《工程热力学》第四章 习题
工程热力学(第五版)第4章练习题
第4章 理想气体热力过程及气体压缩4.1 本章基本要求熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、∆u 、∆h 、∆s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。
4.2 本章重点结合热力学第一定律,计算四个基本热力过程、多变过程中的状态参数和过程参数及在p -v 、T -s 图上表示。
本章的学习应以多做练习题为主,并一定注意要在求出结果后,在p -v 、T -s 图上进行检验。
4.3 例 题例1.2kg 空气分别经过定温膨胀和绝热膨胀的可逆过程,如图4.1,从初态1p =9.807bar,1t =300C ο膨胀到终态容积为初态容积的5倍,试计算不同过程中空气的终态参数,对外所做的功和交换的热量以及过程中内能、焓、熵的变化量。
图4.1解:将空气取作闭口系对可逆定温过程1-2,由过程中的参数关系,得bar v v p p 961.151807.92112=⨯==按理想气体状态方程,得111p RT v ==0.1677kg m /3 125v v ==0.8385kg m /312T T ==573K 2t =300C ο气体对外作的膨胀功及交换的热量为1211lnV V V p Q W T T ===529.4kJ 过程中内能、焓、熵的变化量为12U ∆=0 12H ∆=0 12S ∆=1T Q T=0.9239kJ /K 或12S ∆=mRln12V V =0.9238kJ /K 对可逆绝热过程1-2′, 由可逆绝热过程参数间关系可得kv v p p )(211'2= 其中22'v v ==0.8385kg m /3 故 4.12)51(807.9'=p =1.03barRv p T '''222==301K '2t =28C ο气体对外所做的功及交换的热量为)(11)(11'212211T T mR k V p V p k W s --=--==390.3kJ 0'=s Q过程中内能、焓、熵的变化量为kJ T T mc U v 1.390)(1212''-=-=∆或kJ W U 3.390212'-=-=∆kJ T T mc H p 2.546)(1212''-=-=∆ '12S ∆=0例2. 1kg 空气多变过程中吸取41.87kJ 的热量时,将使其容积增大10倍,压力降低8倍,求:过程中空气的内能变化量,空气对外所做的膨胀功及技术功。
《工程热力学》第四章 总结及例题
U13 Q13 W13 649.4kJ 316.62kJ 965.52kJ
H13 nCpm T3 T1 U pV 965.52kJ 299.855 619.393 kPa 2m3 1604.6kJ
S13
n CVm
ln
T3 T1
R ln V3 V1
500mol 3 4.1868J/(mol K) ln 144.26K 4.56kJ/K 298K
Pa
10
1-2过程:由25 ℃,2m3 可逆绝热膨胀到1 atm 2-3过程:定温可逆压缩回到2 m3
理想气体等温过程 :热量=膨胀功=技术功
Q
Q12
Q23
Q23
WT 23
nRT
ln
V3 V2
500
mol 8.314
5
J/(mol K) 144.26
K ln
2 m3 5.906 m3
649.4 kJ
7
q h wt wt q h wt q (ha hb )
考虑过程等压 c a
a
q h c vdp
q ha hc
技术功:
wt q (ha hb )
8
例2 0.5 kmol某种单原子理想气体 ,由25 ℃,2m3 可逆绝热膨 胀到1 atm,然后在此状态的温度下定温可逆压缩回到2 m3。1) 画出各过程的p-v图及T-s图;2)计算整个过程的Q,W,ΔU, Δ H 及ΔS。
四种基本变化过程在 p-v 图和 T-s 图上的表示
dp n p dv v
dT T ( )
ds cn
1
p-v图和T-s图上的曲线簇
2
u,h,w,wt,q在p-v,T-s图上的变化趋势
u↑,h ↑(T ↑) w ↑(v ↑) wt ↑(p ↓) q ↑(s ↑)
工程热力学与传热学习题(英文版):第四章 热力学第二定律
must be obtained or discarded into the river ?
3. Heat rejection by a refrigerator
The food compartment of a refrigerator, shown in Fig 4-2, is maintained at 4℃ by removing heat from it at a rate of 360 kJ/min. If the required power input to the refrigerator is 2 kW, determine (a) the coefficient of performance of the refrigerator and (b) the rate of heat rejection to the room that houses the refrigerator.
allowed process.
12. The concept of lost work
If 1000 kJ of energy is transferred from a work reservoir to a heat at 373K, determine (a) the amount of entropy generation and (b) amount of lost work with the environment at 300K.
The
power output of the heat engine is 180 kW. Determine the
reversible power and the irreversibility rate for this process.
