1.4全等三角形(浙教版)
专题1.4 全等三角形的性质【八大题型】(举一反三)(浙教版)(原卷版)
专题1.4 全等三角形的性质【八大题型】【浙教版】【题型1 全等图形的概念】 (1)【题型2 全等三角形的对应元素判断】 (2)【题型3 全等三角形的性质(求长度)】 (3)【题型4 全等三角形的性质(求角度)】 (4)【题型5 全等三角形的性质(判断结论)】 (5)【题型6 全等三角形的性质(探究角度之间的关系)】 (6)【题型7 全等三角形的性质(动点问题)】 (7)【题型8 全等三角形的性质(证明题)】 (8)【题型1 全等图形的概念】【例1】(2022春•偃师市期末)下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【变式1-1】(2021秋•思南县期中)有下列说法,其中正确的有()①两个等边三角形一定能完全重合;②如果两个图形是全等图形,那么它们的形状和大小一定相同;③两个等腰三角形一定是全等图形;④面积相等的两个图形一定是全等图形.A.1个B.2个C.3个D.4个【变式1-2】(2021秋•蔡甸区期中)如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤【变式1-3】(2021春•宁德期末)在如图所示的网格图中,每个小正方形的边长都为1.沿着图中的虚线,可以将该图形分割成2个全等的图形.在所有的分割方案中,最长分割线的长度等于.【题型2 全等三角形的对应元素判断】【例2】(2021秋•南沙区期末)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.115°B.65°C.40°D.25°【变式2-1】(2021秋•大连期中)如图,△ABN≌△ACM,∠B和∠C是对应角,AB和AC是对应边,其它对应边及对应角正确的是()A.∠ANB和∠AMC是对应角B.∠BAN和∠CAB是对应角C.AM和BM是对应边D.BN和CN是对应边【变式2-2】(2021春•泰兴市期末)边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为奇数,则DF的值为()A.3B.4C.3或5D.3或4或5【变式2-3】(2021秋•鲁甸县期末)如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x ﹣2,2y﹣1,若这两个三角形全等,则x+y=.【题型3 全等三角形的性质(求长度)】【例3】(2021秋•青田县期末)如图,已知△ABC≌△DEF,B,E,C,F在同一条直线上.若BF=8cm,BE=2cm,则CE的长度()cm.A.5B.4C.3D.2【变式3-1】(2022秋•巴南区期末)如图,△ABC≌△BDE,AB⊥BD,AB=BD,AC=4,DE=3,CE的长为()A.1B.2C.3D.4【变式3-2】(2020秋•永嘉县校级期末)如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为()A.4B.5C.6D.7【变式3-3】(2021春•沙坪坝区期末)如图,△ABC中,点D、点E分别在边AB、BC上,连结AE、DE,若△ADE≌△BDE,AC:AB:BC=2:3:4,且△ABC的周长比△AEC的周长大6.则△AEC的周长为.【题型4 全等三角形的性质(求角度)】【例4】(2022春•鼓楼区校级期末)如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC 于点D,∠B=27°,∠CDB′=98°,则∠C′的度数为()A.60°B.45°C.43°D.34°【变式4-1】(2021秋•民权县期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为()A.84°B.60°C.48°D.43°【变式4-2】(2021秋•招远市期中)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=56°,则∠CAF的度数为()A.36°B.24°C.56°D.34°【变式4-3】(2022春•武侯区期末)如图,在△ABC中,在边BC上取一点D,连接AD,在边AD上取一点E,连接CE.若△ADB≌△CDE,∠BAD=α,则∠ACE的度数为()A.αB.α﹣45°C.45°﹣αD.90°﹣α【题型5 全等三角形的性质(判断结论)】【例5】(2022•龙岗区模拟)如图,△ABC≌△A′B′C,且点B′在AB边上,点A′恰好在BC的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【变式5-1】(2021春•海口期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【变式5-2】(2021秋•新乐市期末)如图,△ABD≌△EBC,AB=12,BC=5,A,B,C三点共线,则下列结论中:①CD⊥AE;②AD⊥CE;③∠EAD=∠ECD;正确的是【变式5-3】(2021秋•五常市期末)如图,点E是CD上的一点,Rt△ACD≌Rt△EBC,则下结论:①AC=BC,②AD∥BE,③∠ACB=90°,④AD+DE=BE,成立的有个.【题型6 全等三角形的性质(探究角度之间的关系)】【例6】(2022•长春二模)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD =α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°【变式6-1】(2021秋•林州市期末)如图,点D,E,F分别在△ABC的边AB,BC,CA上(不与顶点重合),设∠BAC=α,∠FED=θ.若△BED≌△CFE,则α,θ满足的关系是()A.α+θ=90°B.α+2θ=180°C.α﹣θ=90°D.2α+θ=180°【变式6-2】(2022春•徐汇区校级期末)如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:4【变式6-3】(2022•定远县模拟)如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=α,∠BFC=β,则()A.2α+β=180°B.2β﹣α=145°C.α+β=135°D.β﹣α=60°【题型7 全等三角形的性质(动点问题)】【例7】(2021秋•柘城县期中)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC 与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【变式7-1】(2021春•浦东新区校级期末)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D 为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5B.3C.2.25或3D.1或5【变式7-2】(2021春•和平区期末)如图,CA⊥AB于点A,AB=8,AC=4,射线BM⊥AB于点B,一动点E从A点出发以2个单位/秒沿射线AB运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,若点E经过t秒(t>0),△DEB与△BCA全等,则t的值为秒.【变式7-3】(2021春•高新区期末)如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E、作QF⊥l于F,当点P运动秒时,以P、E、C为顶点的三角形和以Q、F、C为顶点的三角形全等.【题型8 全等三角形的性质(证明题)】【例8】(2021秋•大化县期中)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.【变式8-1】(2021秋•海淀区校级期中)如图,A,E,C三点在同一直线上,且△ABC≌△DAE.(1)线段DE,CE,BC有怎样的数量关系?请说明理由.(2)请你猜想△ADE满足什么条件时,DE∥BC,并证明.【变式8-2】(2021秋•灌云县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【变式8-3】(2021秋•定远县校级期中)如图所示,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.(1)求证:CD⊥AB;(2)求∠B的度数;(3)求证:EF∥AC.。
全等三角形 浙教版
F
例题讲解,掌握新知
例1:如图, △ABC≌△DCB, 指出所有的对应边和对应角。
B C
A
O
D
解:∵△ABC≌△DCB
∴AB与DC,BC与CB,AC与BD是对应边 ∠A与∠ D,∠ABC与∠DCB,∠ACB与∠DBC是对应角
变式:若上图中△ABO≌△DCO,试写出这两个三角形中 相等的边和相等的角。 解:∵△ABO≌△DCO ∴AB=DC,BO=CO,AO=DO ∠A=∠ D,∠ABO=∠DCO,∠AOB=∠DOC
两个全等三角形的长边与长边,短边与短边分别是对应边,大 角与大角,小角与小角分别是对应角。
全等三角形的性质: 全等三角形的对应边相等,对应角相等。
A D
B
CE 如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF 全等三角形的对应边相等) ( ∴∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
全等三角形
能够完全重合的两个图形叫做全等形
宜春体育中心
宜春体育中心
一个图形在位置发生变化后所得到的图形 与原图形有什么关系?
