(完整word版)密度经典计算题解题分析及练习
(完整版)密度计算专题
密度的计算专题类型一:鉴别问题例1 有一只金戒指,用量筒测得其体积为0.24cm 3,用天平称出其质量为4。
2g ,试问这只戒指是否是纯金制成的?(ρ金=⨯1931033./kg m )1.某非金属物质的质量是675千克,体积为250分米3,求该物质的密度?2.上体育课用的铅球,质量是4千克,体积是0。
57分米3,这种铅球是用纯铅做的吗?(铅的密度为11.3×103千克/米3)。
类型二:铸件问题思路与方法:在制造零件前先做一个等体积的模型,解题时抓住V 模=V例2 一个石蜡雕塑的质量为4。
5千克,现浇铸一个完全相同的铜雕塑,至少需要多少千克铜? ( ρ铜=8.9×103kg/m 3, 330.910/kg m ρ=⨯蜡)3.一个铁件质量395千克,若改用铝来浇铸,它的质量为多少千克。
(铁=7。
9×103kg/m 3,铝=2.7×103kg/m 3)4.铸造车间浇铸合金工件,已知所用木模质量为490 g,木料密度为0.7×103kg/m3.今称得每个合金工件的质量为4.9 kg,则该合金的密度是多少?5.某铜制机件的质量为0.445千克,如改用铝制品质量可减轻多少?(铜=8.9×103kg/m 3,铝=2。
7×103kg/m 3)6.机制造师为了减轻飞机的重量,将钢制零件改为铝制零件,使其质量减少了104千克,则所需铝的质量是多?(已知钢的密度是7900千克/立方米,铝的密度是2700千克/立方米)类型三:空心问题例 3 一个铜球的质量是178g,体积是403cm,试判断这个铜球是空心的还是实心的?(ρ铜=⨯891033./kg m)解:方法一:比较体积法方法二:比较密度法方法三:比较质量法说明:本题最好采用方法一,因为这样既可判断该球是空心的,还可进一步求出____________________ 7. 一个钢球,体积10cm3,质量63.2g,这个球是空心还是实心?如果是空心的,空心部分体积多大?(ρ钢=7.9×103kg/m3)8。
初中物理密度计算题练习(含答案)
初中物理密度计算题练习(含答案)1、有一只玻璃瓶,它的质量为0.1kg,当瓶内装满水时,瓶和水的总质量为0.4kg.在此空玻璃瓶中装入一些合金滚珠,瓶和金属颗粒的总质量为0.8kg,此时再往瓶中灌入水到瓶口止,瓶、金属颗粒和水的总质量为1kg,求:(1)玻璃瓶的容积;(2)金属颗粒的总质量;(3)金属颗粒的密度。
解:(1)空瓶装满水:m水=0.4kg-0.1kg=0.3kg=300g,空瓶容积:V=V水=m水/ρ水=300g/1g/cm3=300cm3,答:玻璃瓶的容积为300cm3;(2)金属粒的质量:m金=m总-m瓶=0.8kg-0.1kg=0.7kg=700g,答:合金滚珠的总质量为700g;(3)瓶中装了金属粒后再装满水,水的体积:V水′=m水'/ρ水=(1000g −800g)/g/cm3=200cm3,金属粒的体积:V金=V-V水=300cm3-200cm3=100cm3,金属粒的密度:ρ=m金V金m金=700g/100cm3=7g/cm3答:合金滚珠的密度为3.5g/cm3。
2、王慧同学利用所学知识,测量一件用合金制成的实心构件中铝所占比例。
她首先用天平测出构件质量为374g,用量杯测出构件的体积是100cm3.已知合金由铝与钢两种材料合成,且铝的密度为2.7×103kg/m3,钢的密度为7.9×103kg/m3.如果构件的体积等于原来两种金属体积之和。
求:(1)这种合金的平均密度;(2)这种合金中铝的质量。
解:(1)这种合金的平均密度:ρ=mv=3.74g/cm3=3.74×103kg/m3;答:这种合金的平均密度为3.74×103kg/m3;(2)设铝的质量为m铝,钢的质量为m钢,则m铝+m钢=374g﹣﹣﹣﹣﹣﹣﹣﹣①由ρ=mv可得V=mρ,且构件的体积等于原来两种金属体积之和,则m铝ρ铝+m钢ρ钢=100cm3,,即m铝2.7g/cm3+m钢7.9g/cm3=100cm3---------②联立①②式,解得m铝=216g.故答案为:这种合金中铝的质量为216g.3、如图所示,一个容积V0=500cm3、质量m=0.5kg的瓶子里装有水,乌鸦为了喝到瓶子里的水,就衔了很多的小石块填到瓶子里,让水面上升到瓶口。
计算专题经典题目(密度专题)
计算专题经典题目-------密度专题一、根据质量和体积计算密度这类题目比较简单,直接利用公式计算即可,注意根据题目数据大小选择合适单位 【例1】某金属板长1m ,宽50cm ,厚8mm ,测得其质量是35.6kg ,问这是什么金属? 【分析】判断是什么金属,可以先求出其密度,然后参照密度表对照. 【解答】因50cm=0.5m,8mm=0.008m ,体积为 V=1m ×0.5m ×0.008m=0.004m 3,查表得该金属是铜.【说明】也可将质量化为35600g ,体积用cm 3单位,得到ρ=8.9g/cm 31、某液体的质量是110克,体积是100厘米3,它的密度是多少克/厘米3,合多少千克/米3.2、有一满瓶油,油和瓶的总质量是1.46千克,已知瓶的质量是0.5千克,瓶的容积是1.2分米3,计算出油的密度.3、一个烧杯质量是50 g ,装了体积是100 mL 的液体,总质量是130 g 。
求这种液体的密度。
4、小亮做测量石块的密度的实验,量筒中水的体积是40 mL ,石块浸没在水里的时候,体积增大到70 mL ,天平测量的砝码数是50 g ,20 g ,5 g 各一个。
游码在2.4 g 的位置。
这个石块的质量、体积、密度各是多少? 二、根据体积和密度计算质量这类题目比较简单,直接利用公式m=ρv 计算即可,单独出现主要在选择题中,注意根据题目数据大小选择合适单位【例1】在澳大利亚南部海滩,发现一群搁浅的鲸鱼,当地居民紧急动员,帮助鲸鱼重返大海.他们用皮尺粗略测算出其中一头鲸鱼的体积约为3m 3,则该头鲸鱼的质量约为多少? 分析与解:这是一道估算题,要知道鲸鱼的质量,就必须先知道鲸鱼的体积和密度,由m=ρV 求得;题目的已知条件只给了鲸鱼的体积,没给鲸鱼的密度,这就需要同学们根据自己平时的知识积累进行推断:鲸鱼在海里可以自由地上浮、下潜,说明鲸鱼的密度与水的密度相当。
由此可以计算鲸鱼的质量大约为:m=ρV=1.0×103kg/m 3×3m 3 =3×105kg1、市场上出售的一种“金龙鱼”牌食用调和油,瓶上标有“5L ”字样,已知该瓶内调和油的密度为0.92×103kg/m3,则该瓶油的质量是多少kg (已知1L=1×10-3m 3)2、一辆载重汽车最多能装质量为10吨的物质,它的容积是12米3,最多能装密度为0.5×103千克/米3的木材?3、工厂想购买5000 km 的铜导线,规格为半径2 m ,那么这些铜导线的质量为多少kg . 三、根据质量和密度计算体积这类题目比较简单,直接利用公式 计算即可,常出现在填空题中,注意根据题目数据大小选择合适单位1、需要100g 酒精, 不用天平, 只用量筒应量出酒精的体积是_________cm 3。
八年级物理密度经典例题
八年级物理密度经典例题当涉及到物理密度的经典例题时,有很多不同的题目可以选择。
下面我将为你提供几个典型的例题,并从多个角度进行解答。
例题1,一个物体的质量为120g,体积为40cm³,求该物体的密度。
解答,密度的定义是物体的质量除以物体的体积。
根据题目给出的数据,质量为120g,体积为40cm³。
所以,该物体的密度可以通过计算质量除以体积得到。
即,密度 = 质量 / 体积 = 120g /40cm³ = 3g/cm³。
例题2,一块物体的密度为2.5g/cm³,质量为500g,求该物体的体积。
解答,体积的计算可以通过密度乘以质量得到。
根据题目给出的数据,密度为2.5g/cm³,质量为500g。
所以,该物体的体积可以通过计算密度乘以质量得到。
即,体积 = 密度× 质量 =2.5g/cm³ × 500g = 1250cm³。
