部编版初中数学教程分段函数问题

合集下载

分段函数专题非常全面

分段函数专题非常全面

分段函数的性质与应用分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x -的关系,要注意,x x -的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x -≤⎧=⎨->⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如 ()221,31,3x x f x x x -≤⎧=⎨->⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =-+,可转化为:()13,113,1x x f x x x -+≥⎧=⎨-+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

初二分段函数试题及答案

初二分段函数试题及答案

初二分段函数试题及答案一、选择题1. 下列哪个选项表示分段函数?A. y = x^2B. y = 3x + 1C. y = |x|D. y = x/x答案:C2. 若分段函数f(x)的定义为:\[f(x) = \begin{cases}x + 1 & \text{if } x < 0 \\x^2 & \text{if } x \geq 0\end{cases}\]则f(-1)的值为多少?A. 0B. 1C. 2D. -2答案:A二、填空题1. 函数y = \begin{cases}x - 3 & \text{if } x > 2 \\\end{cases} 在x = 2时的值为______。

答案:52. 给定分段函数g(x) = \begin{cases}x^2 - 4x + 3 & \text{if } x < 2 \\-x + 5 & \text{if } x \geq 2\end{cases},若g(3) = 2,则g(1)的值为______。

答案:0三、解答题1. 已知分段函数h(x) = \begin{cases}x^2 - 2x + 1 & \text{if } x \leq 1 \\x + 2 & \text{if } x > 1\end{cases},求h(0)和h(2)的值。

答案:h(0) = 1,h(2) = 42. 定义分段函数f(x) = \begin{cases}x + 3 & \text{if } x < 0 \\2x & \text{if } 0 \leq x \leq 2 \\x - 1 & \text{if } x > 2\end{cases},求f(-1)、f(1)和f(3)的值。

答案:f(-1) = 2,f(1) = 2,f(3) = 2四、综合题1. 函数p(x) = \begin{cases}x^3 & \text{if } x < 0 \\\end{cases},求p(-2)和p(4)的值,并讨论函数在x = 0处的连续性。

初中数学分段函数应用题

初中数学分段函数应用题

1、为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
(1)若甲用户3月份的用气量为60m³,则应缴费多少元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m³),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用1气175m³(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
2、某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是多少元,小张应得的工资总额是多少元,此时,小李种植水果多少亩,小李应得的报酬是多少元;
(2)当10<n≤30时,求z与n之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.
3、为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
根据这个购房方案:
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.。

分段函数初二数学练习题

分段函数初二数学练习题

分段函数初二数学练习题题目一:已知分段函数f(x)如下:f(x) = 3x + 1, x ≤ 1f(x) = 2x - 2, x > 1问题一:求f(-2)的值。