§1.4 全等三角形
A D ) (
B
CE ) (
( F )
定义:能够完全重合的两个三角形叫全等三角形。
把两个全等的三角形重合到一起,重合的顶点叫做对 重合的角叫做对应角。 重合的边叫做对应边, 应顶点, “全等”用符号“≌”表示,读作“全等于” 如上图:△ ABC全等于△DEF记作:△ ABC ≌ △DEF (注意:书写时应把对应顶点写在相对应的位置上)
1、你理解了全等三角形的定义吗? 2、你掌握了全等三角形的性质吗? 3、你学会了找全等三角形的对应边、对应角吗?
收 获
浙教版初中数学八年级上册 1.4 全等三角形 课件
C.3 D.2
7.(4分)如图所示,△ABC≌△CDA,并且AB=CD,那 么下列结论错误的是( D )
A.∠1=∠2
B.CA=AC
C.∠D=∠B
D.AB=BC
8.(4分)若△ABC≌△DEF,A与D,B与E分别是对应顶 点,∠A=52°,∠B=67°,BC=15 cm,则∠F=____6度1 , EF=___1_5cm.
17.(10分)如图,△ABC≌△DEF,AB=DE,∠A=∠D,
说出图中所有相等的线段和角.
解:对应边相等:AB=DE,AC=DF,BC=EF. 间接相等:BE=BC-EC=EF-EC=CF. 对应角相等:∠A=∠D,∠B=∠DEF, ∠ACB=∠F 对顶角相等:∠AOE=∠DOC,∠AOD=∠EOC. 由平行线得角相等:∠A=∠EOC=∠D=∠AOD
12.(4分)如图所示,在△ABC中,D,E分别是边AC, BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( D )
A.15° B.20° C.25° D.30°
13.(4分)如图,若△OAD≌△OBC,且∠O=65°,∠C= 20°,则∠OAD=____.95°
第12题图
18.(10分)如图,已知△ADE≌△ACB,∠EAC=10°,∠B =25°,∠BAD=120°,求∠DAE、∠C的度数.
解:∠DAE=55°,∠C=100°
若相等请证明,若不相等请说明理由.
解:相等,证明:∵△ABC≌△EBD, ∴∠A=∠E. 在△AOF和△EOB中, ∠A+∠AOF+∠1=180° ∠E+∠EOB+∠2=180°. ∴∠1=180°-∠A-∠AOF, ∠2=180°-∠E-∠EOB. 又∵∠A=∠E, ∠AOF=∠EOB, ∴∠1=∠2
浙教版七年级下1.4《全等三角形》【最新】
12
D
B
C
h
11
本节课你学到了哪些知识? 你知道全等三角形有哪些性质吗? 你还想了解关于全等三角形的哪些知识?
h
12
ABC DEh F
7
练一练:
A
1、已知:
ABD≌ CDB B
请找出右图中对应的边
答案:(AB=CD,AD=CB,BD=DB)
A
D C
2、已知:
ABC≌ AED
D
C
请找出右图中对应的角
B
E
答案: A A , B E , AD A ECB
h
8
3、已知:
ABC≌ DCE
请找出图中对应的顶点
bc与efca与fd3互相重合的角叫对应角如abcdef拿出两个全等的三角形摆一摆它们的位置使其符合下列图形
h
1
下列同一类的图形有什么特点?