例题3,一个物体的密度为0.8g/cm³,体积为200cm³,求该物体的质量。
解答,质量的计算可以通过密度乘以体积得到。
根据题目给出的数据,密度为0.8g/cm³,体积为200cm³。
所以,该物体的质量可以通过计算密度乘以体积得到。
即,质量 = 密度× 体积 = 0.8g/cm³ × 200cm³ = 160g。
通过以上三个例题,我们可以看到密度的计算方法是一致的,即质量除以体积。
根据已知的数据,可以计算出未知的质量、体积或密度。
这些例题涵盖了基本的密度计算方法,帮助学生理解密度的概念和计算方法。
此外,在解答这些例题时,需要注意单位的转换。
在计算密度时,要确保质量和体积的单位一致,通常使用克和立方厘米。
如果单位不一致,需要进行换算。
希望以上解答能够帮助你理解物理密度的经典例题。
如果你还有其他问题,欢迎继续提问。
密度公式练习题
密度公式练习题本文将从密度的概念、计算公式和练习题三个方面展开,旨在帮助读者更好地理解和应用密度公式。
一、密度的概念密度是物质单位体积的质量,用符号ρ表示,计量单位通常是千克每立方米(kg/m³)。
密度是物质固有的性质,对于同一种物质,在一定的温度和压力下,密度是恒定的。
二、密度的计算公式密度的计算公式为:ρ = m/V其中,ρ表示密度,m表示物质的质量,V表示物质的体积。
三、练习题1. 问题描述:某个物体的质量为200克,体积为500立方厘米,求该物体的密度。
解题思路:首先,将质量转换为千克,体积转换为立方米,然后代入密度公式进行计算。
解题步骤:质量:200克=0.2千克体积:500立方厘米=0.5立方分米=0.5/1000立方米代入密度公式:ρ = m/Vρ = 0.2千克 / (0.5/1000立方米)计算结果:该物体的密度为400千克每立方米(400 kg/m³)。
2. 问题描述:某种液体的密度为800克每升,如果某容器装满了这种液体,容器的质量为1千克,求液体的体积。
解题思路:首先,将容器的质量转换为升,然后用总质量减去容器的质量,再用密度公式计算体积。
解题步骤:容器的质量:1千克=1升液体的密度:800克每升总质量:800克+1千克=1800克总体积:1800克 / 800克每升计算结果:液体的体积为2.25升。
3. 问题描述:某个物体的密度为2.5克每立方厘米,体积为300立方毫米,求该物体的质量。
解题思路:首先,将体积转换为立方厘米,然后用密度公式进行计算。
解题步骤:体积:300立方毫米=0.3立方厘米密度:2.5克每立方厘米质量:2.5克每立方厘米 × 0.3立方厘米计算结果:该物体的质量为0.75克。
总结:通过上述练习题,我们对密度的概念有了更深入的了解,并学会了根据给定的物质质量和体积计算密度的方法。
密度公式在物理和化学的各个领域都有广泛的应用,帮助我们理解和解决实际问题。
密度计算应用题及解答
密度计算应用题及解答密度是描述物质紧密程度的物理量,通常表示为单位体积内的质量。
在科学实验和工程领域中,密度计算是一个常见且重要的计算问题。
本文将介绍几个与密度计算相关的应用题,并提供详细的解答过程。
**应用题一:**某实验室得到一块体积为300 cm³的未知固体样品,称重后得到质量为450 g。
请计算该固体的密度,并以适当的单位表示。
**解答:**根据密度的定义,密度=质量/体积。
将已知数据代入公式中进行计算:密度 = 450 g / 300 cm³ = 1.5 g/cm³因此,该固体样品的密度为1.5 g/cm³。
**应用题二:**一块铁块的质量为800 g,将它放入水中浸泡后,水面上升高了40 cm。
已知水的密度为1 g/cm³,求铁的密度。
**解答:**铁块浸泡在水中时,会受到浮力的作用,使得铁块所排开的水的质量等于铁块的质量。
因此,铁块的质量等于浸泡后水的质量减去铁块放入前水的质量。
铁块的质量 = 浸泡后水的质量 - 浸泡前水的质量根据水的密度和水面上升高度,可以计算出铁块的体积。
将铁块的质量和体积代入密度的定义中进行计算,即可得到铁块的密度。
**应用题三:**某种液体的密度为0.8 g/cm³,若在容器中注入200 cm³的液体,求液体的质量是多少?**解答:**根据密度的定义,密度=质量/体积。
将已知数据代入公式中进行计算:质量 = 密度 x 体积质量 = 0.8 g/cm³ x 200 cm³ = 160 g因此,200 cm³的该液体的质量为160g。
通过以上三个应用题及解答,我们可以看到密度计算在实际问题中的应用广泛性。
掌握密度计算方法对于科学研究和工程实践具有重要意义。
希望本文可以帮助读者更深入地理解密度计算的原理与方法。
(完整版)初二物理密度典型计算题(含答案
密度的应用1. 有一个瓶子装满油时,总质量是1.2kg ,装满水时总质量是1.44kg ,水的质量是1.2kg ,求油的密度.2. 小瓶内盛满水后称得质量为210g ,若在瓶内先放一个45g 的金属块后,再装满水,称得的质量为251g ,求金属块的密度.3. 两种金属的密度分别为21ρρ、,取质量相同的这两种金属做成合金,试证明该合金的密度为21212ρρρρ+⋅(假设混合过程中体积不变).4. 有一件标称纯金的工艺品,其质量100g ,体积为6cm 3,请你用两种方法判断它是否由纯金(不含有其他常见金属)制成的?(33kg/m 103.19⨯=金ρ)5. 设有密度为1ρ和2ρ的两种液体可以充分混合,且212ρρ=,若取体积分别为1V 和2V 的这两种液体混合,且2121V V =,并且混合后总体积不变.求证:混合后液体的密度为123ρ或234ρ.6. 一个质量为178g 的铜球,体积为30cm 3,是实心的还是空心的?其空心体积多大?若空心部分注满铝,总质量为多少? (ρ铝=2.7g/cm 3)7.如图所示,一只容积为34m 103-⨯的瓶内盛有0.2kg 的水,一只口渴的乌鸦每次将一块质量为0.01kg 的小石子投入瓶中,当乌鸦投了25块相同的小石子后,水面升到瓶口,求:(1)瓶内石块的总体积.(2)石块的密度.8.某冰块中有一小石块,冰和石块的总质量是55g ,将它们放在盛有水的圆柱形容器中恰好悬浮于水中(如图21甲所示)。
当冰全部熔化后,容器里的水面下降了0.5cm (如图21乙所示),若容器的底面积为10cm 2,已知ρ冰=0.9×103kg/m 3,ρ水=1.0×103kg/m 3。
求:(1)冰块中冰的体积是多少立方厘米? (2)石块的质量是多少克?(3)石块的密度是多少千克每立方米?9. 密度为0.8g/cm 3的甲液体40cm 3和密度为1.2g/cm 3的乙液体20cm 3混合,混合后的体积变为原来的90%,求混合液的密度.甲 乙 图211.解:空瓶质量0.24kg 1.2kg kg 44.120=-=-=水总m m m . 油的质量0.96kg 0.24kg kg 2.101=-=-=m m m 总油. 油的体积3333m 101.2kg/m101 1.2kg-⨯=⨯===水水水油ρm V V . 油的密度3333kg/m 108.0m101.20.96kg ⨯=⨯==-油油油V m ρ 另解:水油V V =Θ ∴33kg/m 108.0 ⨯===水水油油水油水油ρρρρm mm m 2.解:1:23213 =⨯=⨯==甲乙乙甲乙乙甲甲乙甲V V m m V m V m ρρ 点拨:解这类比例题的一般步骤:(1)表示出各已知量之间的比例关系.(2)列出要求的比例式,进行化简和计算.3.解:设瓶的质量为0m ,两瓶内的水的质量分别为水m 和水m '.则 ⎩⎨⎧='++=+)()(水金水2 g 2511g 21000m m m m m (1)-(2)得4g 45g g 41251g g 210=+-=+-='-金水水m m m .则金属体积334cm 1g/cm4g=='-=∆=水水水水水金ρρm m m V金属密度3333kg/m 1011.2511.25g/cm 4cm45g ⨯====金金金V m ρ 点拨:解这类题的技巧是把抽象的文字画成形象直观地图来帮助分析题意.