深圳初中七年级数学上册应用题(附解析 答案)

合集下载

七年级数学应用题带答案

七年级数学应用题带答案

七年级数学应用题带答案应用题是我们学习数学的时候会学到的,下面是店铺帮大家整理的七年级数学应用题带答案,希望对大家有所帮助。

七年级数学应用题带答案篇1【题目1】B处的兔子和A处的狗相距56米。

兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。

兔子跳出112米后被狗追上,问兔子一跳多少米?【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。

求AB两地相距多少千米?【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。

【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。

【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。

所以火车长30000-29400=600米。

【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。

已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。

而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。

【解答】把12时AB的距离看作单位1,四人速度分别用ABCD 来表示。

A+B=1/4,B+C=1/5。

2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。

初一上初中数学应用题100题练习与标准答案

初一上初中数学应用题100题练习与标准答案

列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。

解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。

解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。

解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。

解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。

解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -∙=+大小 999-1000x x ∙=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。

人教版数学七年级上册应用题专项(附答案)

人教版数学七年级上册应用题专项(附答案)

⼈教版数学七年级上册应⽤题专项(附答案)⼈教版数学七上应⽤题专项练习⼀、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千⽶,甲车速度50千⽶每⼩时从A地出发,⼄车速度40千⽶每⼩时从B地出发。

同时出发相对⽽⾏,⼏⼩时后相距30千⽶?2.甲⼄两车从相距300千⽶的AB两地同时出发,甲速度是⼄速度的1.5倍,4⼩时后相遇,⼄速度是多少?3.甲⼄两地相距600千⽶,慢车速度40千⽶每⼩时从甲地出发,快车速度60千⽶每⼩时从⼄地出发;如果让慢车先⾛55分钟后,快车再出发,求快车开出多少⼩时后两车相遇?⼆、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在⼄车前⽅600⽶处,甲速度40千⽶每⼩时,⼄车速度60千⽶每⼩时,同时出发,⼄车⼏⼩时能追上甲车?②AB两地相距62千⽶,甲从A出发,每⼩时⾏14千⽶,⼄从B出发每⼩时⾏18千⽶,若甲在前⼄在后,两⼈同时同⽅向出发,⼏⼩时后⼄超过甲10千⽶?2.同地不同时:先⾛者的时间=后⾛者的时间+时间差先⾛者的路程=慢⾛者的路程①慢车从车站开出,每⼩时⾏48千⽶,45分钟后,⼀快车从同车站同向开出,1.5⼩时追上了慢车,快车的速度是多少?②古代⼀队⼠兵去城外进⾏训练,以每⼩时5千⽶的速度⾏进,⾛了18分钟,城内要将⼀个重要信息传给队长,通讯员骑马以每⼩时14千⽶的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=⼀圈的路程同地同向:两者路程差=⼀圈的路程1.⼀条环形跑道长400⽶,甲每分钟⾏450⽶,⼄每分钟⾏250⽶;甲⼄两⼈同时同地反向出发,⼏分钟后再相遇?甲⼄两⼈同时同地同向出发,⼏分钟后再相遇?2.甲⼄两⼈在400⽶的环形跑道上跑步,若同时同地同向跑则3分20秒相遇⼀次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少⽶?四、年龄问题等量关系式:⼤⼩年龄差永远不会变,⼀年⼀岁,⼈⼈平等1.现在⼉⼦的年龄是8岁,⽗亲的年龄是⼉⼦年龄的4倍,⼏年后⽗亲年龄是⼉⼦年龄的3倍?3.⽗亲和⼥⼉的年龄和是91,当⽗亲的年龄是⼥⼉现在年龄的2倍的时候,⼥⼉的年龄是⽗亲现在年龄的三分之⼀,求⼥⼉现在的年龄?4.现在甲的年龄是⼄的2倍,8年后两⼈年龄和是76岁,现在甲⽐⼄⼤⼏岁?五、⾏船问题顺流航速=船的静⽔速度+⽔流速度逆流速度=船的静⽔速度-⽔流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.⼀艘船航⾏于A,B两个码头之间,顺⽔航⾏需要2个⼩时,逆⽔航⾏需要4个⼩时,已知⽔流速度是4千⽶/时,求这两个码头之间的距离?2.⼀艘轮船每⼩时⾏15千⽶,它逆⽔6⼩时⾏了72千⽶,如果它顺⽔⾏驶同样长的航程需要多少⼩时?六、飞⾏问题顺风速=飞机⽆风速+风速逆风速=飞机⽆风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.⼀架飞机在两地之间飞⾏风速为16千⽶/⼩时,顺飞飞⾏需要3⼩时,逆风飞⾏需要5⼩时,求⽆风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打⼏折出售此商品?3.⼯艺商场按标价销售某种⼯艺品时,每件可获利45元;按标价的⼋五折销售该⼯艺品8件与将标价降低35元销售该⼯艺品12件所获利利润相等,该⼯艺品每件的进4.⼀家商店将某种服装按进价提⾼40%后标价,⼜以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?⼋、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

初中七年级数学不等式应用题专项练习(含答案解析)

初中七年级数学不等式应用题专项练习(含答案解析)

初中七年级数学不等式应用题专项练习(含答案解析)1.两名教师和若干名学生要选择旅游公司。

甲公司的优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。

要求求出学生人数超过多少人时,甲公司比乙公司更优惠。

2.老师说班级一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还有不足6位学生在玩足球。

求班级学生总数。

3.某工程队要招聘甲、乙两种工人150人。

甲、乙两种工种的月工资分别为600元和1000元。

现要求乙种工种的人数不少于甲种工种人数的2倍。

问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。

两个月后自行车的销售款已超过这批自行车的进货款。

问这时至少已售出多少辆自行车?5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。

如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。

设该校买了m本课外读物,有x名学生获奖。

解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。

6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。

已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。

求:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7.用甲、乙两种原料配制成某种果汁。

已知这两种原料的维生素C的含量及购买这两种原料的价格如表。

现制作这种果汁200kg,要求至少含有52,000单位的维生素C。

试写出所需甲种原料的质量x(kg)应满足的不等式。

2.如果要求购买甲、乙两种原料的费用不超过1800元,那么需要满足以下不等式。

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含解析)

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】⨯=解:∵67604020>40203650∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得+-=x x5060(67)3650-=x6730答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,根据题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.4.解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)解析:(1)x=4;(2)x=1;(3)x=1 2【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.5.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.7.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t ,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t 1小时则12+60=(25+15)t 1,求得t 1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.8.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.10.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。

初一上学期数学应用题习题解析(含答案)

初一上学期数学应用题习题解析(含答案)