能够完全重合的两个图 形叫做全等形
h
2
观察下面两组图形,它们是不是全等图形?为什 么?与同伴进行交流。
(1)
(2)
h
3
A
AD
AB与 CDE全 F 等
B
C
B
C
E
F
记作:“ ABC≌ DEF”
1、互相重合的顶点叫对应顶点,如A与D 请指出其他的对应顶点:B与E、C与F
2、互相重合的边叫对应边,AB边与DE 请指出其他的对应边:BC与EF,CA与FD
3、互相重合的角叫对应角,如A与D
请指出其他的对应角: B h与 E , C 与 4 F
拿出两个全等的三角形,摆一摆它 们的位置,使其符合下列图形;并指出 它们的对应顶点、对应边、对应角。
答案(A与D,B与C,C与E)
八年级数学上册(1.4 全等三角形)教案 浙教版 教案
全等三角形教学目标:1、通过操作活动理解全等三角形的概念。
2、掌握全等三角形的记法、符号的意义,读法及全等三角形的性质。
3、通过操作活动,使学生能较好掌握全等三角形的对应顶点,对应角和对应边。
并培养学生的动手能力,发散思维能力及小组合作精神。
4、学会找全等三角形,设计全等三角形,培养观察能力和创造能力。
教学重点:全等三角形的性质教学难点:运用全等三角形的性质进行有关边、角的计算教学过程:一、温故,引入新课:看一看:(考考你的眼力):下图中的两副图片全等吗?(1)两X照片(2)飞机模型(3)两个略有不同的商标。
(4)两个三角形(位置不同)二、概念教学:1、让学生猜想,剪纸验证。
让学生探究后,教师讲授:能完全重合的三角形叫全等三角形,(黑板上另外画出全等三角形)。
记做:ΔABC≌ΔDEF,“≌”表示形状相同,大小相等,读作:三角形ABC全等于三角形DEF。
(5分)说一说:2、(课件中的两个三角形都标上字母)AB=7,BC=5,∠ABC=45°,∠BCA=70°,你能求出DE、EF的长及∠DEF、∠EDF的度数吗?为什么?由此,你能总结出什么规律来吗?获得了什么经验?学生回答后,教师板书:全等三角形对应边相等,对应角相等。
学生回答为什么后,教师讲授:(1)、能完全重合的顶点叫对应顶点,对应顶点有:点A与点E,点B与点F,点C与点F。
(2)、能完全重合的边叫对应边:对应边有AB与DE,BC与EF,AC与DF,注意:相对应的字母应写在相对应的位置上。
(3)、能完全重合的角叫对应角,对应角有:∠ABC与∠DEF,∠BCA与∠EFD,∠CAB与∠FDE(板书)。
注意:在平时的书写过程中,通常把表示对应顶点的字母写在相对应的位置上。
反过来,这种标记相等的方法,可以帮助我们分析图形。
(5分)三、巩固练习:3、请大家一起来看一些我们平时喜欢的一些玩具:找一找:A 风车,用七巧板拼成的船。
请你在图中找出两对全等的三角形,并指出其中的对应角和对应边。
1.4 全等三角形八年级上册数学浙教版
B
选项
是不是全等图形
理由
不是
大小不相同,不能完全重合.
是
能够完全重合.
不是
形状不相同,不能完全重合.
不是
形状不相同,不能完全重合.
[解析]
知识点2 全等三角形的有关概念 重点
1.全等ቤተ መጻሕፍቲ ባይዱ角形的概念及表示方法
定义
能够重合的两个三角形叫做全等三角形.
对应元素
对应顶点
两个三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点.
和 , 和 , 和 .
对应元素
对应边
两个三角形重合时,互相重合的边叫做全等三角形的对应边.
和 , 和 , 和 .
第1章 三角形的初步知识
1.4 全等三角形
学习目标
1.了解全等图形的概念,并能运用其判断两个图形是不是全等图形.
2.理解全等三角形的概念,并能正确地找出全等三角形中的对应边、对应角.
3.理解全等三角形的对应边相等,对应角相等.
4.能利用全等三角形的性质进行简单的推理和计算,解决简单的实际问题.
知识点1 全等图形
1.定义:能够重合的两个图形称为全等图形.注意 两个图形是否为全等图形与图形的位置无关,唯一的标准是能够完全重合.
2.特点:全等图形的形状和大小都相同.
典例1 (原创题)下列各组图形中,是全等图形的是( )
A. B.
1679年,德国数学家莱布尼兹用“ ”表示全等
2.确定全等三角形对应元素的方法:
(1)图形特征法:①最长边对最长边,最短边对最短边.②最大角对最大角,最小角对最小角.
(2)位置关系法:①公共角(对顶角)为对应角,公共边为对应边.②对应角的对边为对应边,两个对应角所夹的边是对应边.③对应边的对角为对应角,两条对应边所夹的角是对应角.
浙教版数学八年级上册 1.4全等三角形
B D
E C
找出下列全等三角形的对应边、对应角
△ADE≌△CBF
A
E
B
D
F
C
找出下列全等三角形的对应边、对应角 A △△AABBNM≌≌△△AACCMN
B
M
N
C
找出下列全等三角形的对应边、对应角
A
D △AOB≌△DOC
△ABC≌△DCB
O
B
C
如图, △ABD ≌ △EBC
1、请找出对应边和对应角。
1、能够完全重合的两个三角形,叫全等三角形
A
D
B
CE
F
2、把对对两应应个角边三是是角∠A形AB重和和合∠DE到D,,一起.
重合∠A的BC和顶和∠点DFE叫,,∠做BC对C和和应∠E顶F点; ,
重对合应的顶边点叫是做点对A应和边点,D,
重点合B的和角点叫E,做点对C应和角点。F;
A
D
B
CE
F
“全你等能”否用直符号接“从≌记”作表示
AB 与 EB、BC BD、AD EC,
C
∠A ∠BEC、∠D ∠C、∠ABD ∠EBC
2、如果AB=3cm,BC=5cm,
求BE、BD的长.