如图所示是本题的简图,由图可知:乙图中金属的体积和水的体积之和.等于甲图中水的体积,再根据图列出质量之间的等式,问题就迎刃而解了.4.证明:212122112121212ρρρρρρρ+⋅=++=++==m m m m V V m m V m 合合合.5.解:(下列三种方法中任选两种):方法一:从密度来判断3333kg/m 107.16g/cm 7.166cm100g⨯====品品品V m ρ. 金品ρρ<Θ ∴该工艺品不是用纯金制成的.方法二:从体积来判断设工艺品是用纯金制成的,则其体积为:33cm 2.519.3g/cm100g===金品金ρm V . 金品V V >Θ ∴该工艺品不是用纯金制成的.方法三:从质量来判断设工艺品是用纯金制成的,则其质量应为:.115.8g 6cm g/cm 3.1933=⨯==品金金V m ρ 金品m m <Θ,∴该工艺品不是用纯金制成的.6.证明一:两液体质量分别为1111222111221,V V V m V m ρρρρ=⋅=== 两液体混合后的体积为1122132V V V V V V =+=+=,则11112332ρρρ===V V V m 证明二:两种液体的质量分别为2222111212V V V m ρρρ=⋅==.222V m ρ=,总质量22212V m m m ρ=+=混合后的体积为222212321V V V V V V =+=+=,则22222134232ρρρ==+==V V V m m V m .7.解:混合液质量56g 20cm 1.2g/cm 40cm g/cm 8.03333221121=⨯+⨯=+=+=V V m m m ρρ 混合液的体积3332154cm 90%)20cm cm 40(%90)(=⨯+=⨯+=V V V 混合液的密度33g/cm 04.154cm56g ===V m ρ. 8.解:(1)343334m 101kg/cm1010.2kgm 103--⨯=⨯-⨯=-=-=水水瓶水瓶石ρm V V V V . (2)0.25kg kg 01.025250=⨯==m m 石.3334kg/m 102.5m 1010.25kg ⨯=⨯==-石石石V m ρ. 9.解:设整个冰块的体积为V ,其中冰的体积为V 1,石块的体积为V 2;冰和石块的总质量为m ,其中冰的质量为m 1,石块的质量为m 2;容器的底面积为S ,水面下降高度为△h 。
(完整word版)密度计算题型大全(有答案),文档.doc
密度计算专题密度计算特辑1.一个质量为158g 的空心铁球,体积是30cm3,已知铁的密度是7.9× 103kg/m3 ,则该铁球空心部分的体积为()。
A . 20 ㎝ 3 B . 14 ㎝ 3 C. 17 ㎝ 3 D . 10cm32.一个容器盛满水总质量为65g,若将 30g 砂粒投入容器中,溢出水后再称,其总质量为83g。
求砂粒的密度。
3.有一容器,装满水时质量是 0.4kg ,装满密度为 0.8× 103kg/m3 的煤油时质量是 0.34kg。
如果用该容器装满密度是 1.2× 103 kg/m3 的盐水,总质量是多少 ?4.某烧杯装满水总质量为350g;放入一金属块后,溢出部分水,这时总质量为500g;取出金属块后,总质量变为300g。
求金属的密度5.一只瓶子,装满水总质量是500g,装满密度为0.8g/cm3 的煤油总质量为450g。
求瓶子的质量和容积。
6.一只质量为 68g 的瓶子,装满水后质量为 184g;如果在瓶中先放入一个 37.3g 的金属片,然后再装满水,则总质量为 218g。
求金属片的密度。
7.某冰块中有一小石块,冰和石块的总质量是55g,总体积 55cm3 将它们放在盛有水的圆柱形容器中恰好悬浮于水中(如图21甲所示)。
当冰全部熔化后,容器里的水面下降了0.5cm (如图 21乙所示),若容器的底面积为 2 ,已知ρ =0.9 ×10 3 3 ,ρ =1.0 ×10 3 3 。
10cm kg/m kg/m冰水求:( 1)冰块中冰的体积是多少立方厘米?(2)石块的质量是多少克?(3)石块的密度是多少千克每立方米?8—个瓶子装满水时的总质量是400g,装满酒精时的总质量是350g。
则瓶子的容积是(ρ水=1.0g/cm3 ,ρ 酒精 =0.8g / cm3)()A.400 cm3B. 250 cm3C.350 cm3D. 200 cm39.现有质量均为m 的甲、乙两种金属,密度分别为ρ 1、ρ2(ρ1>ρ2),按一定比例混合后,平均密度为(ρ 1+ρ 2)/2,混合后的最大质量为多少?(不考虑混合后的体积变化)10 国家标准规定以A0 、 A1 、A2 、 B1、B2 等标记来表示纸张幅面规格,以“克重”来表示纸张每平方米的质量.刘刚家新买回一包打印纸,包上标注着“A4 70 g 500 sheet210× 297mm ”,意思是该包纸是500 张规格为70g、 210mm × 297mm 的 A4 通用纸.刘刚想知道这种纸的厚度和密度,只需用刻度尺测出这报纸的厚度.如果刘刚测得这包纸的厚度为 5cm,那么这种纸的厚度是多少mm,密度是多少kg/m3 .11.现有质量均为m 的甲、乙两种金属,密度分别为ρ1、ρ2(ρ1>ρ2),按一定比例混合后,平均密度为 (ρ 1+ρ 2)/2,若不考虑混合后的体积变化,混合后的最大质量为多少?12体育课用的铅球并不完全是铅,实际上是在铁壳里灌满铅制成。
密度十大类型计算题(含答案)
= 2.46 × 104kg
类型四:鉴别问题
有一只金戒指,用量筒测得其体积为 0.24������������3,用天平称出其质量为4.2g,试问 这只戒指是否是纯金制成的?
金 19.3 103 kg / m3
解:这个金戒指的密度 ������ 4.2������
������ = ������ = 0.24������������3 = 10 ������Τ������������3 = 10 × 103 ������������Τ������3 ∵ 10 × 103 ������������Τ������3 ≠ ������金 = 19.3 × 103 kgΤ������3 ∴ 这只戒指不是纯金制成的。
=
������金 ������金
540g = ������������������������������������
= ������. ������ ������������������������
= ������. ������ × ������������������������������Τ������������
类型十:配置问题
思路与方法:求两种物质的混合密度: 老板派小姚去订购酒精,合同上要求酒精的
密度小于或者是等于0.82g/cm3就算达标,小 姚在抽样检查时,取酒精的样本500ml,称得 的质量是420g. 请你通过计算说明小姚的结论 是 (A 达标 B 不达标,含水太多) 你认为小姚 该怎么办?如何配置500ml密度为0.82g/������������3的 酒精?(������酒=0.8×103 kg/m3 ρ水=1.0×103 kg/m3)
500cm3−������水
500������������3
密度计算基础练习题(含答案)
密度计算基础练习题(含答案)1.一个质量为300g的瓶子,装满水后总质量是1300g。
求:(1)水的质量是多少g?(2)水的体积是多少cc^3?答案:(1) 水的质量为1000g;(2) 水的体积为1cc^3.2.10cc^3的冰熔化成水后,问:(1)水的质量是多少克?(2)水的体积是多少立方厘米?已知冰的密度c_冰=0.9×10cc/c^3.答案:(1) 水的质量为9000g;(2) 水的体积为10cc^3.3.如图所示某品牌盒装牛奶,盒内装有质量275g的牛奶,求该牛奶的密度。
