常微分方程教程(丁同仁、李承治第二版)习题解答—— 第6章6-2
常微分方程教程+第二版+丁同仁+李承志+答案和练习第2章习题 第二章答案
习 题 2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂x Q , 所以 xQy P ∂∂≠∂∂ 即 原方程不是恰当方程.2.0)2()2(=+++dy y x dx y x解:,2),(y x y x P += ,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂x Q 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax (a,b 和c 为常数). 解:,),(by ax y x P += ,),(cy bx y x Q +=则,b y P =∂∂,b x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -= ,),(cy bx y x Q -=则,b y P -=∂∂,b x Q =∂∂ 因为 0≠b , 所以xQ y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P += u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye x x x解: xy e y x Q y e ye y x P x x x 2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e x Q x +=∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e x x x 两边积分得:.)2(2C xy e y x =++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则02)ln (2=-++ydy dx x xdy dx xy两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy x Q =∂∂ 所以 当xQy P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212t s s Q -=∂∂ 所以xQ y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.10.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy x Q '=∂∂ 所以xQy P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22 (其中F 为f 的原积分).习 题 2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::(1)yx dx dy 2=解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .(2))1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .(3)0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .(4)221xy y x dxdy+++=; 解:原方程即为:2(1)1dyx dx y=++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. (5)2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. (N k ∈) (6)21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ② 1±=y 也是方程的解.(7).yxe y e x dx dy +-=- 解.原方程即为:dx e x dy e y xy)()(--=+两边积分得:c e x e y x y ++=+-2222, 原方程的解为:c e e x y x y =-+--)(222.2. 解下列微分方程的初值问题.(1),03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即 c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y .(2).0=+-dy ye xdx x, 1)0(=y ;解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x .(3).r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln , 因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.(4).,1ln 2yx dx dy+= 0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=(5).321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. (1).x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:(2).ay dxdy=, (常数0≠a ); 解:①当0≠y 时,原方程即为:dx aydy= 积分得:c x y a +=ln 1,即 )0(>=c ce y ax②0=y 也是方程的解. 积分曲线的简图如下:y(3).21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:(4).n y dx dy =, )2,1,31(=n ; 解:①0≠y 时,ⅰ)2,31=n 时,原方程即为 dx ydyn =, 积分得:c y n x n=-+-111.ⅱ)1=n 时,原方程即为dx ydy=积分得:c x y +=ln ,即)0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意及导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln 21y b y b b y b b b x ----++=.5. 设微分方程)(y f dxdy=(2.27),其中f(y) 在a y =的某邻域(例如,区间ε<-a y )内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程(2.27)的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)((发散). 证明:(⇒)首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点(00,y x )恰有方程(2.13)的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. (*) 这些积分曲线彼此不相交. 其次,域1R (2R )内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
