直线相交于点P,已知点C的坐标为( -2,0),点P的横坐标为-45.(1)直接写出点A、P的坐标,并求出直线l2的函数表达式;(2)如图2,过点A作x轴的垂线,交直线l2于点M,点Q是线段AM上的一动点,连接QD,QC,当△QDC 的周长最小时,求点Q的坐标和周长的最小值.(3)在第(2)问的条件下,若点N是直线AM上的一个动点,以D,Q,N三点为顶点的三角形是等腰三角形,请直接写出此时点N的坐标.【类型四一次函数中线段差最大值问题】1(2023秋·四川成都·八年级统考期末)如图所示,直线l1:y=x-1与y轴交于点A,直线l2:y=-2x-4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出DQ-BQ的最大值.【变式训练】1如图①,平面直角坐标系中,直线y=kx+b与x轴交于点A(-10,0),与y轴交于点B,与直线y= x交于点C(a,7).-73(1)求直线AB的表达式;(2)如图②,在(1)的条件下,过点E作直线l⊥x轴,交直线y=-7x于点F,交直线y=kx+b于点G,若3点E的坐标是(-15,0),求△CGF的面积;(3)点M为y轴上OB的中点,直线l上是否存在点P,使PM-PC的值最大?若存在,求出这个最大值;若不存在,说明理由;2在进行13.4《最短路径问题》的学习时,同学们从一句唐诗“白日登山望烽火,黄昏饮马傍交河”(唐•李颀《古从军行》出发,一起研究了蕴含在其中的数学问题--“将军饮马”问题.同学们先研究了最特殊的情况,再利用所学的轴对称知识,将复杂问题转化为简单问题,找到了问题的答案,并进行了证明.下列图形分别说明了以上研究过程.证明过程如下:如图4,在直线l上另取任一点C ,连结AC ,BC ,B C ,∵点B,B 关于直线l对称,点C,C 在l上,∴CB=,C B=,∴AC+CB=AC+CB =.在△AC B 中,∵AB <AC +C B ,∴AC+CB<AC +C B ,即AC+CB最小.(1)请将证明过程补充完整.(直接填在横线上)(2)课堂小结时,小明所在的小组同学提出,如图1,A,B是直线l同旁的两个定点.在直线l上是否存在一点P,使PB-PA的值最大呢?请你类比“将军饮马”问题的探究过程,先说明如何确定点P的位置,再证明你的结论是正确的.(3)如图,平面直角坐标系中,M2,2,N4,-1,MN=13,P是坐标轴上的点,则PM-PN的最大值为,此时P点坐标为.(直接写答案)3如图,在直角坐标系中,直线l:y=43x+8与x轴、y轴分别交于点B,点A,直线x=-2交AB于点C,D是直线x=-2上一动点,且在点C的上方,设D(-2,m)(1)求点O到直线AB的距离;(2)当四边形AOBD的面积为38时,求点D的坐标,此时在x轴上有一点E(8,0),在y轴上找一点M,使|ME-MD|最大,请求出|ME-MD|的最大值以及M点的坐标;(3)在(2)的条件下,将直线l:y=43x+8左右平移,平移的距离为t(t>0时,往右平移;t<0时,往左平移)平移后直线上点A,点B的对应点分别为点A′、点B′,当△A′B′D为等腰三角形时,求t的值.。
将军饮马模型专题
将军饮马模型专题练习一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD 周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
轴对称之将军饮马五大模型重难点题型归纳(学生版)-初中数学
轴对称之将军饮马五大模型重难点题型归纳目录解题知识必备压轴题型讲练类型一、“2定点1动点”作图问题类型二、“2定点1动点”求周长最小值问题类型三、“2定点1动点”求线段最小值问题类型四、“1定点2动点”-线段/周长最小问题类型五、“1定点2动点”-角度问题压轴能力测评(11题)基本图模1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使P A+PB的值最小解:连接AB交直线l于点P,点P即为所求,P A+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP'中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,P A+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得P A+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线性质得:P A=P A´,要使P A+PB最小,则需P A´+PB值最小,从而转化为模型1.方法总结:1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.类型一、“2定点1动点”作图问题1.如图,在平面直角坐标系中,点A4,4.,B2,-4(1)若点A关于x轴、y轴的对称点分别是点C,D,请分别描出点C,D并写出点C,D的坐标;(2)在y轴上求作一点P,使P A+PB最小.(不写作法,保留作图痕迹)2.如图,A、B是两个蓄水池,都在河流a的同旁,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两池,问该站建在河边哪一点,可使所修的渠道最短,试在图中画出该点(不写作法,但要保留作图痕迹).3.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A-5,1.,B-4,4,C-1,-1(1)画出△ABC关于y轴对称的图形△A1B1C1,并写出A1的坐标;(2)已知点D2,2,请在x轴上找到一点P且PB+PD的值最小(作图).4.如图,阳光明媚的周六,小明在学校(A)练习篮球,他接到妈妈的电话,要先去C街快递公司取包裹,再去D街购买文具,然后回到家里(B).请画出小明行走的最短路径.5.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.166.如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,交AC于点D,则△ABP周长的最小值是()A.12B.6C.7D.87.如图,等腰△ABC的底边BC=4cm,面积为8cm2,腰AB的垂直平分线EF分别交AB、AC于点E、F,若D为边BC的中点,M为线段EF上一动点,则△BDM周长的最小值为多少?()A.4B.6C.8D.108.如图:等腰△ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.9.已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是()A.5B.3C.D.7210.如图,△ABC中,AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为.11.如图,△ABC的面积为14,AB=AC,BC=4,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为.12.如图,在△ABC中,AB=AC,BC=4,△ABC的面积是14,AC的垂直平分线EF分别交AC,AB于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.4D.2类型四、“1定点2动点”-线段/周长最小问题13.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=14,AD平分∠BAC,点PQ分别是AB,AD边上的动点,则PQ+BQ的最小值是.14.如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB的长为.15.如图,在等腰△ABC中,在AB、AC上分别截取AP、AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.已知AB=AC=10,AD=8,BC=12.若点M、N分别是线段AD和线段AB上的动点,则BM+MN的最小值为()A.10B.12.8C.12D.9.616.如图,在△ABC中,AB=AC=5,AD⊥BC于点D,AD=4,BD=3,点P为AD边上的动点,点E为AB边上的动点,则PE+PB的最小值是.类型五、“1定点2动点”-角度问题17.如图,在五边形ABCDE中,∠BAE=142°,∠B=∠E=90°,AB=BC,AE=DE.在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.76°B.84°C.96°D.109°18.如图,在五边形ABCDE中,AB⊥BC,AE⊥DE,AB=BC,AE=DE,∠BCD+∠CDE=230°,点P,Q分别在边BC,DE上,连接AP,AQ,PQ,当△APQ的周长最小时,∠P AQ的度数为()A.50°B.80°C.100°D.130°19.如图,四边形ABCD中,∠A=40°,∠B=∠D=90°,M,N分别是AB,AD上的点,当△CMN的周长最小时,则∠MCN的度数为()A.40°B.80°C.90°D.100°20.