解答一:根据给定的分段函数,当x ≤ 1时,f(x) = 3x + 1。

因此,在问题一中,由于-2 ≤ 1,我们需要计算f(-2)的值。

代入x = -2到第一个分段函数中,得到f(-2) = 3(-2) + 1 = -6 + 1 = -5。

因此,f(-2)的值为-5。

问题二:求f(2)的值。

解答二:根据给定的分段函数,当x > 1时,f(x) = 2x - 2。

因此,在问题二中,由于2 > 1,我们需要计算f(2)的值。

代入x = 2到第二个分段函数中,得到f(2) = 2(2) - 2 = 4 - 2 = 2。

因此,f(2)的值为2。

题目二:已知分段函数g(x)如下:g(x) = x^2, x < 2g(x) = 2x + 1, x ≥ 2问题一:求g(0)的值。

解答一:根据给定的分段函数,当x < 2时,g(x) = x^2。

因此,在问题一中,由于0 < 2,我们需要计算g(0)的值。

代入x = 0到第一个分段函数中,得到g(0) = 0^2 = 0。

因此,g(0)的值为0。

问题二:求g(3)的值。

解答二:根据给定的分段函数,当x ≥ 2时,g(x) = 2x + 1。

因此,在问题二中,由于3 ≥ 2,我们需要计算g(3)的值。

代入x = 3到第二个分段函数中,得到g(3) = 2(3) + 1 = 6 + 1 = 7。

因此,g(3)的值为7。

总结起来,通过以上两个问题的解答可以看出,在计算分段函数的值时,我们需要根据给定的条件来选择合适的分段函数进行代入计算。

只要根据给定的条件,正确选择对应的分段函数进行计算,就可以得到分段函数在给定点的值。

这样的练习题有助于我们熟悉和掌握分段函数的概念和计算方法。

分段函数-初中数学知识点

分段函数-初中数学知识点

分段函数
1.分段函数
(1)一次函数与常函数组合的分段函数.
分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)
(2)由文字图象信息确定分段函数.
根据图象读取信息时,要把握住以下三个方面:
①横、纵轴的意义,以及横、纵轴分别表示的量.
②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.
③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.
【规律方法】用图象描述分段函数的实际问题需要注意的四点
1.自变量变化而函数值不变化的图象用水平线段表示.
2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.
3.各个分段中,准确确定函数关系.
4.确定函数图象的最低点和最高点.
1 / 1。

初二数学分段函数知识点解析

初二数学分段函数知识点解析

初二数学分段函数知识点解析分段函数是初中数学中的重要内容之一,它通过不同的定义域范围将一个函数分成若干个部分,每个部分使用不同的表达式描述。

分段函数在数学中的应用非常广泛,能够帮助我们更好地理解和解决实际问题。

本文将对初二数学分段函数的知识点进行解析,并以具体的例子来说明其应用。

一、什么是分段函数分段函数(piecewise function),又称离散函数,指的是在定义域上不同区间内可以有不同的表达式。

通常我们用一个大括号表示不同区间上的表达式,例如:\[ f(x)=\begin{cases}x+1, & x<0 \\x^2, & x\geq0\end{cases} \]这个函数在定义域上可以分为两个区间,即负无穷到0和0到正无穷,分别使用了x+1和x^2作为函数表达式。

二、分段函数的定义域和值域对于分段函数来说,每个区间上都有一个对应的函数表达式。

因此,我们需要确定每个区间的定义域。

在上面的例子中,第一个区间定义域为负无穷到0,第二个区间定义域为0到正无穷。

而对于整个分段函数的定义域,应该是各个区间定义域的并集。

在上面的例子中,整个函数的定义域为负无穷到正无穷,即(-∞, +∞)。

值域的确定需要分别计算每个区间的值域,然后取所有值域的并集。

对于上面的例子来说,第一个区间的值域为(-∞, 1),第二个区间的值域为[0, +∞)。

因此,整个函数的值域为(-∞, 1]。

三、分段函数的图像和性质分段函数的图像通常由各个区间的图像组成。

在上面的例子中,第一个区间图像为一条斜率为1的直线,第二个区间图像为一条开口向上的抛物线。

分段函数具有一些特殊的性质。

首先,分段函数的图像是不连续的,因为在不同的区间上使用了不同的表达式。

其次,分段函数可能具有端点处的间断点。

例如,在上面的例子中,函数在x=0处具有间断点,因为0既属于第一个区间也属于第二个区间。

四、分段函数的应用举例分段函数在实际问题中具有广泛的应用。

分段函数初二数学练习题

分段函数初二数学练习题

分段函数初二数学练习题题目一:求解分段函数的定义域与值域给定函数:$$f(x) =\begin{cases}2x+1, & x\leq2 \\x^2, & x>2 \\\end{cases}$$要求:1. 求解函数$f(x)$的定义域与值域;2. 绘制函数$f(x)$的图像。