常微分方程教程_丁同仁(第二版)_习题解答_2
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 4-1 1.求解下列微分方程 1) 2 y = p + 4 px + 2 x
y = xp + f ( p )
(p =
dy ) (1) dx
dp =0 dx
dp =0 dx
即 p = c时 (2)
代入(1)得(1)的通解
y = cx + f (c)
它的 C—判别式为
y = cx + f (c) x + f ' (c ) = 0
由此得
Λ:x = − f '(c)) = ϕ (c ) , y = −cf '(c) + f (c) = ψ (c )
1 = dy 2 cos t 5
5 1 ( 2 sin t ) = d 2 cos t
5 dt 从而得 2
x=
5 2
t+c 5 t + c , y = 2 sin t 2
x 因此方程的通解为 =
消去参数 t,得通解
= y
2 sin
2 (x − C) 5 dy = 0 ,显然 dx
对于方程除了上述通解,还有 y = ± 2 ,
检验知
y = 2x +
Fy' ( x, y, p) = 1 ,
" Fpp ( x, y , p ) = 2 p ,
Fp' ( x, y, p) =−1 + p 2
常微分方程教程-丁同仁
常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3解:原式可化为:,0)1(.22=++dy x dx y 。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112yxy dx dyxy 321++=x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dxdy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dx xx du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y ee e ee e ee x y uu xy x u u xyxy y x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
常微分方程教程(丁同仁、李承治第二版)习题解答——第3章
第三章习题习题3—11. 判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='. 解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=x y x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则⎪⎪⎩⎪⎪⎨⎧<-->=∂∂,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ∂∂),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题⎪⎩⎪⎨⎧=--=,0)1(,22y y x dx dy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设22),(y x y x f -=,则4),(m ax ),(==∈y x f M R y x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ϕ是方程的解,)(2x ϕ是第二次近似解,则0)1()(0=-=y x ϕ,3131)0(0)(3121-=-+=⎰-x dx x x x ϕ,4211931863])3131([0)(34712322+-+--=--+=⎰-x x x x dx x x x x ϕ. 在区间411≤+x 上,)(2x ϕ与)(x ϕ的误差为 322)!12()()(h ML x x +≤-ϕϕ. 取22),(max max ),(),(=-=∂∂=∈∈y y y x f L R y x R y x ,故241)41()!12(24)()(322=+⨯≤-x x ϕϕ.3. 讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解 设3123),(y y x f =,则3221-=∂∂y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ∂∂),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x . 所以通过点)0,0(O 的一切解为0=y 及,,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧-=.,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧--=如图. 4. 试求初值问题 1++=y x dxdy ,0)0(=y , 的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为0)(0=x y ,一次近似为 20121)10()(x x ds s x y x +=++=⎰, 二次近似为 3220261]1)21([)(x x x ds s s s x y x ++=+++=⎰, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x +++=++++=⎰, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+⨯+++=, 五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--⎥⎦⎤⎢⎣⎡++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--⎥⎦⎤⎢⎣⎡+++++++=++n x x n x x x x x n n , 所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5. 设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy =,00)(y x y =的右侧解是唯一的. 证 设)(1x y ϕ=,)(2x y ϕ=是初值问题的两个解,令)()()(21x x x ϕϕϕ-=,则有0)(000=-=y y x ϕ.下面要证明的是当0x x ≥时,有0)(≡x ϕ.用反证法.