如图,四边形ABCD中,∠C=62°,∠B=∠D=90°,E、F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为.21.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=5,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于5,则α=()A.30°B.45°C.60°D.90°22.如图,直线l是一条河,A、B是两个新农村定居点,欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水,现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A. B.C. D.23.如图,在△ABC中,BD平分∠ABC交AC于点D,点M,N分别是线段BD、BC上一动点,AB>BD且S△ABC=10,AB=5,则CM+MN的最小值为.24.如图,AD是等边△ABC的中线,点E,F分别是AD,AC上的动点,当EC+EF最小时∠ACE的度数为.25.如图,已知∠MON=30°,在∠MON的内部有一点P,A为OM上一动点,B为ON上一动点,OP=a,当△P AB的周长最小时,∠APB=度,△P AB的周长的最小值是.26.如图,钝角三角形ABC的面积为12,最长边AB=6,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为27.如图,在四边形ABCD中,∠BAD=105°,∠B=∠D=90°,在BC,CD上分别找一个点M,N,使△AMN的周长最小,则∠AMN+∠ANM=°28.如图,∠AOB=30°,M,N分别为射线OA,OB上的动点,P为∠AOB内一点,连接PM,PN,MN.若OP=5,则△PMN周长的最小值为.29.如图,等边△ABC和等边△A B C的边长都是4,点B,C,B 在同一条直线上,点P在线段A C上,则AP+BP的最小值为.30.如图所示,在△ABC中,AB=AC,直线EF是线段AB的垂直平分线,点D是线段BC的中点,点P是直线EF上一个动点.若△ABC的面积为48,BC=12,则△PBD周长的最小值是.31.如图,△ABC三个顶点的坐标分别为A1,1,C3,4.,B4,2(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1(2)写出△A1B1C1三顶点坐标:A1,B1,C1;(3)若点P为x轴上一点,使P A+PB最小(保留作图痕迹).32.如图所示,牧马营地在点P处,每天牧马人要赶着马群先到草地a吃草,再到河边b饮水,最后回到营地,请你设计一条放牧路线,使其所走的总路程最短.。
2025中考数学二次函数压轴题专题练习23 将军饮马模型(学生版+解析版)
专题23将军饮马模型一、知识导航通过全国中考试题分析来看,将军饮马的才莫型多出现在中考二次函数压轴题笫二问中出现,难度不大,但需要,主意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x轴的交点.考法主要有以下几种:1.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值.模型一:两定点一动点!如图,A,B力定点,P为[上动点,求AP+BP最小值:8解析.作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+PB二1,“8p,,当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短),,.BA端点,',、,,/,、、,,、,、,l,ll ,',p折点;;'模型二:如图,P为定点,M、N分别为O A和OB上的动点,求6.P MN周长最小值A A。
声N8。
,,P`、/\\PB解析:分别作点P关于OA、OB的对称点,则t::.PM N的周长为PM+MN+NP=P'M+M N+NP",当P'、M、N、P“共线时,t:i.P MN周长最小模型三:两定点两动点如图,P、Q为两定点,M、N分别为OA、OB上的动点,求四边形PQ M N的最小值A A。
声B。
NQp\“出飞`\8解析:. P Q是条定线段,只需考虑PM+MN+NQ最小值即可,分别作点P、Q关于OA、OB对称,PM+MN+NQ=P'M+MN+NQ',当P'、M、N、Q'共线时,四边形PMNQ的周长最小。
如图,P为定点,M、N分别为OA、OB上的动点,求PM+MN最小值。
AA。
渗NBp .、一p ·伈1:、}NB解析:作点P关于OA对称的点P',PM+MN=P'M+MN,过点P'作OB垂线分别交OA、OB于点M、N,得PM+MN 赦小值(点到直线的连线中,垂线段最短)模型五:将军饮马有距离例一、如图,A、D 为定点,B、C为直线l上两动点,BC为定值,求AB+BC+CD最小值?• D.ABc解析.BC力定值,只需求AB+CD枭小即可,平移AB至CE ,则变成求CE+CD的最小值,基本将军饮马的模型例二、如图,A、D 为定点,B、C 力直线l i 、h 上两动点,BC ..L h ,求AB +BC+CD 最小值?.Al1c/2• D解析.B C力定值,只需求AB+CD赦小即可,平移CD至BE,则变成求AB+BE枭小,基本将军饮马.-例一:如图l (注:与图2完全相同),在直角坐标系中,抛物线经过点A(l ,O)、8(5,0)、C(0,4)三点.x图1(I)求抛物线的解析式和对称轴,图2(2)p是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);【分析)(1)将点A 、B 的坐标代入二次函数表达式得:y =a(儿-1)(x -5)=a(x 2-6x +5),即可求解;(2)连接B 、C 交对称轴千点P ,此时PA+PC 的值为最小,即可求解;【解答】解:(1)将点A 、B 的坐标代入二次函数表达式得:y = a (x-l)(x-5) = a (.:r2 -6x+ 5), 则5a =4,解得:a ==,4抛物线的表达式为:4勹(4 24y =�(x 2 -6x+5) =�x 2-—x +4,函数的对称轴为:x =3,顶点坐标为(3,_竺);5 5 5(2)连接B 、C 交对称轴千点P ,此时PA +PC 的值为最小,将点B 、C 的坐标代入一次函数表达式I y =kx +b 得I{0 = S k +b b=4y解得Ilk =-5,4b=4-O直线BC 的表达式为: 4y =--:-x +4,5::::::,','亡,'.:·-::::宁,.1.、.图当x =3时,.8-5=y8故点P(3,一);5例二:如图,直线y =-.,\,+3与x 轴、x 轴另一交点为A,顶点为D.y 轴分别交于B 、C 两点,抛物线y=-x 2+bx+c 经过点B 、C ,与(I)求抛物线的解析式;(2)在入轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;yx备用图【分析】(1)直线y =-x +3与x 轴、y 轴分别交千B 、将点B 、C 的坐标代入二次函数表达式,即可求解;C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),(2)如图1,作点C 关于x 轴的对称点C',连接C D'交x 轴千点E ,则此时EC +ED 为最小,即可求解1【解答】解:(1)直线y =-x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式得:{-9+3b+c=O,解得:b=2c = 3 {c=3'故函数的表达式为:y=-x 2+2x +3,令y =O ,则x =-l 或3,故点A(-1,0)1(2)如图1,作点C 关于x 轴的对称点C',连接CI Y 交x 轴于点E ,则此时E C +E D 为最小,函数顶点D 坐标为(1,4),点C'(0,-3),将C'、D 的坐标代入一次函数表达式并解得:直线CD 的表达式为:y =?x -3, 当y =O 时,, 3一7= x 3故点E(-,0),7;.::月y、3.• 「E,','则EC +ED 的最小值为DC'=[可工言了=5丘;图1I三、中考真题演练I.(2023宁夏中考真题)如图,抛物线y=ax 2 +bx+3(G 汪0)与X 轴交千A,知点A的坐标是(-1,0),抛物线的对称轴是直线x=I.yB两点,与Y轴交千点C.已X X备用胆(I)直接写出点B 的坐标;(2)在对称轴上找一点P,使PA+PC的值最小.求点P的坐标和PA+PC的最小值;(3)第一象限内的抛物线上有一动点M,过点M作MN乒轴,垂足为N,连接BC交MN千点Q 依题意补全图形,当MQ +石CQ 的值最大时,求点M 的坐标2.(2023黑龙江齐齐哈尔中考真题)综合与探究如图,抛物线y=-x 2+bx+c 上的点A,C 坐标分别为(0,2),(4,0),抛物线与x 轴负半轴交千点B,点M 为y 轴负半轴上一点,且OM=2,连接AC,CM.yyx x(l)求点M的坐标及抛物线的解析式;(4)将抛物线沿x轴的负方向平移得到新抛物线,点A的对应点为点A',点C的对应点为点C',在抛物线平移过程中,当MA'+M C的值最小时,新抛物线的顶点坐标为,MA '+M C 的最小值为3.