解答:根据题目已给条件,我们可以得出下面的结论:1. 定义域的求解:首先考虑分段函数中第一段$2x+1$的定义域。

由于没有限制$x$的取值范围,所以该段函数$2x+1$在整个实数域上都有定义。

即第一段部分的定义域为$(-\infty, +\infty)$。

接下来考虑第二段$x^2$的定义域。

该函数要求$x$的取值必须大于2,因为$x^2$在$x\leq2$的时候没有实数解。

所以第二段部分的定义域为$(2, +\infty)$。

综合第一段和第二段的定义域,得到函数$f(x)$的定义域为$(-\infty, +\infty)$。

2. 值域的求解:首先考虑第一段$2x+1$的值域。

根据该函数的定义,我们可以发现无论$x$取多大,函数值$2x+1$总是大于等于1的。

所以第一段部分的值域为$[1, +\infty)$。

接下来考虑第二段$x^2$的值域。

该函数要求$x$的取值必须大于2,所以$x^2$的值域也必须大于$2^2=4$。

即第二段部分的值域为$(4,+\infty)$。

综合第一段和第二段的值域,得到函数$f(x)$的值域为$(1, +\infty)$。

至此,我们已经求解出了函数$f(x)$的定义域和值域。

下面我们绘制函数$f(x)$的图像:【插入图像】图中蓝色的部分代表函数$f(x)=2x+1$,红色的部分代表函数$f(x)=x^2$。

可以看出两段函数在$x=2$处连接。

从图中可以清晰地看出函数$f(x)$的定义域和值域。

综上所述,函数$f(x)$的定义域为$(-\infty, +\infty)$,值域为$(1, +\infty)$。

初中数学专题第4课时 分段函数的应用题

初中数学专题第4课时 分段函数的应用题

解:(1)当 6≤x≤10 时,设 y 与 x 的关系式为 y=kx+b(k≠
0),把(6,1 000),(10,200)代入,得 120000=0=106kk++bb,,解得kb==-2220000,, ∴y=-200x+2 200.
当 10<x≤12 时,y=200.
故 y 与 x 的函数解析式为 y=- 2020(00x1+0<2x≤20102()6.≤x≤10),
(1)请求出 y(万件)与 x(元/件)之间的函数关系式; (2)求出第一年这种电子产品的年利润 z(万元)与 x(元/件)之 间的函数关系式,并求出第一年年利润的最大值; (3)假设公司的这种电子产品第一年恰好按年利润 z(万元)取 得最大值时进行销售,现根据第一年的盈亏情况,决定第二年 将这种电子产品每件的销售价格 x(元)定在 8 元以上(x>8),当第 二年的年利润不低于 103 万元时,请结合年利润 z(万元)与销售 价格 x(元/件)的函数示意图,求销售价格 x(元/件)的取值范围.
(3)【解析】根据(2)得到的两个解析式可知,当 y 有最大值
1.[2019·云南]某驻村扶贫小组实施产业扶贫,帮助贫困农户 进行西瓜种植和销售.已知西瓜的成本为 6 元/千克,规定销售单价 不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜 的销售量 y(千克)与销售单价 x(元/千克)的函数关系如图所示.
(1)求 y 与 x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润 W 的最大值.
-x2+32x-272=-(x-16) 2-16.
∴当 x=16 时,zmax=-16.
∵-16>-80,
∴当每件的销售价格定为 16 元时,第一年的年利润的最大
值为-16 万元.

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法

例1

f
(
x)
1
2x
x, ,
x0 x0

则 f [ f (2)] ( C )
A. 1 B. 1 C. 1 D. 3
4
2
2
例2 设函数 f (x)是定义在 R上的奇函
数,且
f
(
x)
log
g(
2(x x)
1)
, x0 , x0
则 g[ f (7)] ( )
A. 3 B. -3 C. 2 D. -2
【类型二】有关奇偶性
例3
判断函数
f
(
x)
x 2 x
x 2
x
, ,
x0 x0
的奇偶性?
思考: 你会选择怎样的方法来判断?
【类型三】有关单调性
例4
如果函数
f
(
x)
(2
ax
a)
x
1
, ,
x 1 x 1
在R上为增函数,那么 a 的取值范
围是 ___[_32__,__2_)__
温馨提示:函数的单调性是相对于某 个区间而言的,反应在图象上,体现 的是在这个区间上的一种整体趋势。
五、作业布置
设函数
f
(
x)
x2
4x
,
x4

log2 x , x 4
若函数 y f (x)在区间(a , a 1)
上单调递增, 则实数a 的取值
范围是 ___________来自谢谢观赏 再见祝同学们学习愉快!
① ②

三、课堂练习
已知函数
f
(x)
2x1
2
, x 1

初中数学,分段函数最值型的应用问题,例题详解及方法攻略

初中数学,分段函数最值型的应用问题,例题详解及方法攻略

初中数学,分段函数最值型的应用问题,例题详解及方法攻略分段函数最值型的应用问题一般地,化归为一次、二次函数的最值问题,我们需要注意⑴分段表示解析式,分别确定该区段内的最值;⑵分类讨论思想的运用。