答案:该牛奶的密度为1.1c/cc^3.4.一个空心铜球的质量为89g,体积为30cc^3.往它的空心部分注满某种液体后,总质量为361g,已知铜的密度c=8.9c/cc^3,求:(1)89c铜的体积是多少?(2)空心部分的体积是多少?(3)注入的液体密度是多少?答案:(1) 89g铜的体积为10cc^3;(2) 空心部分的体积为20cc^3;(3) 注入的液体密度为1.2c/cc^3.5.一个容积为2×10^−3c^3的瓶子。
(1)用它装满某种未知液体,可以装2kg,该未知液体的密度是多少?(2)如果用它装密度为0.8×10^3cc/c^3的油,最多装多少千克?答案:(1) 未知液体的密度为1000cc/c^3;(2) 最多可以装2.5kg的油。
6.一个容积为3×10^−4c^3的瓶内盛有0.2cc水,一只口渴的乌鸦每次将一块质量为0.01cc的小石子投入瓶中,当乌鸦投了25块相同的小石子后,水面恰好升到瓶口,求(1)瓶内小石子的体积;(2)小石子的密度。
答案:(1) 瓶内小石子的体积为0.25cc^3;(2) 小石子的密度为4c/cc^3.7.小强的妈妈买了一箱牛奶,箱中每一小袋牛奶的包装袋上都标有“净含量220ml、227g”字样,试求:这种牛奶的密度是多少克/厘米 3?(结果保留小数点后两位小数)答案:这种牛奶的密度为1.03c/cc^3.8.一个标有净含量为18.9c的矿泉水塑料桶,最多可以装多少质量的水?装满水后总质量为400g,在空瓶中装某种金属碎片若干,瓶与金属碎片的总质量为800g。
密度经典计算题解题分析及练习剖析
密度的应用复习一.知识点回顾1、密度的定义式?变形式?2、密度的单位?它们的换算关系?3、对公式ρ=m/v的理解,正确的是()A.物体的质量越大,密度越大B.物体的体积越大,密度越小C.物体的密度越大,质量越大D.同种物质,质量与体积成正比二.密度的应用1.利用密度鉴别物质例1.体育锻炼用的实心“铅球”,质量为4kg,体积为0.57dm3,这个“铅球”是铅做的吗?解析方法一:查表知,铅的密度为ρ=11.34×103kg/m3。
ρ实=m/v=4kg/0.57dm3=4kg/0.57×10-3m3=7.01×103kg/m3∴ρ>ρ实即该铅球不是铅做的方法二:V’=m/ρ=4kg/11.34×103kg/m3=0.35dm3∴V>V’即该球不是铅做的方法三:m’=ρV=11.34×103kg/m3×0.57×10-3m3=6.46kg∴m’>m 即该球不是铅做的【强化练习】1.一金属块的质量是 1.97t,体积是0.25m3,求此金属的密度。
2.某种金属的质量是 1.88 ×103kg ,体积是0.4m3,密度是__ kg/m3,将其中用去一半,剩余部分的质量是kg ,密度是_______kg/m3。
2.同密度问题例2.一个烧杯中盛有某种液体,测得烧杯和液体的总质量为300g,从烧杯中倒出25ml液体后,测得烧杯和剩余液体的质量为280g,求这种液体的密度。
解析ρ=m/v=(300g-280g)/25ml=0.8g/cm3例3.一节油罐车的体积 4.5m3,装满了原油,从油车中取出10ml样品油,其质量为8g,则这种原油的密度是多少?这节油车中装有多少吨原油?解析ρ=m/v=8g/10ml=0.8g/cm3M’=v’ρ=4.5m3×0.8×103kg/m3=3.6×103kg=3.6t【强化练习】1.“金龙”牌食用油上标有“5L”字样,其密度为0.92 ×103kg/m3,则这瓶油的质量是多少?2.一个容积为 2.5L的瓶子装满食用油,油的质量为2kg,由此可知这种油的密度为 _____ kg/m3,油用完后,若就用此空瓶装水,最多能装 kg的水.3.质量相同求体积【课前练习】1.体积是54cm3的水,全部结成冰后,冰的质量是多少?体积是多少?2.一块体积为100cm3的冰全部化成水后,水的体积()A.大于100cm3B.等于100cm3C.小于100cm3D.无法确定例4.有一块体积为500cm3的冰,当这块冰全部熔化成水后,水的质量是多少?水的体积是多少?(ρ冰=0.9×103kg/m3)。
6章 密度典型计算题(全)
密度典型计算题一、理解ρ=m/v(一)一杯水倒掉一半,它的密度、质量、体积变不变,为什么?(二)、氧气瓶的问题1.某钢瓶内所装氧气得密度为8 kg/m3,一次电焊用去其中的1/4,则剩余氧气的密度为多少?2、医院有一钢制氧气瓶,容积为10dm3,内有密度为2.5kg/m3的氧气,某次抢救病人用去了5g,则剩余气体的密度为多少?3、医院有一氧气瓶,容积为10dm3,内有密度为2.5kg/m3的氧气,现将活塞向下压缩,使其体积变为原来的1/2,则此时瓶内气体的密度为多少?4、某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是 _;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是,将煤油倒去4kg后,瓶内剩余煤油的密度是。
(三)比例题:1、关于密度,下列说法正确的是()A.密度与物体的质量成正比,与物体的体枳成反比 B.密度是物质的特性,与物体的质量和体积无关C.密度与物体所处的状态无关 D.密度与物体的温度无关2、根据密度公式ρ=可知()A.密度与质量成正比B.密度与体积成反比C.同种物质的质量与体积成正比D.密度等于某种物质的质量与体积的比值3、质量相同的不同物质,它们的体积之比为2:3,求它们的密度之比?4、两个质量不同的同种物体,它们的质量之比为4:5,求它们的体积之比?5、甲、乙两物体,质量比为3:2,体积比为4:5,求它们的密度比。
6、甲乙两个正方体边长之比为2:1,质量之比为1:3,求它们的密度之比?7、甲乙两物体密度之比为1:2,体积之比为3:2,求它们的质量之比?密度比例专题训练1.一个铁锅的质量是300克,一个铁盒的质量是200克,它们的质量之比是;密度之比是______;体积之比是_______.2.有甲、乙两种物质,他们的质量之比是2:1,密度之比是1:2,那么他们的体积之比是_________.3.有甲、乙两种物质,他们的质量之比是2:1,体积之比是3:5,那么他们的密度之比是___________。
密度及其测量-精练题(含答案与解析)
密度及其测量密度(1)定义:某种物质组成的物体的质量与它的体积之比叫做这种物质的密度。
密度是物质的特性,每一种物质都有一定的密度,不同的物质密度一般不同。
(2)公式:=ρVm ,推导公式有=ρm V ,=ρV m 。
(3)单位①国际单位:kg/m 3。
②常用单位:g/cm 3。
③单位换算:1g/cm 3=1×103kg/m 3。
(4)水的密度:ρ水=1×103kg/m 3,表示1m 3的水质量为1000kg 。
对密度公式的理解(1)同种物质密度不变,质量与体积成正比。
(2)不同物质,体积一定时,质量与密度成正比。
(3)不同物质,质量一定时,体积与密度成反比。
密度的影响因素(1)温度:一般情况下,温度升高,密度变小。
(2)物态:同种物质的状态不同,密度不同。
例如:水、冰、水蒸气密度不同。
密度的测量 实验原理:=ρVm有天平、有量筒测固体密度注意事项:(1)先测量质量,再测量体积; (2)借助液体(水)测量体积;(3)若固体密度小于液体密度,可采用助沉法或针压法测量固体体积。
Tips1:若无量筒、有烧杯时,可采用溢水法或标记法测固体密度。
Tips2:若先测量体积,物块沾水,会导致质量测量值偏大,密度偏大。
实验原理:=ρVm 有天平、有量筒测液体密度注意事项:(1)借助烧杯测量液体质量;(2)烧杯和液体的总质量为m 1,再次测量烧杯和剩余液体的总质量为m 2,则倒出去的(量筒中)液体质量为−m m 12。
常见考点:Q1:天平的使用与读数?A :水平台上,游码归零,左偏右调,右偏左调(平衡螺母),左物右码;物体质量=右盘中砝码总质量+游码左侧对应示数。
Q2:求待测物体的密度?A :从题目中分别得出待测物体的质量m 和体积V ,再根据公式=ρVm即可求得待测物体的密度。
