釜式反应器

合集下载

釜式反应器

釜式反应器

重点掌握内容
等温间歇釜式反应器的计算(单一反应、平行与连 串反应)。
连续釜式反应器的计算 。 空时和空速的概念及其在反应器设计计算中的应用。 连续釜式反应器的串联和并联。 釜式反应器中平行与连串反应选择性的分析,连接
和加料方式的选择。 连续釜式反应器的热量衡算式的建立与应用。
其它要求
dn A dt 0
0
0
对于均相,恒容过程方 程进一步变为:
(k1 k 2 )C A
dCA dt
0
k1C A
dCp dt
0
k 2C A
dCQ dt
0
设初值条件为:t=0 时,CA=CA0,CP=0,CQ=0,则方
程的解为
t 1 ln CA0 或 t 1 ln 1
k1 k2 CA
问题之二:并联操作各釜流量如何分配
图3-6 并联的釜式反应器
并联情况
通常可以采取τ1=τ2,这时整个反应系统最优。
即要
Vr1 Vr2
Q Q O1
O2
这时有 : X Af 1 X Af 2 X Af
二、 串联釜式反应器的计算
假设N个串联的釜式反应器如图 所示。可以通过对每个釜进行 物料衡算,得到系统的计算方程。
空时的倒数,即
s
1
s↑时,生产能力↑。
其他几种术语
为了便于比较,通常采用“标准情况下的体积流 量”。
对于有固体催化剂参与的反应, 用催化剂空速(往 往以催化剂质量或体积衡量)。
几种不同的空速: 质量空速(m3/g-cat)、体积空速(m3/ m3 cat) 液空速(m3液体原料/g-cat、 m3液体原料/ m3 cat ) 碳空速、烃空速等
研究内容

第三章 釜式及均相管式反应器综述

第三章 釜式及均相管式反应器综述
t C A0
x Af 0 CA dxA dCA C A0 rA rA
等容过程,液相反应
图解积分示意图
t C A0
x Af
0
CA dxA dCA C A0 rA rA
[rA]-1
[rA]-1
t/cA0 xA0 xAf x CA0
t CAf CA
二、间歇反应器的数学描述
Standardised stirred tank reactor sizes
标准尺寸( according to DIN)
反应釜规格 总容积 夹套容积 换热面积 400 L L m2 d1 h1 主要尺寸 (mm) d2 h2 533 120 2.5 800 1000 900 1250 630 847 152 3.1 1000 1000 1100 1300 1000 1447 216 4.6 1200 1200 1300 1550 2500 3460 368 8.3 1600 1600 1700 2060 4000 5374 499 11.7 1800 2000 1900 2500 6300 8230 677 15.6 2000 2500 2100 3050
4.155m / h
通过乙酸的起始浓度和原料中各组分的质量比,可求出乙 醇和水的起始浓度为
CB 0 3.908 60 2 10.2(mol / L) 46
3.908 60 1.35 CS 0 17.59(mol / L) 18
然后,将题给的速率方程变换成转化率的函数。
第三章 釜式及均相管式反应器
第一节 第二节 间歇釜式反应器 连续流动均相管式反应器
第一节 间歇反应器
一、釜式反应器的特征
(1)反应器内物料浓度达到分子尺度上的均匀,且反应 器内浓度处处相等,因而排除了物质传递对反应的影响;

釜式反应器的特点

釜式反应器的特点
间歇操作 物料一次性加入釜中,反应结束后 一 次性排出。所有物料的反应时间相同,物 料和产物的浓度及化学反应速率均随时间 而变化,是一个非定态过程。其生产能力 小,产品质量不稳定,劳动强度大,不易 自动控制和自动调节。宜于小批量、多品 种的生产。
釜式反应器的特点
单釜连续操作 物料不断加入,产物不断的流出。在搅 拌作用下,釜内各点浓度均匀一致,出口 浓度与釜中浓度相同,属定态过程。但物 料在釜内停留时间不一,因而会降低转化 率。其产品质量稳定,易于自动控制,宜 于大规模生产。
釜式反应器的特点
多釜串联操作 可分段控制反应,提
高每釜的推动力。克服单釜 连续操作中返混大,物料浓 度低的缺点;温差小,易于 稳定控制温度。生产中常采 用2-4釜串联。
釜式反应器的特点
半连续操作 一种物料一次性全部加入,另一种物料 连续加入。物料浓度随时间不断变化,属 非定态过程。适宜于小型生产,对放热剧 烈的反应,用改变进料速度的方法来调节 放热量的变化,达到控制温度的目的。
釜式反应器
一、釜式反应器的结构
釜式反应器
釜体:由壳体和上、下封头组成,其高与直
径之比一般1~3之间。必须提供足够的体积
以保证反应物有一定的停留时间来达到规
定的转化率;必须有足够的强度和耐腐蚀
能力以保证操作安全可靠。
釜式反应器
换热装置
釜式反应器
搅拌装置:由搅拌器和传动装置组成
二、釜式反应器的特点
反应时间(t)可参考动力学方程结合物料衡算 求得,或者由生产经验值与实验值获得。辅 助时间(t’)由实践经验确定。