真题详解例1.(利润最大化型问题)在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售。

⑴ 试建立销售价y与周次x之间的函数关系式;⑵ 若这种时装每件进价Z与周次x次之间的关系为Z=-0.125(x-8)*2+12,1<x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?解题思路提示依题意知本题是分段函数问题:注意到“每周涨价2元”丧示价的上涨部分与时间成正比例,从而售价是时间的一次函数。

“价格平稳销售”表示价格不变。

“每周降价2元”表示价格的减少部分与时间成正比例,从而售价是时间的一次函数。

则注意到每种情况下自变量的取值范围可建立函数关系式。

解题步骤解⑴依题意得,可建立的函数关系式为:y=20+2(x-1) (1≤x<6),y=30 (6≤x≤11),y=30-2(x-11)(12≤x<16);∴y=2x+18 (1≤ⅹ<6),y=30 (6≤x≤11),y=-2x+52 (12≤x≤16)⑵ 设利润为W,则W=售价-进价故:W=20+20x+1/8(ⅹ-8)*2-14 (1≤x<6).W=30+1/8(x-8)*2-12 (6≤x≤11).W=1/8(x-8)*2-2x+40 (12<x≤16).化简得:W=1/8x*2+14 (1≤x<6),W=1/8x*2-2x+26 (6≤x≤11)W=1/8x*2-4ⅹ+48 (12≤x≤16)①当W=1/8x*2+14时,∵当x≥0,函数W随着x增大而增大,∵1≤x<6∴当x=5时,W有最大值,最大值=17.125②当W=1/8x*2-2x+26时,∵W=1/8(x-8)*2+18,当x≥8时,函数W随x增大而增大,∴在x=11时,函数有最大值为153/8.③当W=1/8ⅹ*2-4x时∵W=1/8(x-16)*2+16,∵12≤x≤16,当x≤16时,函数W随x增大而减小,∴在x=12时,函数有最大值为18综上所述,当x=11时,函数有最大值为153/8。

分段函数知识点及例题解析

分段函数知识点及例题解析

分段函数知识点及例题解析分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y ,∴ y ≥-4.当x >-2时,y =2x ,∴y >22-=-1.∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}.评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-??=+∈-??∈+∞?,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实.3.求分段函数的函数值例3.已知)(x f =??<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0∴(((3)))f f f -=f (π)=π+1.评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ??<?,≥,求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5.如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ?<=<-≤,≤,,≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法

函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)x x x B f x x --≤≤⎧=⎨-<≤⎩222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩yx5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )v1.0 可编辑可修改A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .y x5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.x10.解分段函数的不等式 例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >,则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞.(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x-->, 解得01x <-, 当00x >时, 1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】xyv1.0 可编辑可修改以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c2=30(2),联立(1)(2)解得c =60,A =16.答案:D6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ①由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10. 答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.答案:-34。

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数122[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求1[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 22(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 11y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )yxACD6.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.7.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为1(,]-∞-.8.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.9.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,xxy1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。

初二数学分段函数练习题

初二数学分段函数练习题

初二数学分段函数练习题1. 函数f(x)如下,求定义域:2x+1, x < 2f(x) =x-1, x ≥ 2答案:函数f(x)的定义域为(-∞, 2)∪[2, +∞)2. 函数g(x)如下,求解不等式g(x) ≤ 3:-x+3, x < -1g(x) =2x-5, x ≥ -1解答:首先确定不等式两边的取值范围。

当x < -1时,g(x) = -x + 3,不等式变为 -x + 3 ≤ 3,解得 -x ≤ 0,即x ≥ 0。

当x ≥ -1时,g(x) = 2x - 5,不等式不变,解得 2x - 5 ≤ 3,即x ≤ 4。

综合以上,解不等式g(x) ≤ 3得到定义域为x ≥ 0 且x ≤ 4。

3. 函数h(x)如下,求解方程h(x) = 1:3x+4, x < 2h(x) =解答:根据方程h(x) = 1,分别求解 x < 2 和x ≥ 2 两种情况下的方程。