假设当0x x ≥时,)(x ϕ不恒等于0,即存在01x x ≥,使得0)(1≠x ϕ,不妨设0)(1>x ϕ,由)(x ϕ的连续性及0)(0=x ϕ,必有100x x x <≤,使得0)(0=x ϕ,0)(>x ϕ,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==ϕϕ,⎰+=x x dx x x f y x 0)](,[)(101ϕϕ,⎰+=x x dx x x f y x 0)](,[)(202ϕϕ,则有 )()()(21x x x ϕϕϕ-=⎰-=xx dx x x f x x f 0)]}(,[)](,[{21ϕϕ,10x x x ≤<.由0)()()(21>-=x x x ϕϕϕ(10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ϕ.从而证明方程的右侧解是唯一的.习题3—31. 利用定理5证明:线性微分方程 )()(x b y x a dxdy += (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有 N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2. 讨论下列微分方程解的存在区间:1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为x Cey -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<y x f ,则方程满足00)(y x y =的解)(x y ϕ=递减,当-∞→x 时,以1=y 为渐近线,当+∞→x 时,以0=y 为渐近线.ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C . 3.设初值问题)(E :2)(2)32(y x e y y dx dy +--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明 因2)(2)32(),(y x e y y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<y ,则利用)(E 的右行解的延伸定理,得出)(E 的解Γ可以延伸到2R 的边界.另一方面,直线1-=y 的下方,积分曲线Γ是单调上升的,并且它在向右延伸时不可能从直线1-=y 穿越到上方.因此它必可向右延伸到区间+∞<<x a .故至少+∞=b 成立.类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4. 设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdy x -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明 因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x -=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡x x e x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ϕ=,在平面内延伸)(x y ϕ=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ϕβ.下证后一种情形不可能出现. 事实上,若不然,则必存在β<x ,使βϕe x >)(.不妨设βϕe x >)(.于是必存在),(00βx x ∈,使00()x x e ϕ=,x e x <)(ϕ(00x x x <≤).此时必有0)(000'>=≥x x x x e dx de x ϕ, 但0),())(,()(00000'===x x e x F x x F x ϕϕ,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ϕ=(00)(y x y =)必可延拓到+∞<≤x x 0.。
第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习
习 题 3-11. (1) 解: ,||),(αy y x f = 有α|||)0,(),(|y x f y x f =-,令 ,||)(αr r F =有⎰⎰--==1110010||11||)(r r r r r dr r F dr ααα, 当 01<-α, 即 1>α 时, ∞=--→αα10||11limr r , 所以 0)0(=y 的解唯一。
当 01=-α 时,1100|||ln )(r r r r F dr =⎰,而 ∞=→||ln lim 0r r ,所以 0)0(=y 的解唯一。
当 10<<α 时, 可解方程知其解不唯一。
所以当10<<α, 其解不唯一; 1≥α, 其解唯一。
(2). 解: 因为0|l n |l i m 0=→y y y ,所以dxdy在 ),(+∞-∞ 连续. 设 |||ln |)(r r r F =, 有∞=⎰1)(r r F dr(01>r 为常数),所以方程的解唯一.2. 解: 构造毕卡序列, 令 1),(++=y x y x f , dx x y x f x y xn n ⎰=+01))(,()(,因为 0)0(=y ,所以 x x dx x f x y x +==⎰20121)0,()(,x x x dx x x x f x y x ++=+=⎰2302261)21,()(, x x x x dx y x f x y x +++==⎰23402331!41),()(,…………………………………………… x x x n x n dx y x f x y n n xn n +++++==+-⎰!22!2)!1(1),()(211 ,22)!22!2)!1(1(lim )(lim 21--=+++++=+∞→∞→x e x x x n x n x y x n n n n n , 所以 22--=x e y x为方程的解. 3. 证明: 反证法设初始问题(E)有两个解, )(x y 和)(1x y , 且 0010)()(y x y x y ==,01x x >∃, 使 )()(111x y x y >, 令 )()(,sup{110x y x y x x x =<≤=μ根据μ 的定义与y 的连续性可知,对),(1x x μ∈∀,)()(1x y x y >, 令 )()()(1x y x y x r -=, 令 )()()(1x y x y x r -=, 有 0)(=μr , 有))(,())(,(1x y x f x y x f dxdr-=, 因为 ),(y x f 对 y 是递减的, 所以0<dxdr, 对 ),(1x x μ∈∀, 所以 0)()(=<μr x r , 对 ),(1x x μ∈∀, 又由y 的连续性, 可得 )()(111x y x y <,矛盾!习 题 3-31.证明:令)()(),(x b y x a y x f +=, 显然),(y x f+∞<<∞-∈y I x S ,:内连续, 且满足不等式|)(||||)(||),(|x b y x a y x f +≤,其中令 0|)(|)(≥=x a x A , 0|)(|)(≥=x b x B , 由已知有 )(x A ,)(x B 在I x ∈上是连续的, 则由定理5, 知 )(x y y = 的最大存在区间为I2. (1) 解:令 221),(yx y x f +=,则 ),(y x f 在区域 }0,{1≠+∞<<-∞=y x G 上连续,或 },00{2+∞<<-∞+∞<<<<-∞=y x x G 上连续。