2. 反应釜的总容积(VT)
VT VR /
装料系数 一般在0.4~0.85之间, 不起泡不沸腾的物料可取0.7~0.85,易起 泡或沸腾的物料可取0.4~0.6

第三章 釜式反应器

第三章  釜式反应器
dcP 0 dt
t0 pt
ln( k1 / k 2 ) 代入式( 6 ) k1 k 2 k
cP max
k1 c A0 k2
k k 2 1
2
cP max YP max = cA0
3.4 连续釜式反应器反应体积的计算
物料衡算式:Q0Ci0=QCi-RiV r 因为釜式反应器大多数进行液相反应 所以视作为恒容过程 Q=Q0
dcA 对A : ( RA ) k1cA (1) dt dcP 对P : RP k1cA k2cP (2) dt
cA cA0 exp(k1t )(4)
dcP 带入式(2)得: k1cA0 exp(k1t ) k2cP dt
dcP k2cP k1c A0 exp(k1t )(5) dt
Vr=
Q 0( c i,0 - c 0 )
-R
i
i = 1,2,...,k
Q0( c A,0 - c A ) Q0( c A,0 - c A ) Q0c A,0( x A, f - c A,0 ) = = 2 - R Ac A, f -R A x A, f
Vr=
-R
A
空时 V r
Q0
单位时间处理单位体积无聊所需的空间体积 空时越大,反应器的生产能力越小
∵ cA0 cA cP cQ
k2 c A0 ∴ cQ cA0 cA cP 1 exp (k1 k2 )t k1 k2
cP k1 常数 cQ k2
可推广到M个一级平行反应: 对反应物A:
cA cA0 exp ( - k1 +k2 +... +km)t

第三章 釜式反应器

第三章 釜式反应器
13
等温间歇反应器反应时间的解析计算
由于反应在等温条件下进行,则反应速率常数在反应 过程中保持不变。
对于n级不可逆反应 将反应速率方程变换为转化率的函数并积分得到:
对于一级不可逆反应积分结果为:
14
影响间歇反应器反应时间的因素分析
从间歇反应器反应时间的计算公式可以看出: 反应时间随反应组分的初始浓度(一级反应除外)的提
rAVr
nA0
dxA dt
分离变量积分:
t
t
0 dt nA0
dx x A f
A
0 rAVr
11
间歇反应器的反应时间计算 (单一反应)
恒容条件下(多数情况)
t
cA0
xAf 0
dxA rA
or
t cA dcA
r cA0 A
如果动力学方程形式为: rA kCAn
i


反应生成

物质量 物质量 i物质量
通式为
7
间歇釜式反应器的物料衡算式
由于间歇反应器在反应过程中无物料的进出,因此
Q0=Q=0,即:
单位时间 单位时间内积
反应掉的
=累在反应器内

i物质量 的i物质量
由间歇反应器的设计方程可得一个极为重要的结论:反应物达 到一定的转化率所需的反应时间,只取决于过程的反应速率, 也就是说取决于动力学因素,而与反应器的大小无关。
第三章 釜式反应器
釜式反应器是工业上应 用广泛的反应器之一。
可以用来进行均相反应 (主要是液相均相反应), 又可用于多相反应,如 气液、液固、液液及气 液固等反应。
在操作方式上,既可以 是进行连续操作,也可 以进行间歇或半间歇操 作。