当 x < 2 时,3x + 4 = 1,解得 x = -1。

当x ≥ 2 时,-2x + 7 = 1,解得 x = 3。

综合两组解,方程h(x) = 1的解为 x = -1, 3。

4. 函数k(x)如下,求解不等式k(x) > -2:-x+3, x < -1k(x) =2x-5, x ≥ -1解答:首先确定不等式两边的取值范围。

当x < -1时,k(x) = -x + 3,不等式变为 -x + 3 > -2,解得 -x > -5,即 x < 5。

当x ≥ -1时,k(x) = 2x - 5,不等式不变,解得 2x - 5 > -2,即 x > 1.5。

综合以上解集,不等式k(x) > -2的解为 x < 5 且 x > 1.5。

5. 函数m(x)如下,求解方程m(x) = -1:4x+1, x < 3m(x) =解答:根据方程m(x) = -1,分别求解 x < 3 和x ≥ 3 两种情况下的方程。

初中数学—分段函数应用题

初中数学—分段函数应用题

初中数学—分段函数应用题1.(四川)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?3. (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?4.某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?5.一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了多少分钟?6. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?7.为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?9. 如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y 与点P经过的路程x之间的函数关系用图象表示大致是下图中的()10. 星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。

九年级数学下册《分段函数的应用问题》教案、教学设计

九年级数学下册《分段函数的应用问题》教案、教学设计
-已知分段函数f(x) = { x² (x<1), 2x (1≤x<2), x+3 (x≥2) },求函数在区间[0, 3]上的最大值和最小值。
4.探究性问题:鼓励学生思考分段函数在其他学科领域的应用,如物理学中的速度与时间关系、经济学中的成本分析等。
示例题目:
-请思考并举例说明分段函数在物理学中的一个应用场景,并建立相应的数学模型。
示例题目:
-选择题:下列哪个选项是关于分段函数的正确描述?
-填空题:已知分段函数f(x) = { x+1 (x<0), 2x (x≥0) },则f(-2) = ______,f(3) = ______。
2.应用题:布置一些与分段函数相关的实际问题,要求学生建立分段函数模型,并解决问题。这些题目可以涉及生活中的例子,如购物优惠、交通工具票价等。
九年级数学下册《分段函数的应用问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分段函数的定义,掌握分段函数的表示方法和性质。
-学生能够描述分段函数在实际问题中的应用场景,如气温变化、税率调整等。
-学生能够运用数学符号准确地表示分段函数,并识别各段的定义域和值域。
-学生能够通过数形结合,分析分段函数的连续性、单调性等性质。
2.分步骤引导,逐步深入。
-教学过程中,应由浅入深,先从简单的分段函数开始,让学生逐步理解其定义和性质,然后过渡到复杂的多段函数。
3.多元化教学方法,促进理解。
-结合小组讨论、案例研究、数学实验等多种教学方法,让学生在互动中学习和理解分段函数。
4.强调数形结合,提高解题能力。
-在教学中,教师要强调数形结合的重要性,引导学生通过绘制和观察图像来辅助分析问题,提高解题效率。

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法

函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩5.作分段函数的图像-12131o-2y x例5.函数|ln ||1|x y ex =--的图像大致是( )A11oyxByx11OCyxO11DyxO116.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,11o 322-1y x-1当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )-12131o-2y xA11oyxByx11OCyxO11DyxO11解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )yx52o -1252.(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则xy1-11a 的取值范围是( )A .(-∞,0]B.(-∞,1] C .[-2,1] D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧ 2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. 解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧ log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( ) A .lg 101B .2C .1D .0 解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧ c x ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c 2=30(2),联立(1)(2)解得c =60,A =16.答案:D 6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ① 由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10.答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎨⎧ 2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________. 解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. 答案:-34。

初中数学一次函数中的分段函数

初中数学一次函数中的分段函数

一次函数中的分段函数湖北省黄石市下陆中学宋毓彬在函数自变量不同的取值范围内所对应的函数关系也不相同,我们这样的函数称为分段函数。

学习一次函数中的分段函数,通常应注意以下几点:⑴要特别注意相应的自变量变化区间。

在解析式和图象上都要反映出自变量的相应取值范围。

⑵分段函数的图象是由几条线段(或射线)组成的折线。

其中每条线段(射线)代表某一个阶段的情况。

⑶分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解。

尤其要理解折线中横、纵坐标表示的实际意义。

一、分段计费问题例1.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?解析:(1)当时,有.将代入,得.∴y=1.5x当x=8时,y=8×1.5=12(元).(2)当时,有将,代入,得.∴.故当时,.(3)因,∴甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为吨,吨,则解之,得故居民甲上月用水16吨,居民乙上月用水12吨.二、行程中的分段函数例2。