应用题综合练习一.选择题(共14小题)1.(和差倍问题)公务员录用考试是这样统计成绩的,综合成绩=笔试成绩×60%+面试成绩×40%,小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多()A.2.4分B.4分 C.5分 D.6分2.(和差倍问题)篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,今年某队在全部38场比赛中最少得到70分,那么这个队今年胜的场次是()A.6场 B.31场C.32场D.35场3.(和差倍问题)初三某班学生在会议室看录像,每排座位13人,则有1人无处坐,每排14人,则空12个座位,则这间会议室共有座位的排数是()A.12 B.14 C.13 D.154.(比例问题)一个长方形的周长是18cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm5.(其他问题)一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.616.(行程问题)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时7.(和差倍问题)幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,则小朋友的人数为()A.4个 B.5个 C.10个D.12个8.(工程问题)某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要()A.48天B.60天C.80天D.100天9.(行程问题)甲、乙两人分别从两地同时出发,若相向而行,则6h相遇;若同向而行,则12h甲追上乙,那么甲的速度是乙的速度的()A.倍 B.倍 C.3倍 D.倍10.(比例问题)小华的年龄与爷爷的年龄之和等于爸爸年龄的2倍,爸爸的年龄是小华年龄的3倍,则爷爷的年龄是小华年龄的()A.4倍 B.5倍 C.6倍 D.7倍11.(其他问题)某年的7月份有5个星期六,并且它们的日期之和为85,则7月4日是()A.星期四B.星期五C.星期六D.星期日12.(比例问题)桌上A,B两个大小相同的量杯内分别装有21mL,23mL的水.现在同时对A,B两个量杯注水,注入的水量之比为2:3,接着又同时倒水,倒出的水量之比为2:3,此时A,B两个量杯的水位高度相等,则B量杯注水前与倒水后相差()A.2mL B.4mL C.6mL D.8mL13.(工程问题)制作一副广告牌,徒弟单独做20天完成,师傅单独做12天完成,现由徒弟单独做4天后,师徒二人合做完成余下的任务,则师傅做了()A.4天 B.5天 C.6天 D.7天14.(工程问题)已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时()A.1天 B.2天 C.3天 D.4天二.解答题(共14小题)15.(其他问题)如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a=元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?16.(行程问题)一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)17.(工程问题)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?18.(行程问题)列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?19.(行程问题)一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?20.(行程问题)甲、乙两地的路程为600km,一辆客车从甲地开往乙地.从甲地到乙地的最高速度是每小时120km,最低速度是每小时60km.(1)这辆客车从甲地开往乙地的最短时间是h,最长时间是h.(2)一辆货车从乙地出发前往甲地,与客车同时出发,客车比货车平均每小时多行驶20km,3h两车相遇,相遇后两车继续行驶,各自到达目的地停止.求两车各自的平均速度.(3)在(2)的条件下,甲、乙两地间有两个加油站A、B,加油站A、B相距200km,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与加油站B的路程.21.(和差倍问题)某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?22.(和差倍问题)某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?23.(和差倍问题)为了庆祝中国足球队首次进入世界杯赛,曙光体育器材厂赠送一批足球给希望中学足球队.若足球队每人领一个则少6个球,每两人领一个则余6个球,问这批足球共多少个?小明领到足球后十分高兴,就仔细地研究起足球上的黑白球(如图),结果发现,黑块呈五边形,白色呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?24.(行程问题)如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A 出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.25.(其他问题)牧场上的草长得一样地密,一样地快.已知70头牛在24天里把草吃完,而30头牛就可吃60天.如果要吃96天,问牛数该是多少?26.(比例问题)某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(比例问题)在水面高度为30cm的圆柱形水桶里浸没着一个圆柱形钢材A 和一个圆锥形钢材B.A与B的底面半径之比为3:2,A的高比B的高多,A 的侧面积为282.6平方厘米.如果取出圆锥形钢材B.桶里的水面下降cm.如果再把圆柱形钢材A垂直露出水面6cm,桶里的水面下降4cm.(1)求圆柱形钢材A的高.(2)圆锥形钢材B的体积为多少?(3)求圆柱形水桶里水的体积.28.(行程问题)甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米.两车分别到达B地和A地后,立即返回,返回时,甲车的速度增加二分之一,乙车的速度增加五分之一.已知两车两次相遇处的距离是50千米,则A,B两地的距离为多少千米?29.(销售问题)“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.30.(销售问题)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400400≤a<500500≤a<700700≤a<900获奖券金额(元)3060100130根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?31.(销售问题)某商场为提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表,若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?32.(销售问题)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?33.(销售问题)某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?应用题综合练习参考答案与试题解析一.选择题(共14小题)1.【解答】解:设小红姐姐要使自己的综合成绩追平竞争对手,她的面试成绩必须比竞争对手多x分,根据题意得:82×60%+40%x=86×60%,解得:x=6.答:小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多6分.故选D.2.【解答】解:设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次是32场.故选C3.【解答】解:设这间会议室共有座位x排,根据题意得:13x+1=14x﹣12,解得:x=13.答:这间会议室共有座位13排.故选C.4.【解答】解:设正方形的边形为xcm,则长方形的长为(x+1)cm,长方形的宽为(x﹣2)cm,根据题意得:2×[(x+1)+(x﹣2)]=18,解得:x=5.故选A.5.【解答】解:设十位数字为x,则个位数字为7﹣x,由题意得:10x+7﹣x+45=10(7﹣x)+x,解得:x=1,所以个位数为:7﹣x=7﹣1=6,答:这个两位数这16.故选:B.6.【解答】解:设当两车相距100千米时,甲车行驶的时间为x小时,根据题意得:900﹣(110+90)x=100或(110+90)x﹣900=100,解得:x=4或x=5.故选D.7.【解答】解:设小朋友的人数为x个,根据题意得:3x﹣3=2x+2,解得:x=5.故选B.8.【解答】解:设由甲、乙工程队合作承包,完成任务需要x天,根据题意得(+)x=1,解得x=48.答:由甲、乙工程队合作承包,完成任务需要48天.故选A.9.【解答】解:设乙的速度为1,则甲的速度是x,根据题意得6x+6×1=12x﹣12×1,6x+6=12x﹣12,6x=18,x=3,3÷1=3.故选C.10.【解答】解:设小华的年龄为a岁,爷爷的年龄是小华年龄的x倍,则爸爸的年龄为3a岁,爷爷的年龄为ax岁,根据题意得:a+ax=2×3a,即1+x=6,解得:x=5.答:爷爷的年龄是小华年龄的5倍.故选B.11.【解答】解:设7月份第一个星期六的日期为x,根据题意得:5x+7+14+21+28=85,解得:x=3,∴7月4日为星期日.故选D.12.【解答】解:设注入的水量为2x,3x,倒出的水量为2y,3y可得:21+2x﹣2y=23+3x﹣3y,解得:x﹣y=﹣2,所以B量杯注水前与倒水后相差为|3(x﹣y)|=6,故选C13.【解答】解:设师傅做了x天,依题意得:+=1,解得x=6.即:师傅做了6天.故选:C.14.【解答】解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x ﹣2)天,根据题意得:+=1,解得:x=4.答:完成这项工程共耗时4天.二.解答题(共14小题)15.【解答】解:(1)a=23÷10=2.3(元/m3);(2)2.3×22+(2.3+1.1)×(25﹣22)=50.6+3.4×3=50.6+10.2=60.8(元).答:需交水费60.8元;(3)设该用户实际用水m立方米,由题意,得2.3×22+(2.3+1.1)×(70%m﹣22)=71,解得:m=40.故该用户实际用水40立方米.故答案为:2.3;60.8.16.【解答】解:(1)设这名队员从掉头返校到追上队伍,经过了y小时,根据题意得:50y﹣30y=30××2,解得:y=1.5.答:这名队员从掉头返校到追上队伍,经过了1.5小时.(2)设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意得:40x+30x=7×2.故答案为:40x+30x=7×2.17.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.18.【解答】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.19.【解答】解:设通讯员需x小时可以追上学生队伍,根据题意得:5(x+)=14x,去括号得:5x+=14x,移项合并得:9x=,解得:x=,则通讯员需小时可以追上学生队伍.20.【解答】解:(1)由题意可得:这辆客车从甲地开往乙地的最短时间是:600÷120=5(h),这辆客车从甲地开往乙地的最长时间是:600÷60=10(h),故答案为:5,10;(2)设货车平均每小时行驶xkm,由题意,得3(x+x+20)=600,解得:x=90,x+20=110,答:货车平均每小时行驶90km,客车平均每小时行驶110km;(3)设客车行驶了yh进入加油站B,两车相遇前,(90+110)y=600﹣200.解得:y=2.110×2=220(km),两车相遇后,(90+110)y=600+200,解得:y=4,110×4=440(km),答:甲地与加油站B的路程是220km或440km.21.【解答】解:设安排生产螺栓x人,则安排生产螺母为(30﹣x)人由题得:答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓螺母刚好配套22.【解答】解:设安排x名工人生产螺钉,则安排(27﹣x)名工人生产螺母,根据题意得:2×1500x=2400(27﹣x),解得:x=12,∴27﹣x=15.答:安排12名工人生产螺钉、安排15名工人生产螺母.23.【解答】解:①设这批足球共有x个,则列方程得:x+6=2(x﹣6),解得:x=18.②设白块有y块,则:3y=5×12,解得:y=20.答:足球有18个,白块有20块.24.【解答】解:(1)设A出发后经过x秒与B第一次重合,依题意有(3﹣2)x=5,解得x=5.答:A出发后经过5秒与B第一次重合;(2)设经过y秒A与B第一次重合,依题意有(3+2)x=100×2,解得x=40.答:,经过40秒A与B第一次重合;(3)由于若A、B同时从点M出发,A与B第一次重合共走了2个MN,第二次重合共走了4个MN,可得ME=×2MN=MN,MF=2MN﹣×4MN=MN,依题意有:s﹣s=20,解得s=50.答:s=50米.25.【解答】解:设牧场上原来的草的量是1,每天长出来的草是x,则24天共有草1+24x,60天共有草1+60x,所以,去分母得:30(1+24x)=28(1+60x),∴960x=2,∴x=96天吃完,牛应当是(头).答:如果要吃96天,牛数该是20头.26.【解答】解:∵2300÷﹙1+15%﹚=2000﹙人﹚设去年男生有x人,则女生有﹙2000﹣x﹚人.﹙1+25%﹚x+﹙2000﹣x﹚×﹙1﹣25%﹚=2300,解得x=1600答:去年男女生各有1600人和400人.27.【解答】解:(1)由题意得r A=3acm,r B=2acm,h A=h B,则=,解得h B=,则h A=×=15(cm).故圆柱形钢材A的高是15cm.(2)由题意得:2π×3a×h A=282.6,解得a=1,r A=3,r B=2,圆锥形钢材B的体积:×π×22×=15π=47.1(cm3);故圆锥形钢材B的体积为47.1cm3.(3)水高:30﹣10﹣=(cm3),47.1+π×32×15=471(cm3),圆柱形水桶里水的体积:471÷(10+)×=800.7(cm3).故圆柱形水桶里水的体积是800.7cm3.28.【解答】解:设A,B两地的距离为x千米,依题意有2x﹣[x+x×2]﹣x=50,解得x=450.答:A,B两地的距离为450千米.29.【解答】解:由已知得:将毛竹全部粗加工后销售,则可获利为:1000×52.5=52500(元).故答案为:52500.30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利为:0.5×30×5000+(52.5﹣0.5×30)×100=78750(元).故答案分为:78750.由已知分析存在第三种方案.设粗加工x天,则精加工(30﹣x)天,依题意得:8x+0.5×(30﹣x)=52.5,解得:x=5,30﹣x=25,所以销售后所获利润为:1000×5×8+5000×25×0.5=102500(元).30.【解答】解:(1)优惠额:1000×(1﹣80%)+130=330(元)优惠率:×100%=33%;(2)设购买标价为x元的商品可以得到的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与640元之间.①当400≤a<500时,500≤x<625由题意,得:0.2x+60=x解得:x=450但450<500,不合题意,故舍去;②当500≤a≤640时,625≤x≤800由题意,得:0.2x+100=x解得:x=750而625≤750<800,符合题意.答:购买标价为750元的商品可以得到的优惠率.31.【解答】解:(1)当销售额为15000元时,工资总额=200+5000×5%=450元;当销售额为20000元时,工资总额=200+5000×5%+5000×8%=850元.因此450<800<850,设销售员甲该月的销售额为x元,则200+5000×5%+(x﹣15000)×8%=800,解得:x=19375元,故销售员甲该月的销售额为19375元.(2)设销售员乙未交个人所得税前的工资总额为a元,由题意得:a﹣(a﹣800)×5%=1275,解得:a=1300.所以超过20000元部分的销售额为(1300﹣850)÷10%=4500,∴销售员乙的销售总额=20000+4500=24500.设A型彩电销售x台,则B型彩电销售了(21﹣x)台,由题意得:1000x+1500(21﹣x)=24500,解得:x=14.故销售员乙本月销售A型彩电14台.32.【解答】解:(1)设甲的进价为x元/件,则(60﹣x)÷x=50%,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.33.【解答】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(8﹣4)×500=10000(元);方案二:设生产x天奶片,则生产(4﹣x)天酸奶,根据题意得:x+3(4﹣x)=8,解得:x=2,2天生产酸奶加工的鲜奶是2×3=6吨,则利润为:2×2000+2×3×1200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润.。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。

人教版数学七年级上册应用题专项(附答案)