(2023湖南张家界中考真题)如图,在平面直角坐标系中,已知二次函数y=ax 2+bx+c 的图象与过由交千点A(-2,0)和点B(6,0)两点,与y 轴交千点C(0,6)点D 为线段BC 上的一动点.y yXX图1(I)求二次函数的表达式;(2)如图l ,求t::.AOD周长的最小值;图24.(2023山东枣庄中考真题)如图,抛物线y= -x2 +bx+c经过A(一1,0),C(0,3)两点,并交x轴千另一点B,点M是抛物线的顶点,直线AM与轴交千点D.x x备用图(J)求该抛物线的表达式:(2)若点H是.x轴上一动点,分别连接MH,DH,求1\1H+DH的最小值;5.如图,已知抛物线y=ax2+bx-6与x轴的交点A(-3, 0), B (I., 0),与y轴的交点是点C.yxA(I)求抛物线的解析式:(2)点P是抛物线对称轴上一点,当PB+PC的值最小时,求点P的坐标:(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M,N,使得LCMN=90且以点C,M, N为顶点的三角形与.OAC相似?若存在,求出点M和点N的坐标:若不存在,说明理由.6.如图,在平面直角坐标系中,抛物线y=--产+bx+c经过点A(4,0)、B(0,4)、 C.其对称轴l交x 轴千点D,交直线AB千点F,交抛物线千点E.(I)求抛物线的解析式;(2)点P为直线l上的动点,求ti.PBC周长的最小值;(3)点N为四线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.7 已知,抛物线y=x2+2x-3,与x轴交千A B两点(点A在点B的左侧),交y轴于点C,抛物线的顶点为点D.(I)求AB的长度和点D的坐标;(2)在该抛物线的对称轴上找一点P,求出PB+PC的值最小时P点的坐标;(3)点M是第三象限抛物线上一点,当s MAC.最大时,求点M的坐标,并求出s MAC的最大值.专题23将军饮马模型、知识导航通过全国中考试题分析来看,将军饮马的枝型多出现在中考二次函数压轴题笫二问中出现,难度不大,但需要注意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x轴的交点.考法主要有以下几种:l.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值模型一:两定点一动点如图,A,B为定点,P为l上动点,求AP+BP最小值二B解析·作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+P B/lll¥ABpII当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短)/重BA端点平了模型二:如图,P为定点,M、N分别为OA和OB上的动点,求6.PMN周长最小值A A。
将军饮马18道典型习题
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
轴对称中的最值模型问题(将军饮马)重难点题型专训(学生版)-初中数学
轴对称中的最值模型问题(将军饮马等)重难点题型专训题型一将军饮马之线段和最值题型二将军饮马之线段差最值题型三将军饮马之两定一动最值题型四三点共线最大值题型五双对称关系求周长最小值题型六两定两动型最值题型七两动一定最值题型八费马点最值问题将军饮马中最短路径问题四大模型一两定点在直线的异侧问题1作法图形原理在直线l 上找一点P ,使得P A+PB 的和最小。
连接AB ,与直线l 的交点P 即为所求。
两点之间,线段最短,此时P A +PB 的和最小。
二两定点在直线的同侧问题2:将军饮马作法图形原理在直线l 上找一点P ,使得P A +PB 的和最小。
作B 关于直线l 的对称点C ,连AC ,与直线l 的交点P 即为所求。
化折为直;两点之间,线段最短,此时P A +PB 的和AC 最小。
三两动点一定点问题问题3:两个动点作法图形原理作P 关于OA 的对称点P 1,作P 关于OB 的对称两点之间,线段最短,此时PC +PD +CD点P 在锐角∠AOB 的内部,在OA 边上找一点C ,在OB 边上找一点D ,,使得PC +PD +CD 的和最小。
点P 2,连接P 1P 2。
的和最小。
四造桥选址问题问题4:造桥选址作法图形原理直线m ∥n ,在m ,n 上分别求点M 、N ,使MN ⊥m ,MN ⊥n ,且AM +MN +BN 的和最小。
将点A 乡向下平移MN 的长度得A 1,连A 1B ,交n 于点N ,过N作NM ⊥m 于M 。
两点之间,线段最短,此时AM +MN +BN 的最小值为A 1B +MN 。
注意:本专题部分题目涉及勾股定理,各位同学可以学习完第3章后再完成该专题训练.勾股定理公式:a 2+b 2=c 2【经典例题一将军饮马之线段和最值】1.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当长为半径画弧,两弧分别交于E 、F ,画直线EF ,D 为BC 的中点,M 为直线EF 上任意一点,若BC =5,△ABC 的面积为15,则BM +MD 的最小长度为()A.5B.6C.7D.82.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠BAC,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.1.2B.2.4C.4.8D.9.63.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是.4.唐朝著名诗人李颀的代表作品《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,其中隐含着一个有趣的数学问题.如图1,诗中将士在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问在何处饮马才能使总路程最短?我们可以用轴对称的方法解决这个问题.(1)如图2,作点B关于直线l的对称点B ,连接AB 与直线l交于点C,点C就是所求的位置.理由:如图3,在直线l上另取不同于点C的任一点C ,连接AC ,BC ,B C ,因为点B、B 关于直线l对称,点C、C 在直线l上,所以CB=,C B=,所以AC+CB=AC+CB =,在△AC B 中,依据,可得AB <AC +C B ,所以AC+CB<AC +C B ,即AC+CB最小.(2)迁移应用:如图4,△ABC是等边三角形,N是AB的中点,AD是BC边上的中线,AD=6,M是AD上的一个动点,连接BM、MN,则BM+MN的最小值是.【经典例题二将军饮马之线段差最值】5.如图,在△ABC中,AB=CB,∠B=100°.延长线段BC至点D,使CD=BC,过点D作射线DP∥AB,点E为射线DP上的动点,分别过点A,D作直线EC的垂线AM,DN.当AM-DN的值最大时,∠ACE的度数为.6.如图,AB⎳DP,E为DP上一动点,AB=CB=CD,过A作AN⊥EC交直线EC于N,过D作DM ⊥EC交直线EC于点M,若∠B=114°,当AN-DM的值最大时,则∠ACE=.7.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.已知△ABC的顶点均在格点上.(1)画出格点三角形ABC关于直线DE对称的△A B C ;(2)△A B C 的面积是(3)在直线DE上找出点P,使P A-PC最大,并求出最大值为.(保留作图痕迹)8.如图,已知△ABC的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线MN对称;(2)在直线MN上画出点D,使∠BDM=∠CDN.(3)在直线MN上画出点P,使P A-PC最大.【经典例题三将军饮马之两定一动最值】9.小王准备在红旗街道旁建一个送奶站,向居民区A,B提供牛奶,要使A,B两小区到送奶站的距离之和最小,则送奶站C的位置应该在( ).A. B.C. D.10.(2023春·黑龙江齐齐哈尔·八年级校考阶段练习)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11.(2023春·全国·八年级专题练习)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是.12.(2023·江苏·八年级假期作业)如图,在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线DE交AB于点D,若AE=3,(1)求BC的长;(2)若点P是直线DE上的动点,直接写出P A+PC的最小值为.【经典例题四三点共线最大值】13.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A-PB的最大值为.14.