釜式反应器的特点

釜式反应器的特点

特点
操作优点
釜式反应器的特点
练一练
1.多釜串联操作与单釜串联操作、间 歇操作相比较的优点是什么?
2. 间歇操作、单釜连续操作、多釜串 联操作和半连续操作过程的不同点。
釜式反应器的特点
讨论
多釜串联操作中是否釜数越多 越好,为什么?
结论
不是,随串联釜数的增加,设备 的折旧费和操作费将增加,通常采用 2~4釜串联。
釜式反应器
一、釜式反应器的结构
釜式反应器
釜体:由壳体和上、下封头组成,其高与直
径之比一般1~3之间。必须提供足够的体积
以保证反应物有一定的停留时间来达到规
定的转化率;必须有足够的强度和耐腐蚀
能力以保证操作安全可靠。
釜式反应器
换热装置
釜式反应器
搅拌装置:由搅拌器和传动装置组成
二、釜式反应器的特点
解:已知原料的处理量为462kg/h
平均每小时处理的原理体积为:
V0 462/ 0.75 616L / h
Hale Waihona Puke 则乙酸初始浓度为:C0 1.08/ 616 1.8 103 kmol/ L
则每批次所需反应时间:
1 1 1 1 1 1 t ( ) ( ) 128min 2.13h 3 3 k C A C A0 17.4 0.2 1.8 10 1.8 10
反应釜容积的计算
1. 反应釜的有效容积(VR) 反应器有效体积VR是指反应物料在反 应器中所占的体积。 实际操作时间=反应时间(t) + 辅助时间 (t') VR = V0 (t+t')
V0—为平均每小时处理物料体积,m3/h;
t —每批物料达到规定转化率所需的时间,h; t’—加料、卸料、清洗等辅助时间,h;

第三章 釜式反应器

第三章 釜式反应器

������������
1
= − ln 1 − ������
1 − ������
������
化学反应工程——釜式反应器
7
t与CA0有关 t与CA0无关
2. 间歇反应器的反应体积:
������ = ������ ������ + ������
式中: Q0— 单位时间内处理的反应物料的体积(由生产任务决定) t— 反应时间 t0— 辅助时间
1 − ������
������������
������������
1 反应时间:������ =
������������
������������ 1 − ������
若 ������ ≠ 1
t = 1 − ������
−1
������ − 1 ������������
若 ������ = 1
1 ������ = ������
������ = = ������ ������
(5)
������������
初 始 条 件 : t=0时,CA=CA0 ; CP=0; CQ=0
对 ( 4 ) 积 分 得 : ∴ ������ =
ln =
ln
(6)
由此式可求得为达到一定的XA所需要的反应时间,式(6)也可写成:
������ = ������ exp − ������ + ������ ������
1 − exp − ������ + ������ ������
������ + ������
两种产物的浓度之比,在任何反应时间下均等于两个反应的速率常数之比。
化学反应工程——釜式反应器
16

3_釜式反应器.

3_釜式反应器.
A
c
0
AP AQ
P
Q
t
cP k1
cQ
k2
即:任意时刻两 个反应产物浓度 之比,等于两个 反应速率常数之 比
平行反应物系组成与反应时间关系示意图
等温 BR 的计算
复合反应
将上述结果推广到含有M个一级反应的平行反应系统 :
M
反应物A的浓度为:
(t ki )
cA cA0e 1
反应产物的浓度为:
M
ci
Q0
ci0
Q
ci
Q0ci0dt Qcidt RiVr dt dni
Vr
Q0ci0
Qci
RiVr
dni dt
i 1,2, K
假设 反应器内物料温度均一 反应器内物料浓度均一
M
R
其中:
i
ij r j
j 1
KM
对反应物为负 对产物为正
等温 BR 的计算
1.反应体积
Vr Q0 (t t0 )
釜式反应器的物料衡算通式
Q0
Q
ci0
ci
Vr
假设 反应器内物料温度均一 反应器内物料浓度均一
Q0 :反应器进料的体积流量
Q :反应器出料的体积流量
ci0 :反应器进料中关键组分浓度 ci :反应器出料中关键组分浓度
Vr :反应体积
取整个反应体积作控制体积
釜式反应器的物料衡算通式
在 dt 时间间歇内对整个反应 器做关键组分 i 的物料衡算:
A P rP k1cA A Q rQ k2cA
对A:(k1 k2 )cA
dcA dt
0
对P:
k1cA
dcP dt
0

第2章:均相反应器-釜式反应器

第2章:均相反应器-釜式反应器

等温间歇釜式反应器 • 举例
如间歇反应器中进行一级不可逆连串反应:
k1 k2 A P Q;
等温间歇釜式反应器
初始状态, CA=CAO,CP=CQ= 0
CA,CP,CQ变化曲线
0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 0 5 10 15 20
QoCio QCi Vr ij rj
间歇操作 Qo Q=0,
Vr ij rj
i 1
M
dni =0 dt
二、等温釜式反应器的计算
(一)等温间歇釜式反应器 (二)等温连续釜式反应器的计算
(三)半间歇釜式反应器的计算
(一)等温间歇釜式反应器 (单一反应) • • • • 内容: (1)反应时间 (2)反应体积 (3)最优反应时间
反应时间
CP
k1C AO k2t k t e e 1 k1 k 2



k t k 2 e k1t k1e 2 因为:C A CP CQ C AO ; CQ C AO 1 k1 k 2
等温间歇釜式反应器
• 若使P的收率最大,令dCP/dt=0
C AO C X Ap AO X Ap1 p p
C C 其斜率为: AO ;截据为: AO X Ap1。
p
p
XAO
XA1
XA2 XA3
若出现上述试差问题,可假设Vr或XA1,逐 釜作图,直到复合试算检验要求。 等体积釜的物料衡算式直线是一组平行线。
• 举例
等温连续釜式反应器的计算 多釜串联的最佳体积比:
• 第N釜:
(1 X AN 1 ) 1 k (1 X AN )