常微分方程课后答案
习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
《常微分方程》课程大纲
《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
常微分方程教程(丁同仁、李承治第二版)习题解答——第6章6-2
习题6—21.求出常系数齐次性微分方程组Ay dxdy=的通解,其中的矩阵A 分别为 1)⎪⎪⎭⎫ ⎝⎛2543 2)⎪⎪⎭⎫⎝⎛-o a a o 3)⎪⎪⎪⎭⎫ ⎝⎛---4010100114)⎪⎪⎪⎭⎫⎝⎛---942105520105 5)⎪⎪⎪⎪⎪⎭⎫⎝⎛-------1111111111111111解:1) 特征方程3452λλ-- 即 0)2)(7(=+-λλ矩阵A 有特征根,71=λ 22-=λ对应于71=λ所有的特征向量⎪⎪⎭⎫ ⎝⎛21v v 满足0)7(21=⎪⎪⎭⎫ ⎝⎛-v v E A 即1244055v v -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭。
取11=v ,则12=v 那么对应的实值解为xe y 7111⎪⎪⎭⎫ ⎝⎛=;对应22-=λ的特征向量⎪⎪⎭⎫ ⎝⎛21v v 满足0)2(21=⎪⎪⎭⎫⎝⎛+v v E A 即0454521=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛v v ,取41=v ,则52-=v ,那么对应的实值解为 zxe y -⎪⎪⎭⎫ ⎝⎛-=542。
于是该方程组的通解为x x e c e c y y 2271215411-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛ 2)特征方程为0=---λλa a即022=+a λ矩阵A 有特征根ai =1λ 2ai λ=-对应ai =1λ的特征向量⎪⎪⎭⎫ ⎝⎛21r r 应满足021=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---v v ai aa ai取11=v ,则i v =2 即么对应的特解为1211(cos sin )aix y e ax i ax y i i ⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos sin sin cos ax ax i ax ax ⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭由此得ai =1λ所对应的两个特解为(对2X2的方程组取一个特解的实部和虚部就可,因为虚根都是成对出现的。
)12cos sin y ax y ax ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 122sin cos y ax y ax ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 它们在),(+∞-∞上线性无关,故得方程组的通解:1122cos sin sin cos y ax ax c c y ax ax ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭3)0401010011=------λλλ即0)1)(4(2=++λλ 矩阵A 有特征根 41-=λ,121-==λλ。
常微分方程教程(丁同仁、李承治第二版)习题解答—— 第6章63
习 题 6—31.证明函数组 ,⎩⎨⎧<≥=000)(21x x x x 当当ϕ220 0()0x x x x ϕ≥⎧=⎨<⎩当 当,在区间上线性无关,但它们的朗斯基行列式恒等于零。
这与本节的定理 6.2*是否矛盾?如果并不矛盾,那么它说明了什么?),(+∞−∞证 设有 1122()0c x c ϕϕ+≡ +∞<<∞−x ,则当时,有,从而推得 。
而当 时,有0≥x 21200c x c +≡01=c 0<x 120c c x 0⋅+≡,从而推得 。
因此在02=c +∞<<∞−x 上,只有时,才有 021==c c 1122()()0c x c x ϕϕ+≡,故12(), ()x x ϕϕ在上线性无关。
又当时, ),(+∞−∞0≥x 0002)(2≡=x x x w ,当0<x 时,0200)(2≡=x x x w 故当+∞<<∞−x 时,有。
这与本节定理6.2不矛盾,因为定理6.2*成立对函数有要求,即0)(≡x w )(1x ϕ,)(2x ϕ是某个二阶齐次线性方程的解组。
这说明不存在一个二阶齐次线性方程,它以)(1x ϕ,)(2x ϕ为解组。
3.考虑微分方程''()0y q x y +=(1)设)(x y ϕ=与)(x y ψ=是它的任意两个解,试证)(x y ϕ=与)(x y ψ=的朗斯基行列式恒等于一个常数。
(2)设已知方程有一个特解为,试求这方程的通解,并确定 x e y =()?q x =证: (1)在解)(x y ϕ=,)(x y ψ=的公共存在区间内任取一点x 。
由刘维尔公式,有 (常数)[])()()(),(000x w ex w x x w odxx x=∫=−ψϕ(2)由于是方程的一个非零特解,故可借助刘维尔公式,求与之线性无关的特解 x e y =x odx xx e dx e ee y −∫−−=⋅=∫21122,故方程的通解为 xx e c e c y −+=21又由于是方程的解,故有x e y =()0x x e q x e +≡, 所以 ()1q x =−。
常微分方程教程_丁同仁(第二版)_习题解答_1
∂y
∂x
∂y ∂x
2. (x + 2 y)dx + (2x + y)dy = 0
解: P(x, y) = x + 2 y, Q(x, y) = 2x − y,
∂P
则
=
2,
∂Q
=
2,
所以 ∂P = ∂Q ,即
原方程为恰当方程
∂y ∂x
∂y ∂x
则 xdx + (2 ydx + 2xdy) − ydy = 0,
解: P(x, y = ye x + 2e x + y 2 , Q(x, y) = e x + 2xy ,
则 ∂P = e x + 2 y, ∂Q = e x + 2 y, 所以 ∂P = ∂Q ,即 原方程为恰当方程
∂y
∂x
∂y ∂x
则 2e x dx + [( ye x + y 2 )dx + (e x + 2xy)dy] = 0,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
(1) dy = x 2 dx y 解:原方程即为: ydy = x 2dx 两边积分得: 3y 2 − 2x3 = C, y ≠ 0 .