如图,AC,BD在AB的同侧,AC=2,BD=8,AB=10,M为AB的中点,若∠CMD=120°,则CD的最大值为()A.12B.15C.18D.2015.如图,△ABC为等腰直角三角形,∠ACB=90°,M在△ABC的内部,∠ACM=4∠BCM,P为射线CM上一点,当|P A-PB|最大时,∠CBP的度数是.16.如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)若以N点为原点建立平面直角坐标系,点B的坐标为0,5,则△ABC关于x轴对称△A2B2C2,写出点A2,C2的坐标.(3)在直线MN上找点P使PB-P A的最大值.最大,在图形上画出点P的位置,并直接写出PB-P A【经典例题五双对称关系求周长最小值】17.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°18.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°19.如图,在△ABC中,AB=AC=10cm,BC=9cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为.20.在草原上有两条交叉且笔直的公路OA、OB,在两条公路之间的点P处有一个草场,如图,∠AOB=30°,OP=6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.21.几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.解法:作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且P A+PB的最小值为线段A B的长.(1)根据上面的描述,在备用图中画出解决问题的图形;(2)应用:①如图2,已知∠AOB=30°,其内部有一点P,OP=12,在∠AOB的两边分别有C、D两点(不同于点O),使△PCD的周长最小,请画出草图,并求出△PCD周长的最小值;②如图3,∠AOB=20°,点M、N分别在边OA、OB上,且OM=ON=2,点P,Q分别在OB、OA上,则MP+PQ+QN的最小值是.22.如图,在四边形ABCD中,∠BAD=∠B=∠D=90°,AD=AB=4,E是AD中点,M是边BC上的一个动点,N是边CD上的一个动点,则AM+MN+EN的最小值是.23.如图,在等边△ABC中,AC=12,AD是BC边上的中线,点P是AD上一点,且AP=5.如果点M、N分别是AB和AD上的动点,那么PM+MN+NB的最小值为.【经典例题七两动一定最值】24.如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.25.如图所示,在等边△ABC中,点D、E、F分别在边BC、AB,AC上,则线段DE+DF的最小值是()A.BC边上高的长B.线段EF的长度C.BC边的长度D.以上都不对26.如图,在△ABC中,∠ABC=90°,BC=8,AC=10,点P、Q分别是边BC、AC上的动点,则AP+PQ的最小值等于()A.4B.245C.5 D.48527.如图,在等腰△ABC中,AB=AC=8,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.【经典例题八费马点最值问题】28.【问题提出】(1)如图1,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM,CM.若连接MN,则△BMN的形状是.(2)如图2,在Rt△ABC中,∠BAC=90°,AB+AC=10,求BC的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD,AB+BC=6千米,∠ABC=60°,公园内有一个儿童游乐场E,分别从A、B、C向游乐场E修三条AE,BE,CE,求三条路的长度和(即AE+ BE+CE)最小时,平行四边形公园ABCD的面积.29.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat po int).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为6的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.6B.32+6C.63D.930.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是等边△ABC的费马点,且OA+OB+OC=18,则这个等边三角形的高的长度为;(2)如图2,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:点P是△ABC的费马点;(3)应用探究:已知有A、B、C三个村庄的位置如图3所示,能否在合适的位置建一个污水处理站Q,使得该处理站分别连接这三个村庄的水管长度之和最小?如果能,请你说明该如何确定污水处理站Q的位置,并证明该位置满足设计要求.31.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是高为3的等边△ABC的费马点,则OA+OB+OC=;(2)如图2,已知P是等边△ABD外一点,且∠APB=120°,请探究线段P A,PB,PD之间的数量关系,并加以证明;(3)如图3,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:①点P是△ABC的费马点;②P A+PB+PC=CD.32.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CP A=120°,P A+PB+PC的值最小.(1)如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到△ACP 处,连接PP ,此时△ACP ≌△ABP,这样就可以通过旋转变换,将三条线段P A,PB,PC转化到一个三角形中,从而求出∠APB=.(2)如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD.使AD=AP,∠DAE=∠P AC,求证:BE=P A+PB+PC.(3)如图4,在直角三角形ABC中,∠ABC=90°,∠ACB=30°,AB=1,点P为直角三角形ABC的费马点,连接AP,BP,CP,请直接写出P A+PB+PC的值.33.(2024八年级上·浙江·专题练习)如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接P A、PE,若P A+PE最小,则点P应该满足()A.P A=PCB.P A=PEC.∠APE=90°D.∠APC=∠DPE34.(24-25八年级上·全国·课后作业)如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的一动点,要使P A+PB的值最小,则点P应满足的条件是()A.P A=PBB.PC=PDC.∠APB=90°D.∠BPC=∠APD35.(23-24八年级下·四川巴中·期末)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当长为半径画弧,两弧分别交于E、F,画直线EF,D为BC的中点,M为直线EF上任意一点,若BC=5,△ABC 的面积为15,则BM+MD的最小长度为()A.5B.6C.7D.836.(23-24八年级下·河南郑州·阶段练习)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为()A.60°B.120°C.90°D.45°37.(23-24八年级上·湖南湘西·期末)在某草原上,有两条交叉且笔直的公路OA、OB,如图,∠AOB=30°,在两条公路之间的点P处有一个草场,OP=4.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,存在M、N使得△PMN的周长最小.则△PMN周长的最小值是( ).A.4B.6C.8D.1238.(22-23八年级下·福建漳州·期中)如图,在△ABC中,AB=AC,BC=6,S△ABC=18,D是BC中点,EF垂直平分AB,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.3B.6C.9D.1239.(23-24八年级上·福建福州·期中)在平面直角坐标系xOy中,A0,4,动点B在x轴上,连接AB,将线段AB绕点A逆时针旋转60°至AC,连接OC,则线段OC长度最小为()A.0B.1C.2D.340.(22-23七年级下·山东济南·阶段练习)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°41.(21-22八年级上·四川广元·期末)如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2CD,在AD上找一点P,使PC+PB的值最小;则PC+PB的最小值为()A.4B.3C.5D.642.