DE
B
解:∵△ABD ≌ △EBC
∴AB=EB,BC=BD
A
∵AB=3cm,BC=5cm
∴BE=3cm,BD=5cm
如图, △EFG≌△NMH
E H
M
F
G
1、请找出对应边和对应角。
A
C
规律二:有对顶角的,对顶角是对应角
先写出全等式,再指出它 A 们的对应边和对应角
E
C
∵△ABC≌△ADE
浙教版数学八年级上册《1.4 全等三角形》教案4
浙教版数学八年级上册《1.4 全等三角形》教案4一. 教材分析《1.4 全等三角形》是浙教版数学八年级上册的教学内容,本节内容主要让学生了解全等三角形的概念,掌握全等三角形的性质和判定方法,并能够运用全等三角形的性质解决实际问题。
全等三角形是初中数学中的重要概念,也是后续学习几何知识的基础。
通过本节内容的学习,学生能够进一步理解数学的逻辑性和严谨性。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本知识,如三角形的性质、分类等。
但全等三角形的概念和性质较为抽象,学生可能难以理解和掌握。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例和丰富的教学手段,帮助学生理解和掌握全等三角形的知识。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.能够运用全等三角形的性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.全等三角形的概念和性质的理解。
2.全等三角形的判定方法的掌握。
3.运用全等三角形的性质解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究全等三角形的性质和判定方法。
2.利用多媒体辅助教学,展示生动形象的实例,帮助学生理解和掌握全等三角形的知识。
3.采用小组合作学习,让学生在讨论和交流中巩固全等三角形的知识。
4.运用例题讲解和练习,提高学生运用全等三角形解决实际问题的能力。
六. 教学准备1.多媒体教学设备。
2.全等三角形的PPT课件。
3.练习题和测试题。
4.三角板和剪刀等教具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生思考:这些三角形有什么共同的特点?你能从中找出全等的三角形吗?从而引出全等三角形的概念。
2.呈现(10分钟)讲解全等三角形的定义和性质,让学生通过观察和操作,理解全等三角形的概念。
同时,引导学生发现全等三角形的判定方法。
3.操练(10分钟)让学生分组讨论,每组找出一些全等的三角形,并说明判定方法。
1.4全等三角形-浙教版八年级数学上册教案
1.4 全等三角形-浙教版八年级数学上册教案一、教学目标1.了解全等三角形的概念和性质;2.掌握全等三角形的证明方法;3.能够运用全等三角形作证明。
二、教学重点1.全等三角形的概念和性质;2.全等三角形的证明方法。
三、教学难点1.全等三角形的证明方法;2.能够应用全等三角形进行证明。
四、教学方法1.讲授法;2.示例法;3.案例分析法。
五、教学过程1. 概念和性质1.引入全等三角形的概念;2.介绍全等三角形的性质(边角对应相等、角对应相等、边对应相等可以推出全等);3.展示全等三角形的几何意义,描绘全等三角形的图形。
2. 全等三角形的证明方法1.在ABCDE五个点中,给出三条边分别为AB、BC、AC的三角形ABC和ADE,让学生求证当AE=AB,DE=BC时,∠DAE=∠ABC,并写出证明过程;2.在右边的图形中,给出两条边分别为AB、AC的三角形ABC和ADE,让学生分析余下的两条边DE和BC是否相等,并作证明;3.在三点共线情况下,给定等边三角形ABC和DEF,即AB=AC, DE=DF,且∠FDE=∠CAB,让学生证明EC=FB,并写出证明过程。
3. 全等三角形的应用1.提出一个具体问题,例如:在图形中,∠E=∠H,AD ⊥ EF,DE ⊥ AC,垂足分别为B、G,证明BE=GH;2.让学生分析该问题的条件,根据条件找出相应的几何关系,运用全等三角形作出正确证明。
六、教学评价1.能够正确引导学生掌握全等三角形的概念和性质;2.能够指导学生学会全等三角形的证明方法;3.能够指导学生运用全等三角形作证明;4.评价学生的课堂表现和课后作业完成情况。
浙教版初中数学八年级上册 1.4 全等三角形 教案
1.4全等三角形【教学目标】1.知识与技能:了解全等图形的概念;会用全等图形的定义判断两个图形是否全等,了解全等三角形的概念,理解全等三角形的性质。
2.过程与方法:借助具体情境,通过观察、实际操作等学习方法,发展学生的识图、推理和有条理地表述问题的能力。
3.情感、态度和价值观:从生活中具体情境抽象出全等图形的概念,从而培养学生用数学的观点考察周围事物的习惯,激发学生学习数学的兴趣。
【重点和难点】1.重点:全等三角形的概念和全等三角形的性质。
2.难点:用全等三角形的定义判断两个三角形全等:应用全等三角形的性质进行简单的推理,解决实际问题。
【教学设计】【创设情景】观察下列图形,你发现了什么?如果把每一对中的两个图形叠在一起,它们能重合吗?【探究新知】能够的两个图形称为图形。
【练一练】下列各对图形是不是全等图形?为什么?(1)边长为5cm的两个正方形。
(2)三个角都为30°,60°,90°的两个三角形。
(2)半径相等的两个圆。
【创设情境】如图△ABC和△DEF是全等图形吗?你是怎么知道的?A EFBD图(1)C图形2D C B A 图形3F E D C B A 图形421DC B AC B 【探究新知】能够重合的两个三角形叫做 。
两个全等三角形重合时,能互相重合的顶点叫做全等三角形的 ,互相重合的边叫做全等三角形的 ,互相重合的角叫做全等三角形的 。
如上图,△ABC 和△DEF 全等,点A 和 , 和点E ,点C 和 分别是对应顶点;AB 和 , 和EF , 和DF 分别是对应边;∠A 和∠D , 和 ,∠C 和 分别是对应角。
“全等”可用符号“≌”来表示,如△ABC 和△DEF 全等,记做“△ABC △DEF ”,读做 “三角形ABC 全等于三角形DEF ”。
【注】表示两个三角形全等时,通常把对应顶点的字母写在对应位置上。
【练一练】如图2中的两个三角形全等,AB 和DC ,AC 和DB 是对应边, 用符号表示这两个三角形全等:△ABC ≌△ ,还有一组对应边是 和 ,对应角是∠BAC 和 ,∠ABC 和 ,∠ACB 和 。
1.4全等三角形课件(浙教版)
B O
C
2、若△ABC≌△CDA,对应
A
D
边是 ,对应角是
;
B
C
找一找:请指出下列全等三角形的对应边和对应角
1、 △ ABE ≌ △ ACF
对应角是: ∠A和∠A、 ∠ABE和 ∠ACF、 ∠AEB和∠AFC;对应边 是AB和AC、AE和AF、BE和CF。
2、 △ BCE ≌ △ CBF
对应角是: ∠BCE和 ∠CBF、 ∠BEC和∠CFB、 ∠CBE和 ∠BCF。对应边是:CB和BC、 CE和BF、CF和BE。
同学们,通过这节课你自己的 努力,你获得了全等三角形的那些 知全等图形. 全等图形的形状和大小完全相同.
形状相同,但大小不同, 因此它们不是全等图形.
两个能够重合的三角形叫做 全等三角形.
它们会全等吗?
C A
D
F E B △ABC≌△DEF
全等可用符号“≌”来表示
△ABC≌△DEF
D C
F B
A
E
两个全等三角形重合时,能互相重合的顶点叫
做全等三角形的对应顶点
能互相重合的边叫做全等三角形的对应边
能互相重合的角叫做全等三角形的对应角
△AOC≌△BOD
D
B
1.对应边是 OA与OB ,
OC与OD, AC与BD .