反应器一(绪论+釜式)

反应器一(绪论+釜式)
6、安全装置:安全阀和爆破膜
7、其它工艺接管:进料管、出料管、仪表接管
二、釜式反应器的搅拌装置
1、搅拌的目的
使物料混和均匀,强化传热和传质。
包括:(1)加快互溶液体的混合;
(2)使一种液体以液滴形式均匀分散于另一种不互溶的液体中;
(3)使气体以气泡的形式分散于液体中;
(4)使固体颗粒在液体中悬浮;
(5)加强冷、热液体之间的混合以及强化液体与器壁的传热。
②压力试验有两种,液压试验和气压试验。
致密性试验:
①符合下列情况时,容器应考虑进行致密性试验:
a.介质为易燃、易爆和极度危害或高度危害时;
b.对真空有较严格要求时;
如有泄漏将危及容器的安全性和正常操作者。
②致密性试验方法有:气密性试验、煤油渗漏试验和氨渗漏试验方法等
2、壳体的材质
壳体的材质主要为钢制反应釜、铸铁反应釜及搪玻璃反应釜。
C搪玻璃反应釜性能如下:
①耐腐蚀性:能耐大多数无机酸、有机酸、有机溶剂等介质的腐蚀。
搪玻璃设备不宜用于下列介质的储存和反应:任何浓度和温度的氢氟酸;PH>12且温度大于100℃的碱性介质;温度大于180℃、浓度大于30%的磷酸;酸碱交替的反应过程;含氟离子的其他介质。
②耐热性:允许在- 30~+240℃范围内使用
釜式反应器的壳体结构包括:
筒体、底、盖(或称封头)、手孔或人孔、视镜及各种工艺接管口等。
1、釜式反应器的筒体
作用:主要用来提供容积,是完成介质的物理、化学反应的容器。
釜式反应器的筒体皆制成圆筒形。
A筒体一般按外压容器考虑。
原因(1)、搅拌釜通常适用于低压或常压反应
(2)、筒体外夹套内通常通水蒸气作为热源
二、化学反应器的分类

化工反应过程之釜式反应器

化工反应过程之釜式反应器

釜式反应器的搅拌装置
搅拌器的作用,通过搅拌达到物料的充分混合,增强 物料分子碰撞,强化反应器内物料的传质传热
搅 拌 器 类 型
搅拌器的选型主要根据物料性质、搅拌目的 及各种搅拌器的性能特征来进行
釜式反应器的搅拌装置
挡板:一般是指固定在反应釜内壁上的长条
挡 形板挡板。它可把切线流转变为轴向流和径 板 向流,增大了液体的湍动程度,从而改善了
多个连续操作釜式反应器的串联
FA0
FA1
C A0
CA1
1
FA2
CA2
2
FAi1
C Ai 1
FAi
CAi
i
FAN 1 CiN 1
FAN
CiN N
任一釜物料衡算 FA(i1)dt FAidt (rA )iVRidt 0
VR i
FA0
(x Ai x A(i1) ) (rA )i
c A0 V0
(x Ai x A(i1) ) (rA )i
V0 c p (T T0 ) KA(T TW ) VR (rA )(H r )
连续操作釜式反应器的热稳定性
热稳定性判断:
放热速率: QR VR (rA )(H r ) 恒容一级不可逆反应:
QR
V0cA0 (H r )k0 exp( E RT) 1 k0 exp( E RT)
移热速率: QC V0 c p (T T0 ) KA(T TW )
热稳定条件: Qc QR
dqr dqg dT dT
连续操作釜式反应器的热稳定性
操作参数的影响:
着火点和熄火点
定态温度会随着操作条件的改变而改变。 放热反应可能有多定态;吸热反应:定态唯一。
项目四、釜式反应器的技能训练

釜式反应器的结构、分类以及选型

釜式反应器的结构、分类以及选型

釜式反应器的结构、分类以及选型釜式反应器在有机化工生产和精细化工生产中应用十分广泛。

不但用于酯化反应、皂化反应这样的均相反应,而且也广泛用于除气相反应以外的几乎所有的反应,如液相、液液相、液固相、气液固相反应等。

01 釜式反应器结构釜式反应器也称反应釜,它主要由搅拌器、罐体、夹套、压出管、人孔、轴封、传动装置和支座等部分构成。

1—搅拌器、2—罐体、3—夹套、4—搅拌轴、5—压出管、6—支座、7—人孔、8—轴封、9—传动装置02 装填系数1)装填系数一般取0.6-0.85;2)如物料在反应过程中呈泡沫或沸腾状态,取0.6-0.7;3)如物料在反应过程中比较平稳,取0.8-0.85。