dy
(2)
dx
=
x2 y(1 + x3 )
偏微分方程陈祖墀答案
偏微分方程陈祖墀答案【篇一:数学分析学习方法档】>从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
课本最后讲了一些流形上的微积分。
虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。
3《数学分析》陈纪修等著以上三本是考研用的最多的三本书。
4《数学分析》李成章,黄玉民是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。
5《数学分析讲义》刘玉链我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。
常微分方程教程(丁同仁、李承治第二版)习题解答——第6章6-1
习 题 6 —— 11.求出齐次线性微分方程组 y t A dtdy )(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫ ⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
解 (1)方程组的分量形式为:211y y dt dy += ,22y dtdy = 从后一式容易求出2y 的通解为 t ke y =2 ,其中K 为任意常数,可分别取02=y 和 t e y =2,代入前一式得到两个相应的特解,t e y =1和 t te y =2这样就求得方程组的一个解矩阵为()0tt t e te t e ⎛⎫Φ= ⎪⎝⎭又 2det ()0t t e Φ=≠ 。
因此,)(t Φ是方程组的一个基解矩阵,根据定理6.1 ,方程的通解为⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛t t t e te c e c y y 21210 (2)方程的分量形式为 ⎪⎩⎪⎨⎧-==1221y dt dy y dt dy 由①、②可和 21120d y y dt+= 由观察法知,t y cos 1=,t y sin 1=为此方程的两个特解,将其代入②式可得两个相应的特解,将其代入②式可得两个相应的特解:2sin y t =-,2cos y t =。
这样就求得方程组的一个解矩阵为 cos int ()int cos t s t s t ⎛⎫Φ= ⎪-⎝⎭又 []01)(det ≠=Φ=t ,因此)(t Φ中方程组的一个基解矩阵。
故方程组的通解为1122cos int int cos y t s c c y s t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (3)程组的分量形式为:⎪⎩⎪⎨⎧='='='132231y y y y y y ① ② ① ② ③解 ①+③得3131)(y y y y dtd +=+ 解 ①-③得 1313()d y y y y dt -=- 解之得 131132 t t y y ke y y k e --+=-=由④、⑤可得 ()()⎪⎩⎪⎨⎧-=-=+=+=----tt t t t t t t e c e c e k e k y e c e c e k e k y 312.133******** 又由②得 t e c y 22=由此可求得方程组的一个解矩阵⎪⎪⎪⎭⎫ ⎝⎛-=Φ--t t t t te e e e e t 0000)( 显然,[]0)(det ≠-=Φt ze t ,因此)(t Φ是方程组的一个基解矩阵,故方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--t t t e t e e c e c e e c y y y 00003213212.试证向量函数组 ⎪⎪⎪⎭⎫ ⎝⎛001 ,⎪⎪⎪⎭⎫ ⎝⎛00x ,⎪⎪⎪⎭⎫ ⎝⎛002x 在任意区间 b x a <<上线性相关,则存在不全为零的三个常数 321,,c c c 使得,000000012321=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛x c x c c 即 b x a x c x c c <<=++02321①而①式之左端是一个不高于二次的多项式,它最多只可能有二个零点,同此这与①式在b x a <<上恒等于零矛盾,从而得证。
[理学]常微分方程教程_丁同仁第二版_习题解答
∂y x ∂x x
∂y ∂x
则 ( y dx + ln xdy) + x2dx − 2 ydy = 0 x
两边积分得: x3 + y ln x − y 2 = C. 3
8. (ax2 + by 2 )dx + cxydy = 0 (a,b和c为常数)
解: P(x, y) = ax2 + by 2 , Q(x, y) = cxy,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-对恰当方程求解:
1. (3x2 −1)dx + (2x + 1)dy = 0
解: P(x, y) = 3x2 −1, Q(x, y) = 2x + 1 ,
则 ∂P = 0 , ∂Q = 2 ,所以 ∂P ≠ ∂Q 即,原方程不是恰当方程.