Tips :(1)先测空烧杯的质量,再测液体和烧杯的总质量,最后将液体全部倒入量筒测体积,这样由于烧杯内液体倒不尽,使得所测体积偏小,导致所测密度偏大;(2)先测空烧杯的质量,再用量筒测液体体积,最后将液体倒出测质量,这样会因为量筒中有液体残留而使所测质量偏小,导致所测密度偏小。
密度计算题与应用附答案
密度计算题的类型一、善于发现隐含条件例1 ?人类在新材料探索的道路上总在进行着不懈的努力,世界上密度最小的固体“气凝胶”就是新材料探索的重要成果,该物质的坚固耐用程度不亚于钢材,且能承受1400℃的高温,而密度只有3kg/m3。
已知某大型飞机采用现在盛行的超高强度结构钢(ρ钢=7.8×103kg/m3)制造,耗钢130吨;若采用“气凝胶”代替钢材来制造一架同样大小的飞机,则需“气凝胶”质量为多少?解析:此题的关键点是要理解“采用‘气凝胶’代替钢材来制造一架同样大小的飞机”,这就告诉我们“气凝胶”的体积等于钢的体积。
因此,要根据先求钢的体积,再用可求出“气凝胶”的质量。
当然求解过程中要注意单位的统一。
钢的体积“气凝胶”的质量点拨:求解密度问题常见的隐含条件有三类:(1)质量不变。
如冰熔化变成水,水凝固变成冰,物质状态变了,但质量不变。
(2)密度不变。
如想知道一块长方体巨石的质量,可以测量它的密度和体积去计算。
怎样知道它的密度呢?就可以从它上面取一块小石头,测量出小石头的密度,则小石头的密度等于巨石的密度。
(3)体积不变。
除本题情况外,常见的如两种液体都用同一容器盛满,则两种液体的体积相等;再如,若待测物体是固体,使容器先盛满水,把固体放入后,部分水会溢出,则溢出水的体积与固体体积相等。
二、判断是否空心方法例2 ?一个铁球,它的质量是624.1 g,体积是100 cm3,试问这个铁球是实心的,还是空心的?如果空心,空心部分的体积是多大?解法一:根据密度公式∵ρ铁=7.9g/cm3∴ρ球<ρ铁,故球是空心的.设空心部分体积为V空解法二:若铁球是实心的,则∵m球<m铁∴球是空心的空心部分体积为解法三:若球为实心的,则∵V球>V铁∴球是空心的空心部分体积V空=V球-V铁=100 cm3-79 cm3=21 cm3点拨:判断物体是实心的还是空心的,是运用密度知识来解答实际问题的一类典型题,一般有三种判断方法:比较密度:用ρ=求出物体的密度,然后用该物体的密度同该类物体的密度相比较,如果两者相等,则ρ物体是实心的,如果物体的密度小,则物体是空心的。
密度经典计算题解题分析及练习
密度的应用复习1.利用密度鉴别物质:例1.体育锻炼用的实心“铅球”,质量为4kg,体积为0.57dm3,这个“铅球”是铅做的吗?【强化练习】1.一金属块的质量是1.97t,体积是0.25m3,求此金属的密度。
2.某种金属的质量是1.88 ×103kg ,体积是0.4m3,密度是kg/m3,将其中用去一半,剩余部分的质量是kg ,密度是_______kg/m3。
2.同密度问题:例2.一个烧杯中盛有某种液体,测得烧杯和液体的总质量为300g,从烧杯中倒出25ml液体后,测得烧杯和剩余液体的质量为280g,求这种液体的密度。
例3.一节油罐车的体积4.5m3,装满了原油,从油车中取出10ml样品油,其质量为8g,则这种原油的密度是多少?这节油车中装有多少吨原油?【强化练习】1.“金龙”牌食用油上标有“5L”字样,其密度为0.92 ×103kg/m3,则这瓶油的质量是多少?2.一个容积为 2.5L的瓶子装满食用油,油的质量为2kg,由此可知这种油的密度为kg/m3,油用完后,若就用此空瓶装水,最多能装 kg的水。
3.质量相同求体积:例4.有一块体积为500cm3的冰,当这块冰全部熔化成水后,水的质量是多少?水的体积是多少?(ρ冰=0.9×103kg/m3)【强化练习】1. 一只容积为3×10-4m3的瓶内盛有0.2kg的水,一只口渴的乌鸦每次将一块质量为0.01kg的小石块投入瓶中,投了25块相同的小石块后,水面上升到瓶口。
求:(1)瓶内石块的总体积(2)石块的密度4.逆推问题:例5.一个空瓶的质量400g,在装满水后的总质量为800g,当装满油后的总质量为720g,求油的密度。
例6.某工厂要浇铸一个铁铸件,木模是用密度为0.7×103kg/m3的样木制成,木模的质量是5.6kg,要浇铸一个这样的铁铸件,需要浇铸铁多少kg? (ρ铁=7.9×103kg/m3)例7.一个装满水的水杯,杯和水的总质量为600g,将一些金属粒倒入杯中沉底后从杯中溢出水200g,待水溢完后,测得此时水杯总质量为900g,求金属粒的密度。
密度知识经典题型及解题思路
密度知识经典题型质量不变例1 1m 3的冰化成水,体积变为多少?解题思路:1.找出体积相等的关系,例如:m 水=m 冰2.利用密度公式列出两种物质质量的表达式:3.近一步列出等量关系式: =4.得到所求物理量的表达式:5.带入数值求的答案练习 体积为10m 3的水结成冰之后,体积变为多少?密度不变例2 一巨石体积50m 3,敲下一样品,称其质量为84g ,体积为30cm 3,求巨石质量。
解题思路:1.利用密度公式计算出样品的密度:2.利用所求的样品密度带入质量的表达式中: (或体积的表达式 ),得到答案练习 一大罐油约84t,从罐中取出30cm 3的样品称其质量为24.6g ,求这一大罐油的体积。
瓶子的容积不变例3一个陶罐的质量是0.5kg ,装满水的总质量是5.5kg ,装满某种液体的总质量是4.5kg.问:这种液体的密度多大?解题思路:1.找到容积不变的关系式:V 水=V 液=V 容器 2.利用密度公式分别推导出V 水、V 液的表达式,即: 3.列出联等关系式: ,得到: 4.带入数据得到答案练习 一瓶装满水后为64g ,装满煤油后为56g ,求瓶子的质量和体积。
(提示:m 水=m 总-m 容器 m 液=m 总-m 容器,带入联等式)体积不变例4飞机设计师为了减轻飞机的重力,将一钢制零件改为铝制零件,使得其质量减少了104kg,则所用铝的质量是多少?解题思路:1.找到容积不变的关系式:V 钢=V 铝 2.利用密度公式分别推导出V 钢、V 铝的表达式,即: 3.列出联等关系式: ,得到: 水水水V ρm =冰冰冰V ρm =水水V ρ冰冰V ρ水冰冰水ρVV ρ=V m=ρρV m =ρmV =水水液液ρm m =ρ液液液ρm V =水水水ρm V =水水液液m m ρρ=铝铝钢钢ρm m =ρ铝铝铝ρmV =钢钢钢ρm V =钢钢铝铝mm m ρ=4.带入数据得到答案练习 某钢瓶内的氧气的密度为6kg/m 3,一次气焊用去其中的1/3,则瓶中余下的氧气密度为多少?空心问题例5一个体积为3000cm 3的铜球质量为17.8kg ,它是实心还是空心的?如果是空心的,空心部分的体积为多大?解题思路:1.计算出实心部分的体积2.若V 实=V 总。
(完整word版)密度的简单计算题
密度计算题(基础)1。
在实验室里有一个小金属块,它的质量是89克,体积是10厘米 3 ,它是什么金属?2. 在实验室里有一个小金属块,它的质量是158克,体积是2×10-5米3 ,它是什么金属?3.金店出售的黄金项链57.9克,请根据所学的物理知识计算出它的体积?4. 金店出售的黄金饰品,已知它的体积是2×10—6米3,请根据所学的物理知识计算出它的质量是多少克?5.一个瓶子的质量为20g,装满水时,用天平测得总质量为120g,求水的体积是多少?若用这个瓶子装密度为1.8×103kg/m3的硫酸最多可装多少千克?6。
有一只空瓶的质量是250g,装满水后称得质量是750g,倒干净后再装满油称得质量是650g,问这瓶里装的是什么油?7.有一只玻璃瓶,它的质量为0。
1kg,当瓶内装满水时,瓶和水的总质量为0。
4kg,用此瓶装金属粒若干,瓶和金属颗粒的总质量为0。
8kg,若在装金属颗粒的瓶中再装水时,瓶,金属颗粒和水的总质量为0。
9kg,求:(1)玻璃瓶的容积;(2)金属颗粒的质量;(3)金属颗粒的密度。
