电磁感应法测交变磁场_讲义

合集下载

电磁感应法测交变磁场_讲义

电磁感应法测交变磁场_讲义

电磁感应法测交变磁场在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍电磁感应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

一、实验目的1.了解用电磁感应法测交变磁场的原理和一般方法,掌握201FB 型交变磁场实验仪及测试仪的使用方法。

2.测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。

3.了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。

4.研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。

二、实验仪器FB201-Ⅰ型交变磁场实验仪,信号频率可调范围30~200Hz ,信号输出电流,单个圆线圈可 900mA ≥ ,两个圆线圈串联400mA ≥。

亥姆霍兹线圈每个400匝,允许最大电流1A 。

三、实验原理1.载流圆线圈与亥姆霍兹线圈的磁场:(1)载流圆线圈中心轴线上的磁场分布:一半径为R ,通以电流I 的圆线圈,轴线上磁场的公式为 :2/322200)(2X R R I N B +⋅⋅⋅=μ (1)式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,70410/,H m μπ-=⨯磁场的分布图如图1所示。

本实验取匝400N 0=,A 400.0I =,m 107.0R =,圆心O '处0X =,可算得磁感应强度为:T 10940.0B 3-⨯= , T 10328.1B 2B 3m -⨯==(2)亥姆霍兹线圈中心轴线上的磁场分布:两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图2所示。

这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

电磁感应法测交变磁场_课件

电磁感应法测交变磁场_课件

电磁感应法测交变磁场在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍电磁感应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

一、实验目的1.了解用电磁感应法测交变磁场的原理和一般方法,掌握201FB 型交变磁场实验仪及测试仪的使用方法。

2.测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。

3.了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。

4.研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。

二、实验仪器FB201-Ⅰ型交变磁场实验仪,信号频率可调范围30~200Hz ,信号输出电流,单个圆线圈可 900mA ≥ ,两个圆线圈串联400mA ≥。

亥姆霍兹线圈每个400匝,允许最大电流1A 。

三、实验原理1.载流圆线圈与亥姆霍兹线圈的磁场:(1)载流圆线圈中心轴线上的磁场分布:一半径为R ,通以电流I 的圆线圈,轴线上磁场的公式为 :2/322200)(2X R R I N B +⋅⋅⋅=μ (1)式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,70410/,H m μπ-=⨯磁场的分布图如图1所示。

本实验取匝400N 0=,A 400.0I =,m 107.0R =,圆心O '处0X =,可算得磁感应强度为:T 10940.0B 3-⨯= , T 10328.1B 2B 3m -⨯==(2)亥姆霍兹线圈中心轴线上的磁场分布:两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图2所示。

这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

磁场与电磁感应的电感定律

磁场与电磁感应的电感定律

磁场与电磁感应的电感定律磁场与电磁感应是电学领域中重要的概念和原理。

在日常生活和科学实验中,我们经常会遇到与电磁感应相关的现象和问题。

电感定律是描述电磁感应的定律之一,本文将围绕磁场与电磁感应的电感定律展开讨论。

一、磁场与电磁感应简介磁场是指物体或电流在周围产生的磁性力场。

当有电流流经导线时,会产生磁场。

磁场可以通过磁感应线来表示,在磁感应线闭合的区域内,磁感应线的方向表示了磁场的走向。

电磁感应是指磁场与导体之间的相互作用,产生电流的现象。

当导体在磁场中运动,或磁场相对于导体产生变化时,导体中会产生感应电流。

二、法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应的定律之一,由英国物理学家迈克尔·法拉第于1831年提出。

法拉第电磁感应定律给出了感应电动势的大小与导体周围磁场的变化率之间的关系。

法拉第电磁感应定律的数学表达式为:感应电动势E = -dΦ/dt,其中E表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。

根据法拉第电磁感应定律,当导体与磁场相对运动或磁场随时间发生变化时,感应电动势就会产生。

感应电动势的大小与磁场变化的速率成正比。

三、电感定律的应用电感定律有重要的应用价值,在电路设计、电子设备制造和电磁学研究中发挥着重要作用。

1. 电感定律在电路设计中的应用在电路设计中,电感定律可以帮助我们分析电感元件的工作原理和性能。

例如,当直流电流通过电感线圈时,根据电感定律,电感线圈中会产生电磁感应,使得电流发生改变。

这种特性可以用于直流电流的滤波和变压器的工作原理。

2. 电感定律在电子设备制造中的应用在电子设备制造中,电感可以用于滤波、变压、耦合、谐振等电路中。

其中,电感定律可以帮助我们合理设计电感元件的参数和电路结构,以达到预期的电磁感应效果。

同时,电感定律也可以用于分析和解决电子设备中的电磁干扰问题。

3. 电感定律在电磁学研究中的应用在电磁学研究中,电感定律被广泛应用于磁场分析、电磁感应的数值模拟和电磁波传播等领域。

电磁感应法测交变磁场 课本

电磁感应法测交变磁场 课本

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线0生高不产中仅工资22艺料22高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料22荷试,下卷而高总且中体可资配保料置障试时23卷,23调需各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看2工且55作尽22下可2都能护1可地关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编5试求写、卷技重电保术要气护交设设装底备备4置。高调、动管中试电作线资高气,敷料中课并3设试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