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:我校七年级某班共有学生48人,其中女生人数比男生人数的2倍少12人,则这个班的男生有多少人?【答案】这个班有男生20人.【解析】【分析】设这个班有男生x 人,则有女生(2x -12)人,根据男生人数+女生人数=48列出方程,解方程即可.【详解】解:设这个班有男生x 人,则有女生(2x -12)人,列方程得:21248x x +-=,解得,20x答:这个班有男生20人.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将0.7•化成分数.解:设0.7x •=.方程两边都乘以10,可得7.710x •=.由0.7x •=和7.710x •=,可得7.70.710x x ••-=-即710x x =-.(请你体会将方程两边都乘以10起到的作用) 解得79x =,即70.79•=. 填空:将0.4写成分数形式为 .(2)请你仿照上述方法把小数1.3化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)49;(2)1.3=113,计算见解析. 【解析】【分析】(1)根据阅读材料设0.4=x ,方程两边都乘以10,转化为4+x=10x ,求出其解即可;(2)设0.3=m ,程两边都乘以10,转化为3+m=10m ,求出其解即可.【详解】解:(1)设0.4=x ,则4+x=10x ,∴x=49. 故答案是49; (2)设0.3=m ,方程两边都乘以10,可得10×0.3=10m .由0.3=0.3333⋅⋅⋅,可知10×0.3=3.3333…=3+0.3333….即3+m=10m可解得m=13,∴1.3=11.3【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.23.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B 两城镇,若用大小货车共15辆,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,则恰好能一次性运完这批防护用品求这大小货车各多少辆?【答案】大货车8辆,小货车7辆.【解析】【分析】根据题意,可以先设这15辆车中大货车有a辆,则小货车有(15-a)辆,然后即可得到相应的方程,从而可以求得这15辆车中大小货车各多少辆.【详解】解:设这15辆车中大货车有a辆,则小货车有(15-a)辆,12a+8(15-a)=152解得,a=8,则15-a=7,答:这15辆车中大货车8辆,小货车7辆.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,利用题目中等量关系列出方程正确计算解答.24.2020年新冠肺炎爆发,省疾控中心组织医护人员和防疫药品赶赴湖北救援,装载防疫药品的货运飞机从机场出发,以600千米/小时的速度飞行,半小时后医护人员乘坐客运飞机从同一个机场出发,客运飞机速度是货运飞机速度的1.2倍,结果客运飞机比装载防疫药品的货运飞机迟15分钟到达湖北.(1)设货运飞机全程飞行时间为t 小时,用t 表示出发的机场到湖北的路程s ;(2)求出发的机场到湖北的路程.【答案】(1)s =600t ;(2)900千米.【解析】【分析】(1)根据路程=时间×速度列出关系式即可;(2)根据货运飞机和客运飞机的路程相同列出方程求的t 的值,进而可求得路程s 的值.【详解】解:(1)由题意,得s =600t(2)根据题意可知11600600 1.2()24t t =⨯⨯-+ 解得t =1.5∴s =600t =600×1.5=900答:出发的机场到湖北的路程是900千米【点睛】本题考查了一元一次方程的应用.解决本题的关键是要弄懂题意,找到题中的数量关系,列出方程进行解答.25.甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?【答案】甲乙两地相距832千米【解析】【分析】设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.【详解】甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米【点睛】此题考查了列一元一次方程解决问题,关键是找出等量关系.26.“雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?【答案】该突击队有高级工2人,初级工20人.【解析】【分析】设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.【详解】解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.【点睛】本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键.27.已知,两正方形在数轴上运动,起始状态如图所示.A 、F 表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.....【答案】(1)0,6;(2)小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)t=2,MN=3,t=6,MN=9【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.【详解】(1)∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6;(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【点睛】本题考查了数轴的动点问题,一元一次方程的应用,根据题意推出对应情况是解题关键.28.姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.【答案】(1)姐姐用时5350k 秒,妹妹用时5047k秒,所以不能同时到,姐姐先到;(2)姐姐后退15047米或妹妹前进3米【解析】【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:1k即:50471a b k == ∴a=50k ,b=47k 则再次比赛,姐姐的时间为:50350k +=5350k秒 妹妹的时间为:5047k秒 ∵532491502350k k =,502500472350k k= ∴5350k <5047k,即姐姐用时短,姐姐先到达终点 (2)情况一:姐姐退后x 米,两人同时到达终点 则:5050x k +=5047k,解得:x=15047 情况二:妹妹向前y 米,两人同时到达终点 则:5050k =5047y k -,解得:y=3 综上得:姐姐退后15047米或妹妹前进3米,两人同时到达终点 【点睛】本题考查行程问题,解题关键是引入辅助元k ,用于表示姐姐和妹妹的速度关系.29.玲玲和牛牛相约在小区笔直的步行道上健步走锻炼身体.两人都从步行道起点A 向终点B 走去.牛牛出发2分钟后,玲玲出发.又过了2分钟,牛牛停下来接了5分钟的电话,玲玲则以原速继续步行,与牛牛相遇后,玲玲的速度减少到原来的4走向终点B.牛牛接完电话后,提高速度向终点B走去,1.4分5钟后刚好追上玲玲,到达终点B后立即调头以提速后的速度返回起点A(调头时间忽略不计),玲玲、牛牛两人相距的路程y(米)与牛牛出发的时间x(分钟)之间的关系如图所示.(1)牛牛开始健步走的速度为_______米/分;(2)求玲玲开始健步走的速度和牛牛提速后的速度;(3)玲玲走到终点B后,停下来休息了一会儿.牛牛回到起点A后,立即调头仍以提速后的速度走向终点B,玲玲休息1分钟后以减速后的速度调头走向起点,A两人恰好在AB中点处相遇,求步行道AB的长度.【答案】(1)70;(2)玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)步行道AB的长度为624米.【解析】【分析】(1)根据第1段图像即可求得牛牛开始健步走的速度;(2)根据第2段图像即可求得玲玲开始健步走的速度,根据牛牛停下接了5分钟电话及需要1.4分钟刚好追上玲玲结合玲玲的速度可求得牛牛提速后的速度;(3)设AB的长度为a米,根据两人相遇后所用时间相同列出方程求解即可.【详解】解:(1)根据第1段图像可知,牛牛开始健步走的速度为:140÷2=70(米/分),故答案为:70;(2)根据第2段图像可知,玲玲开始健步走的速度比牛牛慢,且两人的速度差为:(180-140)÷2=20(米/分),∴玲玲开始健步走的速度为:70-20=50(米/分),根据题意可知第3段图像为牛牛接电话时玲玲追赶牛牛,则,追赶时间为180÷50=3.6(分),∵牛牛停下接了5分钟电话,∴第4段图像对应的时间是:5-3.6=1.4(分),此时玲玲的速度变为:50×45=40(米/分), ∵牛牛需要1.4分钟刚好追上玲玲∴牛牛提速后的速度为:40×(1.4+1.4)÷1.4=80(米/分),答:玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)由(2)可知牛牛追上玲玲时,两人的已行路程为:70×4+40×2.8=392(米)设AB 的长度为a 米,根据题意可知:113923922218040a a a a a -++-+=+解得624a =答:步行道AB 的长度为624米.【点睛】本题考查了一次函数图像的实际应用,读懂题意并结合图像正确理解两人的运动过程是解决本题的关键.30.通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少.【答案】3小时【解析】【分析】设规定时间为x 小时,两次行驶路程分别表示为1363x ⎛⎫- ⎪⎝⎭和1305x ⎛⎫+ ⎪⎝⎭,列方程,解方程即可.【详解】解:设规定时间为x 小时,由题意得11363035x x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭ 解得3x =答:规定时间是3小时.【点睛】本题考查了一元一次方程的应用,解题的关键是根据行程问题的数量关系“路程=速度×时间”两次表示出路程,由此列方程解决问题.。

2021-2022学年七年级数学上册第三章实际问题与一元一次方程练习题含解析

2021-2022学年七年级数学上册第三章实际问题与一元一次方程练习题含解析
1300 (3)设该单位用水x吨,①当x≤300时,3x=1300,解得:x= (舍去),
3 ②当x>300时,300×3+4(x−300)=1300,解得:x=400.答:该单位这个月用水400 吨. 九. 日历问题 【例题9】如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所 示),请你运用所学的数学知识探究,这7个数的不可能是( )
7 五. 行程问题 1.行程问题中有三个基本量:路程、时间、速度。
关系式为:①路程=速度×时间;②速度= ;③时间= 。
2.顺逆风(水)速度之间的关系: ①顺水(风)速度=静水(无风)速度+水流速度(风速); ②逆水(风)速度=静水(无风)速度-水流速度(风速)。 3. 追击问题的一个最基本的公式:追击时间 × 速度差 = 追击的路程. 相遇问题的基本公式为:速度和 × 相遇时间 = 路程. 【例题5-1】(列方程解应用题)双“11”期间,某快递公司的甲、乙两辆货车分别从相距
第4页
【例题5-2】(2020·甘肃白银市·七年级期末)某船从 A 地顺流而下到达 B 地,然后逆流 返回到达 A 地,一共用了8小时.已知此船在静水中的速度为8千米/小时,水流的速度为2 千米/小时.求 A 、 B 两地之间的路程. 【解析】解:设A、B两地之间的路程为x千米,依题意得, x + x = 8 ,
四. 积分问题 【例题4】(2021·湖北七年级期末)某学校组织四名学生参加知识竞赛,知识竞赛共设20 道选择题,各题分值相同,每题必答,下表记录了其中2名学生参赛后的得分情况.
参赛者 答对题数 答错题数 得分
A
18
2
86
B
17
3
79
(1)参赛学生 C 得72分,他答对了几道题?答错了几道题?为什么?