03 搅拌器的作用和分类1)混合:体系中的不同物质混合均匀。

2)搅动:物料强烈流动,提高传热、传质速率。

3)悬浮:细小颗粒在液体中均匀悬浮,防止沉降、加速溶解等。

4)分散:气体或液体充分分散成细小气泡或液滴,促进传质和反应,控制粒度。

反应釜搅拌类型根据不同的搅拌方式和搅拌结构可以分为多种类型。

以下是一些常见的反应釜搅拌类型:按搅拌方式分:1)锚式搅拌:通过在反应釜内壁上固定锚形或刮板形的搅拌器,使反应物料在反应釜内壁上形成循环流动,从而实现搅拌效果。

2)桨叶式搅拌:通过安装在反应釜顶部或底部的桨叶形搅拌器,使反应物料在釜内形成强烈的涡流和对流,从而实现搅拌混合效果。

3)框架式搅拌:通过安装在反应釜壁上的框架形搅拌器,使反应物料在框架内形成循环流动,从而实现搅拌效果。

4)螺带式搅拌:螺旋叶片通过旋转将物料向上提升,然后再自由落下,从而实现了充分混合和均匀分布。

5)螺旋式搅拌:通过在反应釜内部安装螺旋形搅拌器,使反应物料在螺旋叶片的推动下实现循环流动和搅拌混合。

按加热/冷却方式分类1)水加热反应釜当对温度要求不高时,可采用这种加热方式。

其加热系统有敞开式和密闭式两种。

敞开式较简单,它由循环泵、水槽、管道及控制阀门的调节器组成。

各种釜式反应器

各种釜式反应器

各种釜式反应器釜式反应器(也称批式反应器)是一种化学反应设备,广泛应用于化工、制药、食品等领域。

它的工作原理是将待反应物料装入反应釜中,加入适量的催化剂或反应剂,通过加热或冷却等工艺条件,实现反应过程。

釜式反应器具有反应容量大、适用范围广、反应精度高等优点,因此在化工行业中占有很重要的地位。

下面介绍几种常见的釜式反应器。

一、框式反应器框式反应器是指由四个竖直的钢板构成的方盒形反应器。

框式反应器适用于批量生产,其操作简便、易于维护。

由于采用了独特的设计,反应釜的密封性很好,可以有效地避免反应过程中的泄漏。

此外,框式反应器具有操作温度范围广、高温下稳定、反应速率快等特点。

二、移动顶式反应器移动顶式反应器是一种先进的反应器,其叶轮式混合装置可以消除内部流体的不均匀性。

该设备可以完成高粘度、高浓度、高密度物料的混合反应,适用于制备高品质的化工产品,如粘度大的聚合物和树脂等。

由于移动顶式反应器采用了先进的自动化控制系统,因此具有高效、精准的操作特点。

三、压力反应釜压力反应釜是指可以在高压下进行反应的釜式反应器,通常用于反应温度较高的化学反应,如制备合成纤维、可塑剂、橡胶等产品。

由于压力反应釜的密闭性很好,可以有效地避免反应气体泄漏,多数情况下不需要进行等压冷却,因此可以大大提高反应效率和产品质量。

四、搅拌式反应釜搅拌式反应釜是一种较为常见的釜式反应器,具有操作简单、易于维护等特点。

该设备采用了多种搅拌方式,可以根据不同的反应物进行选择。

搅拌式反应釜适用于溶解、混合、水解、合成等多种反应过程,具有广泛的适用范围和高性价比。

此外,搅拌式反应釜还可以进行单层或多层冷却/加热处理,满足不同反应条件的需求。

综上所述,釜式反应器是化学反应领域中的重要设备,涉及到化工、制药、食品等多个领域。

不同类型的釜式反应器适用于不同的反应过程,需要根据具体的反应物质和反应条件进行选择。

在使用釜式反应器时,需要特别注意安全问题,避免意外事故的发生。

釜式反应器

釜式反应器