(21-22八年级上·广东广州·期中)在Rt △ABC 中,∠C =90°,∠A =30°,点P 是边AC 上一定点,此时分别在边AB ,BC 上存在点M ,N 使得△PMN 周长最小且为等腰三角形,则此时AP PC 的值为()A.12B.1C.32D.243.(2024七年级下·全国·专题练习)如图,△ABC 中,AB =AC ,BC =5,S △ABC =15,AD ⊥BC 于点D ,EF 垂直平分AB ,交AC 于点F ,在EF 上确定一点P ,使PB +PD 最小,则这个最小值为.44.(23-24七年级下·陕西西安·阶段练习)如图,在四边形ABCD 中,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小,此时∠MAN =80°,则∠BAD 的度数为.45.(23-24七年级下·山东济南·期末)在草原上有两条交叉且笔直的公路OA 、OB ,在两条公路之间的点P 处有一个草场,如图,∠AOB =30°,OP =6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.46.(22-23七年级下·广东河源·期末)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB、BC上分别找一点E、F,使△DEF周长最小,此时∠EDF=.47.(22-23八年级上·广东东莞·期中)如图,点A-2,1,点P是在x轴上,且使P A+PB最小,写,B2,3出点P的坐标.48.(22-23八年级上·湖南岳阳·期中)如图,直线l垂直平分△ABC的AB边,在直线l上任取一动点O,连结OA、OB、OC.若OA=5,则OB=.若AC=9,BC=6,则△BOC的最小周长是.49.(22-23八年级上·四川绵阳·期中)在平面直角坐标系xOy中,点A的坐标是0,2,点B在x轴的负半轴上且∠ABO=30°,点P与点O关于直线AB对称,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.50.(22-23八年级上·海南海口·期中)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB,BC上分别找一点E,F使△DEF的周长最小.此时∠EDF的大小是.51.(22-23八年级上·湖北黄石·期末)如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=103cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为cm.52.(21-22八年级上·福建厦门·期末)小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由P A、PB 跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长PQ+P A+PB的和最小.已知P A=1.6km,PB=3.2km,PQ=0.1km,在A村看点P位置是南偏西30°,那么在A村看B村的位置是.53.(22-23八年级上·云南昆明·期末)如图,△ABC的三个顶点坐标分别为A2,3.,B1,1,C5,3(1)作出△ABC关于y轴对称的图形△A1B1C1.(2)求△A1B1C1的面积;(3)在x轴上找一点P,使得PC+PB最小,请直接写出点P的坐标.54.(24-25八年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,已知A-3,4,B-1,2,C1,3.(1)在平面直角坐标系中画出△ABC,将△ABC平移得到△A B C ,已知A 1,-1,则C 坐标是.(2)求出△ABC的面积;(3)在x轴上有一点P,使得P A+PB的值最小,保留作图痕迹.55.(23-24八年级下·广东深圳·期末)【综合实践活动】【问题背景】如图1,A,B表示两个村庄,要在A,B一侧的河岸边建造一个抽水站P,使得它到两个村庄的距离和最短,抽水站P应该修建在什么位置?【数学建模】小坤发现这个问题可以用轴对称知识解决,他先将实际问题抽象成如下数学问题:如图2,A,B是直线l同侧的两个点,点P在直线l上.P在何处时,P A+PB的值最小.画图:如图3,作B关于直线l的对称点B ,连结AB 与直线l交于点P,点P的位置即为所求.证明:∵B和B 关于直线l对称∴直线l垂直平分BB∴PB=,∴P A+PB=P A+PB根据“”(填写序号:①两点之间,线段最短;②垂线段最短;③两点确定一列条直线.)可得P A+ PB 最小值为(填线段名称),此时P点是线段AB 和直线l的交点.【问题拓展】如图4,村庄B的某物流公司在河的对岸有一个仓库C(河流两侧河岸平行,即GD∥EF),为了方便渡河,需要在河上修建一座桥MN(桥的长度固定不变,等于河流的宽度且与河岸方向垂直),请问桥MN修建在何处才能使得B到C的路线最短?请你画出此时桥MN的位置(保留画图痕迹,否则不给分).【迁移应用】光明区某湿地公园如图5所示,四边形AEDC为花海景区,∠CDE=∠E=90°,AE=80米,DE=50米,长方形CFGH为人工湖景区,为了方便市民观景,公园决定修建一条步行观光路线(折线AM-MN-BN),A为起点,终点B在ED上,BD=30米,MN为湖边观景台,长度固定不变(MN =40米),且需要修建在湖边所在直线CF上,步行观光路线的长度会随着观景台位置的变化而变化,请直接写出步行观光路线的最短长度.2156.(2023九年级·四川成都·专题练习)在△ABC 中,AC =BC ,点E 在是AB 边上一动点(不与A 、B 重合),连接CE ,点P 是直线CE上一个动点.(1)如图1,∠ACB =120°,AB =16,E 是AB 中点,EM =2,N 是射线CB 上一个动点,若使得NP +MP 的值最小,应如何确定M 点和点N 的位置?请你在图2中画出点M 和点N 的位置,并简述画法;直接写出NP +MP 的最小值;(2)如图3,∠ACB =90°,连接BP ,∠BPC =75°且BC =BP .求证:PC =P A .57.(23-24七年级下·广东深圳·期末)【背景材料】对称美是我国古人和谐平衡思想的体现,常被用于建筑、器物、绘画、标识等作品的设计上,比如图1.同时,对称在解决生活中的实际问题时,也往往有很大的作用.【问题提出】某小区要在街道旁修建一个奶站,向居民区A ,B 提供牛奶,奶站应建在什么地方,才能使A ,B 到它的距离之和最短?该问题给牛奶公司造成了困扰,现向居民们征求意见.【问题解决】小明同学将小区和街道抽象出的平面图形,并用轴对称的方法巧妙地解决了这个问题.如图2,作A 关于直线m 的对称点A ,连接A B 与直线m 交于点C ,点C 就是所求的位置.(1)请你在下列阅读、应用的过程中,完成解答并填空:证明:如图3,在直线m 上另取任一点D ,连结AD ,A D ,BD ,∵直线m 是点A ,A 的对称轴,点C ,D 在m 上,22∴CA =,DA =,∴AC +CB =A C +CB =.在△A DB 中,∵A B <A D +DB ,∴A C +CB <A D +DB .∴AC +CB <AD +DB ,即AC +CB 最小.(2)如图4,在等边△ABC 中,E 是AB 上的点,AD 是∠BAC 的平分线,P 是AD 上的点,若AD =5,则PE +PB 的最小值为.【拓展应用】(3)“龙舟水”来势汹汹,深圳“雨雨雨”模式开启,深圳某学校的志愿者们在查阅地图后,画出了平面示意图5.其中,点A 表示龙潭公园,点B 表示宝能广场,点C 表示万科里,点D 表示万科广场,点E 表示龙城广场地铁站.如图6,志愿者计划在B 宝能广场和D 万科广场之间摆放一批共享雨伞,使得共享雨伞的位置到B宝能广场、C 万科里、D 万科广场和E 龙城广场地铁站的距离的和最小.若点A 与点C 关于BD 对称,请你用尺子在BD 上画出“共享雨伞”的具体摆放位置(用点G 表示).58.(24-25八年级上·全国·假期作业)如图,B、C 两点关于y 轴对称,点A 的坐标是0,b ,点C 坐标为-a ,-a -b .(1)直接写出点B 的坐标为;(2)用尺规作图,在x 轴上作出点P ,使得AP +PB 的值最小;(3)∠OAP =度.59.(21-22七年级上·陕西商洛·期末)点C 为∠AOB 内一点.23(1)在OA上求作点D,OB上求作点E,使△CDE的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.60.(23-24八年级上·湖南长沙·期末)在四边形ABCD中,∠BAD=BCD=90°,∠ABC=135°,AB=32,BC=1,在AD、CD上分别找一点E、F,使得△BEF的周长最小,求△BEF周长的最小值.61.(2023八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,CD平分∠ACB交斜边AB于点D,动点P从点C出发,沿折线CA-AD向终点D运动.(1)点P在CA上运动的过程中,当CP时,△CPD与△CBD的面积相等;(直接写出答案)(2)点P在折线CA-AD上运动的过程中,若△CPD是等腰三角形,求∠CPD度数;(3)若点E是斜边AB的中点,当动点P在CA上运动时,线段CD所在直线上存在另一动点M,使两线段MP、ME的长度之和,即MP+ME的值最小,则此时CP的长度(直接写出答案).。