用电磁感应法测交变磁场

用电磁感应法测交变磁场

五、数据表格(见附页) 六、数据处理及结果表达
以下处理中,将原点取为 x=5.5cm 处 1.圆电流线圈轴线上磁场分布的测量数据记录:
(注意坐标原点设在圆心处。要求列表记录,表格中包括测点位置,数字式毫伏表读数 以 U max 换算得到的 Bm 值,并在表格中表示出各测点对应的理论值) ,在同一坐标纸上画 出实验曲线与理论曲线。 表 1 圆电流线圈轴线上磁场分布的数据记录 X Umax Bm B理 Bm 理 0.0 9 0.93 0.72 1.02 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.1 11 11.8 12.4 12.6 12.4 11.9 11.2 10.2 1.04 1.13 1.22 1.28 1.3 1.28 1.26 1.15 1.05 0.81 0.88 0.95 0.99 1.01 0.99 0.95 0.88 0.81 1.14 1.25 1.34 1.4 1.41 1.4 1.34 1.25 1.14 10.0 9.1 0.94 0.72 1.02
电磁感应法测交变磁场
弘毅学堂 李奇正 2016301610156
按照被测磁场的性质, 磁场测量分为恒定磁场测量和变化磁场测量。 对于随时间而 变化的交变磁场的测量,通常利用电磁感应效应将磁场的磁学量转变为电动势来测量。
一、实验目的。
(1) 了解用电磁感应测交变磁场的原理和方法。 (2) 测量载流圆形线圈和亥姆霍兹线圈的轴向磁场分布。 (3) 了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。 (4) 研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线 成不同夹角时产生的感应电动势的变化规律。
2.亥姆霍兹线圈轴线上的磁场分布的测量数据记录: (注意坐标原点设在两个线圈圆心连线的中点 0 处) ,在方格坐标纸上画出实验曲线。 表 2 亥姆霍兹线圈轴线上的磁场分布的测量数据记录 x Um Bm X -10 0 1 2 3 4 5 6 7 8 14 9 12.6 1.3 0 10 1.2 1.15

电磁感应法测交变磁场_讲义

电磁感应法测交变磁场_讲义

电磁感应法测交变磁场在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍电磁感应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

一、实验目的1.了解用电磁感应法测交变磁场的原理和一般方法,掌握201FB 型交变磁场实验仪及测试仪的使用方法。

2.测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。

3.了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。

4.研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。

二、实验仪器FB201-Ⅰ型交变磁场实验仪,信号频率可调范围30~200Hz ,信号输出电流,单个圆线圈可 900mA ≥ ,两个圆线圈串联400mA ≥。

亥姆霍兹线圈每个400匝,允许最大电流1A 。

三、实验原理1.载流圆线圈与亥姆霍兹线圈的磁场:(1)载流圆线圈中心轴线上的磁场分布:一半径为R ,通以电流I 的圆线圈,轴线上磁场的公式为 :2/322200)(2X R R I N B +⋅⋅⋅=μ (1)式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,70410/,H m μπ-=⨯磁场的分布图如图1所示。

本实验取匝400N 0=,A 400.0I =,m 107.0R =,圆心O '处0X =,可算得磁感应强度为:T 10940.0B 3-⨯= , T 10328.1B 2B 3m -⨯==(2)亥姆霍兹线圈中心轴线上的磁场分布:两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图2所示。

这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

试验四十五用电磁感应法测磁场分布

试验四十五用电磁感应法测磁场分布

实验四十五 用电磁感应法测磁场分布在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等。

本实验介绍电磁感应法测磁场的方法,它具有测量原理简单、测量方法简便及测试灵敏度较高等优点。

一 实 验 目 的(1)了解用电磁感应法测交变磁场的原理和一般方法,掌握FB-201型交变磁场实验仪及测试仪的使用方法。

(2)测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。

(3)了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。

(4)研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。

二 实 验 原 理1. 载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场一半径R,通以电流I 的圆线圈,轴线上磁场分布的公式为: 2/322200)(2X R IR N B +=μ (1)式中N 0为圆线圈的匝数,为轴上某一点到圆心X O ′的距离。

,H/m 10470−×=πμ它的分布图如图1所示。

图1 载流圆线圈磁场分布图2 亥姆霍兹线圈的磁场分布本实验取:圆心处, m 100.0 ,A 400.0 ,4000===R I N 匝 'O 0=X ,图 3探测线圈在磁场可算得圆心O'处磁感应强度为: (T)1001.13−×=B (2)亥姆霍兹线圈(图23-2)两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距等于线圈半径时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这样的一对线圈称为亥姆霍兹线圈。

这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

a R2. 用电磁感应法测磁场的原理 设均匀交变磁场为(由通交变电流的线圈产生):t B B m sin ω= 磁场中一探测线圈的磁通量为: Φ=NSB m cosθsinωt ,式中:N为探测线圈的匝数,S 为该线圈的截面积,θ为B v与线圈法线夹角,如图23-3所示。