釜式反应器:反应原理与结构组成釜式反应器是一种常见的反应器类型,广泛应用于化工、石油、食品和材料等行业。

下面将介绍釜式反应器的反应原理和结构组成。

一、反应原理釜式反应器的主要作用是在一定的温度、压力和催化剂作用下,将原料和反应物混合在一起进行化学反应。

釜式反应器一般采用间歇式操作,即每次反应结束后,将反应产物从反应器中取出,再进行下一轮反应。

在釜式反应器中,反应物之间通过搅拌、混合和传递热量等过程,实现反应的均匀性和稳定性。

釜式反应器的操作方式可以根据不同的工艺要求进行调整,例如温度、压力、催化剂等参数都可以进行控制和优化。

二、结构组成釜式反应器主要由以下几个部分组成:1.釜体:釜式反应器的主体部分,一般由耐腐蚀、耐高温的材料制成,如不锈钢、钛等。

釜体内部一般分为上下两部分,上部为反应区,下部为加热区。

2.搅拌装置:搅拌装置是釜式反应器中的重要组成部分,它可以将反应物充分混合均匀,并促进反应的进行。

搅拌装置一般由电动机、减速器和搅拌桨组成。

3.传热装置:传热装置的作用是将外部的热量传递给釜体内的反应物,以控制反应温度。

传热装置一般由加热管、散热器等组成。

4.密封装置:密封装置的作用是防止反应物泄漏,保证反应的进行和安全性。

密封装置一般由填料密封、机械密封等组成。

5.控制系统:控制系统是整个釜式反应器的中枢神经,它可以通过调节温度、压力、搅拌速度等参数来控制反应的进行。

控制系统一般由仪表、阀门、传感器等组成。

总之,釜式反应器作为一种常见的反应器类型,具有操作简单、适应性强、可靠性高等优点。

了解釜式反应器的反应原理和结构组成有助于更好地理解其工作原理和应用场景。

釜式反应器

釜式反应器

• 式中,nI为体系中参与反应的任意组分I的摩尔数, αI为其计量系数,nI0为起始时刻组分I的摩尔数。
模块一釜式反应器
3.转化率
转化率是指某一反应物转化的百分率
某一反应物的转化量 n A0 n A xA = 该反应物的起始量 n A0
应用:
nA=nA0(1-xA)
CA=CA0(1-xA)
最后结合反应动力学数据来感觉反应结果。
模块一釜式反应器
二、均相反应动力学基础
均相反应: 参与反应的各化学组分处于同一相(气相或液 相)内进行化学反应。
气相均相反应
包括 液相均相反应
特点:反应物系中不存在相界面
模块一釜式反应器
均相反应动力学是研究均相反应过程的基础, 也为工业反应装置的选型、设计计算和反应器的 操作分析提供理论依据和基础数据。
理想流动模型 理想混合流动模型
非理想流动
模块一釜式反应器
(一)理想流动模型 1.理想置换流动模型
理想置换流动模型也称作平推流模型或活塞流模型。 任一截面的物料如同气缸活塞一样在反应器中移动,垂 直于流体流动方向的任一横截面上所有物料质点的年龄 相同,是一种返混量为零的极限流动模型。
加料 产物
模块一釜式反应器
• 大量实验表明,均相反应的速率是反应物系组成、 温度和压力的函数。 • 反应压力通常可由反应物系的组成和温度通过状 态方程来确定,不是独立变量。所以主要考虑反 应物系组成和温度对反应速率的影响。 • 化学反应动力学方程有多种形式,对于均相反应, 方程多数可以写为(或可以近似写为,至少在一 定浓度范围之内可以写为)幂函数形式,反应速 率与反应物浓度的某一方次呈正比。
模块一釜式反应器
(二)非理想流动