将军饮马模型通关专练(学生版)--初中数学
微专题将军饮马模型通关专练一、单选题1(2023·福建厦门·校考二模)如图,正方形ABCD的边长为4,点E、F分别为BC、CD的中点,点P是对角线BD上的动点,则四边形PECF周长的最小值为()A.4B.4+22C.8D.4+422(2023秋·八年级课时练习)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB与点D,∠A=30°,AE=6cm,那么CE等于()A.4cmB.2cmC.3cmD.1cm3(2023·福建福州·八年级福州日升中学校考期中)如图,在△ABC中,AB=3,AC=4,BC=5,EF 垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.7B.6C.5D.44(2023秋·福建福州·八年级校考阶段练习)如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q 分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35B.40C.50D.605(2023春·福建龙岩·七年级龙岩初级中学校考阶段练习)如图,点P是直线l外一点,A,B,C,D都在直线上,下列线段最短的是()A.PAB.PCC.PBD.PD6(2023秋·福建宁德·八年级统考期末)如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(-2,0)B.(0,0)C.(2,0)D.(4,0)7(2023·福建·校联考零模)如图,等腰Rt△ABC中,AB⊥AC于A,AB=CA=DC=2,M为△ABC内一点,当MA+MB+MC最短时,在直线BM上有一点E,连接CE.12BE+CE的最小值为()A.πB.263C.63D.68(2023秋·福建厦门·八年级统考期末)如图,在四边形ABCD中,∠C=α°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.αB.2αC.180-αD.180-2α9(2023秋·八年级单元测试)如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B.C. D.10(2023·福建·九年级专题练习)如图,在等腰三角形ABC中,AB=AC,BC=4,tan∠ABC=4,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12二、填空题11(2023春·福建福州·九年级统考期中)在平面直角坐标系xOy中,点B,P,Q的坐标分别为5,0,a,2,则△BPQ周长的最小值为.,a+2,212(2023秋·福建南平·八年级统考期末)如图,∠AOB=22°,点M,N分别是边OA,OB上的定点,点P,Q分别是边OA,OB上的动点,记∠MQP=α,∠OPN=β,当MQ+QP+PN最小时,则α与β的数量关系为.13(2023秋·福建莆田·八年级统考期中)如图,在锐角△ABC中,∠ACB=50°,边AB上有一定点P, M,N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是.14(2023秋·福建厦门·八年级统考期末)如图,在△ABC中,AB=BC,AC=2cm,S△ABC=3cm2,边BC的垂直平分线为l,点D是边AC的中点,点P是l上的动点,则△PCD的周长的最小值是.15(2023秋·八年级课时练习)如图,在ΔABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为.16(2023秋·福建三明·八年级统考期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC,点C在直线MN上,∠BCN=30°,点P为MN上一动点,连接AP,BP.当AP+BP的值最小时,∠CBP的度数为度.三、解答题17(2023秋·福建南平·八年级福建省南平第一中学校考期中)△ABC在平面直角坐标系中的位置如下图所示,点A(1,1),点B(4,2),点C(3,4).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标.(2)y轴上是否存在一点P,使得PA+PB的和最小.若存在,请你找出点P的位置.(保留作图痕迹)(3)求出△A1B1C1的面积.18(2023春·福建泉州·七年级福建省泉州第一中学校考期末)如图,在正方形网格上有一个△ABC(三个顶点均在格点上).(1)作△ABC关于直线HG的轴对称图形△A1B1C1(不写作法);(2)画出△ABC中BC边上的高AD;(3)在HG上画出点P,使PB+PC最小.19(2023春·福建泉州·七年级福建省永春第一中学校考期末)(1)如图1,在△ABC中∠A=60º,BD、CE均为△ABC的角平分线且相交于点O.①填空:∠BOC=度;②求证:BC=BE+CD.(写出求证过程)(2)如图2,在△ABC中,AB=AC=m,BC=n,CE平分∠ACB.①若△ABC的面积为S,在线段CE上找一点M,在线段AC上找一点N,使得AM+MN的值最小,则AM+MN的最小值是.(直接写出答案); ②若∠A=20°,则△BCE的周长等于.(直接写出答案).20(2023秋·福建福州·八年级福建省福州第一中学校考期中)如图,△ABC三个顶点的坐标分别为A1,1.,C3,4,B4,2(1)请画出△ABC关于y轴对称的△A1B1C1;(2)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并简要说明理由.21(2023春·福建三明·七年级统考期末)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中画出△ABC关于直线l对称的△A1B1C1;(2)在直线l上找出点P,使得△PBC周长最小,在图中标出点P的位置;(3)已知点D在格点上,且△BCD和△BCA全等,请画出所有满足条件的△BCD(点D与点A不重合).22(2023秋·福建福州·八年级统考期中)如图,在平面直角坐标系中有一个△ABC.(1)写出△ABC各顶点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)在y轴上作出点P,使得AP+BP的值最小.23(2023春·福建泉州·七年级统考期末)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移4个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得△ACP的周长最小.24(2023秋·福建福州·七年级福建省福州第十九中学校考期末)如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.(1)画直线AB和射线CB;(2)连接AC,过点C画直线AB的垂线,垂足为E;(3)在直线AB上找一点P,连接PC、PD,使PC+PD的和最短.25(2023秋·福建南平·八年级统考期中)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;写出△A1B1C1各顶点坐标A1;B1;C1(2)在y轴上找一点P,使PA+PB1最短,画出P点,并写出P点的坐标.(3)若网格中的最小正方形边长为1,则△A1B1C1的面积等于 .。
专题8 将军饮马模型(学生版)