大学物理实验电磁感应法测交变磁场

大学物理实验电磁感应法测交变磁场

cos
U m ( mV )
max 2U m ( mV )
2.测量圆电流线圈轴线上磁场的分布 电路及参数同内容 1,以圆电流线圈中心为坐标原点,每隔 10.0mm 测一个
U max 值,数据计入表 2,在同一坐标纸上画出磁场分布的实验曲线与理论曲线。并
作出曲线图。 表 2 圆电流线圈轴线上磁场分布的数据记录 轴向距离 x (10 m)
2
0.0
1.0
2.0Βιβλιοθήκη 3.0...10.0
U max ( mV )
B m 0.103U max 10 3 (T)
B
0 N 0 I R 2
2( R 2 x 2 )3/2
(T )
测量过程中注意保持励磁电流值不变,并保证探测线圈法线方向与圆电流线圈 轴线的夹角为 0 。从理论上可知,如果转动探测线圈,当 0 和 180 时应 该得到两个相同的 U max 值,但实际测量时,这两个值往往不相等,这时就应该分 别测出这两个值,然后取其平均值作为对应点的磁场强度。 3.测量圆电流线圈沿径向的磁场分布 固定探测线圈法线方向与圆电流轴线的夹角为 0 ,转动探测线圈径向移动手 轮,每移动 10.0mm 测量一个数据,按正、负方测到边缘为止,记录数据,记入表 3,并作出磁场分布曲线图。 表 3 测量圆电流线圈沿径向的磁场分布 径向距离 x
以免连接错误,导致短路。 六、预习题 1.单线圈轴线上磁场的分布规律如何?亥姆霍兹线圈是怎样组成的?它的磁 场分布特点又怎样? 2. U max 和 max 物理意义是什么?它们有什么关系? 七、思考题 1. 探测线圈放入磁场后,不同方向上毫伏表指示值不同,哪个方向最大?如 何测准 U max 值? 2.分析圆电流磁场分布的理论值与实验值的误差的产生原因?

理解电磁感应和感应磁场

理解电磁感应和感应磁场
控制策略优化
采用先进的控制算法,如矢量控制、直接转矩控 制等,实现电机的高性能运行。
优化电机设计
通过改进电机结构、选用高性能材料等方式提高 电机效率、降低噪音和振动。
高效冷却技术
采用高效冷却技术,如液冷、风冷等,降低电机 温升,提高电机运行可靠性。
变压器设计原则及优化方法
变压器设计原则
变压器是利用电磁感应原理实现电压变换的装置。设计变 压器时需要遵循磁路平衡、电路平衡、绝缘可靠等原则, 确保变压器能够安全、稳定地工作。
等处理。
电磁制动
在轨道交通、电梯等领域中,利 用电磁感应原理实现制动功能,
提高安全性和稳定性。
传感器技术
利用电磁感应原理制作各种传感 器,如位移传感器、速度传感器 等,广泛应用于自动化控制和测
量领域。
04
电磁感应在工业生产中的应用
电机工作原理及性能提升途径
电机工作原理
电机是利用电磁感应原理将电能转换为机械能的 装置。当电机通电时,会在电机内部产生磁场, 这个磁场与电机中的导体相互作用,从而产生转 矩并驱动电机转动。
感应电流的效果总是反抗引起感应电 流的原因。
感应磁场方向与大小判断
右手定则
伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感 线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应 电流的方向。
楞次定律的应用
感应电流产生的磁场总是阻碍原磁通量的变化,根据原磁场的变化情况可以判 断出感应电流产生的磁场生它的磁通 量的变化。
法拉第电磁感应定律
感应电动势与磁通量的变化率成正比。
感应磁场与感应电流的关系
感应电流产生的磁场总是与原磁场方向相反 ,以抵抗原磁场的变化。

第10课 磁场、电磁感应 讲义

第10课  磁场、电磁感应 讲义

课题磁场电磁感应教学目标了解磁场、掌握电磁感应条件、电磁感应定律的计算重点、难点电磁感应定律的理解与运用教学内容一、磁场1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场. (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I 和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式 B=F/IL.单位T,1T=1N/(A·m). (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向. (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B 与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5★.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.★洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定..不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.★★★带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB ②周期公式: T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.*** 因洛仑兹力大小与v大小有关,所以一般不存在②中情况。

电磁感应法测交变磁场

电磁感应法测交变磁场

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场(FB511型霍尔法亥姆霍兹线圈磁场实验仪)在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍尔效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍霍尔效应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

【实验目的】1.了解用霍尔效应法测量磁场的原理,掌握511FB 型霍尔法亥姆霍兹线圈磁场实验仪的使用方法。

2.了解载流圆线圈的径向磁场分布情况。

3.测量载流圆线圈和亥姆霍兹线圈的轴线上的磁场分布。

4.两平行线圈的间距改变为R 2d 2/R d ==和时,测定其轴线上的磁场分布。

【实验原理】1.载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场一半径为R ,通以直流电流I 的圆线圈,其轴线上离圆线圈中心距离为X 米处的磁感应强度的表达式为:2/322200)X R (2R I N B +∙∙∙∙μ= (1)式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,,m /H 10470-⨯π=μ 磁场的分布图如图1所示,是一条单峰的关于Y 轴对称的曲线。