2.∠AOC的对应角
O
是 ∠BOD .
3.∠A的对应角 是 ∠B .
A
C
A
1、若△AOC≌△BOD,对应 边是 ,对应角是 ;
从以上你能总结出找全等三角 形的对应边,对应角的规律吗?
A
D
B
CE
F
全等三角形的对应边相等, 对应角相等.
浙教版八上第一章1.4全等三角形的判定
1.4 全等三角形的判定知识点梳理1、全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.2、线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.题型梳理题型一找条件证全等1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙7.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.9.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC10.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC11.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF12.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)14.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC (不添加其他字母及辅助线),你添加的条件是.16.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB =DC,其中不能确定△ABC≌△DCB的是(只填序号).17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).题型二直接证明全等1.如图,已知AB=DE,∠B=∠E,添加下列哪个条件可以利用SAS判断△ABC≌△DEC.正确的是:.①∠A=∠D;②BC=EC;③AC=DC;④∠BCE=∠ACD.2.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)3.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC ≌△DEF.4.如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.5.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.7.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.8.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.9.如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF,求证:△ADE ≌△CFE.题型三动点与全等(分类讨论,找到对应定点)1.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.2.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为.3.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E 从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.4.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.5.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 秒时,△ABP 和△DCE 全等.6.(多选)如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为 cm /s .A .13;B .1;C .1.5;D .2.7.如图,△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,直线l 经过点C 且与边AB 相交.动点P 从点A 出发沿A →C →B 路径向终点B 运动;动点Q 从点B 出发沿B →C →A 路径向终点A 运动.点P 和点Q 的速度分别为2cm /s 和3cm /s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PE ⊥l 于点E ,QF ⊥l 于点F ,设运动时间为t 秒,则当t = 秒时,△PEC 与△QFC 全等.8.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D 运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.9.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB 上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).题型四全等判定的实际应用1.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去2.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块5.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS6.如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.④7.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ8.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA9.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.12.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第块去.(填序号)13.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.14.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.15.如图所示,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带.16.淇淇同学沿一段笔直的人行道行走,在由A处步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.17.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?题型五垂直平分线的性质与应用1.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm2.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°3.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°4.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°5.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°8.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.9.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.10.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为.答案与解析题型一找条件证全等1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D .3.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【解答】解:∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC =EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB =∠F ,利用AAS 可得△ABC ≌△DEF ;故选:D .4.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD【分析】根据全等三角形的判定:SAS ,AAS ,ASA ,可得答案.【解答】解:由题意,得∠ABC =∠BAD ,AB =BA ,A 、∠ABC =∠BAD ,AB =BA ,AC =BD ,(SSA )三角形不全等,故A 错误;B 、在△ABC 与△BAD 中,{∠ABC =∠BADAB =BA ∠CAB =∠DBA,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,{∠C =∠D∠ABC =∠BAD AB =BA,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,{BC =AD∠ABC =∠BAD AB =BA,△ABC ≌△BAD (SAS ),故D 正确;故选:A .5.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.7.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.9.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.10.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.11.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF【分析】分别对各选项中给出条件证明△ABC≌△DEF,进行一一验证即可解题.【解答】解:(1)在△ABC 和△DEF 中,{AB =DE ∠B =∠E BC =EF,∴△ABC ≌△DEF (SAS );故A 正确;(2)在△ABC 和△DEF 中,{AB =DE BC =EF AC =DF,∴△ABC ≌△DEF (SSS );故B 正确;(3)在△ABC 和△DEF 中,{∠A =∠D AB =DE ∠B =∠E,∴△ABC ≌△DEF (ASA );故C 正确;(4)无法证明△ABC ≌△DEF ,故D 错误;故选:D .12.如图,EB 交AC 于点M ,交FC 于点D ,AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:其中正确的结论有( )①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN ;⑤△AFN ≌△AEM .A .2个B .3个C .4个D .5个【分析】①正确.可以证明△ABE ≌△ACF 可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA 证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE﹣∠BAC=∠CAF﹣∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF.(只填一个即可)【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC =∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,{∠B =∠E BA =ED,∴△ABC ≌△DEF (SAS );若添加∠BAC =∠EDF ,∵BC ∥EF ,∴∠B =∠E ,∵BD =AE ,∴BD ﹣AD =AE ﹣AD ,即BA =ED ,在△ABC 和△DEF 中,{∠B =∠E BA =ED ∠BAC =∠EDF,∴△ABC ≌△DEF (ASA ),故答案为:BC =EF 或∠BAC =∠EDF14.如图,已知AB =BC ,要使△ABD ≌△CBD ,还需添加一个条件,你添加的条件是 ∠ABD =∠CBD 或AD =CD . .(只需写一个,不添加辅助线)【分析】由已知AB =BC ,及公共边BD =BD ,可知要使△ABD ≌△CBD ,已经具备了两个S 了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS ,②SSS .所以可添∠ABD =∠CBD 或AD =CD .【解答】解:答案不唯一.①∠ABD =∠CBD .在△ABD 和△CBD 中,∵{AB =BC∠ABD =∠CBD BD =BD,∴△ABD ≌△CBD (SAS );②AD =CD .在△ABD 和△CBD 中,∵{BD=BDAD=CD,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.15.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC (不添加其他字母及辅助线),你添加的条件是AC=BC(答案不唯一).【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC(答案不唯一),∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,在△ADC和△BEC中{∠ADC=∠BEC ∠C=∠CAC=BC,∴△ADC≌△BEC(AAS),故答案为:AC=BC(答案不唯一).16.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB =DC,其中不能确定△ABC≌△DCB的是②(只填序号).【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【解答】解:∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A=∠D,则可由AAS判定△ABC≌△DCB;若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.故答案为:②.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.题型二直接证明全等1.如图,已知AB=DE,∠B=∠E,添加下列哪个条件可以利用SAS判断△ABC≌△DEC.正确的是:②.①∠A=∠D;②BC=EC;③AC=DC;④∠BCE=∠ACD.【分析】已知两个三角形的一组对应角相等和一组对应边相等,根据全等三角形的判定定理添加条件即可.【解答】解:∵AB=DE,∠B=∠E,∴添加①∠A=∠D,利用ASA得出△ABC≌△DEC;∴添加②BC=EC,利用SAS得出△ABC≌△DEC;∴添加④∠BCE=∠ACD,得出∠ACB=∠DCE,利用AAS得出△ABC≌△DEC;故答案为:②.2.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC =∠DCB ,BC =CB ,①AB =CD ,根据SAS 可以判定△ABC ≌△DCB .②AC =DB ,无法判断△ABC ≌△DCB .③∠A =∠D ,根据AAS 可以判定△ABC ≌△DCB .④∠ACB =∠DBC ,根据ASA 可以判定△ABC ≌△DCB .故答案为:①③④.3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .【分析】先根据AF =DC ,可推得AF ﹣CF =DC ﹣CF ,即AC =DF ;再根据已知AB =DE ,BC =EF ,根据全等三角形全等的判定定理SSS ,即可证明△ABC ≌△DEF .【解答】证明:∵AF =DC ,∴AF ﹣CF =DC ﹣CF ,即AC =DF ,在△ABC 和△DEF 中,{AC =DF AB =DE BC =EF,∴△ABC ≌△DEF (SSS ).4.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .【分析】先利用三角形外角性质证明∠ADE =∠B ,然后根据“AAS ”判断△ABC ≌△ADE .【解答】证明:∵∠ADC =∠1+∠B ,即∠ADE +∠2=∠1+∠B ,而∠1=∠2,∴∠ADE =∠B ,在△ABC 和△ADE 中,{∠C =∠E ∠B =∠ADE AC =AE∴△ABC ≌△ADE (AAS ).5.已知,如图,AB =AE ,AB ∥DE ,∠ECB =70°,∠D =110°,求证:△ABC ≌△EAD .【分析】由∠ECB =70°得∠ACB =110°,再由AB ∥DE ,证得∠CAB =∠E ,再结合已知条件AB =AE ,可利用AAS 证得△ABC ≌△EAD .【解答】证明:由∠ECB =70°得∠ACB =110°又∵∠D =110°∴∠ACB =∠D∵AB ∥DE∴∠CAB =∠E在△ABC 和△EAD 中,{∠CAB=∠EAB=AE,∴△ABC≌△EAD(AAS).6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCE ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).7.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.【分析】先利用平行线的性质得到∠A=∠C,再证明AF=CE,然后根据“ASA”可判断△ADF≌△CBE.【解答】证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中{AF =CE ∠1=∠2,∴△ADF ≌△CBE (ASA ).8.如图,AB =DE ,AC =DF ,BE =CF ,求证:△ABC ≌△DEF .【分析】由BE =CF 知BC =EF ,结合AB =DE 、AC =DF ,利用“SSS ”即可得证.【解答】解:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,∵{AB =DE(已知)AC =DF(已知)BC =EF (已证), ∴△ABC ≌△DEF (SSS ).9.如图,已知AB ∥CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .【分析】根据全等三角形的判定解答即可.【解答】证明:∵AB =BD +CF ,又∵AB =BD +AD ,∴CF =AD∵AB ∥CF ,∴∠A =∠ACF ,∠ADF =∠F在△ADE 与△CFE 中{∠A =∠ACF CF =AD ∠ADF =∠F,∴△ADE≌△CFE(ASA)题型三动点与全等(分类讨论,找到对应定点)1.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.2.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为2或3.【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△CQP,计算出BP的长,进而可得运动时间,然后再求v.【解答】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△CQP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.3.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E 从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过0,4,12,16秒时,△DEB与△BCA全等.【分析】设点E经过t秒时,△DEB与△BCA全等;由斜边ED=CB,分类讨论BE=AC 或BE=AB或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB与△BCA全等;此时AE=3t,分情况讨论:(1)当点E在点B的左侧时,△DEB≌△BCA,则BE=AC,∴24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①△DEB≌△BCA,BE=AC时,3t=24+12,∴t=12;②△EDB≌△BCA,BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,点E经过0秒,4秒,12秒,16秒时,△DEB与△BCA全等.故答案为:0,4,12,16.4.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=10或20时,以点A,P,Q为顶点的三角形与△ABC全等.【分析】分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC ≌Rt△PQA(HL);即可得出结果.【解答】解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QP A中,{AB=PQBC=AP,∴Rt△ABC≌Rt△QP A(HL);②当AP=CA=20时,在△ABC和△PQA中,{AB=PQAP=AC,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.5.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为1或7秒时,△ABP和△DCE全等.【分析】由条件可知BP=2t,当点P在线段BC上时可知BP=CE,当点P在线段DA 上时,则有AD=CE,分别可得到关于t的方程,可求得t的值.【解答】解:设点P的运动时间为t秒,则BP=2t,当点P在线段BC上时,∵四边形ABCD为长方形,∴AB=CD,∠B=∠DCE=90°,此时有△ABP≌△DCE,∴BP=CE,即2t=2,解得t=1;当点P在线段AD上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16﹣2t,此时有△ABP≌△CDE,∴AP=CE,即16﹣2t=2,解得t=7;综上可知当t为1秒或7秒时,△ABP和△CDE全等.故答案为:1或7.6.(多选)如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s。
浙教版数学八年级上册1.4全等三角形课件
判定方法2:两边及其夹角对应相等的两个 三角形全等(简写为“边角边”或 “SAS”).
A
B D
在ΔABC和ΔDEF中,
AB=DE(已知),
∠ B=∠ E(已知),
C
BC=EF(已知),
∴ΔABC≌ΔDEF(SAS).
E
F
如图,小明不慎将一块三角形模具打碎为 两块,他是否可以只带其中的一块碎片到 商店去,就能配一块与本来一样的三角形 模具呢?如果可以,带哪块去合适?你能说 明其中理由吗?