专题8将军饮马模型模型1:当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA +PB最小.连接AB 交直线l 于点P ,点P 即为所求作的点.PA +PB 的最小值为AB.模型2:当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA +PB最小.作点B 关于直线l 的对称点B',连接AB'交直线l 于点P ,点P 即为所求作的点.PA +PB 的最小值为AB'模型3:当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最大.连接AB 并延长交直线l 于点P ,点P 即为所求作的点,PA PB -的最大值为AB模型4:当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使得PA PB -最大.作点B 关于直线I 的对称点B',连接AB'并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB'解题策略-最小.模型5:当两定点A、B在直线l同侧时,在直线l上找一点P,使得PA PB连接AB,作AB的垂直平分线交直线l于点P,点P即为所求作的点.PA PB-的最小值为0模型6:点P在∠AOB内部,在OB边上找点D,OA边上找点C,使得△PCD周长最小.分别作点P关于OA、OB的对称点P′、P″,连接P′P″,交OA、OB于点C、D,点C、D即为所求.△PCD周长的最小值为P′P″模型7:点P在∠AOB内部,在OB边上找点D,OA边上找点C,使得PD+CD最小.作点P关于OB的对称点P′,过P′作P′C⊥OA交OB,PD+CD的最小值为P′C【例1】.(2022·湖南师大附中博才实验中学九年级开学考试)如果有一条直线经过三角形的某个顶点,将三角形分成两个三角形,其中一个三角形与原三角形相似,则称该直线为三角形的“自相似分割线”.如图1,在△ABC 中,AB=AC=1,∠BAC=108°,DE 垂直平分AB ,且交BC 于点D ,连接AD.(1)证明直线AD 是△ABC 的自相似分割线;(2)如图2,点P 为直线DE 上一点,当点P 运动到什么位置时,PA+PC 的值最小?求此时PA+PC 的长度.(3)如图3,射线CF 平分∠ACB ,点Q 为射线CF 上一点,当AQ取最小值时,求∠QAC 的正弦值.经典例题【例2】.(2021·四川南充·一模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(4,0)、B(0,4)、C.其对称轴l交x轴于点D,交直线AB于点F,交抛物线于点E.(1)求抛物线的解析式;(2)点P为直线l上的动点,求△PBC周长的最小值;(3)点N为直线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.【例3】(2022·浙江衢州·模拟预测)如图,⊙O是△ABC的外接圆,AB为直径,弦AD平分∠BAC,过点D作射线AC的垂线,垂足为M,点E为线段AB上的动点.(1)求证:MD是⊙O的切线;(2)若∠B=30°,AB=8,在点E运动过程中,EC+EM是否存在最小值?若存在,请求出最小值;若不存在,说明理由;(3)若点E恰好运动到∠ACB的角平分线上,连接CE并延长,交⊙O于点F,交AD于点P,连接AF,CP=3,EF=4,求AF的长.【例4】(2022·重庆巴蜀中学七年级期末)在Rt△ABC中,AB=BC,在Rt△CEH中,∠CEH=45°,∠ECH=90°,连接AE.(1)如图1,若点E在CB延长线上,连接AH,且AH=6,求AE的长;(2)如图2,若点E在AC上,F为AE的中点,连接BF、BH,当BH=2BF,∠EHB+12∠HBF=45°时,求证:AE=CE;(3)如图3,若点E在线段AC上运动,取AE的中点F,作FH'∥BC交AB于H,连接BE并延长到D,使得BE =DE,连接AD、CD;在线段BC上取一点G,使得CG=AF,并连接EG;若点E在线段AC上运动的过程中,当ACD的周长取得最小值时,△AED的面积为25,请直接写出GE+BH′的值.【例5】(2022·江苏·九年级课时练习)如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值:若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动_________秒时,四边形BCMP的周长最小,其最小值为_________.培优训练一、解答题1.(2022·江苏·八年级专题练习)如图,在△ABC中,AB=AC,AD是△ABC底边BC上的中线,点P为线段AB上一点.(1)在AD上找一点E,使得PE+EB的值最小;(2)若点P为AB的中点,当∠BPE满足什么条件时,△ABC是等边三角形,并说明理由.2.(2021·全国·八年级专题练习)如图所示,在平面直角坐标系中,已知一次函数y=12x+1的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求边AB的长;(2)求点C,D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.3.(2022·江苏·八年级专题练习)已知Rt△ABC中∠C=90°,且BC=9,∠B=30°.(1)如图1、2,若点D是CB上一点,且CD=3,点E是AB上的动点,将△DBE沿DE对折,点B的对应点为B′(点B′和点C在直线AB的异侧),DB′与AB交于点H.①当∠B′EA=20°时,求∠EDB的度数.②当△B′HE是等腰三角形时,求∠DEB的度数.(2)如图2,若点D是CB上一点,且CD=3,M是线段AC上的动点,以∠MDN为直角构造等腰直角△DMN (D,M,N三点顺时针方向排列),在点M的运动过程中,直接写出CN+NB的最小值.4.(2021·湖北武汉·八年级期中)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.(1)求证:△ADC为等边三角形;(2)求PD+PQ+QE的最小值.5.(2022·江苏·八年级专题练习)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点D,交AC于点E,连接BE.(1)若∠ABC=68°,求∠AED的度数;(2)若点P为直线DE上一点,AB=8,BC=6,求△PBC周长的最小值.6.(2021·江苏·星海实验中学八年级期中)如图,在平面直角坐标系中,直线l平行于x轴,l上有两点A、B,且点A坐标为(-14,8),点B位于A点右侧,两点相距8个单位,动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒.(1)用含t的代数式表示P、Q的坐标:P(_________),Q(_________);(2)在P、Q运动过程中,取线段PQ的中点D,当△OBD为直角三角形时,求出t的值及相应的点D的坐标;(3)取满足(2)中条件最右侧的D点,若坐标系中存在另一点E(−133,-4),请问x轴上是否存在一点F,使FD-FE的值最大,若存在,求出最大值;若不存在,说明理由.7.(2021·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线y x2﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y2﹣3沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.8.(2021·四川省成都市七中育才学校八年级开学考试)以BC为斜边在它的同侧作Rt△DBC和Rt△ABC,其中∠A=∠D=90°,AB=AC,AC、BD交于点P.(1)如图1,BP平分∠ABC,求证:BC=AB+AP;(2)如图2,过点A作AE⊥BP,分别交BP、BC于点E、点F,连接AD,过A作AG⊥AD,交BD于点G,连接CG,交AF于点H,①求证:△ABG≌△ADC;②求证:GH=CH;(3)如图3,点M为边AB的中点,点Q是边BC上一动点,连接MQ,将线段MQ绕点M逆时针旋转90°得到线段MK,连接PK、CK,当∠DBC=15°,AP=2时,请直接写出PK+CK的最小值.9.(2021·广东·岭南画派纪念中学八年级阶段练习)如图,在平面直角坐标系中,直线y=﹣12x﹣2分别与x、y 轴交于A、C两点,点B(1,0)在x轴上.(1)求直线BC的解析式;(2)若点C关于原点的对称点为C′,问在AB的垂直平分线上是否存在一点G,使得△GBC′的周长最小?若存在,求出点G的坐标和最小周长;若不存在,请说明理由.(3)设点P是直线BC上异于点B、C的一个动点,过点P作PQ∥x轴交直线AC于点Q,过点Q作QM⊥x 轴于点M,再过点P作PN⊥x轴于点N,得到矩形PQMN,在点P的运动过程中,当矩形PQMN为正方形时,求该正方形的边长.10.(2021·陕西宝鸡·九年级期中)问题提出(1)在图1中作出点B关于直线AC的对称点B'问题探究(2)如图2,在△ABC中,AB=AC=6,∠BAC=120°,D为AC的中点,P为线段BC上一点,求AP+DP的最小值.问题解决(3)如图3,四边形ABCD为小区绿化区,DA=DC,∠ADC=90°,AB=6+63,BC=12,∠B=30°,AC,边BC和边AC上分别取一点P,E,F,使得DP+PE+EF+PF 是以D为圆心,DA为半径的圆弧.现在规划在AC为这一区域小路,求小路长度的最小值.11.(2021·全国·九年级专题练习)已知在Rt△OAB中,∠OAB=90°,∠ABO=30°,OB=4,将Rt△OAB绕点O顺时针旋转60°,得到△ODC,点D在BO上,连接BC.(1)如图①,求线段BC的长;(2)如图②,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图③,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.12.(2021·全国·九年级专题练习)如图,在平面直角坐标系中,A0,2、B−2,0、C2,2,点E、F分别是直线AB和x轴上的动点,求△CEF周长的最小值.13.(2021·全国·九年级专题练习)如图,抛物线y=x2+bx+c与x轴交于A−1,0、B两点,与y轴交于点C0,−3.