答案5闯关点拨 要求瓶子最多可以装多少硫酸?硫酸的密度是已知的,只需知道硫酸的体积,而硫酸的体积等于瓶子容积,求出瓶子的容积是关键,根据装满水时水的质量和水的密度求出瓶的容积,就可求出最多能多少千克硫酸了。
解 解法一:(分步求解是最基本的解题方法)根据水的质量m水=120g-20g=100g=0。
1kg 和水的密度水ρ=1.0×103 kg/m 3求出水的体积为:3433m 101kg/m100.10.1kg -⨯=⨯==水水水ρm V 则硫酸的体积为V 硫酸=V 容=V 水m 硫酸=ρ硫酸·V 硫酸=1。
8×103 kg/m 3×1×10—4m 3 =0。
18kg也可以用比例方法解题。
∵V 硫酸=V 水kg18.0kg 1.0kg/m 100.1kg/m 108.13333=⨯⨯⨯===∴水水硫酸硫酸水硫酸水硫酸m m m m ρρρρ6闯关点拨 要想知道瓶里装的是什么油,就是要我们求出该油的密度,然后对照密度表可判断出该油的类别.解 (方法一)根据ρ=m /V 可知,要求油的密度,必须知道油的质量和体积,由题意可知水的质量为m 水=m 水总—m 瓶=(750—250)g=500g水的体积为33500/1500cm cm g g m V ===水水水ρ ∴油的体积为V 油=V 瓶=V 水=500cm 3,∴油的密度为33cm /g 8.0cm500g )250650(=-=-==油瓶油总油油油V m m V m ρ (方法二):由m =ρV 可知,不同种物质,若它们的体积相同,那么它们的质量与密度成正比,即ρ油/ρ水=m 油/m 水 解:由水油水油m m =ρρ 得:水油油m m =ρ33cm /g 8.0cm /g 1g 250g 750g 250g 650=⨯--=⋅水ρ 答:查表对照,瓶里装的是煤油.说明 解题过程中应注意对各物理量的脚标加以区别并能正确使用;运用公式计算时三者的单位必须统一,ρ、m 、V 三者在同一公式中应该对应于同一物质。
密度典型例题解析(详细解析)
密度典型例题解析例1 关于密度公式ρ=Vm,下列说法中正确的是 ( ) A .由公式可知ρ与m 成正比,m 越大ρ越大 B .由公式可知ρ与m 成反比,m 越大ρ越小C .由公式可知当物质的质量m 一定时,ρ与 V 成正比,当物质的体积一定时,ρ与m 成正比D .由公式可知物质的质量 m 与物质的体积V 的比值是定值解析:密度是物质的一种特性,各种物质的密度都是一定的,不同物质的密度一般是不同的.物质的密度等于质量跟体积的比值即ρ=Vm,但与其质量m 和体积V 无关.所以选项D 是正确的.点拨:密度是反映某种物质单位体积的质量的物理量.密度的概念在初中物理有着广泛的应用,是后面要学习的“液体的压强”、“固体的压强”、“浮力”等知识的基础.例2 测石块的密度(1)用调节好的天平称石块的质量.把石块放在天平的左盘内,当右盘内有50克的砝码一个,游码在标尺上的位置如图示时,天平平衡,则石块的质量是________克.(2)把石块放入盛有40厘米3水的量筒以后,水面所到达的位置如图3—6所示,则石块的体积是________厘米3.(3)石块的密度是________千克/米3.解析:石块的质量是砝码的总质量50克加上游码在标尺上所对的刻度值3.4克,得出石块的质量.(1)53.4克;石块的体积是用石块放入量筒后水面所达到的刻度60厘米3减去没有放入石块前水面所对的刻度值40厘米3,得出石块的体积.(2)20厘米3;根据ρ=Vm求出石块的密度.(3)2.67×103. 点拨:读取量筒的数据时,若液面是凹形的,观察时以凹形底部为准;若液面是凸形的,以凸形的顶部为准.例如:用量筒测水的体积时,水面是凹面,如图1—3—2示.若用量筒测银的体积时,水银面则是凸面,如图示.例3 质量相等半径相同的空心铜球、铁球和铝球各一个(ρ铜>ρ铁>ρ铝),则空心部分体积最大的球是 ( )A .铜球B .铁球C .铝球D .条件不足无法确定 解析:根据密度计算公式ρ=Vm;质量相等的不同物质,密度大的体积小.因为ρ铜>ρ铁>ρ铝,质量相等半径相同的(体积相等)空心铜球、铁球和铝球,含有物质部分的体积最小的是铜球,所以中间空心部分体积最大的是铜球,如图示.选项A 是正确的.点拨:利用密度判断物体空、实心情况有下列几种方法:(1)用公式ρ物体=Vm求物体的平均密谋,若ρ物体=ρ物质为实心,ρ物体<ρ物质为空心.(2)用公式V物质=ρm求出物体中含物质的体积,若V 物质=V 实际为实心,V 物质<V 实际为空心.常见的稍有难度的题型如“例2”、还有如“若是空心的,空心部分的体积是多少”、“在空心部分铸满铝,质量又是多少”等题型.所以一般情况下,做这种题型常选第(3)种方法.例4 在调好的天平两盘上各放一铝块和铁块,天平恰能保持平衡,则铝块与铁块的质量之比m 铝∶m 铁=________,体积之比V 铝∶V 铁=________.(ρ铝=2.7×103千克/米3,ρ铁=7.8×103千克/米3)解析:天平平衡后左、右盘的物体的质量相等m 铝=m 铁,所以质量比是1∶1.根据公式V =ρm和铁与铝的密度值,可得体积之比是78∶27.点拨:利用天平判断物体的密度关系、体积关系、质量关系是常见的题型,能反映出我们综合运用知识的能力.例5 一个瓶子最多能装下500克水,则这个瓶子能装下500克的下列哪种物质( ) A .浓硫酸B .酒精C .煤油D .汽油解析:这个瓶子能装下比水的密度大的物质,因为瓶的容积为V =水水ρm =3/1500厘米克克=500厘米3,在相同质量时,密度大于1克/厘米3的物质体积才能小于500厘米3,所以正确答案为A .点拨:这是一个关于密度应用的题目,借助水的密度可把瓶子的容积求出,这样就可以在质量相等的情况下对比密度判断出体积大小,密度小于水的物质不能装下,而密度大于水的物质可以装下,因为它的体积小于500厘米3.例6 把一块金属块放入盛满酒精的杯中时,从杯中溢出10克酒精(ρ酒精=0.8克/厘米3),若将这块金属块从酒精中取出放入盛满水的杯中,则从水杯中溢出水的质量 ( ) A .大于10克 小于10克 C .等于10克 D .无法确定 解析:由ρ=Vm得V =ρm =3/8.010厘米克克=12.5厘米3,溢出水的质量m =ρ水·V =1克/厘米3×12.5厘米3=12.5克>10克,所以正确答案为A .点拨:此类型题解决问题的突破口是求出杯的容积V ,它是沟通酒精和水的桥梁,两种液体的体积相等,利用这个关系就可以找出水的质量.例7 有一只玻璃瓶,它的质量为0.1千克,当瓶内装满水时,瓶和水的总质量为0.4千克.用此瓶装金属颗粒若干,瓶和金属颗粒的总质量为0.8千克,若在装金属颗粒的瓶中再装满水时,瓶、金属颗粒和水的总质量为0.9千克.求:(1)玻璃瓶的容积.(2)金属颗粒的质量.(3)金属颗粒的. 解析:由密度公式ρ=Vm (1)V 瓶=V 水=水水ρm =33/101.04.0米千克千克千克-=3×10—4米3 (2)m 金=0.8千克-0.1千克=0.7千克 (3)瓶内装金属粒后倒进去的水的体积V 水=水水ρm =33/108.09.0米千克千克千克-=10—4米3 金属粒体积V金=V瓶—V水=3×10—4—10—4米3=2×10—4米3所以ρ金=金金V m =341027.0米千克-⨯=3.5×103千克/米3答:玻璃瓶的容积为3×10—4米3,金属颗粒的质量是0.7千克;金属颗粒的密度是3.5×10—4米3.点拨: 对这种有一定难度的题目,要认真审题,挖掘题目所给的隐含条件,以图助思,将题目所述情景再现于图中,以求帮助我们建立起已知量和待求量的联系.由题意可画出图1—3—5该题的第(3)问中,求金属颗粒的密度难度较大,但可以从图1—3—5找出解法.尤其是金属颗粒的体积不好求,但可以从求它所排开水的体积为线索,这个难点便能突破了.例8 用天平测一木块的质量,操作正确,所用砝码和游码位置如图示.