本实验取,m 100.0R ,A 400.0I ,400N 0===匝在圆心0X O ='处,可算得磁感应强度为 : T 100053.1B 3-⨯= (2)亥姆霍兹线圈两个完全相同的圆线圈彼此平行且共轴,通以同方向电流I ,线圈间距等于线圈半径R 时,从磁感应强度分布曲线可以看出,(理论计算也可以证明):两线圈合磁场在中心轴线上(两线圈圆心连线)附近较大范围内是均匀的,这样的一对线圈称为亥姆霍兹线圈,如图2所示。

从分布曲线可以看出,在两线圈中心连线一段,出现一个平台,这说明该处是匀强磁场,这种匀强磁场在科学实验中应用十分广泛。

比如,大家熟悉的显像管中的行偏转线圈和场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

2.利用霍尔效应测磁场的原理霍尔元件的作用如 图3所示.若电流I 流过厚度为d 的矩形半导体薄片,且磁场B 垂直作用于该半导体 , 由于洛伦兹力作用电流方向会发生改变,这一现象称为霍尔效应,在薄片两个横向面a 、b 之间产生的电势差称为霍尔电势。

大学物理实验电磁感应法测交变磁场资料

大学物理实验电磁感应法测交变磁场资料

大学物理实验电磁感应法测交变磁场资料大学物理实验中,电磁感应法是一种常用的测量交变磁场的方法。

以下是关于这种方法的一些基本资料。

电磁感应法是一种基于法拉第电磁感应定律的测量方法。

这个定律表明,当一个导体回路在变化的磁场中时,会在回路中产生感应电流。

这个感应电流的大小正比于磁场的强度和变化率。

因此,通过测量这个感应电流,就可以得出磁场强度和变化率的信息。

在大学物理实验中,通常使用电磁感应法来测量交变磁场。

具体实验过程如下:1.准备实验器材:一个线圈、一个交流电源、一个电流表、一个电压表、一个电阻箱、一个调压器、一对导线以及磁性材料或螺线管等交变磁场源。

2.将线圈绕在磁性材料或螺线管上,放置在交变磁场中。

3.将交流电源接入电路,使磁场源产生交变磁场。

4.使用电流表和电压表测量线圈中的感应电流和感应电动势。

5.根据法拉第电磁感应定律,可得出以下关系式:E=n(dΦ)/(dt)其中E为感应电动势,n为线圈匝数,Φ为磁通量,t为时间。

6.由于感应电流与感应电动势成正比,因此可以通过测量感应电流来得出磁场强度的变化率。

7.通过电阻箱和调压器调节磁场源的磁场强度,并记录不同磁场强度下的感应电流值。

8.根据实验数据绘制磁场强度变化率与感应电流关系的曲线图。

9.对实验数据进行处理和分析,得出实验结论。

在进行实验时,需要注意以下几点:1.线圈绕组应尽量均匀分布,以减小误差和提高测量精度。

2.测量时应尽量减小误差和干扰,如使用屏蔽线来减少外界磁场对测量的影响。

3.在测量过程中,应保证所有测量点的位置和测量条件的一致性,以便进行比较和分析。

4.实验过程中应注意安全操作,避免触电和烫伤等事故的发生。

通过电磁感应法测交变磁场实验,我们可以得出以下结论:1.交变磁场可以引起线圈中产生感应电流,并且感应电流的大小与磁场强度和变化率成正比。

2.通过测量线圈中的感应电流,可以得出磁场强度和变化率的信息,进一步了解交变磁场的变化规律和性质。

第7章 电磁感应与电磁场

第7章 电磁感应与电磁场

一、 动生电动势
动生电动势的非静电力——洛仑兹力 洛仑兹力 动生电动势的非静电力 取导线长dl 导体中载流子速度为u 取导线长 , 导体中载流子速度为
υ Fm
11
Fk = Fm = eυ × B Fm Ek = =υ × B e
d ε 动 = (υ × B ) ⋅ d l
ε = ∫ (υ × B ) ⋅ dl
1 ε i = − BωL2 2
15
二、感生电动势
由于磁场发生变化而激发的电动势
电磁感应
动生电动势 非静电力 洛仑兹力 感生电动势 非静电力 ?
实验表明,非静电力只能是磁场变化引起。 实验表明,非静电力只能是磁场变化引起。 磁场变化引起 而这种非静电力能对静止电荷 静止电荷有作用 而这种非静电力能对静止电荷有作用 因此,应是一种与电场力类似的力。 力,因此,应是一种与电场力类似的力。
1833年,楞次总结出: 年 楞次总结出: 闭合回路中感应电流的方向, 闭合回路中感应电流的方向,总是使得它所 激发的磁场来阻止或补偿引起感应电流的磁通量 的变化. 的变化 产生 感应电流 磁通量变化 a × × × × × 阻碍 产 生
× × × ×
f
× ×
×
× ×
×
×
×
υ
×
导线运动
感应电流
×
×
b
l
r
l
Er
∫ E涡 ⋅ dl = −∫
l
E涡dl cos 00 = −∫ ∫
∂B dS cos1800 S ∂t
∂B ⋅ dS S ∂t
∂B 2 E涡2πr = πr ∂t r ∂B E涡 = 2 ∂t
∂B ∵ >0 ∂t
∴ E涡与 l积分方向切向同向 积分方向切向同向