则 ∂P = 2by, ∂Q = cy, 所以 当 ∂P = ∂Q ,即 2b = c 时, 原方程为恰当方程
∂y
∂x
∂y ∂x
-2-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
则 ax2dx + (by 2dx + cxydy) = 0
两边积分得: ax3 + bxy 2 = C. 3
∂y
∂x
常微分方程教程丁同仁第二版解答完整版
习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。
丁同仁常微分方程教程第六章习题解答
习 题 6—31.证明函数组 ,⎩⎨⎧<≥=000)(21x x x x 当当ϕ220 0()0x x x x ϕ≥⎧=⎨<⎩当 当,在区间上线性无关,但它们的朗斯基行列式恒等于零。
这与本节的定理 6.2*是否矛盾?如果并不矛盾,那么它说明了什么?),(+∞−∞证 设有 1122()0c x c ϕϕ+≡ +∞<<∞−x ,则当时,有,从而推得 。
而当 时,有0≥x 21200c x c +≡01=c 0<x 120c c x 0⋅+≡,从而推得 。
因此在02=c +∞<<∞−x 上,只有时,才有 021==c c 1122()()0c x c x ϕϕ+≡,故12(), ()x x ϕϕ在上线性无关。
又当时, ),(+∞−∞0≥x 0002)(2≡=x x x w ,当0<x 时,0200)(2≡=x x x w 故当+∞<<∞−x 时,有。
这与本节定理6.2不矛盾,因为定理6.2*成立对函数有要求,即0)(≡x w )(1x ϕ,)(2x ϕ是某个二阶齐次线性方程的解组。
这说明不存在一个二阶齐次线性方程,它以)(1x ϕ,)(2x ϕ为解组。
3.考虑微分方程''()0y q x y +=(1)设)(x y ϕ=与)(x y ψ=是它的任意两个解,试证)(x y ϕ=与)(x y ψ=的朗斯基行列式恒等于一个常数。
(2)设已知方程有一个特解为,试求这方程的通解,并确定 x e y =()?q x =证: (1)在解)(x y ϕ=,)(x y ψ=的公共存在区间内任取一点x 。
由刘维尔公式,有 (常数)[])()()(),(000x w ex w x x w odxx x=∫=−ψϕ(2)由于是方程的一个非零特解,故可借助刘维尔公式,求与之线性无关的特解 x e y =x odx xx e dx e ee y −∫−−=⋅=∫21122,故方程的通解为 xx e c e c y −+=21又由于是方程的解,故有x e y =()0x x e q x e +≡, 所以 ()1q x =−。
常微分方程及其应用 第二版 周义仓 靳祯秦 林军 课后答案
a
=
1
,在矩形区域
2
R = ??(x, y) | ?
x
≤1 , 2
y
≤b?? 上, ?
f ( x, y)
=
y 2 + cosx 2
连续,且关于 y 有连续的偏导数,计算
M
=
max
f
( x,
y)
=
1+
b2,
h
=
min
? ? ?
1 2
,
1
b +b
2
? ?
,
?
由此可见, h 是有界的,由解的存在唯一性定理,知初始值问题的解是存在唯一的。
2)该方程的等倾线方程为: 2x-y=c 其中 c 为常数 i) c=1.