用量筒测测其体积,量筒中水面的位置如图1—3—6示,则所测木块的质量为________千克,体积为________米3,木块的密度为________千克/米3.解析:由题意知木块的质量是0.018千克,木块体积为V =80厘米3—60厘米3=20厘米3=2×10—5米3,木块的ρ=V m=35102018.0米千克-⨯=0.9×103千克/米3 点拨:本实验是测不易浸水木块的密度,木块的质量可直接测,木块的体积可利用“沉锤法”,借助于能沉入水下的铁块把木块的体积测出,测试时一定要注意V 木=V 2—V 1,即两次量筒的示数差.例9 用一架天平,一只空瓶和适量纯水测定牛奶的密度.(1)应测的物理量为________.(2)用测出的物理量写出计算牛奶密度的计算式:________________________. 解析:(1)应测的物理量为:空瓶质量m ,装满纯水后瓶子的质量m 1,装满牛奶后瓶子的质量m 2.(2)牛奶的体积V =水ρmm -1牛奶的密度ρ牛奶=Vmm -2或ρ牛奶=m m m m --12ρ水点拨:此题是一个自行设计的测牛奶密度的实验.我们要根据ρ=Vm这一公式,充分利用题中给出的工具由天平可测出牛奶的质量.在没有量筒的情况下要知道体积,就得借助纯水,因为它的密度是已知的,这是解决问题的突破口.由水可求出瓶的容积V =水水ρm ,也是牛奶的体积.在写牛奶密度的表达式时要用实验中已测量出的物理量具体表示.例10 有一团长细铁丝,用天平称出它的质量是150克,测得铁丝的直径是1毫米,这团铁丝有多长?(ρ铁=7.9克/厘米3) 解析:铁丝的体积,由ρ=Vm得V =ρm=3/9.7150厘米克克铁丝的截面积S =πr 2=π(2d )2 根据V =SL 可得L =SV=223)05.0(14.3/9.7150厘米厘米克克⨯⨯ =2419厘米≈24米点拨:利用密度可以解决一些不易直接测量的问题.该题中细铁丝长度不容易用刻度尺测量,但用天平或秤测量铁丝的质量很方便,这样就可以利用密度公式V =ρm求出体积,长度就可以算出来.在实际中常采用秤称出几千米金属线或电线的质量来的方法,就是根据上述道理.例11 质量相等的甲、乙两种注体,甲液体的密度为ρ1,乙液体的密度为ρ2,将两种液体混合(混合时总体积的微小变化略去不计),则混合液的密度为 ( ). A .221ρρ+ B .21ρρ+ C .2121ρρρρ+⋅ D .21212ρρρρ+⋅解析:由密度公式ρ=Vm知,需要先求出混合液的质量和体积.甲、乙两种液体质量相等,设分别为m ,则甲的体积是V 甲=1ρm,则乙的体积是V 乙=2ρm,混合液的质量是2m ,体积是V 甲+V 乙=1ρm+2ρm,把质量和体积代入密度公式即可求出混合密度.答案为D .点拨:若把体积相等的两种液体混合,则混合液体的密度为21(ρ1+ρ2).例12 给你一台已调好的天平和一盒砝码,一只烧杯,适量的水和盐水,现要测量盐水的密度请说出你的办法.解析:①用天平称出空烧杯的质量m 1;②用天平称出烧杯装适量的水的总质量m 2,并做记号;③烧杯内水的质量为m 水=m 2-m 1;④用天平称出烧杯内装入和水体积相同的盐水的质量m ;⑤烧杯内盐水的质量为m 盐水=m 3-m 1;⑥利用ρ=Vm,算出烧杯内水的体积即盐水的体积. V 盐水=V 水=水水ρm =水ρ12m m -⑦盐水的密度是ρ盐水=盐水盐水V m =水ρ1213m m m m --=1213)(m m m m --水ρ点拨:测量密度,需要测量质量和体积,质量可以用天平测量,但体积的测量没有量筒或量杯,而是给了适量的水,所以只有通过天平和水来间接地测量盐水的体积,所以本题需要采取等体积代换的方法,用天平测量与盐水体积相等的水的质量,算出水(水的密度作为已知条件)的体积即是盐水的体积.例13 一只正在燃烧的蜡烛,它的 ( )A .质量不断减少,密度不变B .质量不断减少,密度也减小C .密度不变,质量不变D .质量不变,密度减小解析:这道题同时考查质量和密度的概念.蜡烛在燃烧过程中,质量减少.但蜡烛这种物质没有改变,所以密度不变. 答案:A例14 (北京市中考试题)对于密度的计算公式ρ=vm,下面说法正确的是 ( ) A .密度与物体的质量成正比 B .密度与物体的体积成反比C .物质的密度与质量成正比,与体积成反比D .密度是物质的一种特性,其大小等于物质的质量与体积的比值解析:对密度的概念应从物理意义上去理解,而学生容易从数学公式的角度去分析,而选择C 选项.ρ=vm是定义密度、计算密度大小的公式,但它不能决定某种物质密度的大小.例如:质量是1kg 的水,密度为1.0×103kg /m 3,质量为2kg 的水,密度仍为1.0×103kg /m 3.因为当某种物质的质量为原来2倍时,体积也相应为原来的2倍,质量与体积的比值不变. 所以不能说某种物质的密度跟它的质量成正比,跟它的体积成反比. 答案:D例15 (南京市中考试题) A 、B 、C 三种物质的质量m 与体积V 的关系图像,如图所示.由图可知,A 、B 、C 三种物质的密度ρA 、ρB 、ρC 和水密度ρ水之间的关系是 ( )A .ρA >ρB >ρC ,且ρA >ρ水, B .ρA >ρB >ρC ,且ρA <ρ水, C .ρA <ρB <ρC ,且ρA >ρ水,D .ρA <ρB <ρC ,且ρA >ρ水,解析:此题是用图像来求物理量,是数学知识应用于物理的一种常用方法,但在平时的学习中,学生不够重视.图像中,横轴表示体积,单位是cm 3,纵轴是质量,单位是g ,整个图像表示了质量随体积的变化. 根据密度公式ρ=vm,我们可以从体积为10 cm 3处作纵轴m 的平行线,如图l —3—8所示,并与A 、B 、C 三条直线交于点C 1、C 2和C 3,再分别过点作横轴V 的平行线,从图中就可以看出:ρA >ρB >ρC ,又因为ρ水=1g /cm 3,而图中ρA 约为2g / cm 3,ρB 约为1g / cm 3,ρC 则小于l g / cm 3.答案:A例16 (上海初中物理竞赛试题)在测定液体密度的实验中,液体的体积(V )及液体和容器的总质量(m 总)可分别由量筒和天平测得,某同学通过改变液体的体积得到几组数据,画出有关的图线,在图中能正确反映液体和容器的总质量跟液体的体积关系的是 ( )ABCD解析:这道题考查学生是否会观察m -V 图像,是否会通过图像分析问题的正确性. 当所测液体体积V 增大时,液体质量m l 一定增大,由公式m =ρV ,m l 和V 为正比关系,且V =0时,m l =0,图线A 应过原点.但m 总=m 1+m 0(m 0为容器质量),m 总=ρV +m 0,当V =0时,m l =m 0,图线B 恰好反映了这种情况,此时的质量代表了容器本身的质量,而图像的斜率代表了此种液体的密度.C 图中,V ≠0时,m 总=0,和实际不符.D 图中,随着V 的增大,m 总减少,也和实际不符. 答案:B例17 为测定黄河水的含沙量,某校课外活动小组取了10dm 3的黄河水,称其质量是10.18kg .已知沙子的密度ρ沙=2.5×103kg /m 3,问黄河水的含沙量是多少?(即每立方米黄河水中含沙多少千克)解析:此题是沙掺在水中,但两者不相混合,可以先求出10dm 3黄河水中的沙子的质量,进而求出1 m 3中沙子的质量.考查了学生灵活掌握密度知识去解决问题的能力. 已知:V =10dm 3-1×104cm 3,m =10.18kg =10180g . 求:1 m 3中含沙质量m 沙′解:⎩⎨⎧+=+=沙水沙水V V V m m m由①得m 沙=m -ρ水V 水=m —ρ水(V —V 秒) =m -ρ水V —ρ水沙沙ρm整理得 m 沙=水沙水沙ρρρρ--)(V m代入数据 m 沙=333343/1/5.2)/110110180(/5.2cmg cm g cm g cm g cm g -⨯⨯- 答案:1 m 3中含沙量为30kg .