工程热力学-第四章 习题
1、在p-v图和T-s图上画出定比热容理想气体的(1) 可逆定容加热过程、可逆定压加热过程;(2)可逆 定温加热过程和可逆绝热膨胀过程。
2、将满足空气下列要求的多变过程表示在p-v图和T-s 图上:1)空气升压、升温,又放热;2)空气膨胀、 升温,又吸热;3)n=1.6的膨胀过程,并判断q、 w、△u的正负;4) n=1.3的压缩过程,并判断q、 w、△u的正负;
W
mw
2
pdV
1
1 n 1
(
p1V1
p2V2
)
8.58kJ
④ U mcv (T2 T1) 5.36kJ
H mcp (T2 T1) 7.51kJ
S
m(cvIn
T2 T1
Rg In
v2 v1
)
0.0087kJ/K
9
v2n
T1v1n1
T2v2n1
T1 T2
v n 1 2
vn1 1
1
v n 1 2
v1n1,已知v2
v1
0 n1
5
3)n=1.6的膨胀过程,并判断q、w、△u的正负
此过程为放热,对外做功,内能减少
6
4) n=1.3的压缩过程,并判断q、w、△u的正负;
此过程为放热,外界对空气做功,内能增加。
3、初态为p1=0.1MPa,t1=40℃的空气, V1=0.052立方米,在气缸中被可逆多变地压缩到 p2=0.565MPa,V2=0.013立方米,试求该多变 过程的多变指数n,压缩后的温度t2,过程中空气和 外界交换的功量和热量,压缩过程中气体热力学能、1
1、在p-v图和T-s图上画出定比热容理想气体的可 逆定容加热过程、可逆定压加热过程、可逆定温加 热过程和可逆绝热膨胀过程。 1)可逆定容加热过程、可逆定压加热过程
《工程热力学》第四章 思考题
n0
wt>0
n 1 wt>0
nk
n
n 1
q>0
n
v
nk s5
确定过程中工质状态参数的变化规律分析过程中的能量转换关系
思考题4-1:
(1)任务:确定过程中工质状态参数的变化规律, 分析过程中的能量转换关系。
(2)使用方法:
a) 热力学第一定律表达式
稳定流动
q du w dh wt
q
h
1 2
c2
gz
ws
h
wt
1
b)可逆过程
q du pdv q dh vdp对于定容Fra bibliotek - 1v 过程:
q u w q u21v u1v u2 cv (T1v T2 ) cv (T1 T2 )
上述推导有何问题?
思考题4-13:
u↑,h ↑(T ↑) w ↑(v ↑) wt ↑(p ↓) q ↑(s ↑)
p
h>0 u>0
q>0
w>0
T
h>0
w>0
n0
u>0
p f (v),T f (v),T f ( p)
2)根据已知参数和过程方程式,确定未知参数;
3)在p-v图和T-s图上表示过程中状态参数的变化 规律;
4)求热力过程中热力学能、焓和熵的变化
5)确定过程的功量(膨胀功和技术功)和热量。
3
思考题4-12:
q u w 0 w u12 u1 u2 cv (T1 T2 )
c) 理想气体状态方程式 u f (T) h f (T)
pv RgT cp cv Rg k cp / cv
2
u 1 cvdT
工程热力学第四章 习题解答
第四章 习题解答4-1 多变指数:()()2112ln ln 0.1250.9ln ln 0.1p p n v v ===()210.9 1.4110.91v n n q c T T u u n n κκ---=-=∆=∆---∴11408 kJ/kg 55u q ∆==⨯=40832 kJ/kg w q u =-∆=-=()21 1.4811.2 kJ/kg p h c T T u κ∆=-=⋅∆=⨯= 4011.228.8 kJ/kg s w q h =-∆=-=2211ln ln 1.01ln100.732ln 0.1250.822 kJ/kg Kp v v ps c c v p ∆=+=⨯+⨯=⋅ 4-2 ⑴1 1.4112 1.410.287423110.21 1.41 111.9 kJ/kg RT p w p κκκ--⎡⎤⎛⎫⎛⎫⨯⎢⎥=-=- ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎢⎥⎣⎦= 0s ∆=⑵ ()()120.72342330088.25v w u c T T =-∆=-=⨯-=kJ/kg22113000.1lnln 1.0045ln 0.287ln 4230.5 0.117 kJ kg p T p s c R T p ∆=-=⋅-⋅=⑶1120.5ln 0.287ln195.4 kJ kg 0.2p w RT p ==⋅= 120.5ln 0.287ln 0.462 kJ kg K 0.2p s R p ∆==⨯=⋅⑷1112210.287423110.267.1121n n RT p w n p -⎡⎤⎡⎤⎛⎫⨯⎢⎥=-=-= ⎪⎢⎥⎢⎥--⎝⎭⎣⎦⎢⎥⎣⎦kJ/kg2221ln ln 1.005ln 0.723ln 0.20.35 kJ kg Kp v v ps c c v p ∆=+==-⋅4-3 ⑴ 21ln8.314373ln107140.6 kJ kmol v w RT v ==⨯= 21ln8.314ln1019.14 kJ K v s R v ∆==⨯=⋅ ⑵ 0w =21ln8.314ln1019.14 kJ K v s R v ∆==⨯=⋅ 4-4 210.12ln 50.2598ln 2.091 kJ K 0.6v S mR v ∆==⨯=-()303 2.091633.6 kJ Q W T S ==∆=⨯-=-0, 0H U ∆=∆=4-5 2211201.3286568.3 K 101.3p T T p ⎛⎫==⨯= ⎪⎝⎭()()210.287568.3286202.6 kJ kg 1.41v u c T T ∆=-=-=-()()21 1.40.287568.3286283.6 kJ kg 1.41p h c T T ⨯∆=-=-=-210.287586.3ln ln 0.493 kJ kg K 1.41286v T s c T ∆===⋅-4-6 ⑴ 21303 K T T ==120.3ln 60.287303ln 573.2 kJ 0.1p Q W mRT p ===⨯⨯⨯=⑵ 1 1.411.422110.1303221.4 K 0.3p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ , 0Q = ()()120.2876303221.4351.3 kJ 1 1.41R W m T T κ=-=⨯-=--⑶ 1 1.211.222110.1303252.3 K 0.3n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2876303252.3436.5 kJ 1 1.21R W m T T n =-=⨯-=--()()21 1.2 1.40.2876252.33031 1.21 1.41 218.3 kJv n Q m c T T n κ--=-=⨯⨯⨯----=4-7 ()()()()1221ln ln 0.60.12 1.30ln ln 0.8150.236p p n v v ===1116000.236493.4 K 0.287p v T R ⨯===2221200.815340.8 K 0.287p v T R ⨯===()()120.287493.4340.8146 kJ 1 1.31R w T T n =-=-=--()()21 1.3 1.40.287340.8493.411 1.31 1.4136.5 kJ/kgn R q T T n κκ--=⋅-=⋅⋅-----= ()()210.723340.8493.8109.5 kJ kg v u c T T ∆=-=⨯-=- ()()21 1.01340.8493.4154.1 kJ kg p h c T T ∆=-=⨯-=-22120.8150.12ln ln 1.01ln 0.723ln0.2360.6 0.089 kJ kg Kp v v p s c c v p ∆=+=⋅+⋅=⋅4-8 40200160 kJ kg u q w ∆=-=-=-211600.533 kJ kg K 373673v u c T T ∆-===⋅--()()()()()2121122112ln ln ln 16 1.491673ln ln ln 6373p p p p n v v p T p T ====⎛⎫⋅ ⎪⎝⎭()()121 1.4912000.327 kJ/kg K 673373n w R T T --⨯===⋅-- 0.5330.3270.86 kJ kg K p v c c R =+=+=⋅4-9 10.412122933454.7 K v T T v κ-⎛⎫==⨯= ⎪⎝⎭()()1120.287293454.7116 kJ 1 1.41R w T T κ=-=-=---2221ln 0.287454.7ln 3143.4 kJ vw RT v ==⨯⨯=12116143.427.4 kJ w w w =+=-+=4-10 ⑴ 333100 1.73583 K 0.2968p v T R ⨯=== 11.413232 1.735831265 K 0.25v T T v κ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭22120.296812651.5 MPa 0.25RT p p v ⨯====11227730.250.153 MPa 1265T v v T ==⨯=⑵ 定压过程:()()210.29681265773365 kJ kg 1 1.41R u T T κ∆=-=-=--()()210.29681265773146 kJ kg w R T T =-=⨯-=定熵过程:()()320.29685831265506 kJ kg 1 1.41R u T T κ∆=-=-=---506 kJ kg w u =-∆=4-11 ⑴ 31110.2875730.274 m 600RT v p ⨯===321330.2740.822 m kg v v ==⨯=11.4112121573369 K 3v T T v κ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭2220.2873690.129 MPa 0.822RT p v ⨯===310.274 v v ==3m kg223330.1290.387 MPa p v p v ==⨯= 32369T T ==K⑵ ()()1120.287573369146.41 1.41R w T T κ=-=-=--kJ kg32221ln 0.287369ln 116.43v w RT v ==⨯⨯=-kJ kg()1.293146.4116.438.8 kJ W mw ==⨯-=4-12 1112101.3ln101.3150ln 59250 kJ 5000p Q pV p ==⨯⨯=- 4-13 101.3256000.21550.2872733600pV mRT ⨯===⨯⨯ kg/s 1,120.1ln 0.21550.287293ln 37.8 kW 0.8s T p W mRTp ==⨯⨯=- 112,1 1.411.4111.40.2872930.8 0.2155151.3 kW 1.410.1s SRT p W m p κκκκ--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=-⎪⎢⎥-⎝⎭⎣⎦4-14 1600 kg/h kg/s 6m== ⑴定温压缩11210.1ln 0.287293ln 25.1 kW 60.6s T p W mRTp ⋅==⨯⨯=- ⑵定熵压缩112,1 1.411.4111 