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (84)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (84)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,甲、乙两种商品的进价和售价如表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原售价销售,乙商品在原售价上打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,求第二次乙种商品是按原价打几折销售?【答案】(1)两种商品全部卖完后可获得1950元利润;(2)9折【解析】【分析】(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x-30)件,根据题意列出方程求出其解就可以;(2)设第二次甲种商品的售价为每件y元,根据第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,建立方程求出其解即可.【详解】(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x﹣30)件,根据题意列方程,得:30x+22(2x﹣30)=6000,解得:x=90,所以甲商品的件数为:2x﹣30=2×90﹣30=150(件),可获得的利润为:(29﹣22)×150+(40﹣30)×90=1950(元).答:两种商品全部卖完后可获得1950元利润;(2)设第二次乙种商品是按原价打y折销售,根据题意列方程,得:y﹣30)×90×3=1950+720,(29﹣22)×150+(40×10解得:y=9,答:第二次乙种商品是按原价打9折销售.【点睛】本题考查了列一元一次方程解实际问题的运用及一元一次方程的解法的运用.解答时根据题意建立方程是关键.解题时注意利润=售价-进价的运用.32.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,如表是调控后的价目表.价目表注:水费按月结算.(1)若该户居民8月份用水8吨,则该用户8月应交水费元;若该户居民9月份应交水费26元,则该用户9月份用水量为吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?【答案】(1)20;9.5;(2)该用户10月份用水量为10.25吨;(3)11月份交16元,12月份交36元或11月份交36元,12月份交16元.【解析】【分析】(1)因为用水量为8 吨,所以计算单价分为两段,列式计算即可;先计算用水量为6吨和10吨的总价,与26对比,发现9月份用水量x的取值范围,从而列出方程求解;(2)与(1)类似,由题意得出水费30元,用水量超过了10吨,列方程求未知数即可;(3)设该户居民11月、12月共应交的水费为W元,由题意表示出11月用水量;分三种情况进行讨论:当0≤a≤6时,当6<a≤8时,当8<a<9时,列式表示即可.【详解】解:(1)6×2+(8﹣6)×4=20,答:该用户8月应交水费20元;设该用户9月份用水量为x吨,2×6=12,2×6+(10﹣6)×4=28,∵12<26<28,∵6<x<10,则6×2+4(x﹣6)=26,x=9.5,答:该用户9月份用水量为9.5吨;故答案是:20;9.5;(2)该用户10月份用水量为y吨,则y>10,根据题意得:6×2+(10﹣6)×4+8(y﹣10)=30,y=10.25;(3)设11月份用水x吨,12月份用水(18﹣x)吨,∵当0≤x≤6时,18﹣x>10,由题意得:2x+2×6+4×4+8[(18﹣x)﹣10]=52.即:﹣6x+92=52,(舍去),解得x=203∵当6<x≤8时,18﹣x≥10,2×6+4(x﹣6)+2×6+4×4+8[(18﹣x)﹣10]=52,解得x=7,18﹣x=11.故11月份的水费是:6×2+1×4=16(元)12月份的水费是:6×2+4×4+1×8=36(元).同理可得:11月份交36元,12月份交16元.答:11月份交16元,12月份交36元或11月份交36元,12月份交16元.【点睛】本题考查了一元一次方程的应用,居民交水费问题,明确单价、用水量、总价的关系;因为单价分三种,较为麻烦,容易出错,因此计算时要耐心细致;首先要弄清每个单价部分的最大值,这样才能知道某月水费价格与水量之间的关系,尤其是第(3)问,不但要注意11月的用水量的范围,还要注意12月的用水量的范围.33.在“十一”期间,小明,小亮等同学随家长共15人一同到游乐园游玩,售票员告诉他们:大人门票每张50元,学生门票是6折优惠.结果小明他们共花了650元.那么小明他们一共去了几个家长,几个学生?【答案】小明他们一共去了10个家长,5个学生.【解析】【分析】设小明他们一共去了x个家长,(15﹣x)个学生,根据题意总价=家长总票价+学生总票价,列出方程解答即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,可得:50x+50×0.6×(15﹣x)=650,解得:x=10.答:小明他们一共去了10个家长,5个学生.【点睛】考查利用一元一次方程解决实际问题,关键在于找等量关系列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.34.商场举行优惠活动,活动规则如下:①一次性购物不超过60元不享受任何优惠;②一次性购物超过60元但不超过180元,一律打九折;③一次性购物超过180元,一律打八折.(1)小刚和朋友在活动中各自单独购买了原价为a,b元()<<<的商品,则他们实际付款金额之和为元.a b60,60180(2)小明在商场分别购买了两次商品,共花费193.2元,其中第二次商品原价是第一次商品原价的4倍,那么这两次商品原价总和是多少元?【答案】(1)a+0.9b;(2)210元或230元【解析】【分析】(1)根据小刚花的钱不优惠,他的朋友打九折计算即可;(2)分三种情况求解即可.【详解】解:(1)由题意得他们实际付款金额之和为(a+0.9b)元.故答案为:a+0.9b;(2)设第一次购物的原价是x元,则第二次购物4x元.①当60<4x≤180,即15<x≤45时,由题意得x+4x×0.9=193.2,解得x=42,∴4x=168,∴x+4x=210,即这两次商品原价总和是210元;②当180<4x<240,即45<x<60时,由题意得x+4x×0.8=193.2,解得x=46,∴4x=184,∴x+4x=230,即这两次商品原价总和是230元;③当x>60时,4x>240,不合题意.综上可知,这两次商品原价总和是210元或230元.【点睛】本题考查了列代数式,一元一次方程的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.35.已知:如图,点A在原点左侧,点B在原点右侧,且点A到原点的距离是点B到原点距离的2倍,AB=15.(1)点A表示的数为________,点B表示的数为________;(2)点P从点A出发,以每秒1个单位长度的速度向点B方向运动;同时,点Q从点B出发,先向点A方向运动,当与点P重合后,马上改变方向与点P同向而行且速度始终为每秒2个单位长度。