釜式反应器的基本结构

釜式反应器的基本结构

釜式反应器的基本结构一、引言釜式反应器作为化工领域常见的反应设备之一,广泛应用于化学工艺中。

它的基本结构由多个部分组成,包括反应容器、加热方式、搅拌装置、控制系统等。

本文将对釜式反应器的基本结构进行全面、详细、完整且深入的探讨。

二、反应容器2.1 反应容器类型根据不同的反应需求,釜式反应器的反应容器可以分为不同的类型,常见的有:1.玻璃反应容器:适用于低温、低压或对材料要求较高的反应。

2.不锈钢反应容器:适用于高温、高压或对耐腐蚀性要求较高的反应。

3.塑料反应容器:适用于一些对材料要求较低的反应。

2.2 反应容器结构反应容器通常由圆筒形的主体和两端的盖子组成。

盖子上通常设有进料口、放料口、观察窗口、温度传感器接口等。

在某些情况下,反应容器还可能配备有冷却管道、加热带等附件,以满足不同的反应需求。

三、加热方式釜式反应器的加热方式多种多样,常见的有以下几种。

3.1 电加热采用电加热方式的反应器,主要通过在反应容器内部安装电加热器,通过通电产生热量来加热反应物。

电加热具有温度控制精度高、加热速度快等优点,但对电源要求较高。

3.2 蒸汽加热蒸汽加热是利用外部蒸汽通过换热器传热到反应容器内部,以实现加热的方式。

蒸汽加热具有加热均匀、温度控制稳定等优点,但需要蒸汽供应系统的支持。

3.3 油加热油加热是将加热介质油通过外部换热器传热到反应容器内部的方式。

油加热的优点是热传导效果好、温度控制方便,但对换热设备要求较高。

四、搅拌装置搅拌装置在釜式反应器中起到搅拌反应物、增加反应效率、保持温度均匀等作用。

常见的搅拌装置有以下几种。

4.1 锚式搅拌器锚式搅拌器由一个固定在反应容器内壁上的锚形叶片构成,可以将反应物搅拌均匀。

锚式搅拌器适用于黏稠度较高的反应物。

4.2 湿式搅拌器湿式搅拌器由一个旋转的轴上装有多个叶片构成,可以将反应物搅拌均匀。

湿式搅拌器适用于黏稠度较低的反应物。

4.3 桨式搅拌器桨式搅拌器由一个旋转的轴上装有多个桨叶构成,可以将反应物搅拌均匀。

第三章釜式反应器

第三章釜式反应器
热量衡算是以能量守恒与转化定律为基础的。
加入反应器的热量(1) =
带走的热量(2) +反应热(3) +累积的热量 (4)
对于(3)吸热反应取正号放热反应取负号
1)对于单一反应,只需建立一个方程
2)多相反应,需分别对每相建立方程, 多一相,多建立一个
3)反应热 放热 ΔHR “-” QP“+” 吸热 ΔHR “+” QP “-”
• 当气相流动反应器的压力降很大,以 致影响到反应组分的浓度时,就要考 虑动量衡算式。一般情况下,在反应 体积计算时可不考虑。这样反应体积 的计算是物料衡算、热量衡算联立求 解。对于一个单一反应就有二到三个 方程,如果遇到多个反应,计算就非 常麻烦,因此必须根据具体情况作必 要的简化。
• 4.化学动力学方程r=k1f1(x)-k2f2(x)
• 间歇反应器的特点是分批装料和卸料,其操 作条件较为灵活,可适用于不同品种和不同 规格的产品生产,特别是用于多品种而批量 小的化学品生产。因此,在医药、试剂、助 剂、添加剂等精细化工部门中得到广泛的应 用。其操作时间是由两部分组成:反应时间 (t)和辅助时间(t0)
二者的区别在于年龄是对仍然停留在设备 内的粒子而言。寿命则对已经离开反应 器的粒子而言。所以说寿命也可以说是 反应器出口处物料粒子的年龄。
b、逆向混合(返混) 指不同年龄的粒子之间的混合。所谓逆向,
是指时间概念上的逆向。 理想置换模型:返混最小 理想流动反应
器 理想混合模型:返混最大 非理想流动:介于最大· 和最小之间
例如:扩散模型、多级理想混合模型以 及各种组合模型等等都属于广泛采用 的非理想流动模型。
为什么要研究流动模型?流体在反应器中的 流动情况影响着反应率。反应选择性直接 影响反应结果。研究反应器的流动模型是 反应器选型、设计和优化的基础。我们知 道,实际进行的化学反应,往往都伴随着 传递过程(动量、热量、质量传递),这 些物理过程都会影响化学反应。例如:不 均匀的流速分布、温度分布、浓度分布对 化学反应的程度和速率都有一定的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2釜式反应器特点及其应用 釜式反应器的特点:结构简单、加工方便,传质、传热效率
高,温度浓度分布均匀,操作灵活性大。
釜式反应器可用于气-液、液-液和液-固相反应。
2019/12/13
2019/12/13
2019/12/13
2.2 间歇操作釜式反应器计算
理想混合反应器:釜内物料完全混合,浓度、温度处处相等。
CCAA00
lnA0CCC0AxAAA0f
A
CAA0ekt
kt ln 1 1 xA
xA 1 ekt
kt 1 1
CA CA0
CA

CA0 1 CA0kt
kt 1 xA
CA0
1
xA
xA

CA0kt 1 CA0kt
rA kCAn
kt

n
1
1
(C1An

C1n A0
)
(1-xA)1-n 1 (n 1)CAn01kt
第二章 釜式反应器
2019/12/13
主要内容
2.1 概述 2.2 间歇操作釜式反应器计算 2.3 连续操作釜式反应器计算 2.4 搅拌器 2.5 传热装置
2019/12/13
2.1 概述
2.1.1釜式反应器构型
1.釜体 2.搅拌装置 3.轴封 4.换热装置
封头 筒体 釜底 手(人)孔 透视镜 工艺接管口
对全釜有效体积和 任意时间间隔作物料衡算
CA0
FA0、V0
CAf
FA0 (1 xAf )
FA0 FA0 (1 x Af ) rAVR 0
VR CA V0
FA0x Af rAVR
VR