1.40.2872930.6 132.8 kW 6 1.410.1s SRT p W m p κκκκ--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=-⎪⎢⎥-⎝⎭⎣⎦⑶多变压缩 112,1 1.2211.22111 1.220.2872930.6 129.6 kW 6 1.2210.1n n s nnRT p W m n p --⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=- ⎪⎢⎥-⎝⎭⎣⎦4-15 压缩比2160.160p p ==,应采用二级压缩20.775 MPa p == ∵13322n nT p T p -⎛⎫= ⎪⎝⎭,2120T T '==℃ (冷却至初温)∴1 1.2511.2533226293441.90.775n np T T p --'⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K3168.8t =℃ 4-16 ()()()()()2121122112ln ln ln 0.50.1 1.130.5289ln ln ln 0.1348p p p p n v v p T p T ====⎛⎫⋅ ⎪⎝⎭111100400482.3 kg/min 8.04 kg/s 0.287289p V mRT ⨯====⨯ ()()12 1.130.2878.042893481 1.1311183 kWs nR W mnwm T T n ⨯==-=⨯---=- ()()21 1.13 1.48.040.7233482891 1.131 712.3 kW 42738 kJ/minv n Q m c T T n κ--=-=⨯⨯⨯---=-= 4-17 12111v p c p λ⎡⎤⎛⎫⎢⎥=-- ⎪⎢⎥⎝⎭⎣⎦⑴ n =1.4,11.40.510.0610.870.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⑵ n =1.25,11.250.510.0610.840.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ⑶ n =1.0,11.00.510.0610.760.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦4-18 ()21w pw a n m c t m c T T ∆=--111100250297.3 kg/h 0.08258 kg/s 0.287293a p V m RT ⨯====⨯ ()()()2112 4.186846514297.3293423 0.705 kJ/kg Kw pw w pw n a a m c t m c t c m T T m T T ∆∆⨯⨯=-==--⨯-=-⋅111n v n n Rc c n n κκκ--==--- 1.40.2870.7051.411 1.200.2870.7051 1.41nn Rc n R c κκκ⨯+---===-+--1.211.2122114230.10.905 MPa 293n n T p p T --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()1211.20.2870.0825829342318.48 kW1.21s a s a anRW m w m nw m T T n ===--⨯=⨯-=-。
工程热力学复习参考题-第四章
第四章 理想气体热力过程一、选择题1.在定容过程中,理想气体的内能变化Δu =D A .⎰21dT c p B .⎰21pdvC .⎰21vdpD .⎰21dT c v2.在定熵过程中,理想气体的内能变化Δu =BDA .⎰21dT c p B .-⎰21pdv C .-⎰21vdp D .⎰21dT c v3. 在定压过程中,理想气体的内能变化Δu =D A .⎰21dT c p B .⎰21pdvC .⎰21vdpD .⎰21dT c v4.在定熵过程中,理想气体的焓的变化Δh =AC A .⎰21dT c p B .⎰21pdvC .⎰21vdpD .⎰21dT c v5.理想气体定容过程中,焓的变化Δh =B A .c v ΔT B .c p ΔT C .u+pv D .w t6.理想气体定温过程的热量q 等于BCD A .c n ΔT B .w t C .T Δs D .w 7.理想气体等温过程中,q ,w ,w t 间的关系为DA .q> w t >wB .q=w< w tC .q>w= w tD .q=w= w t8.理想气体绝热过程初终态温度,压力的关系为A A .12T T =κκ112-⎪⎪⎭⎫ ⎝⎛p pB . 21T T = κκ112-⎪⎪⎭⎫ ⎝⎛p pC .12p p = κκ112-⎪⎪⎭⎫ ⎝⎛T T D .21p p = κκ112-⎪⎪⎭⎫⎝⎛T T9.理想气体多变过程内能变化Δu 等于B A .c n ΔT B .c v ΔT C .c p ΔT D .R ΔT 10.理想气体多变过程焓的变化Δh 等于C A .c n ΔT B .c v ΔT C .c p ΔTD .R ΔT二、填空题1.Rg=0.297kJ/(kgK)的1kg 双原子理想气体在定压下吸热3349kJ ,其内能变化Δu = 。
2.Rg=0.26kJ/(kgK)、温度为T =500K 的1kg 理想气体在定容下吸热3349kJ ,其熵变Δs = 。
工程热力学第4章习题答案
4-12 一个气缸活塞系统如图 4-19 所示,活塞的截面积为 40cm2,活塞离气缸底部 10cm, 重物 20kg,初始状态温度 300K,大气压力 101325Pa。求