1.判断三角形全等至少要有几 个条件?
至少要有三个条件.
2.我们已经学过哪几种判断三角形全等 的方法?
判定方法1:三边对应相等的两个三角 形全等(简写成“边边边”或 “SSS”A ).
B D
E
C 在ΔABC和ΔDEF中, ∵AB=DE,AC=DF,BC=EF,
F ∴ΔABC≌ΔDEF(SSS).
阅读下面一段文字: 泰勒斯(Thales,约公元前625~前547年)是古希腊哲学家. 相传"两个角及其夹边对应相等的两个三角形全等"就是由 泰勒斯第一提出的.泰勒斯利用这个判定三角形全等的根 据求出了岸上一点到海中一艘船的距离. 如图,A是视察点,船P在A的正前方.过A作AP的垂线l, 在垂 线l上截取任意长AB,O 是AB 的中点.观测者从点B沿垂直 于AB的BK方向走,直到点K,船P和点O在一条直线上,那 么BK的距离即为船离岸的距离.请给出证明.
∠BAC=∠DAE AC=AE(已知) ∠C=∠E(已知)
∴△ABC≌△ADE(ASA)
已知:如图,A,E,F,B 在同一条直线上; CE⊥AB,DF⊥AB,AE=BF,∠A=∠B. 求证: CE=DF.
例 已知:如图所示,点B,F,E,C在同一条直 线上,AB∥CD,且AB=CD,∠A=∠D, 求证AE=DF
浙教版数学八年级上册《1.4 全等三角形》教学设计4
浙教版数学八年级上册《1.4 全等三角形》教学设计4一. 教材分析《1.4 全等三角形》是浙教版数学八年级上册的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
全等三角形是几何学习中的基础概念,对于学生理解和掌握几何学的其他内容具有重要意义。
本节课的教学内容主要包括全等三角形的定义、性质、判定方法以及全等三角形的应用。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,并具备了一定的观察、分析和解决问题的能力。
但全等三角形与相似三角形既有联系又有区别,学生需要在学习过程中进一步理解和掌握。
此外,学生对于实际生活中的几何问题还缺乏一定的联系和应用能力,需要通过本节课的学习来进行提升。
三. 教学目标1.知识与技能:让学生掌握全等三角形的概念、性质和判定方法,能运用全等三角形解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生通过观察、思考、讨论,自主探索全等三角形的性质和判定方法。
3.小组合作学习:培养学生团队合作意识,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、实例等,以便于直观展示全等三角形的概念和性质。
2.学习素材:准备一些关于全等三角形的练习题,以便于学生在课堂上进行操练和巩固。
3.教学工具:准备黑板、粉笔、直尺、剪刀等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入全等三角形的概念,例如:在制作衣服时,需要测量身体的尺寸,这里的尺寸就是一个全等三角形。
浙教版八年级数学上1.4全等三角形课件(共24张ppt)
B 注意
C
E
F
表示两个三角形全等时, 对应点要写在对应的
位置上. 这样容易找出对应边和对应角.
练习 1. 如图已知: △AOB≌△COD.
A和点C , ____ 点O和点O (1)对应点是:点 ____ , 点 B和点D . D ____
AHale Waihona Puke OBCAB和CD , ____ AO和CO , ____ BO和DO . (2) 对应边是:____ ∠ A和∠C , ∠ AOB∠COD B和∠D ,∠ (3) 对应角是: ____ ____ ____ . 叫做公共边
C
3. 如图△ABC≌△DEF.
EF ; ∠ACB的 BC的对应边是__ ∠DFE . DF的对应 对应角是___ AC . 边是__
A
D
B
F A E
4. 如图△ABC≌△ADE.
∠AED;∠A的对应 ∠ACB的对应角是___ ∠A ; AC的对应边是__ AE ; 角是___ BC . DE的对应边是__
全等三角形的对应边相等 理由是_____________ . F B
E
C
2. 如图,△ABC≌△ADE, 且∠BAC=30°, ∠E=55°, 30° ,∠C=___ 55° . 则∠EAD=___ 全等三角形的对应角相等 . 理由是____________ E
D
B A
C
3. 已知△ABC≌△DEF, A与D,B与E分别是对应顶点,
2. 能够重合的两个图形叫做全等图形.
★★能够重合的两个三角形叫做全等三角形. 3. 全等三角形的表示方法
如图△ABC和△DEF全等, 记作△ABC≌△DEF. A D
B
C
E
浙教版八年级数学上册课件:1.4 全等三角形 (共32张PPT)
导引:∵△ABC≌△DEF,∴BC=EF=2.
又∵FC=BF-BC,∴FC=5-2=3.
知3-讲
总 结
解答这类问题的关键是找准全等三角形的对应边.
(来自《点拨》)
知3-练
1
如图,△ABC≌△DEF,△ABC的周长是39 cm, AB=10 cm,BC=14 cm,求DF的长度.
(来自《点拨》)
知3-练
第1章
三角形的初步知识
1.4
全等三角形
全等图形
1
课堂讲解 课时流程
逐点 导讲练
全等三角形及其对应元素
全等三角形的性质
2
课堂 小结
作业 提升
在这幅精美的图画中,你能找到哪些形状和大小 都相同
的图案?
知1-导
知识点
1
全等图形
观察图中的各对图形,你发现了什么?如果把每一对 中的两个图 形叠在一起,它们能重合吗?
知2-讲
【例2】 如图, △AOC与△BOD全等.用符号“≌” 表示这 两个三角 形全等.已知∠ A与∠ B是对应角,写出
其余的对应角和各对对应边.
解: △AOC ≌ △BOD.
因为∠ A与∠ B是对应角,所以其余的对应角是 ∠ AOC 与 ∠ BOD, ∠ ACO 与 ∠ BDO;
对应边是:OA与OB,OC与OD,AC与BD.
C.107°
D.73°
(来自《典中点》)
知3-讲
【例5】 如图 , AD平分∠ BAC, △ ABD 与 △ ACD 全等 吗? BD与CD相等吗? ∠ B与∠ C呢?先判断,
并说明理由.