第01章电磁感应原理与磁路分析

第01章电磁感应原理与磁路分析
1)线性段。 如图1-7b中曲线2的O-a段,随着外磁场H的增 加,磁通密度B成正比的增加。此时B-H曲线近似为直线,铁磁材 料的磁导率基本不变,磁性材料工作在线性区;
-14-
第1章 电磁感应原理与磁路分析
2)饱和非线性段。如图1-7b中曲线2的b-c段,随着外磁场H 的增加,磁通密度B增大缓慢甚至基本不再增大, 这种现象称为 磁饱和。
图1-6 真空与非导磁材料的B-H曲线
-12-
第1章 电磁感应原理与磁路分析
2.导磁材料的磁导率 在导磁材料中,磁场强度H与磁通密度B的关系可表示为
B μ0 μr H
(1-8)
其中,r为导磁材料的相对磁导率。由于r 的值不是常数,因而
B与H之间的关系不是线性关系。这样,式(1-8)并没有实用价 值,而是用B-H曲线来表达它们之间的关系。
-13-
第1章 电磁感应原理与磁路分析
1.2.2 铁磁材料 为了提高材料的导磁能力,人们在寻求自然材料的同时,通
过人工合成的办法获得各种高导磁材料。铁磁材料(包括铁、钴、 镍以及它们的合金)具有比真空大数百倍到数千倍的磁导率,因 此常作为电机的磁性材料。铁磁材料的主要特性如下:
1. B-H曲线的饱和非线性 由于铁磁材料的磁化特性是非线性的, 通常用B-H曲线来表 示。图1-7a给出了几种典型铁磁材料的B-H曲线, 由此可见其特 性分为两段:
-19-
第1章 电磁感应原理与磁路分析
3.涡流特性及其损耗 对于硅钢片一类具有导电性的铁磁材料还有一个重要特性,
即在交变磁场的作用下,铁心中会出现涡流,并由此产生涡流损
耗。
如图1-10所示,由于铁心是 导电的,在交变磁通的作用下,
根据电磁感应定律,铁心中将产

实验四十五.

实验四十五.

实验四十五 用电磁感应法测磁场分布在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等。

本实验介绍电磁感应法测磁场的方法,它具有测量原理简单、测量方法简便及测试灵敏度较高等优点。

一 实 验 目 的(1)了解用电磁感应法测交变磁场的原理和一般方法,掌握FB-201型交变磁场实验仪及测试仪的使用方法。

(2)测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。

(3)了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。

(4)研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。

二 实 验 原 理1. 载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场一半径R,通以电流I 的圆线圈,轴线上磁场分布的公式为: 2/322200)(2X R IR N B +=μ (1)式中N 0为圆线圈的匝数,为轴上某一点到圆心X O ′的距离。

,H/m 10470−×=πμ它的分布图如图1所示。

图1 载流圆线圈磁场分布图2 亥姆霍兹线圈的磁场分布本实验取:圆心处, m 100.0 ,A 400.0 ,4000===R I N 匝 'O 0=X ,图 3探测线圈在磁场可算得圆心O'处磁感应强度为: (T)1001.13−×=B (2)亥姆霍兹线圈(图23-2)两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距等于线圈半径时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这样的一对线圈称为亥姆霍兹线圈。

这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

a R2. 用电磁感应法测磁场的原理 设均匀交变磁场为(由通交变电流的线圈产生):t B B m sin ω= 磁场中一探测线圈的磁通量为: Φ=NSB m cosθsinωt ,式中:N为探测线圈的匝数,S 为该线圈的截面积,θ为B v与线圈法线夹角,如图23-3所示。

磁场与电磁感应的磁感应定律

磁场与电磁感应的磁感应定律

磁场与电磁感应的磁感应定律磁场和电磁感应是物理学中两个重要的概念和现象。

磁场是由磁体产生的一种物质的特性,而电磁感应则是指当磁体或者导线在磁场中运动或改变时产生的电流或电动势。

磁感应定律是描述磁场中电磁感应现象的定律之一。

一、磁感应定律的提出磁感应定律是由英国科学家迈克尔·法拉第于1831年提出的。

法拉第发现,当导体相对于磁场运动或磁场相对于导体改变时,导体中会产生感应电流。

这一发现被称为法拉第电磁感应定律,也是磁感应定律的基础。

二、磁感应定律的表达式磁感应定律的表达式可以由法拉第电磁感应定律推导而来。

根据磁感应定律,感应电动势(ε)等于导体所在的磁场强度(B)和导体运动速度(v)的乘积,再乘以导体在磁场中的长度(l):ε = Bvl其中,ε表示感应电动势,B表示磁场强度,v表示导体的运动速度,l表示导体在磁场中的长度。