2023学年北师大版七年级数学上册第五章【一元一次方程】应用题训练卷附答案解析

2023学年北师大版七年级数学上册第五章【一元一次方程】应用题训练卷附答案解析

2023学年七年级数学上册第五章【一元一次方程】应用题训练卷一、解答题1.《孙子算经》是中国古代重要的数学著作之一.其中记载的“百鹿入城”问题很有趣.原文如下:今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?大意为:现在有100头鹿进城,每家领取一头后还有剩余,剩下的鹿每三家分一头,则恰好取完.问城中共有多少户人家?2.饺子源于古代的角子,饺子原名“娇耳”,一个饺子皮加馅就可以做一个饺子.中国北方还流行一种面食—合子,含有团团圆圆的美好寓意,在两层饺子皮中间加一层馅,就可以包成一个合子.“元旦”这天,妈妈走进书房对正在学习的小刚说;“妈妈刚才在厨房包饺子,结果面和多了,做了106个饺子皮,最后包的饺子和合子一共是98个.”小刚说:“妈妈,我能用学过的数学知识列一元一次方程,求出妈妈包的饺子和合子分别是多少.”请你写出小刚的解答过程.3.将连续的奇数1,3,5,7,9……排成如下的数表:(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;(3)十字框中的5个数的和能等于2019吗?若能,请写出这5个数;若不能,说明理由.4.中国移动公司现推出两种移动电话计费方式:方式一:免月租费,本地通话费每分钟0.39元;方式二:月租费18元,本地通话费每分钟0.15元.(1)若某用户选择方式一,本地通话时间为120分钟,则他应支付话费多少元?(2)本地通话时间在什么范围时,选择方式二更合算?5.元旦期间,某商场开展优惠促销活动,将甲种商品打六折出售,乙种商品打八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙两种商品各一件,共付款1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中共销售甲种商品800件,乙种商品1500件,共获利99000元,已知在促销活动中,每件甲种商品的利润比每件乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?6.“双减”政策实施以后学生有了更多的体验生活、学习其它知识的时间.今年为了丰富学生的课外生活,某学校计划购入A、B两种课外书,其中A种课外书每本20元,B种课外书每本30元,且购买A种课外书的数量比B种课外书的2倍还多10本,总花费为1950元.(1)求购买A、B种课外书的数量;(2)某商店搞促销活动,A种课外书按8折销售,B种课外书按9折销售,则学校此次可以节省多少钱?7.平价商场经销的甲、乙两种商品,甲种商品每件进价70元,售价98元;乙种商品每件进价80元,售价128元.(1)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(2)在“元旦”期间,该商场只对乙种商品进行如下的优惠促销活动:按下表优惠条件,打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?8.某商场经销的甲、乙两种商品,甲种商品每件售价60元,盈利20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件的进价为_________元.(2)该商场同时购进甲、乙两种商品共50件,若全部销售完获得总利润为1200元,求购进甲种商品多少件?(3)在“元旦”期间,该商场对甲乙两种商品进行如下图优惠促销活动:按原价一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按原价的九折超过600元其中600元部分仍按九折优惠,超过600元的部分打八折优惠按上述优惠条件,若小华第一次购买甲商品花了352元,第二次购买乙商品花了682元,请你帮忙计算如果甲、乙两种商品合起来一次性购买,是否更节省?若更节省请算一算节省多少钱?若不节省,请说明理由.9.某社区超市用1131元钱从批发商处购进了甲、乙两种商品共100千克,甲、乙这天每千克的批发价与零售价如下表所示:商品名甲乙批发价(元/千克)10.512零售价(元/千克)1520(1)该社区超市这天批发甲商品和乙商品各多少千克?(2)该社区超市当天卖完这两种商品一共可以获得多少元的利润?(3)如果当天两种商品总数卖去一半后,剩下的按各自的零售价打八折出售,最终当天全部卖完后共获得450元利润,求打折后卖出的甲商品和乙商品各有多少千克?10.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.11.为了鼓励同学们加强体育锻炼,某校准备举行冬季长跑比赛,为奖励长跑优胜者,学校需要购买一些冬奥会吉祥物冰墩墩、雪容融水杯和徽章.了解到某商店水杯的单价比徽章的单价多11元,若买2个水杯和3个徽章共需67元.(1)水杯和徽章的单价各是多少元?(2)该商店推出两种优惠方案,方案一:消费金额超过200元的部分打八折;方案二:全店商品打九折.若学校需要购买10个水杯和30个徽章,选择哪种方案更优惠?12.为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.13.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?14.冬季到来,为了能让老百姓吃上新鲜的水果,哈达水果市场到合作的苹果生产基地收购苹果,去年在苹果基地收购20吨(1吨1000 千克)苹果,收购价为每千克1.2元,今年收购苹果的数量提高了25%,收购价降低了16.(1)今年苹果生产基地将苹果销售给哈达水果市场,收入比去年提高了多少元?(2)从产地到哈达水果市场的距离是400千米,今年有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均可以满载,且只能选一种车型)车型甲乙汽车运载量(吨/辆)810汽车运费(元/辆·千米) 2.53选哪种车型来运输水果,才能保证运费较低?(3)在(2)的条件下,今年采用运费较低的运输方式,如果在运输及销售过程中苹果的损耗为10%,今年销售这批苹果要获得2900元的利润,哈达市场苹果的销售价是每千克多少元?15.列方程解应用题:一商场经销A 、B 两种商品,A 种商品每件进价为40元,利润率为50%;B 种商品每件进价为50元,售价为80元.(1)A 种商品每件售价为___________元,每件B 种商品利润率为____________;(2)若该商场同时购进A 、B 两种商品共50件,恰好总进价为2100元,求购进A 种商品多少件?(3)在“春节”期间,该商场只对A 、B 两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按总售价打九折超过600元其中600元部分八折优惠,超过600元的部分七折优惠按上述优惠措施,小华一次性购买A 、B 两种商品实际付款522元,求若没有优惠促销,则小华在该商场购买同样的商品要付多少元?16.随着互联网的普及和城市交通的多样化,人们的出行方式有了更多的选择.下图是某市两种网约车的收费标准,例:乘车里程为30公里:若选乘出租车,费用为:14 2.2(303)1(3010)93.4+⨯-+⨯-=(元);若选乘曹操出行(快选),费用为:3010 2.4300.8(3010)0.46011640+⨯+⨯-+⨯⨯=(元).请回答以下问题:(1)周末小明有事外出,要选乘网约车,如果乘车费用预算为25元,他的行车里程数最大是多少公里?(2)元旦期间,小明外出游玩,约车时发现曹操出行(快选)有优惠活动;总费用打八折.于是小明决定选乘曹操出行(快选).付费后,细心的小明发现:相同的里程,享受优惠活动后的曹操出行(优先)的费用还比租车多了1.8元,求小明乘车的里程数.17.育才学校组织七、八年级老师到省内参加研讨会,需要租用大巴车接送老师往返学校和参会地,现租赁公司有25座和45座两种型号的大巴车可供选择.(1)已知25座大巴车每辆每天的租金比45座大巴车的租金便宜80元,学校第一天租用2辆45座和5辆25座大巴车,共付租金1140元,则学校租用25座和45座大巴车每辆每天的租金各是多少元?(2)因为第二天学习内容主要针对七年级的老师,所以八年级的老师不用参加,因此要重新确定租车方案.现有如下两种选择:方案一:全部租用25座的大巴车,则有一辆车空出15个座位;方案二:全部租用45座的大巴车,刚好坐满且比只租用25座的大巴车少租3辆.请分别计算出使用两种方案所需要的租金,并说明哪种方案更省钱.18.某校七年级组织各班同学参观科技馆.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打九折;方案二:先购买一张150元年卡,凭年卡购买团体票每人可享八折优惠.(1)若一班有x (40x >)人,则方案一需付___________元钱,方案二需付___________元钱(用含x 的代数式表示);(2)若二班有45名学生,则二班选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?TAXI起步费:14元超3公里费:超过的部分2.2元/公里远途费:超过10公里后,1元/公里曹操出行(快选)起步费:10元里程费:2.4元/公里远途费:超过10公里后,0.8元/公里时长费:0.4元/分钟(速度:40公里/时)19.为倡导节约用水,某市采用阶梯价格调控手段达到节水目的,价目标准如下(水费按月缴纳):第一梯度:月用水量不超过12吨的部分,每吨2元.第二梯度:月用水量超过12吨但不超过20吨的部分,每吨3元.第三梯度:月用水量超过20吨的部分,每吨5元.若甲用户月用水量为()20m m>吨,则用含m的式子表示甲用户当月应缴纳的水费为______元.(2)若乙用户6,7两个月共用水42吨(其中6月份用水量超过12吨,7月份用水量超过22吨),一共缴纳的水费为110元,问乙用户6,7月份各用水多少吨?20.甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(2)若两车相向而行,同时出发,多长时间两车相距54千米?21.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米.(1)求甲工程队每天掘进多少米(2)按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天.22.如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,完成下面各题.(1)2节链条的总长度为______cm;3节链条的总长度为______cm;4节链条的总长度为______cm;(2)根据上述规律,n节链条的总长度为多少cm;(用含n的式子表示,不用说理)(3)一根链条的总长度能否为73cm若能,请求出该链条由几节组成;若不能,请说明理由.23.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标,某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降40%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.24.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,行程中小张必经过小李家.(1)若两人同时出发,小张车速为18千米每小时,小李车速为12千米每小时,经过多少小时两人能相遇?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?参考答案:1解:设城中共有x 户人家,依题意得:x +3x=100,解得:x =75,答:城中有75户人家.2.解:设妈妈包了x 个饺子,则合子为()98x -个根据题意得:()298106x x +-=∴90x =∴9898908x -=-=∴妈妈包的饺子和合子分别是90个和8个.3.解:(1)721232539115235++++==⨯,所以十字框中的5个数的和为中间的数23的5倍,无论十字框如何平移,框住的5个数的和均为中间数的5倍,故这5个数还有这种规律;(2)根据题意可得,另外4个数分别为16a -,2a -,2a +,16a +;(3)不能,理由如下:设中间的数为x ,根据题意,得52019x =,解得20195x =,因为20195不是整数,所以十字框中的5个数的和不能等于2019.4.(1)由题意得,话费为:120×0.39=46.8(元).