例18 (北京市中考试题)为节约用水,某同学家采取了多种节水措施,减少了用水量.4月底查水表时,水表显示的数字325m 3,4月份这个同学家的用水量为8t .5月底查水表时,水表显示的数字为332 m 3,则5月份这个同学家的用水量比4月份少________吨. 解析:5月份用水体积V =332 m 3-325 m 3=7 m 3,则5月份用水质量m =ρ水V =1 t /m3×7 m 3=7t .此时选择t /m 3为密度单位,比选用国际单位要方便. 5月比4月用水量少了8t -7t =1 t . 答案:1 t例19 一个瓶子装满水时,水的质量为1kg ,这个瓶子最多能装下多少千克的酒精?(ρ酒精=0.8×103kg /m 3) 已知:m 酒精. 解 ρ酒精=0.8×103kg /m 3=0.8kg /dm 3ρ水=1.0×103kg /m 3=1 kg /dm 3此时选择kg /dm 3为密度单位,可使计算过程简化.V 水=水水ρm =3/11dmkg kg=1 kg /dm 3 瓶子的容积一定:V 酒精=V 水m 酒精=ρ水V 酒精=0.8kg /m 3×1 dm 3=0.8kg 答案:这个瓶子最多能装下0.8kg 酒精例20 (四川省中考试题)一个空瓶的质量为400g ,装满水后两者的总质量为800g ;当装满油后的总质量为720g ,求:油的密度是多少?解析:用同样的瓶分别装水和装油,水和油体积相同,可以用V 一定时,21m m =21ρρ关系去做.已知:m 水=800g -400g =400g ,m 油=720g -400g =320g . 求ρ油. 解 V 水=V 油水油m m =水油ρρ(ρ水取1g /cm 3)g g 400320=3/1cm g 油ρ(ρ油取0.8g /cm 3) 答案:油的密度为0.8 g /cm3例21 (天津市中考试题)甲、乙两金属块,甲的密度是乙的52,乙的质量是甲的2倍,则甲的体积是乙的体积的 ( )A .0.8倍B .1.25倍C .0.2倍D .5倍解析:这种根据公式求化值的试题,在平时的考查中也多次出现.首先要把题中文字叙述的比值,用数学形式表示出来,如甲的密度是乙的52,即乙甲ρρ=52,乙的质量是甲的2倍,即m 乙=2m 甲,推得乙甲m m =21. 求:乙甲V V .解法1乙甲V V =乙乙甲甲ρρm m =乙甲m m ×甲乙ρρ=21×25=45=1.25 解法2 因为在比值中,各物理量的单位是统一的.所以这种题也可以用“设数”法做.则 乙甲V V =5221=45=1.25答案:B这种方法是将物理公式的繁索推导转化为简单的数学运算.当“填空”或“选择”题中出现类似问题时,可以用此方法,但它的中间过程从理论上看不够严密.例22 5m 3的冰熔化成水后,体积是多少?体积变化与原体积比是多少?如果是水结成冰,体积变化与原体积比是多少?(ρ冰=0.9×103kg /m 3) 解析:冰熔成水,质量不变,密度增大,体积减小.已知:V 冰=5m 3,ρ冰=0.9t /m 3求:V 冰,1V V △,2V V△ 解 冰化成水后: m 水=m 冰利用前面的比例式:冰水V V =水冰ρρ V 水=V 冰×水冰ρρ=5m 3×109=4.5 m 3 1V V △=冰水冰V V V -=333m5m 5.4m 5-=101水结成冰后,质量不变水冰V V =冰水ρρ=109∴ V 冰=109V 水2V V △=水水冰V V V -=水水水V V V -910=91【注意】 与前面答案不同.答案:体积是4.5m 3,所求值分别101和91例23 (北京市中考试题)一个装满水的水杯,杯和水总质量为600g ,将一些金属粒倒入杯中沉底后从杯中共溢出水200g ,待水溢完测得此时水杯总质量为900g ,则金属粒密度为多少立方米每千克?解析:可借助于画图来帮助理解题目当中几个质量的意义及各质量之间的关系.如图。
密度公式计算应用典型题目(带答案)
1、一个空瓶的质量是20g,装满水后,称得总质量是120g,把水到干净后,瓶中再装满酒精,则其总质量是多少?(ρ酒精=0.8×103kg/m 3)2、一个空瓶子的质量是150g ,当装满水时,瓶和水的总质量是400g ;当装满另一种液体时,瓶和液体的总质量是350g 。
求:⑴这个瓶子的容积 ⑵液体的密度3、如图所示,乌鸦为了喝到瓶中的水,每次将一个质量为0.01kg 的小石头投入容积为3×10-4m 3盛有0.2kg 的水的瓶中,当投入25个相同的小石头后,水面恰好升到瓶口,已知水的密度ρ水=1.0×103kg/m 3,求:(1)瓶内小石头的总体积;(2)小石头的密度。
4、一辆载重汽车的车厢容积为3.5m ×2m ×0.6m ,额定载重量为4t 。
求:(1)如果车厢装满泥沙(泥沙的体积等于车厢容积),汽车载重量为多少?(2)已知泥沙的密度为2.4×103 kg /m 3.为了行车安全,汽车不能超载,如果不超载,此车最多能装多少立方米的泥沙?m 总=20g+80g=100g (2) (1)V 容=V 水=250cm 35、“五•一”黄金周,王海栋和妈妈到无锡旅游,买了一只宜兴茶壶,如图所示.他听说宜兴茶壶是用宜兴特有的泥土材料制成的,很想知道这种材料的密度.于是他用天平测出壶盖的质量为44.4g,再把壶盖放入装满水的溢水杯中,并测得溢出水的质量是14.8g。
(1)请你帮王海栋算出这种材料的密度是多少?(2)若测得整个空茶壶的质量为159g,则该茶壶所用材料的体积为多大?6、今年陈传祥家种植柑橘获得了丰收。
他想:柑橘的密度是多少呢?于是,他将柑橘带到学校实验室,用天平、溢水杯来测量柑橘的密度。
他用天平测出一个柑橘的质量是114g,测得装满水的溢水杯的总质量是360g;然后借助牙签使这个柑橘浸没在溢水杯中,当溢水杯停止排水后再取出柑橘,接着测得溢水杯的总质量是240g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密度的应用复习
一.知识点回顾
1、密度的定义式?变形式?
2、密度的单位?它们的换算关系?
3、对公式ρ=m/v的理解,正确的是()
A.物体的质量越大,密度越大
B.物体的体积越大,密度越小
C.物体的密度越大,质量越大
D.同种物质,质量与体积成正比二.密度的应用
1.利用密度鉴别物质
例1.体育锻炼用的实心“铅球”,质量为4kg,体积为0.57dm3,这个“铅球”是铅做的吗?
解析方法一:查表知,铅的密度为ρ=11.34×103kg/m3。
ρ实=m/v=4kg/0.57dm3=4kg/0.57×10-3m3=7.01×103kg/m3
∴ρ>ρ实即该铅球不是铅做的
方法二:V’=m/ρ=4kg/11.34×103kg/m3=0.35dm3
∴V>V’即该球不是铅做的
方法三:m’=ρV=11.34×103kg/m3×0.57×10-3m3=6.46kg
∴m’>m 即该球不是铅做的
【强化练习】
1.一金属块的质量是 1.97t,体积是0.25m3,求此金属的密度。
2.某种金属的质量是 1.88 ×103kg ,体积是0.4m3,密度是__ kg/m3,将其中用去一半,剩余部分的质量是kg ,密度是_______kg/m3。
2.同密度问题
例2.一个烧杯中盛有某种液体,测得烧杯和液体的总质量为300g,从烧杯中倒出25ml液体后,测得烧杯和剩余液体的质量为280g,求这种液体的密度。
解析ρ=m/v=(300g-280g)/25ml=0.8g/cm3
例3.一节油罐车的体积 4.5m3,装满了原油,从油车中取出10ml样品油,其质量为8g,则这种原油的密度是多少?这节油车中装有多少吨原油?
解析ρ=m/v=8g/10ml=0.8g/cm3
M’=v’ρ=4.5m3×0.8×103kg/m3=3.6×103kg=3.6t
【强化练习】
1.“金龙”牌食用油上标有“5L”字样,其密度为0.92 ×103kg/m3,则这瓶油的质量是多少?
2.一个容积为 2.5L的瓶子装满食用油,油的质量为2kg,由此可知这种油
的密度为 kg/m3,油用完后,若就用此空瓶装水,最多能装kg的水.
1。