三、磁感应定律的应用磁感应定律在生活和科学研究中有着广泛的应用。

以下是一些常见的应用:1. 发电机原理:磁感应定律的应用之一是发电机的原理。

发电机利用导线在磁场中相对运动,产生感应电流,从而实现电能的转换和传输。

2. 变压器的工作:变压器是利用磁感应定律的另一个应用。

变压器通过在一组线圈中交变电流产生交变磁场,从而将电能从一个线圈传递到另一个线圈。

3. 感应加热:感应加热也是磁感应定律的应用之一。

通过在金属导体中产生感应电流,并利用感应电流产生的热能进行加热。

4. 电磁传感器:电磁感应定律的应用还包括电磁传感器。

电磁传感器可以通过感应电流或感应电动势来检测和测量磁场的强度、方向和变化。

四、磁感应定律的重要性磁感应定律是电磁学的基础之一,对于理解和应用电磁现象具有重要意义。

1. 为电磁感应现象提供了定量的表达方式,使我们能够准确地计算和预测电磁感应的效果。

2. 为发电机、变压器等电力设备的设计和工作原理提供了理论依据,推动了电力工业的发展。

3. 为电磁传感器和感应加热等技术的应用提供了基础,丰富了现代科学和工程技术的领域。

电磁感应法测交变磁场

电磁感应法测交变磁场

电磁感应法测交变磁场电磁感应法是一种常见的测量交变磁场的方法,其基本原理是:当一个导体在交变磁场中运动或被磁场穿过时,它内部将产生感应电动势,从而产生感应电流。

利用感应电流可以测量磁场的强度、方向和空间分布等信息。

本文将介绍电磁感应法测量交变磁场的基本原理、测量步骤和技术特点等内容。

电磁感应法是利用法拉第电磁感应定律来测量交变磁场的一种方法。

根据电磁感应定律,任何导体在磁场中运动或被穿过都会产生感应电动势。

这个电动势的大小与导体运动的速度、磁场的强度、导体的长度和方向有关。

当导体固定不动时,磁场的变化也可以引起导体内部的感应电流。

感应电流的大小取决于磁场的强度、导体的电阻和导体的形状等因素。

在测量交变磁场时,通常使用感应线圈或探头将感应电动势和感应电流转换为电信号,然后通过电路进行放大和信号处理,最终得到所需的测量结果。

1.选择合适的感应线圈或探头:根据不同的测量要求选择不同类型的感应线圈或探头。

常见的感应线圈包括光电式感应线圈、电阻式感应线圈等,探头包括霍尔元件、磁敏电阻等。

2.校准感应线圈或探头:通过一个已知的磁场源将感应线圈或探头放置在磁场中,标定测量系统的灵敏度和精度。

4.感应电动势转换为电信号:在感应线圈或探头中产生的感应电动势通过一个放大器或信号处理器被转换成电信号。

5.分析和处理电信号:可通过示波器、计算机等工具进行分析和处理电信号,以获得所需的测量结果。

1.灵敏度高:电磁感应法对交变磁场的变化非常敏感,可以检测微小的磁场变化。

2.可测量低频和高频磁场:电磁感应法可测量低频和高频磁场,适用于多种不同的测量需要。

3.适用于动态测量:电磁感应法可以对动态磁场进行测量,即磁场随时间变化的情况。

4.具有一定的空间分辨率:感应线圈或探头的布置位置和形状可以影响电磁感应法的空间分辨率。

总之,电磁感应法是一种可靠、灵敏、适用于动态测量,并且可以测量低频和高频磁场的技术手段。

在实际应用中,电磁感应法可以用于磁场分布、磁场强度、磁场方向等参数的测量和分析,具有广泛的应用前景和实用价值。

电磁感应现象课件

电磁感应现象课件
寿命。
广泛应用
电磁感应驱动技术可广泛应用于 电机、泵、阀门等设备的驱动和 控制,为工业生产提供强大的动
力支持。
06
电磁感应现象在其他领域的应 用
Chapter
电磁感应现象在军事领域的应用
电磁感应在武器制造中的应用
01
利用电磁感应原理制造的武器能够提高杀伤力和命中率,如电Fra bibliotek磁炮和电磁导弹。
电磁感应在军事通信中的应用
楞次定律
总结词:重要应用
详细描述:楞次定律是电磁感应现象的一个重要应用,它表述了感应电流的方向总是试图阻止产生它 的磁场变化。
电磁感应现象的微观解释
总结词:微观机制
详细描述:电磁感应现象的微观解释涉及到电子、光子等微观粒子的行为和相互作用,揭示了电磁感应的微观机制。
03
电磁感应现象的实验研究
Chapter
实验结果的分析与讨论
结果分析
根据实验数据,分析电磁感应现象的规律,如法拉第电磁感 应定律等。
结果讨论
对实验结果进行讨论,探讨电磁感应现象在生产和生活中的 应用,如发电机、变压器等。同时,也可以引导学生思考电 磁感应现象在其他领域的应用,如医学、军事等。
04
电磁感应现象在日常生活中的 应用
Chapter
19世纪初,英国物理学家迈克尔·法拉 第通过实验发现了电磁感应现象,为 电磁学的发展奠定了基础。
电磁感应现象的应用领域
无线电、电视、电脑等现代电子 设备中,电磁感应现象被广泛应 用于信号的传输和处理。
核磁共振成像技术利用电磁感应 原理检测人体内部结构,为医学 诊断提供重要手段。
电力工业 电子技术
磁悬浮技术 医疗领域
电磁感应现象的实验装置与操作方法