答:他应支付话费46.8元;(2)设本地通话时间是x 分钟,由题意得,0.39x >18+0.15x ,解得:x >75.答:本地通话时间大于75分钟,选择方式二更合算.5(1)解:设甲种商品原销售单价是x 元,乙种商品原销售单价是()1400x -元,则()0.60.814001000x x +-=解得600x =,∴14001400600800x -=-=,答:甲种商品原销售单价是600元,乙种商品原销售单价是800元;(2)设每件甲种商品的利润为a 元,则每件乙种商品的利润为()20a +元,则()80015002099000a a ++=解得30a =,∴2050a +=,∴甲种商品每件的进价是6000.630330⨯-=元;乙种商品每件的进价是8000.850590⨯-=元;∴甲、乙两种商品每件的进价分别是330元、590元.6.(1)解:设B 种课外书x 本,则A 种课外书()210x +本.()20210301950x x ++=,解得2521060x x =+=,,答:购买A 种课外书60本,B 种课外书25本.(2)896020253016351010⨯⨯+⨯⨯=(元),19501635315-=(元),答:学校此次可以节省315元.7.(1)解:设购进甲种商品x 件,则乙种商品()50x -件,由题意得:()70+80503800x x -=,解得:20x =,则50502030x -=-=(件),答:购进甲种商品20件、购进乙种商品30件;(2)解:设小华在该商场购买乙种商品x 件,∵小华实际付款为576元,576>480,∴小华享受了优惠措施,∵乙种商品的售价为128元,∴小华应付款为128x 元,假如小华享受的是第二种优惠措施,由题意得:()480+1284800.6576x -⨯=解得:5x =,∴小华应付款为1285640⨯=(元),符合第二种优惠条件;假如小华享受的是第三优惠措施,由题意得:1280.75576x ⨯=,解得:6x =,∴小华应付款为1286768⨯=(元),符合第三种优惠条件;答:小华在商场购买乙种商品5件或6件.8.(1)解:甲种商品每件的进价为:602040-=(元),故答案为:40.(2)解:设购进甲种商品x 件,则购进乙种商品()50x -件,根据题意得:()()208050501200x x +--=,解得:30x =,503020-=(件),答:购进甲种商品30件,则购进乙种商品20件.(3)解:小华第一次购买甲商品花了352元,45090%405⨯=,∵352405<,∴第一次购买的甲商品没有优惠,价格为352元,∵小华第二次购买乙商品花了682元,且682600>,∴第二次购买乙商品的价格一定超过了600元,设第二次购买乙商品的价格为y 元,根据题意得:()6009060080682%%y ⨯+-⨯=,解得:777.5y =,两种商品的总价格为352777511295..+=(元),甲、乙两种商品合起来一次性购买花费为:()600903527775600809636%.%.⨯++-⨯=(元),∵112959636..<,∴甲、乙两种商品合起来一次性购买更节省,1129596361659...-=(元),答:甲、乙两种商品合起来一次性购买更节省,能够节省165.9元.9.(1)解:设批发甲商品x 千克,由题意可得:()10.5121001131x x +-=,解得:46x =,∴1004654-=,∴批发甲商品46千克,乙商品54千克;(2)()()1510.546201254639-⨯+-⨯=元,∴一共可以获得639元的利润;(3)100250÷=(千克),设打折后卖出的甲商品m 千克,则乙商品()50m -千克,由题意可得:()()()()()()()1510.54620125450150.810.5200.81250450m m m m --+---+⨯-+⨯--=⎡⎤⎣⎦,解得:11m =,∴501139-=(千克).∴打折后卖出的甲商品11千克,乙商品39千克.10.(1)设购甲种电视机x 台,乙种电视机()50x -台.列方程得,()150021005090000x x +-=,解得25x =,50502525x -=-=,∴购甲种电视机25台,乙种电视机25台;(2)分三种情况计算:①只购买甲、乙两种电视机,根据(1)可知,购甲种电视机25台,乙种电视机25台;②设购甲种电视机y 台,丙种电视机()50y -台.则()150025005090000y y +-=,解得:35y =,50503515y -=-=∴购甲种电视机35台,丙种电视机15台;③设购乙种电视机z 台,丙种电视机()50z -台.则()210025005090000z z +-=解得:87.5z =,5087.537.5<0-=-(不合题意,舍去);即进货方案有两种,方案一:购甲种电视机25台,乙种电视机25台;方案二:购甲种电视机35台,丙种电视机15台;方案一:25150252008750⨯+⨯=.方案二:35150152509000⨯+⨯=元.∵8750<9000,∴购买甲种电视机35台,丙种电视机15台获利最多.11.(1)解:(1)设水杯的单价是x 元,则徽章的单价是()11x -元,根据题意,得:()231167x x +-=,解得20x =,徽章:1120119x -=-=.答:水杯的单价是20元,徽章的单价是9元;(2)方案一:1020930470⨯+⨯=(元),()4702000.8216-⨯=(元),200216416+=(元),方案二:()10209300.9423⨯+⨯⨯=(元),∵416423<,∴选择方案一更优惠.12.(1)解:30922760⨯=(元),∴甲、乙两个班级合起来统一购买服装共需付款2760元.故答案为:2760.(2)解:设甲班有x 名学生准备参加演出,∵甲、乙两个班级共92人,其中甲班51人以上,不足55人,∴乙班少于50人,根据题意得()4050924080x x +-=,解得52x =,∴925240-=(名).答:甲、乙两个班级分别有52名学生和40名学生准备参加演出.(3)解: 两班联合购买91套服装的费用:91302730⨯=(元)两班联合购买84套服装的费用:()928403360-⨯=(元)甲、乙单独购买的总费用:405044504200⨯+⨯=(元)∵2730元<3360元<4200元,∴甲、乙两班联合购买91套演出服装比最省钱.13.(1)解:设原计划租用45座客车x 辆,依题意得:()4515601x x +=-,解得:5x =,则学生人数为:45515240⨯+=(人),答:七年级同学240人,原计划租车45座的客车5辆;(2)由(1)可知:只租45座的客车需6辆,费用为:62001200⨯=;只租60座的客车需4辆,费用为:43001200⨯=;租45座的客车4辆,60座的客车1辆,费用为:420013001100⨯+⨯=;1100<1200,答:应租45座的客车4辆、60座的客车1辆最划算,费用为1100元.14.(1)解:20吨20000=千克,去年的收入为20000 1.224000⨯=元,今年的收入为()120000125% 1.21250006⎛⎫⨯+⨯⨯-= ⎪⎝⎭元,则今年收入比去年提高了25000240001000-=元.(2)解:今年收购苹果量为()20125%25⨯+=吨,125838÷=,1251022÷=,若选甲车型,则需要4辆,费用为4400 2.54000⨯⨯=元;若选乙车型,则需要3辆,费用为340033600⨯⨯=元36004000< ∴选乙车运费较低.(3)解:设哈达市场苹果的销售价是每千克x 元,()25000110%2900360025000x ⨯-=++解得 1.4x =答:哈达市场苹果的销售价是每千克1.4元.15(1)解:由题意可得,A 种商品每件售价为:40(150%)60⨯+=,B 种商品利润率为:8050100%60%50-⨯=,故答案为:60,60%;(2)解:设购进A 种商品x 件,则购进B 种商品()50x -件,根据题意,得4050(50)2100x x +-=解得40x =,答:购进A 种商品40件;(3)解:设费用为y 元,∵522450>,∴小华在该商场购买的商品一定打折,①打折前购物金额超过450元,但不超过600元时,根据题意,得0.9522y =,解得580y =;②打折前购物金额超过600元时,根据题意,得(6000.80.)7600522y ⨯+-=,解得660y =,综上,若没有优惠促销,则小华在该商场购买同样的商品要付580元或660元.16.(1)解:10公里出租车收费:()14 2.21031415.429.4+⨯-=+=(元),10公里曹操出行收费:1010 2.4100.460102464040+⨯+⨯⨯=++=(元),设他的行车里程数为x 公里,∵2529.4<,2540<,∴10x <.出租车:()14 2.2325x +⨯-=,解得:8x =.曹操出行:10 2.40.4602540x x ++⨯⨯=,解得:5x =.∵85>,∴小明行车路程数最大是8公里.(2)设小明乘车的里程数为y 公里.①3y ≤时,10 2.40.4600.814 1.840y y ⎡⎤++⨯⨯⨯-=⎢⎥⎣⎦,解得: 3.253y =>(舍去).②310y <≤时,[]10 2.40.4600.814 2.2(3) 1.840y y y ⎡⎤++⨯⨯⨯-+⨯-=⎢⎥⎣⎦,解得:6y =.③10y >时,()()()10 2.40.8100.4600.814 2.2310 1.840yy y y y ⎡⎤⎡⎤++⨯-+⨯⨯⨯-+⨯-+-=⎣⎦⎢⎥⎣⎦,解得:15y =.综上所述,小明乘车里程数为6公里或15公里.17.(1)解:设25座的客车每辆每天的租金为x 元,则45座的客车每辆每天的租金为()80x +元,则:()28051140x x ++=,解得:140x =,80220x ∴+=,答:25座的客车每辆每天的租金为140元,45座的客车每辆每天的租金为220元;(2)解:设这个学校七年级老师共有y 名,则1532545y y+=+,解得:135y =,租45座客车数量:方案一的费用:()1351525140840+÷⨯=(元),方案二的费用:135********÷⨯=(元),840660> ,答:方案二更省钱.18.(1)解:由题意得:方案一需付9302710x x ⨯=元;方案二需付()8150302415010x x +⨯=+元,故答案为:27x ,()24150x +;(2)解:方案一需付27451215⨯=元;方案二需付150********+⨯=元,∵12151230<,∴二班选择方案一更优惠;(3)解:由题意得,2415027x x +=,解得50x =,∴一班有50人,答:一班有50人.19.(1)若甲用户月用水量为()20m m >吨,则用含m 的式子表示甲用户当月应缴纳的水费为()()()12220123205552m m ⨯+-⨯+-⨯=-元,故答案为:552m -;(2)解:设乙用户6月份用水x 吨,则7月份用水()42x -吨,依题意,6月用水量符合第二梯度,7月份用水量符合第三梯度,()()12212354252110x x ⨯+-⨯+--=解得18x =,421824-=(吨).答:乙用户6月份用水18吨,7月份用水24吨.20.(1)解:设经过x 小时可以相遇,()480.560162x x ⨯-+=,解得:3118x =,答:经过3118小时可以相遇.(2)解:设经过y 小时两车相距54千米,486016254y y ⨯+=-,解得:1y =,答:经过1小时两车相距54千米.21.(1)解:设甲工程队每天掘进x 米,则乙工程队每天掘进()2x -米,由题意得,()2++2=26x x x -,解得=7x ,所以甲工程队每天掘进7米.(2)解:146261075-=+(天);∴甲乙两个工程队还需联合工作10天.22.(1)解:由题意得:1节链条的长度 2.8cm =,2节链条的总长度[2.8(2.81)] 4.6cm =+-=,3节链条的总长度[2.8(2.81)2] 6.4cm =⨯=+-,4节链条的总长度[2.8(2.81)3]8.2cm =⨯=+-,故答案为:4.6;6.4;8.2;(2)根据(1)可得,n 节链条的总长度为()()()2.8 2.811 1.81cm n n +--=+;(3)一根链条的总长度可以为73cm ,设该链条由x 节组成,根据题意得1.8173x +=,解得40x =,∴总长度为73cm 的链条由40节组成.23.(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.24.(1)设经过t 小时两人能相遇,由题意可得:181210t t -=,解得:53t =.所以两人经过53小时两人能相遇;(2)设小张的车速为x 千米/小时,则相遇时小张所走的路程为(11)23x x +千米,小李走的路程为:11052⨯=(千米),∴1151023x x +=+,解得18x =.答:小张的车速为每小时18千米.。