(1)求抛物线的解析式;(2)如图①,连接BC,点P是抛物线在第四象限上一点,连接PB,PC,求△BCP面积的最大值;(3)如图②,点D为抛物线的顶点,点C关于抛物线对称轴的对称点为点E,连接DE.将抛物线沿x轴向右平移t个单位,点A,B的对应点分别为A′、B′,连接A′D、B′E,当四边形A′DEB′的周长取最小值时,求t的值.14.(2022·全国·八年级课时练习)如图,在四边形ABCD中,∠B=∠D=90°,E,F分别是BC,CD上的点,连接AE,AF,EF.(1)如图①,AB=AD,∠BAD=120°,∠EAF=60°.求证:EF=BE+DF;(2)如图②,∠BAD=120°,当△AEF周长最小时,求∠AEF+∠AFE的度数;(3)如图③,若四边形ABCD为正方形,点E、F分别在边BC、CD上,且∠EAF=45°,若BE=3,DF=2,请求出线段EF的长度.15.(2021·全国·九年级专题练习)如图,等边△ABC的边长为6,点D,E分别是边BC,AC的中点,连接BE.(1)如图①,求点D到线段BE的最短距离;(2)点P,N分别是BE,BC上的动点,连接PN、PD.①如图②,当PN+PD的长度取得最小值时,求BP的长度;②如图③,点Q在BE上,若BQ=1,连接QN,求QN+NP+PD的最小值.16.(2021·全国·九年级课时练习)在平面直角坐标系中,以点P23,−3为圆心的圆与x轴相交于A、B两点,与y轴相切于点C,抛物线y=ax2+bx+c经过点A、B、C,顶点为D.(1)求抛物线的表达式;(2)点M为y轴上一点,连接DM,MP,是否存在点M使得△DMP的周长最小?若存在,求出点M的坐标及△DMP的周长最小值;若不存在,请说明理由.17.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,BC=4,⊙O是△ABC的外接圆,D是CB延长线上一点,且BD=2,连接DA,点P是射线DA上的动点(1)求证:DA是⊙O的切线;(2)DP的长度为多少时,∠BPC的度数最大,最大度数是多少?请说明理由;(3)点P运动的过程中,PB+PC的值能否达到最小,若能,求出这个最小值;若不能,请说明理由.18.(2021·全国·九年级专题练习)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;(3)在(2)的情况下,点M在AC线段上移动,请直接回答,当点M移动到什么位置时,MB+MD有最小值.19.(2022·全国·八年级课时练习)(1)【问题解决】已知点P在∠AOB内,过点P分别作关于OA、OB的对称点P1、P2.①如图1,若∠AOB=25∘,请直接写出∠P1OP2=______;②如图2,连接P1P2分别交OA、OB于C、D,若∠CPD=98∘,求∠AOB的度数;③在②的条件下,若∠CPD=α度(90<α<180),请直接写出∠AOB=______度(用含α的代数式表示).(2)【拓展延伸】利用“有一个角是60∘的等腰三角形是等边三角形”这个结论,解答问题:如图3,在ΔABC中,∠BAC=30∘,点P是ΔABC内部一定点,AP=8,点E、F分别在边AB、AC上,请你在图3中画出使ΔPEF周长最小的点E、F的位置(不写画法),并直接写出ΔPEF周长的最小值.20.(2012·浙江金华·中考真题)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.21.(2021·全国·九年级专题练习)已知,如图,二次函数y=ax2+2ax−3a a≠0图象的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:y=+3对称.(1)求A、B两点的坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK//AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.22.(2022·吉林松原·八年级期中)教材呈现:下图是华师版八年级下册数学教材第111页的部分内容.(1)问题解决:请结合图①,写出例1的完整解答过程.(2)问题探究:在菱形ABCD中,对角线AC、BD相交于点O,AB=4,∠BAD=2∠ABC.过点D作DE//AC 交BC的延长线于点E.如图②,连结OE,则OE的长为____.(3)如图③,若点P是对角线BD上的一个动点,连结PC、PE,则PC+PE的最小值为_____.23.(2022·河北保定·一模)[问题提出]初中数学的学习中,我们学习了“两点之间线段最短”“垂线段最短”等知识……常可利用它们来解决“最值问题”.[简单运用](1)如图1,在△ABC中,AB=6,∠A=60°,∠B=45°,在BC上取一点D,则AD的长的最小值是______.[综合运用](2)如图1,在△ABC中,AB=6,∠A=60°,∠B=45°,在BC、AB、AC.上分别取点D、E、F,使得△DEF 的周长最小.画出图形确定D、E、F的位置,并直接写出△DEF的周长的最小值.[拓展延伸](3)图2是由线段AB、线段AC、BC 组成的图形,其中∠A=60°,AB=6,AC=3,BC 为60°,分别在BC、线段AB和线段AC.上取点D、E、F,使得△DEF的周长最小,画出图形确定D、E、F的位置,并直接写出△DEF 的周长的最小值.24.(2022·山东济宁·一模)如图,已知抛物线y=ax2+bx−6与x轴的交点A(-3,0),B(1,0),与y轴的交点是点C.(1)求抛物线的解析式;(2)点P是抛物线对称轴上一点,当PB+PC的值最小时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M,N,使得∠CMN=90∘且以点C,M,N为顶点的三角形与△OAC相似?若存在,求出点M和点N的坐标;若不存在,说明理由.。
专题 最值模型之将军遛马模型与将军过桥(造桥)模型(学生版)
专题25最值模型之将军遛马模型与将军过桥(造桥)模型将军遛马模型和将军过桥(造桥)模型是将军饮马的姊妹篇,它是在将军饮马的基础上加入了平移的思想,主要还是考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就将军遛马模型和将军过桥(造桥)模型进行梳理及对应试题分析,方便掌握。
在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。
利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!模型1.将军遛马模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
【模型解读】已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。
(原理用平移知识解)(1)点A、B在直线m两侧:(2)点A、B在直线m同侧:图1图2(1)如图1,过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。
(2)如图2,过A点作AE∥m,且AE长等于PQ长,作B关于m的对称点B’,连接B’E,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。
【最值原理】两点之间线段最短。
例1.(2023·黑龙江·九年级校考期中)问题背景(1)如图(1),在公路l 的一侧有A ,B 两个工厂,A ,B 到公路的垂直距离分别为1km 和3km ,A ,B 之间的水平距离为3km .现需把A 厂的产品先运送到公路上然后再转送到B 厂,则最短路线的长是_____km .问题探究(2)如图(2),ACB △和DEF 是腰长为2的两个全等的等腰直角三角形,90ACB DEF ∠=∠=︒,点A ,D 重合,点B ,F 重合,将ACB △沿直线AB 平移,得到A C B '''△,连接A E ',C E '.试探究在平移过程中,A E C E '+'是否存在最小值.若存在,求出这个最小值;若不存在,请说明理由.问题解决(3)如图(3),A ,B 分别是河岸m 一侧的两个旅游景点,它们到河岸的垂直距离分别是2km 和4km ,A ,B 的水平距离是13km .游客在景点A 游览完后,乘坐大巴先到河岸上的码头甲处,改乘游轮沿河航行5km 到达码头乙,再乘坐大巴到达景点B .请问码头甲,乙建在何处才能使从A 到B 的旅游路线最短,并求出最短路线的长.例2.(2022·四川内江·统考中考真题)如图,矩形ABCD 中,AB =6,AD =4,点E 、F 分别是AB 、DC 上的动点,EF ∥BC ,则AF +CE 的最小值是_____.例3.(2022·四川自贡·中考真题)如图,矩形ABCD 中,42AB BC ==,,G 是AD 的中点,线段EF 在边AB 上左右滑动;若1EF =,则GE CF +的最小值为____________.ABCD模型2.将军过桥(造桥)模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。