(1)如果使缸内空气温度升高 5℃的同时使重物升高 2cm 需要加入多少热量; (2)然后当可逆绝热情况下使活塞回到原位置,需要再加上多少重物。
4-6 空气的初参数为 p1=0.5MPa 和 t1=50℃,此空气流经阀门发生绝热节流作用,并使空 气容积增大到原来的 2 倍。求节流过程中空气的熵增,并求其最后的压力。
解:对于理想气体 ∆h = cp∆T ,可得 h2 − h1 = cp (T2 − T1 ) ,绝热节流前后焓值相等,因此
T1 = T2 ,因此对于理想气体绝热节流前后温度也相等
4-3 某理想气体动力循环由这样 4 个过程构成,先从状态 a 定温膨胀到状态 b,后绝热 膨胀到状态 c,再定压放热到状态 d,最后绝热压缩回到状态 a,在 p-v 图、T-s 图上表示该 循环。已知吸热量 q1 和各点的焓,列出放热量、功和循环热效率的计算式。
解:由 T-s 图,c-d 过程是定压放热过程,放热量 q2 = ∆h + wt = ∆h = hd − hc < 0
= 0.789kJ/ (kg ⋅ K)
由理想气体状态方程可得
p1V1 T1
=
p2V2 T2
,而V2
= 2V1 ,可得
p2 p1
= 0.379
κ −1
绝热过程 T2 T1
=
⎛ ⎜ ⎝
p2 p1
⎞ ⎟ ⎠
κ
,可得绝热指数κ = 1.4
因此 cp = κ cV = 1.4× 0.789 = 1.105kJ/ (kg ⋅ K )
工程热力学习题答案第四章-
第四章4-11kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为8/12p p =,设比热为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。
解:热力系是1kg 空气 过程特征:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9 因为T c q n ∆=内能变化为R c v 25==717.5)/(K kg J ∙ v p c R c 5727===1004.5)/(K kg J ∙=n c ==--v vc n kn c 51=3587.5)/(K kg J ∙ n v v c qc T c u /=∆=∆=8×103J膨胀功:u q w ∆-==32 ×103J 轴功:==nw w s 28.8 ×103J焓变:u k T c h p ∆=∆=∆=1.4×8=11.2 ×103J熵变:12ln 12ln p p c v v c s v p +=∆=0.82×103)/(K kg J ∙ 4-2有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=; (3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1) 膨胀功:])12(1[111kk p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=∆-==88.3×103J12ln12lnp p R T T c s p -=∆=116.8)/(K kg J ∙ (3)21ln1p p RT w ==195.4×103)/(K kg J ∙ 21lnp p R s =∆=0.462×103)/(K kg J ∙ (4)])12(1[111nn p p n RT w ---==67.1×103Jnn p p T T 1)12(12-==189.2K12ln 12lnp p R T T c s p -=∆=-346.4)/(K kg J ∙4-3 具有1kmol 空气的闭口系统,其初始容积为1m 3,终态容积为10 m 3,当初态和终态温度均100℃时,试计算该闭口系统对外所作的功及熵的变化。
工程热力学经典例题-第四章_secret
冷源吸热,则S sio ( 2.055 2.640 0)kJ/K 0所以此循环能实现。
效率为c1 T2 1 303K 68.9%cT 1 973K而欲设计循环的热效率为800kJ1 60% c 2000 kJ c 即欲设计循环的热效率比同温度限间卡诺循环的低,所以循环可行。
(2)若将此热机当制冷机用,使其逆行,显然不可能进行,因为根据上面的分析,此 热机循环是不可逆循环。
当然也可再用上述3种方法中的任一种,重新判断。
欲使制冷循环能从冷源吸热 800kJ ,假设至少耗功 W min ,4. 4 典型例题精解 4.4 .1 判断过程的方向性,求极值 例题 4-1 欲设计一热机, 使之能从温度为 973K 的高温热源吸热 2000kJ ,并向温 度为 303K 的冷源放热 800kJ 。
(1)问此循环能否实现?(2)若把此热机当制冷机用,从 冷源吸热 800K ,能否可能向热源放热 2000kJ ?欲使之从冷源吸热 800kJ,至少需耗多少功? 解 (1)方法1:利用克劳修斯积分式来判断循环是否可行。
如图4- 5a 所示。
Q |Q 1| |Q 2| 2000kJ -800kJ = -0.585kJ/K <0T r T 1 T 2 973K 303K 所以此循环能实现,且为不可逆循环。
方法2:利用孤立系统熵增原理来判断循环是否可行。
如图4- 源、冷源及热机组成,因此 5a 所示,孤立系由热 S iso S H S L S E S E 0 a ) 式中: 和分别为热源及冷源的熵变; 原来状态,所以 为循环的熵变,即工质的熵变。
因为工质经循环恢复到而热源放热,所以 S Eb )S H|Q 1 | T 12000kJ2. 055 k J/ K973Kc )SL|Q 2 |T2800kJ2. 640kJ/K303Kd )将式( b )、( c )、(d ) 代入式( a ),得方法3:利用卡诺定理来判断循环是否可行。
工程热力学第四章习题PPT课件
3kg t1 0 o C
Q
20kg水
t0 5 0 oC
冰
Q 0
3kg 0oC 水
Q 20kg水
t1 ?