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?解析:(1)900;(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为;当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.(4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,此时两车之间的距离为,所以点的坐标为.设线段所表示的与之间的函数关系式为,把,代入得解得所以,线段所表示的与之间的函数关系式为.自变量的取值范围是.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把代入,得.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚出发0.75h.三、与几何图形有关的分段函数例3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典例精讲
解:(1)设y与x之间的函数关系为y=kx+b,由题意,得: 解得:
k=-140,
b=280.
当x=0时,y=280.
答:线段AB所在直线的函数解析式为:y=-140x+280;甲、乙两地之间的距离 为280km;
典例精讲
(2)设慢车的速度为akm/h,就有快车的速度为(a+20)km/h, 由题意,得:(a+a+20)×2=280,解得:a=60, ∴快车的速度为:60+20=80km/h. 快车从甲地到乙地需要的时间为:80t=280,t=3.5.
典例精讲
解:(1)将(100,65)代入y=kx得:
100k=65,解得k=0.65.
则y=0.65x(0≤x≤100),
将(100,65),(130,89)代入y=k1x+b
得:
110300kk11
b b
65 89
解得: bk101.85
则y=0.8x-15(x>100);
(2)根据(1)的函数关系式得: 月用电量在0度到100度之间时, 每度电的收费的标准是0.65元; 月用电量超出100度时,超过部 分每度电的收费标准是0.8元;
4
2
由待定系数法得:
k2 k2
3 5
b b
Байду номын сангаас
1 4 1 2

解得:
k2
1 8

b
1 8
∴一次函数的表达式为
y
1
x
1

∴当y=1时, 1 x 1 1
88

88
解得 x=9
∴完成此房屋装修共需9天。
(2)由正比例函数的解析式 可知:甲的工作效率是 1,
y
1 12
x
12
∴甲9天完成的工作量是:9 1 3 ,
典例精讲
类型二:解决分段函数中的实际问题-行程问题
一辆快车和一辆慢车分别从甲、乙两地出发,匀速相向而行,相遇后继续前行,已知两车相 遇时快车比慢车多行驶40千米,设行驶的路程为x(小时),两车之间的距离为y(千米), 图中上的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系. (1)根据图中信息,求线段AB所在直线的函数解析式和甲、乙两地之间的距离; (2)求两车速度及快车从甲地到乙地所需时间t.
甲得到的工资是:3 8000 6000 4
12 4
(元)
课堂小结
根据分段函 根据分段函 数图像判断 数解决实际 实际问题 问题
更多精彩内容,微信扫描二维码获取 扫描二维码获取更多资源
解题步骤归纳
根据函数图像
找出路程、时间和速度
函数图像上找点的坐标
求出解析式
分析实际问题
典例精讲 类型一:判断实际问题中的分段函数图像
小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的
速度骑回出发地.下列函数图象能表达这一过程的是
(C)
解:由题意得,以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休 息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.
典例精讲
类型二:解决分段函数中的实际问题-分段计费
今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民 节约用电,采取按月用电量分段收费办法,若某户居民每月应 交电费y(元)与用电量x(度)的函数图象是一条折线(如图 所示),根据图象解下列问题: (1)分别写出当0≤x≤100和x>100时,y与x的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准.
典例精讲
解(1)设正比例函数的解析式为:y=k1x, 因∴设k为 一1 图 次112象 函经 数,过 的∴ 点 解y ( 析 1123式x,(1 4,)合(,作0所部<以分x<)1 43=)k1×3,
y=k2x+b,( k2≠0,k2、b是常数)
因为图象经过点(3, 1) ,(5, 1) ,所以,
答:快车的速度为80km/h,慢车的速度为60km/h,快车从甲地 到乙地需要的时间为t=3.5小时.
典例精讲
类型二:解决分段函数中的实际问题-工程问题
某家庭装修房屋,由甲、乙两个装修公司合作完成,先由甲装修公 司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工 程进度满足如图1所示的函数关系,该家庭共支付工资8000元. (1)完成此房屋装修共需多少天? (2)若按完成工作量的多少支付工资,甲装修公司应得多少元?
相关文档
最新文档