知3-讲
解:△ ABD ≌ △ ACD ,BD=CD, ∠ B= ∠ C. 理由如下: 由AD平分∠ BAC ,知 ∠ 1 = ∠ 2. 因此,将图形(上图)沿AD对折时,
浙教版八年级数学上册课件:1.4 全等三角形 (共10张PPT)
3.“全等”可用符号“≌”来表示,如△ ABC 和△ A′B′C′全 等,记做“△ ABC≌△A′B′C′”,读做“三角形 ABC 全 等于三角形 A′B′C′”.
4.全等三角形的性质:全等三角形的对应边相等,对应 角相等.
初中数学
重要提示
1.找对应边、对应角通常有以下几种方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边 是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角 是对应角. (3)有公共边的,公共边是对应边. (4)有公共角的,公共角是对应角. (5)有对顶角的,对顶角是对应角. (6)两个全等三角形中一对最长边(或最大角)是对应边(或对应 角),一对最短边(或最小角)是对应边(或对应角).
2.在写全等三角形时,我们习惯上把对应顶点写在对应位置,便 于读取信息.
初中数学
解题指导
【 例 1 】 如 图 1-4-1 , 已 知 △ ACE≌△DBF,CE=BF, AE=DF,AD=8,BC=2. (1)求 AC 的长度. (2)求证:CE∥BF.
【解析】 (1)∵△ ACE≌△DBF, ∴AC=DB,∴AB=DC. ∵BC=2,AD=8,∴2AB+2=8, ∴AB=3,∴AC=3+2=5. (2)∵△ ACE≌△DBF,∴∠ECA=∠FBD,∴CE∥BF.
初中数学
【例 2】 (2016·南安)如图 1-4-2,已知 △ ABC≌△DEB,AB 与 DE,BC 与 ED 分别是对应边,点 E 在 AB 上, DE 与 AC 相交于点 F. (1)当 DE=8,BC=5 时,线段 AE 的 长为________. (2)已知∠D=35°,∠C=60°. ①求∠DBC 的度数. ②求∠AFD 的度数.
1.4 全等三角形 课件2024-2025学年浙教版数学八年级上册
∵AB=AC
∴点C与点B重合,即△ACD与△ABD重合
∴ △ABD≌△ACD (全等三角形的定义)
∴BD=CD=3 (全等三角形的对应边相等) ∠B=∠C=15°(全等三角形的对应角相等)
学以致用知识精练
例4:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm. (1)求线段NM及HG的长度; (2)写出一个图形中对应线段的数量或位置关系
A
G
图形语言B源自CEF文字 语言
全等三角形的对应边相等,对应角相等
符号 语言
∵△ABC≌△GEF ∴ AB=GE, BC=EF, AC=GF ∴ ∠A= ∠G, ∠B= ∠E, ∠C= ∠F
学以致用操作应用
例1:结合全等三角形填写对应边、对应角
A
A’
B
B’
C
C’
∵△___A_B_C___≌△_A__’B_’_C_’__
____F_G_=__M_H_____
E
EH=NG
EF//MN 解:F(G1/)/M∵H △EFG≌△NMH
∴MN=EF=2.1cm
H
1
M
EG=NH=3.3cm ∴HG=EG-EH=2.2cm
F
G2
N
总结展望
能够重合的 两个图形
形状 大小
特
全等图形
殊 化
全等三角形
产生
图形的变换
平移 翻折 旋转
定义
∴ AC=__A_’_C_’_, BC=__B_’_C_’_, AB=__A_’B__’_
∠A=__∠__A_’_,∠B=∠__A_’_B_’_C,∠’ C=_∠__A_’_C_’B’
学以致用操作应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册第一章1.4全等三角形第1课时导学案
使用时间:第 2 周主备人:干斌鹏核备人:张笑英
一、教学重点
1.了解全等图形的概念. 会用全等图形的定义判定两个图形全等
2.了解全等三角形的概念.理解全等三角形的对应边相等,对应角相等.
二、教学难点
重点:全等三角形的概念.
难点:对该范例的解题方法和过程表述,是本节教学的难点
三、自主预习
1.全等图形:_____________________________.
题2. 如图,画在透明纸上的△ABC和△A′B′C′是全等图形吗?你是怎么判断的?
2.(1)全等三角形:_____________________________________.
(2)对应点:__________________________________________.
(3)对应边:__________________________________________.
(4)对应角:___________________________________________.
(5)“全等”可以用符号_____来表示,如△ABC和△A′B′C′全等,记做__________________读做_____________________________
题2.如图,已知△AOC≌△DOB.写出它们的对应边和对应角.
3.全等三角形的性质:___________________________________________.
四、课堂展示
1.如图,△OAD与△OBC全等,∠A与∠B是对应角. 找出其余的对应角和各对对应边,并用符号表示这两个三角形全等.
2. 判断下列说法是否正确,并简要说明理由.
(1) 长和宽分别相等的长方形都是全等图形.
(2) 一面中华人民共和国国旗上,四个小五角星都全等.
(3) 两个全等三角形的面积相等。
3. 如图,在△ABC 中,AD ⊥BC 于点D ,BD =CD .完成下面说明∠B =∠C 的理由的过程(填空).解: ∵ AD ⊥BC (已知),∴ ∠ADB =______=Rt ∠(垂直的定义).当把图形沿AD 对折时,射线DB 与DC ______.∵ BD =CD (______),∴ 点B 与点______重合,∴△ABD 与△ACD ______,∴ △ABD ______△ACD (全等三角形的定义),∴ ∠B =∠C (__________________).
4.如图,BD 是长方形ABCD 的一条对角线.
(1)△ABD 与△CDB 全等吗? 你是怎样知道的?
(2) 如果你认为△ABD 与△CDB 全等,请用符号表示,并说出它们的对应边和对应角
.
五、能力提升
如右图,已知△ABD ≌△ACE ,且∠1=45°,∠ADB=95°,则∠AEC= ∠C= . 1
A E
B C
D。