.
3
4-10 有二物体质量相同,均为m;比热容相同,均为cp(比热容为定值,不 随温度变化)。A物体初温为TA,B物体初温为TB(TA> TB)。用它们作为 热源和冷源,使可逆热机工作于其间,直至二物体温度相等为止。试证明:
4-4 两台卡诺热机串联工作。A热机工作在 700 ℃和 t之间;B 热机吸收A热机的排热,工作在t和20 ℃之间。试计算在下述 情况下的t值:
(1) 两热机输出的功相同; (2) 两热机的热效率相同。
.
1
4-5 以T1、T2为变量,导出图4-21a、b所示二循环的热效率的 比值,并求T1无限趋大时此值的极限。若热源温度T1=1 000 K, 冷源温度T2=300 K,则循环热效率各为若干?热源每供应 100 kJ热量,图b所示循环比卡诺循环少作多少功?冷源的熵多增
加若干?整个孤立系(包括热源、冷源和热机)的熵增加多少?
T
T
T1
T2
S
S
a)
.
S S b)
2
4-9 将 3 kg温度为0℃的冰,投入盛有 20 kg温度为 50 ℃的水的 绝热容器中。求最后达到热平衡时的温度及整个绝热系的熵增。 已知水的比热容为4.187 kJ/(kg·K),冰的融解热为 333.5 kJ/kg(不考虑体积变化)。
(1) 二物体最后达到的平衡温度为
ቤተ መጻሕፍቲ ባይዱTA
Tm TATB
(2) 可逆热机作出的总功为
W 0 m C pT A T B 2T A T B
工程热力学习题解答-4-02
第四章 热力学第二定律例 题例4-1 先用电热器使 20 kg 、温度t 0=20 ℃的凉水加热到t 1=80 ℃,然后再与40 kg 、温度为 20 ℃的凉水混合。
求混合后的水温以及电加热和混合这两个过程各自造成的熵产。
水的比定压热容为 4.187 kJ/(kg·K );水的膨胀性可忽略。
[编题意图] 实际过程中熵产的计算是本章的重点和难点之一,本题的目的在于检测和练习电热器加热造成的熵产和不等温水混合过程中的熵产的分析计算。
[解题思路] 电加热水过程引起熵产是由于电功转变为热产,水吸收这个热后其自身温度逐渐上升,这是一个不断积累过程,需通过微元热产量g Q δ与水变化的水温T 之比这个微元熵产的积分求得。
要求凉水与热水混合造成的熵产,必须先求出20kg80℃的水放热的熵减与20℃的凉水吸热的熵增,这种内热流造成的熵产也是个逐渐积累的过程,也需积分求得。
整个加热混合造成的总熵产由二者相加得到。
[求解步骤]设混合后的温度为t ,则可写出下列能量方程:()()1120p p m c t t m c t t -=-即 ()()2041878040418720kg kJ /(kg C)C kg kJ /(kg C)C o o o o ⨯⋅⨯-=⨯⋅⨯-..t t 从而解得 t = 40 ℃ (T = 313.15 K ) 电加热过程引起的熵产为1g 0g11g 10d lnT Qp p T Q m c T T S m c TTT δ===⎰⎰353.15K 20k g 4.187k J /(k g K )l n 293.15K=⨯⋅⨯ =15.593 kJ / K 混合过程造成的熵产为i 1012ig 1210d d ln lnTT p p Q p p T T m c T m c T Q T T S m c m c T T T T T δ==+=+⎰⎰⎰313.15K20kg 4.187kJ/(kg K)ln353.15K313.15K40kg 4.187kJ/(kg K)ln293.15K10.966kJ/K 11.053kJ/K 0.987kJ/K=⨯⋅⨯+⨯⋅⨯=-+= 总的熵产S S S QQ g g g g ikJ /K kJ /K kJ /K =+=+=15593098716580...由于本例中无熵流(将使用电热器加热水看作水内部摩擦生热),根据式(4-12)可知,熵产应等于热力系的熵增。
《工程热力学》第四章 习题
4
2)空气膨胀、升温,又吸热
q
n
n 1
cV
T2
T1
0, 且T2
T1
n
n 1
0
n
1或者n
p1v1n
p2v2n
RgT1 v1
v1n
RgT2 v2
v2n
T1v1n1
T2v2n1
T1 T2
vn1 2
vn1ห้องสมุดไป่ตู้1
1
vn1 2
vn1 1
,已知v2
v1
0 n1
5
3)n=1.6的膨胀过程,并判断q、w、△u的正负
n 1
cv
(T2
T1)
3.21kJ