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)

《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)

《一元一次方程》应用题分类:数轴类综合练习(一)1.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.2.【新定义】:A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的幸运点.【特例感知】(1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是【A,B】的幸运点.①【B,A】的幸运点表示的数是;A.﹣1;B.0;C.1;D.2②试说明A是【C,E】的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则【M,N】的幸运点表示的数为.【拓展应用】(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以3个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?3.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?4.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?5.(直接填答案,不写推演过程)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x4y2﹣3x2y﹣x﹣4的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B 表示数b.设点M在数轴上对应的数为m.(1)A,B两点之间的距离是.(2)若满足AM=BM,则m=.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是.(4)若满足AM+BM=12,则m=.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数m=.6.如图,已知数轴上点A表示的数为﹣1,点B表示的数为3,点P为数轴上一动点.(1)点A到原点O的距离为个单位长度;点B到原点O的距离为个单位长度;线段AB的长度为个单位长度;(2)若点P到点A、点B的距离相等,则点P表示的数为;(3)数轴上是否存在点P,使得PA+PB的和为6个单位长度?若存在,请求出PA的长;若不存在,请说明理由?(4)点P从点A出发,以每分钟1个单位长度的速度向左运动,同时点Q从点B出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P与点Q重合?7.如图,点A、B都在数轴上,O为原点.(1)线段AB中点表示的数是;(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB=,当点B至点O右边时,OB=;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.8.如图,A、B、C为数轴上三点,A,B在数轴上对应的数分别为﹣12,16,点P与点Q分别从A、B两点同时当发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒,设它们运动的时间为t秒.(1)若点P与点Q在A、B两点之间相向运动,当它们相遇时,点P对应的数是;(2)若点P与点Q都向左运动,当点Q追上点P时,求点P对应的数.9.已知数轴上有A ,B ,C 三点,分别代表﹣36,﹣10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为60个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为60个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.10.已知数轴上两点A 、B 对应的数分别是6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A点出发,速度为每秒2个单位,点N 从点B 出发,速度为M 点的3倍,点P 从原点出发,速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M 、N 、P 同时都向右运动,求多长时间点P 到点M ,N 的距离相等?(3)当时间t 满足t 1<t ≤t 2时,M 、N 两点之间,N 、P 两点之间,M 、P 两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案1.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.2.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,P表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,AB=60,BP=3t,AP=60﹣3t,①当P是【A,B】的幸运点时,PA=3PB,∴60﹣3t=3×3t,∴t=5;②当P是【B,A】的幸运点时,PB=3PA,∴3t=3×(60﹣3t),∴t=15;③当A是【B,P】的幸运点时,AB=3PA,∴60=3(60﹣3t)∴t=;④当B是【A,P】的幸运点时,AB=3PB,∴60=3×3t,∴t=;∴t为5秒,15秒,秒,秒时,P、A、B中恰好有一个点为其余两点的幸运点.3.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.4.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.5.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.∴A,B两点之间的距离是6﹣(﹣2)=8,故答案为:8;(2)∵AB=8,∴AM=BM=4,∴6﹣m=4,∴m=2,故答案为:2.(3)∵A,M两点之间的距离为3,∴|m+2|=3∴m=1或﹣5,∴BM=5或11;故答案为:5或11;(4)①当M在A左侧时,∵AM+MB=12,∴﹣2﹣x+6﹣x=12,∴x=﹣4;②M在A和B之间时,∵AM+MB=AB=8≠12,∴点M不存在;③点M在B点右侧时,∵AM+MB=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(5)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点M对应的有理数为﹣1012.故答案为:﹣1012.6.解:(1)∵点A表示的数为﹣1,点B表示的数为3,∴点A到原点O的距离为1个单位长度,点B到原点O的距离为3个单位长度,线段AB 的长度为4个单位长度;故答案为:1,3,4;(2)设点P表示的数为x,∵点P到点A、点B的距离相等,∴3﹣x=x﹣(﹣1)∴x=1,∴点P表示的数为1,故答案为1;(3)存在,设点P表示的数为y,当y<﹣1时,∵PA+PB=﹣1﹣y+3﹣y=6,∴y=﹣2,∴PA=﹣1﹣(﹣2)=1,当﹣1≤y≤3时,∵PA+PB=y﹣(﹣1)+3﹣y=6,∴无解,当y>3时,∵PA+PB=y﹣(﹣1)+y﹣3=6,∴y=4,∴PA=5;综上所述:PA=1或5.(4)设经过t分钟后点P与点Q重合,2t﹣t=4,∴t=4答:经过4分钟后点P与点Q重合.7.解:(1)线段AB中点表示的数是:=﹣1.故答案是:﹣1;(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;故答案是:4﹣3t,3t﹣4;(3)①当点O是线段AB的中点时,OB=OA4﹣3t=2+tt=0.5②当点B是线段OA的中点时,OA=2OB2+t=2(3t﹣4)t=2;③当点A是线段OB的中点时,OB=2OA3t﹣4=2(2+t)t=8.综上所述,符合条件的t的值是0.5,2或8.8.解:(1)根据题意,得2t+4t=28解得t=∴2t=﹣12=﹣∴P对应的数是﹣.(2)根据题意,得4t﹣2t=28解得t=14∴﹣12﹣2t=﹣12﹣28=﹣40答:点P对应的数是﹣40.9.解:(1)设x秒后,甲到A,B,C的距离和为60个单位.B点距A,C两点的距离为26+20=46<60,A点距B、C两点的距离为26+46=72>60,C点距A、B的距离为46+20=66>40,故甲应位于AB或BC之间.①AB之间时:4x+(26﹣4x)+(26﹣4x+20)=60,x=3;②BC之间时:4x+(4x﹣26)+(46﹣4x)=60,x=10,综上所述,经过3s或10s后,甲到A,B,C的距离和为60个单位;(2)设ts后甲与乙相遇4t+6t=46,解得:x=4.6,4×4.6=18.4,﹣36+18.4=﹣17.6答:甲,乙在数轴上的点﹣17.6相遇;(3)设y秒后甲到A,B,C三点的距离之和为60个单位,①甲从A向右运动3秒时返回,此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣36+4×3﹣4y;乙表示的数为:10﹣6×3﹣6y,依据题意得:﹣36+4×3﹣4y=10﹣6×3﹣6y,解得:y=8,相遇点表示的数为:﹣36+4×3﹣4y=﹣56(或:10﹣6×3﹣6y=﹣56),②甲从A向右运动10秒时返回,设y秒后与乙相遇.甲表示的数为:﹣36+4×10﹣4y;乙表示的数为:10﹣6×10﹣6y,依据题意得:﹣36+4×10﹣4y=10﹣6×10﹣6y,解得:y=﹣27(不合题意舍去),即甲从A向右运动3秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣56.10.解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动=5s时,P在5,M在16,N在﹣38,①如上图,当t1再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过了﹣39时,此时N、P之间为45 个整数点故t2=+5=s∴t1=5s,t2=s.。

深圳宝安区福永中学人教版初中七年级数学上册第三章《一元一次方程》模拟检测(包含答案解析)

深圳宝安区福永中学人教版初中七年级数学上册第三章《一元一次方程》模拟检测(包含答案解析)