ii)c= 2
3) f(x,y)= 2x-y= 0 所以极值曲线为: y=2x; 4)显然 y=2x-2 是原微分方程的一个解,则为其一条积分曲线,
(- x)
又因为原微分方程的解为: y( x ) = 2 x - 2 + e _C1
=r(r-1)x
r-2,代入微分方程
1) (r(r-1)+4r+2) xr =0, 则 r=-1 或 r=-2;
2) (r(r-1)-4r+4)x r=0,
则 r=1 或 r=4;
13. 1)y=0 或者 y=a/b 为其两个常数解;
2)函数单调增,即: y(a-by) ≥0 解得: 0≤y ≤a/b;
dx
dx
dx dx
4) c =
3x 2 2
d2x dy2
+
3x(
dx )
dy
2
,代入略
常微分方程的奇解的求法
2011届本科毕业论文常微分方程的奇解的求法学院:数学科学学院专业班级:数学07-4(实验)班学生姓名:哈丽古丽.穆塔力菩指导教师:伊里夏提答辩日期:2011年5月10日新疆师范大学教务目录1 引言 (1)2 奇解的定义 (1)3 不存在奇解的判别法 (1)4 自然法 (2)5 拾遗法 (2)6 包络线及奇解的求法 (2)6.2 C-判别曲线 (3)6.3 P-判别曲线 (5)6.4 C-P判别法 (7)总结 (8)参考文献 (1)致谢 (2)常微分方程的奇解的求法摘要:该文章我们主要讨论的是常微分方程奇解的求法。
一个常微分方程有没有它的奇解,有了奇解怎么求是该文章的主要目的。
在这里我们讨论不存在奇解的判别法。
如果方程有了它的奇解,一般有五种方法可以求它的奇解,即自然法,拾遗法,C -判别曲线(C-消去法),P-判别曲线(P-消去法),C-P判别法。
我们最常用的,方便的方法是后面的三个,在这里对这三个方法进行详细的讨论。
关键词:奇解,判别式,包络线。
1 引言我们看到对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族。
但是,在这条特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和它在此点相切。
在几何学上,这条特殊的积分曲线称为上述积分曲线族的包络。
在微分方程里,这条特殊的积分曲线所对应的解称为方程的奇解。
若一个微分方程它有奇解,那我们怎么求它的奇解是该文章主要讨论的问题。
2 奇解的定义定义 如果方程存在某一节,在它所对应的积分曲线上每一点处,解的唯一性都被破坏,则称此解为微分方程的奇解。
奇解对应的积分曲线称为奇积分曲线。
3 不存在奇解的判别法每一个微分方程都有它的奇解吗?答案是:不一定。
那我们怎么知道,微分方程有没有它的奇解呢?下面我们介绍不存在奇解的两种判别法。
方法1 假设方程(,)dyf x y dx= (1) 的右端函数2),(R D y x f ⊆在区域上有定义,如果),(y x f 在D 上连续且),(y x f y '在D 上有界(或连续),那么由解的存在唯一性定理,方程的任一解是唯一的,从而在D 内一定不存在奇解。
§1.1 常微分方程教程
解: 如图建立坐标系. 设y=y(t)为t时刻物体的位置坐标. 则易得物体下落所满足的方程为 y’’=-g (*) 其中 g 是重力加速度.
容易验证
1 y gt c t c 2 是通解,其中 c1 ,c2 是两个任意常数。 这表明方程(*)有无数个解,原因是未考虑初始 状态。为了确定相应的运动,考虑初始条件:
常微分方程教程
丁同仁、李承治编
主要参考书:
东北师范大学数学系编写的高等学校教材 《常微分方程》 复旦大学数学系金福临等编写的《常微分方 程》(上海科技出版社第二版); 南京大学数学系叶严谦等编写的《常微分方 程讲义》; 中山大学数学希望高雄等编写的《常微分方 程》(高教第二版).
第一章
正规战争游击战争混合战争只考虑双方兵力多少和战斗力强弱第一次世界大战lanchester提出预测战役结局的模型例6正规战与游击战兵力因战斗及非战斗减员而减少因增援而增加战斗力与射击次数及命中率有关?每方战斗减员率取决于双方的兵力和战斗力?每方非战斗减员率与本方兵力成正比?甲乙双方的增援率为utvt甲乙双方的增援率为utvtxt甲方兵力yt乙方兵力假设
线素, 线素场, 方向场,等斜线
任意常数.
c1和 c2 是独立的
3. 函数 y c1e
x
c2 x
y
(n)
y
( n 1)
c3 x cn 是方程 dy 0, ( y ' ) dx
n2
n3
在区间(-∞,+∞)上的解,其中 是任意的常数.
c1, c2 ,cn
从上面的例子中,可以看到一个重要事实,那就是 微分方程的解中可以包含任意常数,其中任意常数 的个数可以多到与方程的阶数相等(也可以不含任 意常数).