W
mw
2
pdV
1
n
1 1
(
p1V1
p2V2
)
8.58kJ
④ U mcv (T2 T1) 5.36kJ
H mcp (T2 T1) 7.51kJ
S
m(cvIn
T2 T1
Rg In
v2 v1
)
0.0087kJ/K
9
3初态为p101mpat140的空气v10052立方米在气缸中被可逆多变地压缩到p20565mpav20013立方米试求该多变过程的多变指数n压缩后的温度t2过程中空气和外界交换的功量和热量压缩过程中气体热力学能焓和熵的变化
习题
1、在p-v图和T-s图上画出定比热容理想气体的(1) 可逆定容加热过程、可逆定压加热过程;(2)可逆 定温加热过程和可逆绝热膨胀过程。
此过程为放热,对外做功,内能减少
6
4) n=1.3的压缩过程,并判断q、w、△u的正负;
此过程为放热,外界对空气做功,内能增加。
工程热力学课件 第四章练习题
试求:(1)膨胀终了时,空气的温度及膨胀透平 的功率;
(2) 过程中热力学能和焓的变化量;
(3) 将单位质量的透平输出功表示在p-v图和Ts图上;
(4) 若透平的效率为0.9,则终态温度和膨胀透 平的功率又为多少?
解: (1)空气在透平中经过的是可逆绝 热过程,即定熵过程。所求的功是轴功, 在动、位能差忽略不计时,即为技术功。
J/(kg K) (539.1K- 900 K)
90
1294.7103 W = -1294.7 kW
.
.
H qmcp (T2 T1) kU 1812.5 kW
(3)
p
wt在p-v图和T-s图上表示
等效成某过程的热量
T
p
1
1’-2-a-b-1’
h1 h1'
1
1’
wt
2’
2
2
v
c a bs
• 对不可逆过程的处理,热力学中总是将过
程简化成为可逆过程求解,然后借助经验系
数进行修正。
wt,R eal
T wt,Rev
计算练习题(4)
某种理想气体,从初态 按多变过程膨胀到原来体积的3倍, 温度从300℃下降到67℃。 已知在该过程的膨胀功为100 kJ/kg,
自外界吸热20kJ/kg。
求该过程的多变指数及气体的cV和cp
2
T1
1631.3103 W + 900 K = 575.2 K 5 kg/s 7 287 J/(kg K) 2
讨论 理想气体无论什么过程,热力学能和焓的 变化计算式不会随过程变
U mcV T H mcpT
• 第4的终态温度,能否根据
工程热力学04章习题提示与答案
工程热力学04章习题提示与答案习题提示与答案第四章理想气体的热力过程kg二氧化碳,其压力为0.1MPa、温度为274-1设气缸中有0.1℃。
如进行一个定压过程,气体对外kJ。
设比热容为定值,试求过程中气体热力学能和熵的变化以及气体吸收的热量。
作功3提示:理想气体;Q=ΔU+W;ΔU=mcV0ΔT;Δcp0lnT2pRgln2。
T1p1答案:ΔU=10.5kJ,ΔS=0.03611kJ/K,Q=13.5kJ。
4-2有一气缸,其中氮气的压力为0.15MPa、温度为300K。
如果按两种不同的过程变化:(1)在定压K;(2)在定温下压力下降到0.1MPa。
下温度变化到450然后在定容下变化到0.15MPa及450K。
设比热容为定值,试求两种过程中热力学能和熵的变化以及从外界吸收的热量。
提示:略。
答案:(1)Δu=111.15kJ/kg,Δ=0.421kJ/(kg·K),q1-2=155.7kJ/kg。
(2)Δu=111.15kJ/kg,=0.421kJ/(kg·K),q1-3-2=147.25kJ/kg。
4-3设气缸中空气的压力为0.5MPa、温度为600K,若经绝热过程膨胀到0.1MPa,试求膨胀终了的温度及比体积:(1)按定值比热容计算;(2)按空气的热力性质表进行计算。
00提示:(2)STSTRgln21p20,由热力性质表确定T及v。
;依ST2r2 2p1答案:(1)T2=378.8K,v2=1.089m3/kg;(2)T2=382.6K,v2=1.10m3/kg。
MPa。
为使压缩终了时空气温度超过柴4-4柴油机吸气终了时气缸中空气的温度为60℃、压力为0.1油的自燃温度以使其着火,故要求压缩终了的温度至少为720℃。
设比热容为定值及压缩过程的多变指数为1.45,试求柴油机的压缩比(即压缩过程初始容积和终了容积之比)及压缩终了的压力。
提示:ε=v1/v2。
答案:ε=11.33,p2=3.378MPa。
工程热力学第四章习题答案