FA0
xAf rA
τ
VR V0
CA0
xAf rA
等容一级反应
τ
VR V0
rAVRdτ dnA nA nA0 (1 xA )
dnA nA0dxA
dτ nA0dxA rAVR
τ
nA0
x Af 0
dxA rAVR
等容过程
VR不变
τ nA0
dx xAf
A
VR 0 rA
τ
CA0
xAf 0
dxA rA
找出反应速度与转化率之间的函数关系
2400 1 60 103kg h1 24116 0.5
每小时处理总原料量为 103 103 4.97 74 734kg h1
60
每小时处理原料体积为
V0

734 750

0.98m3
h1
故反应器有效体积为 VR 0.98(0.55 0.5) 1.04m3
2019/12/13
2.3 连续操作釜式反应器计算
理想混合反应器:釜内物料完全混合,浓度、温度处处相等。
连续操作:反应参数不随时间变化。
CA0
CA0
CAf
CA1
CA2
CA3
CA0


CAf
位置
2019/12/13
CA0
浓 度
CA1
位置
CA2
CA3
2.3 连续操作釜式反应器计算
2.3.1 单段连续釜式反应器 (等温过程)
2.2 间歇操作釜式反应器计算
2.2.2 反应器有效体积VR
VR V0(τ τ`)
V0 :平均每小时需耍处理的物料体积,m3·h-1 τ`:非生产时间,h
反应器总体积V包括有效体积、分离空间、辅助部件占有体积
装料系数
VR
V
对于不起泡、不沸腾的物料 取0.7 ~ 0.85
对于起泡、沸腾的物料
取0.4 ~ 0.6
2019/12/13
2.2 间歇操作釜式反应器计算
例2.1 在搅拌良好的间歇操作釜式反应器中,用乙酸和丁醇 生产乙酸丁酯,反应式为
反应在等温下进行,温度为100℃,进料配比为乙酸/丁醇 =1:4.97(物质的量比)、以少量硫酸为催化剂。当使用过量 丁醇时,其动力学方程式为 rA kCA2 。下标A表示乙酸。在 上述条件下,反应速度常数k为1.04m3·kmol-1·h-1,反应物密 度ρ为750 kg·m-3,并假设反应前后不变。每天生产2400kg 乙酸丁酯(不考虑分离过程损失),如要求乙酸转化率为50% ,每批非生产时间为0.5h,试计算反应器的有效体积。
2019/12/13
2.2 间歇操作釜式反应器计算
对于一级反应A→R,反应速度方程式为
rA kCA kCA0(1 xA )
等温过程 k为常数
τ
CA0
xAf 0
dxA kCA0(1 xA )
τ 1 xAf dxA
k 0 (1 xA )
τ 1 ln 1 k 1 xAf
2019/12/13
解 (1)计算反应时间
xAf
kCA0 (1 xAf )
CA0

1 750 1 60 4.97 74
1.75kmol m3


0.5 1.041.75(1-
0.5)
0.55h
(2)计算有效体积VR VR V0(τ τ`)
每天生产2400 kg乙酸丁酯,则每小时乙酸用量为
间歇操作:反应参数随时间变化。等容过程。
先求得为达到一定转化率所需的反应时间,然后结合非生产时
间和每小时要求处理的物料量,计算反应器体积。
2.2.1 反应时间
反应时间计算式根据反应器物料衡算推导。
①由于反应器内浓度、温度均一.不随位置而变,故可对整
个反应器有效体积(反应体积)进行物料衡算。
②间歇操作.进料项和出料项均为零。
微元时间内进 微元时间离开 微元时间、微反 微元时间、微反
入微元体积

-
微元体积的

-
元应体积内转化

元应体积内反应
的反应物量 反应物量 掉的反应物量 物2 间歇操作釜式反应器计算
对于二级反应2A→B+C或A+B→C+D,nA0=nB0。
反应速度方程式为: rA kCA2 kCA02(1 xA )2
τ
CA0
xAf 0
dxA kCA02(1 xA )2

1 kCA0
dx xAf
A
0 (1 xA )2

xAf
kCA0 (1 xAf )
2019/12/13
理想间歇反应器中整级数单反应的反应结果表达式
反应级数 反应速率 残余浓度式
转化率式
n=0
n=1
n=2 n级 n≠1
2019/12/13
rA k
rA kCA rA kCA2
kt CA0 CA
kt CA0 xA
CA CA0 kt
xA

kt CA0
kt
τ
C drx
相关文档
最新文档