电磁感应原理

电磁感应原理
法拉第(Michael Faraday, 1791-1867),伟大的英国物理学 家和化学家.他创造性地提出场的 思想,磁场这一名称是法拉第最 早引入的.他是电磁理论的创始人 之一,于1831年发现电磁感应现 象,后又相继发现电解定律,物
质的抗磁性和顺磁性,以及光的 偏振面在磁场中的旋转.
静电场——相对于观察者静止的电荷激发的电场 稳恒磁场——电荷的定向移动所形成的。
b
vBdl
a
vB(ab) 2vBR2r2
方法二 :法拉第电磁感应定律
在 dt 时间内导体棒切割磁场线
dΦ2 R2r2drB
B
O
R

r dl
b
v a
i ddΦ t 2BR2r2d drt 2B vR 2r2
方向由楞次 定律确定

二i 、 感d 生d 电m 动 t势 d (B d S )t (B d d S ddtS Std d 0B )t
① 由电荷激发的静电场 ② 由变化的磁场激发的感生电场


E静
FqE静
激发 的源 不同
q
E静
E感

FqE感
dB

dt E感
不同点
场 的
1
s
E静dS0
qi(有源场)
s内
E感dS 0 (无源场)
s
性 质 不

E静dl 0 (保守场)
用 楞
B


I

v

S



N




B
I
N
S v
三 法拉第电磁感应定律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应法测交变磁场
在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍电磁感应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

一、实验目的
1.了解用电磁感应法测交变磁场的原理和一般方法,掌握201FB 型交变磁场实验仪及测试仪的使用方法。

2.测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。

3.了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。

4.研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。

二、实验仪器
FB201-Ⅰ型交变磁场实验仪,信号频率可调范围30~200Hz ,信号输出电流,单
个圆线圈可 900mA ≥ ,两个圆线圈串联400mA ≥。

亥姆霍兹线圈每个400匝,允许最大电流1A 。

三、实验原理
1.载流圆线圈与亥姆霍兹线圈的磁场:
(1)载流圆线圈中心轴线上的磁场分布:
一半径为R ,通以电流I 的圆线圈,轴线上磁场的公式为 :
2
/3222
00)(2X R R I N B +⋅⋅⋅=
μ (1)
式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,70410/,H m μπ-=⨯
磁场的分布图如图1所示。

本实验取匝400N 0=,A 400.0I =,m 107.0R =,圆心O '处0X =,可算得磁感应强度为:T 10940.0B 3-⨯= , T 10328.1B 2B 3m -⨯==
(2)亥姆霍兹线圈中心轴线上的磁场分布:
两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图2所示。

这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。

2.用电磁感应法测磁场的原理:
设均匀交变磁场为(由通交变电流的线圈产生) t B B m sin ω⋅= 磁场中一探测线圈的磁通量为
t B S N m sin cos ωθ⋅⋅⋅⋅=Φ
式中:N 为探测线圈的匝数,S 为该线圈的截面积,θ为B
与线圈法线夹角。

如图3所示。

线圈产生的感应电动势为
t B S N dt
d m cos cos ωθωε⋅⋅⋅⋅⋅=Φ
-
= t m cos ωε⋅-=
式中θωεcos ⋅⋅⋅⋅=m m B S N 是线圈法线和磁场成θ角时,感应电动势的幅值。


0=θ ,m B S N ⋅⋅⋅=ωεmax ,这时的感应电动势的幅值最大。

如果用数字式毫伏表测量
此时线圈的电动势,则毫伏表的示值(有效值)max U 应为
2
max
ε, 则
ω
ω
ε⋅⋅=
⋅⋅=
S N U S N B max
max
max 2 (2)
由(2)式可算出B 来。

3.探测线圈的设计:
实验中由于磁场的不均匀性,探测线圈又不可能做得很小,否则会影响测量灵敏度。

一般设计的线圈长度L 和外径
D 有D 3
2L =
的关系,线圈的内径d 与外径D 有3D d ≤的
关系(本实验选m 012.0D = ,800N =匝的线圈)。

线圈在磁场中的等效面积,经过理论计算,可用下式表示:
2108
13
D S ⋅=
π (3) 这样的线圈测得的平均磁感强度可以近似看成是线圈中心点的磁感应强度。