一、选择题1.(0分)[ID :68207]如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( ) A .①②③④B .①③④C .②③④D .①②3.(0分)[ID :68190]从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( ) A .408 3.6x x -= B .4083.6x=- C .3.6840x x -= D .3.6408x x-= 4.(0分)[ID :68187]如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣65.(0分)[ID :68185]如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB6.(0分)[ID :68163]下列解方程中去分母正确的是( ) A .由,得B .由,得C .由,得D .由,得7.(0分)[ID :68251]解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3C .同乘以3D .同除以38.(0分)[ID :68236]若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.(0分)[ID :68235]关于x 的方程2x m3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .310.(0分)[ID :68228]已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( ) A .±1B .1C .-1D .0或111.(0分)[ID :68225]我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=12.(0分)[ID :68224]“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .413.(0分)[ID :68213]佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( ) A .2060元B .3500元C .4000元D .4100元14.(0分)[ID :68211]下列方程的变形,符合等式的性质的是( ) A .由2x ﹣3=7,得2x=7﹣3 B .由3x ﹣2=x+1,得3x ﹣x=1﹣2 C .由﹣2x=5,得x=﹣3 D .由﹣13x=1,得x=﹣3 15.(0分)[ID :68169]四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题16.(0分)[ID :68353]已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____17.(0分)[ID :68351]若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.18.(0分)[ID :68346]某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.19.(0分)[ID :68322]若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.20.(0分)[ID :68318]5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.21.(0分)[ID :68317]若2a +1与212a +互为相反数,则a =_____.22.(0分)[ID :68296]喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张. 23.(0分)[ID :68285]解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 24.(0分)[ID :68281]完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元;每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.25.(0分)[ID :68268]已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.26.(0分)[ID :68267](1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________; (2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 27.(0分)[ID :68261]某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题28.(0分)[ID :68415]在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?29.(0分)[ID :68390]一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?30.(0分)[ID :68446]某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案: 方案一:每买一张课桌就赠送一把椅子; 方案二:课桌和椅子都按定价的80%付款. 某校计划添置100张课桌和x 把椅子. (1)若x=100,请计算哪种方案划算;(2)若x >100,请用含x 的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.B3.C4.C5.C6.C7.B8.D9.B10.C11.D12.D13.C14.D15.D二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故17.【分析】分别解出两方程的解两解相等就得到关于m的方程从而可以求出m的值【详解】解:由3x+6x=-3可得:x=-由2mx+3m=-1可得:x=所以可得:解得:故答案为:【点睛】本题考查了同解方程本题18.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x场则3x+(7-x)=15解得x=4故答案为:419.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m=20.10【分析】由已知5个人用5天完成了某项工程的那么1个人用的天数为5×5再增加工作效率相同的10个人完成剩下的设用x天则1个人用(5+10)x因为工作效率相同根据题意列方程求解【详解】设增加10人再21.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应22.50【解析】【分析】据题意可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数设外国邮票x张把未知数和相关数据代入等量关系式进行解答即可得到答案【详解】解:设外国邮票x张2x-5=145-x3x23.【解析】【分析】根据解方程的过程方程去括号移项合并把x系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x每件服装的实际售价为:(1+40)x×80每件服装的利润为25.5【解析】【分析】此题用m替换x解关于m的一元一次方程即可【详解】∵x=m∴3m−2=2m+3解得:m=5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数26.减去2x等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(127.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据图形可知:三个圆纸片覆盖的总面积+A与B的重叠面积+B与C的重叠面积+C与A 的重叠面积−A、B、C共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A、B、C共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x,则73+6+8+5−x=30×3,得x=2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.2.B解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x小时后相遇后相距20km,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x小时后相遇后,据此列方程解答;④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x小时,据此列方程解答即可.①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④. 故选:B. 【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程.3.C解析:C 【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可. 【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得: 3.6840x x -= 故选:C. 【点睛】列方程解应用题的关键是找出题目中的相等关系.4.C解析:C 【分析】 将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2. 故选C . 【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.5.C解析:C 【分析】设乙x 分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.6.C解析:C【解析】【分析】根据等式的性质,各个选项中的方程两边同时乘分母的最小公倍数,然后再解答.【详解】A.2x−6=3−3x;故错误;B.2(x−2)−(3x−2)=−42(x−2)−3x+2=−4;故错误;C.3(y+1)=2y−(3y−1)−6y3y+3=2y−3y+1−6y;故正确;D.12x−15=5y+20;故错误;由以上可得只有C选项正确.故选:C.【点睛】此题考查方程的解和解方程,解题关键在于掌握运算法则.7.B解析:B 【分析】利用等式的性质判断即可. 【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3, 故选:B . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.D解析:D 【详解】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.考点:1.新定义题2.一元一次方程.9.B解析:B 【解析】 由已知得413m-= ,解得m=1;故选B. 10.C解析:C 【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】 ∵方程(1)30mm x-+=是关于x 的一元一次方程,∴1m =,10m -≠, 解得:1m =-. 故选:C . 【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键.11.D解析:D 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇, 可列方程为:11()179x +=.故选D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键. 12.D解析:D【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断.【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x -个,需要长方形纸板3×1202x -张,因此可得120433602x x -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m 个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m +4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩ 解得,7224x y =⎧⎨=⎩ 即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个故③④正确.故选D.【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.13.C解析:C【分析】设佳佳的压岁钱是x 元,根据利息本金之和为4120元,列方程求解即可.【详解】设佳佳的压岁钱是x 元.根据题意,得(1 1.5%)4060x +=,解得4000x =. 故选C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.D解析:D【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A .∵2x ﹣3=7,∴2x=7+3,故本选项错误;B .∵3x ﹣2=x+1,∴3x ﹣x=1+2,故本选项错误;C .∵﹣2x=5,∴x=﹣52,故本选项错误; D .∵﹣13x=1,∴x=﹣3,故本选项正确. 故选D .【点睛】考核知识点:等式基本性质.理解等式基本性质的内容是关键.15.D解析:D【解析】【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断.【详解】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x -1)-(x +2)=3(4-x),故③正确;去括号得:2x -2-x -2=12-3x ,故②正确,故选:D.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故解析:52 91【分析】根据比例设这三个数分别为2x,4x,7x,再根据这三个数的和是169列方程即可求解.【详解】设这三个数分别为2x,4x,7x,则2x+4x+7x=169,解得x=13,所以这三个数分别为26,52,91.故答案为:26,52,91.【点睛】此题主要考查列一元一次方程解应用题,根据比例设未知数是解题关键.17.【分析】分别解出两方程的解两解相等就得到关于m的方程从而可以求出m的值【详解】解:由3x+6x=-3可得:x=-由2mx+3m=-1可得:x=所以可得:解得:故答案为:【点睛】本题考查了同解方程本题解析:3 7 -【分析】分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解:由3x+6x=-3可得:x=-13,由2mx+3m=-1可得:x=132mm--,所以可得:131 23mm--=-,解得:37m=-,故答案为:37 -.【点睛】本题考查了同解方程,本题解决的关键是能够求解关于x的方程,要正确理解方程解的含义.18.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.20.10【分析】由已知5个人用5天完成了某项工程的那么1个人用的天数为5×5再增加工作效率相同的10个人完成剩下的设用x 天则1个人用(5+10)x 因为工作效率相同根据题意列方程求解【详解】设增加10人再解析:10【分析】由已知5个人用5天完成了某项工程的14,那么1个人用的天数为5×5,再增加工作效率相同的10个人完成剩下的34,设用x 天,则1个人用(5+10)x ,因为工作效率相同,根据题意列方程求解.【详解】设增加10人再完成剩余的34为x 天,根据题意列方程得: (5+10)x =3×5×5,解得:x =5,5+5=10(天).故答案为:10.【点睛】本题考查的是一元一次方程的应用,解答此题的关键是根据已知找出等量关系,其等量关系是后面的工作量是前面的工作量的3倍.21.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.22.50【解析】【分析】据题意可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数设外国邮票x张把未知数和相关数据代入等量关系式进行解答即可得到答案【详解】解:设外国邮票x张2x-5=145-x3x解析:50【解析】【分析】据题意,可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数,设外国邮票x张,把未知数和相关数据代入等量关系式进行解答即可得到答案.【详解】解:设外国邮票x张,2x-5=145-x3x=150x=50中国邮票:145-50=95答:中国邮票95张,外国邮票有50张.【点睛】解答此题的关键是确定等量关系式,然后再列方程解答即可.23.【解析】【分析】根据解方程的过程方程去括号移项合并把x系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键解析:213x -+=-, 321x =--+, 4x =-.【解析】【分析】根据解方程的过程,方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】2(1)3x --=-.去括号,得213x -+=-;移项,得321x =--+;合并同类项,得4x =-【点睛】本题考查了解一元一次方程,熟练掌握计算法则是解题关键.24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.25.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数 解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.26.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1 解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.27.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.三、解答题28.3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x盏灯.根据题意,得248163264381x x x x x x x++++++=.解得3x=.答:塔的顶层有3盏灯.【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.29.3【分析】设三队合作时间为x,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh,乙、丙两队合作为(6)x h-,总工程量为1,由题意得:11111()()(6)1 1015201520x x++++-=,解得:3x=,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.30.(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中七年级数学应用题(附解析)一.解答题(共28小题)1.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.2.若三个数在数轴上的位置如图,化简|c﹣b|﹣|b﹣a|+|c﹣a|+|b|﹣2|c|.3.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.4.2005﹣2004+2003﹣2002+2001﹣2000+…+3﹣2+1﹣.5.计算:+++…+.6.计算:1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012.7.已知3m+7与﹣10互为相反数,求m的值.8.已知1<x<2,试确定的值.9.阅读下面的文字,完成解答过程.(1)=1﹣,=﹣,=﹣,则=﹣,并且用含有n的式子表示发现的规律.(2)根据上述方法计算:+++…+.(3)根据(1),(2)的计算,我们可以猜测下列结论:=(﹣)(其中n,k均为正整数),并计算+++…+.10.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).11.若|a|=2,|b|=5且|a+b|=a+b,求a﹣b的值.12.已知|x﹣1|=3,求﹣3|1+x|﹣|x|+5的值.13.出租车司机小李某天下午的营运全是在东西方向的人民大道上进行的,如果规定向东为正,那么他这天下午行车的里程如下:(单位:km)+15,﹣2,+5,﹣1.5,+10,﹣3.5,﹣2.3,+12.7,+4,﹣5,+8.(1)将最后一名乘客送到目的地时,小李行车的里程一共是多少?(2)若汽车的耗油量为0.25L/km,则这天下午小李共耗油多少L?14.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.15.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.16.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?17.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是﹣4,点P表示的数是6﹣6t(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?18.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?19.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=﹣1.20.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为6;运动1秒后线段AB的长为4;(2)运动t秒后,点A,点B运动的距离分别为5t和3t;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.21.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a<1(填“<”“>”,“=”)22.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离是2.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是a+b﹣c,A、B两点间的距离是|b﹣c|.23.已知有理数a,b,c满足,求的值.24.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.24.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.26.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+230﹣17+6﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?应用题答案一.解答题(共28小题)1.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【答案】见试题解答内容【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.【点评】以上分别用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.2.若三个数在数轴上的位置如图,化简|c﹣b|﹣|b﹣a|+|c﹣a|+|b|﹣2|c|.【答案】见试题解答内容【分析】根据a,b,c在数轴上的位置可知b<a<0<c,因而c﹣b>0,b﹣a<0,c﹣a>0.根据绝对值的意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.就可去掉题目中的绝对值号,从而化简.【解答】解:由数轴得,b<a<0<c,因而c﹣b>0,b﹣a<0,c﹣a>0.化简得|c﹣b|﹣|b﹣a|+|c﹣a|+|b|﹣2|c|=c﹣b﹣(a﹣b)+c﹣a﹣b﹣2c=﹣2a﹣b.【点评】本题考查了利用数轴比较两数大小的方法,右边的数总是大于左边的数,以及绝对值的意义.3.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.【答案】见试题解答内容【分析】分清a,﹣2b,3b﹣2a三个数的正负性是解决本题的关键.已知实数a,b满足|a|=b,|ab|+ab=0,可得出b≥0,|ab|=﹣ab,则a≤0,b=﹣a.所以﹣2b<0,3b﹣2a>0,从而得出|a|+|﹣2b|﹣|3b﹣2a|的值.【解答】解:∵|a|=b,|a|≥0,∴b≥0,又∵|ab|+ab=0,∴|ab|=﹣ab,∵|ab|≥0,∴﹣ab≥0,∴ab≤0,即a≤0,∴a与b互为相反数,即b=﹣a.∴﹣2b≤0,3b﹣2a≥0,∴|a|+|﹣2b|﹣|3b﹣2a|=﹣a+2b﹣(3b﹣2a)=a﹣b=﹣2b或2a.【点评】此题主要考查了绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.4.2005﹣2004+2003﹣2002+2001﹣2000+…+3﹣2+1﹣.【答案】见试题解答内容【分析】把带分数分解成整数和分数两部分,分别进行运算,再根据加法结合律,使运算更加简便.【解答】解:原式=(2005+)﹣(2004+)+(2003+)﹣(2002+)+…+(1+)﹣=[(2005﹣2004)+(2003﹣2002)+(2001﹣2000)+…+(3﹣2)+1]+(﹣)×=1×+×1003=.【点评】把带分数分解成整数和分数两部分是简便运算的最好办法.5.计算:+++…+.【答案】见试题解答内容【分析】首先把每一个分数变形:,,…,然后可以前后抵消即可求出结果.【解答】解:原式=1﹣++…+=1﹣=.【点评】在做类似这类分数的加减运算时:注意利用分解分数来达到抵消的目的,从而简化计算.6.计算:1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012.【答案】见试题解答内容【分析】原式除去第一项与最后三项,四项四项结合,计算即可得到结果.【解答】解:原式=1+(2﹣3﹣4+5)+(6﹣7﹣8+9)+…+(2006﹣2007﹣2008+2009)+(2010﹣2011﹣2012)=1﹣2013=﹣2012.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.7.已知3m+7与﹣10互为相反数,求m的值.【答案】见试题解答内容【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.8.已知1<x<2,试确定的值.【答案】见试题解答内容【分析】根据x的取值范围,分别确定|x﹣2|,|x﹣1|,|x|的值,从而不难求解.【解答】解:∵1<x<2∴|x﹣2|=2﹣x,|x﹣1|=x﹣1,|x|=x∴=﹣+=﹣1﹣1+1=﹣1【点评】此题主要考查绝对值的性质,关键是确定|x﹣2|,|x﹣1|,|x|的值.9.阅读下面的文字,完成解答过程.(1)=1﹣,=﹣,=﹣,则=﹣,并且用含有n的式子表示发现的规律.(2)根据上述方法计算:+++…+.(3)根据(1),(2)的计算,我们可以猜测下列结论:=(﹣)(其中n,k均为正整数),并计算+++…+.【答案】见试题解答内容【分析】发现规律:(1)等式左边等于其分母上两因数的倒数之差;(2)首先计算每个分数的分母上两因数的倒数之差,再看其与该分数在数值上的区别,思考如何计算才能使二者相等;(3)受(2)的启发,完成猜测的结论.【解答】解:(1)﹣==﹣;(2)原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=;(3)=(﹣).原式=×(1﹣)+×(﹣)+…+×(﹣)=.【点评】寻找与发现规律是解答本题的关键.10.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).【答案】见试题解答内容【分析】①原式变形后,利用乘法分配律计算即可得到结果;②原式变形后,利用乘法分配律计算即可得到结果;③原式利用乘法分配律计算即可得到结果.【解答】解:①原式=(400+)×(﹣6)=﹣2400﹣=﹣2401;②原式=(﹣100+)×3=﹣300+=﹣299;③原式=﹣185+15﹣20+28=﹣162.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.若|a|=2,|b|=5且|a+b|=a+b,求a﹣b的值.【答案】见试题解答内容【分析】根据绝对值的意义,可求得a,b的值.同时又由|a+b|=a+b,可知a+b≥0.因此此题有两种情况.【解答】解:∵|a|=2,∴a=±2,∵|b|=5,∴b=±5,∵|a+b|=a+b∴a+b≥0,∴a=2,b=5或a=﹣2,b=5,∴a﹣b=﹣3或a﹣b=﹣7.【点评】既要理解绝对值的意义,又要会根据有理数的加减法法则由一个代数式的符号来判断字母的值.12.已知|x﹣1|=3,求﹣3|1+x|﹣|x|+5的值.【答案】见试题解答内容【分析】先利用绝对值的定义求出x的值,再代入求值即可.【解答】解:∵|x﹣1|=3,∴x=4或﹣2,①当x=4时,﹣3|1+x|﹣|x|+5=﹣15﹣4+5=﹣14,②当x=﹣2时,﹣3|1+x|﹣|x|+5=﹣3﹣2+5=0.【点评】本题主要考查了绝对值的定义,解题的关键是求出x的值.13.出租车司机小李某天下午的营运全是在东西方向的人民大道上进行的,如果规定向东为正,那么他这天下午行车的里程如下:(单位:km)+15,﹣2,+5,﹣1.5,+10,﹣3.5,﹣2.3,+12.7,+4,﹣5,+8.(1)将最后一名乘客送到目的地时,小李行车的里程一共是多少?(2)若汽车的耗油量为0.25L/km,则这天下午小李共耗油多少L?【答案】见试题解答内容【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程,可得答案.【解答】解:(1)+15+|﹣2|+5+|﹣1.5|+10+|﹣3.5|+|﹣2.3|+12.7+4+|﹣5|+8=69(km),答:小李行车的里程一共是69千米;(2)69×0.25=17.25(L),答:这天下午小李共耗油17.25L.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.14.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.【答案】见试题解答内容【分析】由数轴可知:c>0,a<b<0,所以可知:a﹣b<0,a+c<0,b﹣c<0.根据负数的绝对值是它的相反数可求值.【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.【点评】此题主要是考查学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.15.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】见试题解答内容【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据绝对值的几何意义,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)根据绝对值的几何意义可知当3≤x≤6时,有最小值是3.【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.16.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?【答案】见试题解答内容【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.【点评】本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.17.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是﹣4,点P表示的数是6﹣6t(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?【答案】见试题解答内容【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点评】此题考查的知识点是两点间的距离及数轴,根据已知得出各线段之间的关系等量关系是解题关键.18.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【答案】见试题解答内容【分析】理解向前记作正数,返回记作负数,根据题目意思列出式子计算即可.【解答】解:根据题意得(1)5﹣3+10﹣8﹣6+12﹣10=0,故回到了原来的位置;(2)离开球门的位置分别是5米,2米,12米,4米,2米,10米,0米,∴离开球门的位置最远是12米;(3)总路程=|5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=54米.【点评】本题考查的是有理数的加减混合运算,注意相反意义的量的理解.19.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=﹣1.【答案】见试题解答内容【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,进一步计算即可求解.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.故+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.故++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则++═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.【点评】此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.20.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为6;运动1秒后线段AB的长为4;(2)运动t秒后,点A,点B运动的距离分别为5t和3t;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.【答案】见试题解答内容【分析】(1)根据两点间距离公式计算即可;(2)根据路程=速度×时间,计算即可;(3)构建方程即可解决问题;(4)分两种情形构建方程解决问题;【解答】解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.【点评】本题考查数轴,一元一次方程等知识,解题的关键是熟练掌握基本知识,学会构建方程解决问题,属于中考常考题型.21.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a<1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|【答案】见试题解答内容【分析】(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);(2)先求出b﹣a的范围,再比较大小即可求解;(3)先计算绝对值,再合并同类项即可求解;(4)根据绝对值的性质以及题意即可求出答案.【解答】解:(1)根据数轴上的点得:c<a<b;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;【点评】考查了数轴,通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.22.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离是2.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是a+b﹣c,A、B两点间的距离是|b﹣c|.【答案】见试题解答内容【分析】(1)(2)根据图形可直接的得出结论;(3)先求出B点表示的数,然后由数轴上两点间的距离公式:两点间的距离是两点所表示的数差的绝对值,计算即可.【解答】解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b ﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.23.已知有理数a,b,c满足,求的值.【答案】见试题解答内容【分析】根据可以看出,a,b,c中必有两正一负,从而可得出求的值.【解答】解:∵,∴a,b,c中必有两正一负,即abc之积为负,∴=﹣1.【点评】本题考查了有理数的乘法,注意从所给条件中获得有用信息,即a,b,c中必有两正一负.24.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【答案】见试题解答内容【分析】(1)根据数轴即可求解;(2)根据﹣4+点B运动的速度×t=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据中点坐标公式即可求出此时的t值.综上即可得出结论.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2 OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.【点评】本题考查了一元一次方程的应用、数轴以及列代数式,解题的关键是:(2)根据路程=速度×时间结合点B初始位置找出经过t秒后点B表示的数;(3)分三种情况考虑.25.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【答案】见试题解答内容【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.26.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+230﹣17+6﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【答案】见试题解答内容【分析】(1)根据题意得出算式100+(﹣12),求出即可;(2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可.【解答】解:(1)100+(﹣12)=88(册),答:上星期五借出88册书;(2)[100+(+6)]﹣[100+(﹣17)]=23(册),答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(﹣17)+(+6)+(﹣12)]÷5=100(册),答:上周平均每天借出100册.【点评】本题考查了有理数的混合运算和正数、负数等知识点,解此题的关键是根据题意列出算式,题目比较典型.。

相关文档
最新文档