本实验励磁电流由专用的交变磁场测试仪提供,该仪器输出的交变电流的频率f 可以从
Hz 200~20之间连续调节,如选择Hz 50f = ,则:
1 100 2-⋅=⋅=S f ππω,
将D 、N 及ω值代人(2)式得
)T (10U 103.0B 3max m -⨯= (4)
四、实验内容
1.测量圆电流线圈轴线上磁场的分布:
按图5接好电路。

单个励磁线圈测量时,接线见图5(a),两个励磁线圈串联测量时,接线见图5(b),在单个励磁线圈测量完毕,接入串联方法时,应先切断电源,再连接导线,以免连接错误,导致短路。

调节交变磁场实验仪的输出功率,使励磁电流有效值为
A 400.0I = ,以圆电流线圈中心为坐标原点,每隔mm 0.10测一个max U 值,测量过程中
注意保持励磁电流值不变,并保证探测线圈法线方向与圆电流线圈轴线的夹角为︒0(从理论上可知,如果转动探测线圈,当︒=θ0和︒=θ180时应该得到两个相同的max U 值,但实际测量时,这两个值往往不相等,这时就应该分别测出这两个值,然后取其平均值作为对应点的磁场强度)。

同学们在做实验时,可以把探测线圈从︒=θ0转到︒=θ180,测量一组数据对比一下,正、反方向的测量误差如果不大于2%,则只做一个方向的数据即可,否则,应分别按正、反方向测量,再求算平均值作为测量结果 。

2.测量亥姆霍兹线圈轴线上磁场的分布:
把交变磁场实验仪的两组线圈串联起来(注意极性不要接反),接到交变磁场测试仪的输出端钮。

调节交变磁场测试仪的输出功率,使励磁电流有效值仍为A 400.0I =。

以两个圆线圈轴线上的中心点为坐标原点,每隔mm 0.10测一个max U 值。

3.测量圆电流线圈沿径向的磁场分布:
固定探测线圈法线方向与圆电流轴线的夹角为︒0,转动探测线圈径向移动手轮,每移动mm 0.10测量一个数据,按正、负方测到边缘为止,记录数据并作出磁场分布曲线图。

4.验证公式θωεcos ⋅⋅⋅⋅=m m B S N ,当m B S N ⋅⋅⋅ω不变时,m ε与θcos 成正比: 把探测线圈沿轴线固定在某一位置,让探测线圈法线方向与圆电流轴线的夹角从0︒开始,逐步旋转到90±︒,每改变10︒测一组数据。

5.研究励磁电流频率改变对磁场强度的影响:
把探测线圈固定在亥姆霍兹线圈中心点,其法线方向与圆电流轴线的夹角为0︒(注:亦可选取其他位置或其他方向),并保持不变。

调节磁场测试仪输出电流频率,在
20~150Hz 范围内,每次频率改变10Hz ,逐次测量感应电动势的数值并记录。

6.测量两线圈距离在不同位置时的磁场分布:
测试架左边的线圈固定不动,在进行两线圈距离为R/2和2R 实验时,先放松右边线圈内侧的两紧定螺钉,此时线圈的中心刻线应对着R/2和2R 处,然后拧紧紧定螺钉,可开始测量。

图5(a)测量单只线圈磁场分布接线图
图5(b)测量两只线圈串联后接线图
五、实验数据处理
1.圆电流线圈轴线上磁场分布的测量数据记录:
(注意坐标原点设在圆心处。

要求列表记录,表格中包括测点位置,数字式毫伏表读数以max U 换算得到的m B 值,并在表格中表示出各测点对应的理论值),在同一坐标纸上画出实验曲线与理论曲线。

表1 圆电流线圈轴线上磁场分布的数据记录
2.亥姆霍兹线圈轴线上的磁场分布的测量数据记录:
(注意坐标原点设在两个线圈圆心连线的中点0处),在方格坐标纸上画出实验曲线。

表2亥姆霍兹线圈轴线上的磁场分布的测量数据记录
3.测量圆电流线圈沿径向的磁场分布:
表3测量圆电流线圈沿径向的磁场分布
4.验证公式cos m NS B εωθ=,以角度为横坐标,以磁场强度m B 为纵坐标作图:
表4 探测线圈发现与磁场方向不同夹角数据记录
* 5.磁场电流频率改变对磁场的影响。

以频率为横坐标,磁场强度m B 为纵坐标作图,并对实验结果进行讨论。

表5 励磁电流频率变化对磁场的影响数据记录
* 6.改变两个线圈间距为d=R/2和d=2R,测量轴线上的磁场分布(以两线圈圆心连线中心为坐标原点):
表6 改变两圆线圈间距后轴线上磁场分布数据记录
1.单线圈轴线上磁场的分布规律如何?亥姆霍兹线圈是怎样组成的?其基本条件有哪些?它的磁场分布特点又怎样?
2.探测线圈的设计要解决哪些关键问题?
七、思考题
1.感应法测磁场为什么不用一般的电压表?
U值?
2.探测线圈放入磁场后,不同方向上毫伏表指示值不同,哪个方向最大?如何测准
max
指示值最小表示什么?
3.分析圆电流磁场分布的理论值与实验值的误差的产生原因?。

相关文档
最新文档