第四章 气体和蒸汽的热力过程4-1 有 2.3kg 的CO ,初态11477K 0.32MPa T p ==,,经可逆定容加热,终温2600K T =,设CO 为理想气体,求U Δ、H Δ、S Δ,求过程功及过程热量。
(1)比热容为定值;(2)比热容为变值,按气体性质表计算。
解 (1)定值比热容2211600K 0.32MPa 0.4025MPa477KT p p T ==×=由附表328.0110kg/mol M −=×,g 38.3145J/(mol K)296.8J(kg K)28.0110kg/molR R M−⋅===⋅×。
g 55296.8J/(kg K)742.1J/(kg K)22V c R ==×⋅=⋅g 77296.8J/(kg K)1038.94J/(kg K)22p c R ==×⋅=⋅21() 2.3kg 742.1J/(kg K)(600477)K 209.94kJ V U mc T T Δ=−=×⋅−=21Δ() 2.3kg 1038.94J/(kg K)(600477)K 293.92kJp H mc T T =−=×⋅−=21600K ln2.3kg 742.1ln0.3916kJ/K477KV T S mc T Δ==×=0W =,209.94JQ U =Δ=(2)变比热容由附表查得 1477K T =时m,113921.704J/mol H =,0m,1211.312J/(mol K)S =⋅2600K T =时m,217612.7J/mol H =,0m,2218.217J/(mol K)S =⋅ m,1m,1113921.704J/mol 8.3145J/(mol K)477K 9955.69J/molU H RT =−=−⋅×=m,2m,2217612.7J/mol 8.3145J/(mol K)600K 12624.0J/mol U H RT =−=−⋅×=3m 32.3kg (12624.09955.69)J/mol219.1010J 28.0110kg/molm U U M−×−Δ=Δ==××3m 32.3kg (17612.713921.704)J/mol303.0810J28.0110kg/mol m H H M−×−Δ=Δ==××000022m,2m,1m,2m,11133lnln600K 2.3kg [218.317211.312]J/(mol K)8.3145J/(mol K)ln 477K 28.0110kg/mol0.418610J/K p T m S n S S R S S R p M T −Δ=−−=−−×−⋅−⋅×=×=×⎛⎞⎛⎞⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞⎜⎟⎝⎠0W =,219.10kJQ U =Δ=4-2 甲烷4CH 的初始状态10.47MPa p =、1393K T =,经可逆定压冷却对外放出热量4110.76J/mol ,试确定其终温及41molCH 的热力学能变化量m U Δ、焓变化量m H Δ。
工程热力学思考题参考答案,第四章
工程热力学思考题参考答案,第四章Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第四章气体和蒸汽的基本热力过程 试以理想气体的定温过程为例,归纳气体的热力过程要解决的问题及使用方法解决。
答:主要解决的问题及方法:(1) 根据过程特点(及状态方程)——确定过程方程(2) 根据过程方程——确定始、终状态参数之间的关系(3) 由热力学的一些基本定律——计算,,,,,t q w w u h s ∆∆∆(4) 分析能量转换关系(P —V 图及T —S 图)(根据需要可以定性也可以定量)例:1)过程方程式:T =常数(特征)PV =常数(方程)2)始、终状态参数之间的关系:12p p =21v v 3)计算各量:u ∆=0、h ∆=0、s ∆=21p RInp -=21v RIn v 4)PV 图,TS 图上工质状态参数的变化规律及能量转换情况对于理想气体的任何一种过程,下列两组公式是否都适用答:不是都适用。
第一组公式适用于任何一种过程。
第二组公式21()v q u c t t =∆=-适于定容过程,21()p q h c t t =∆=-适用于定压过程。
在定容过程和定压过程中,气体的热量可根据过程中气体的比热容乘以温差来计算。
定温过程气体的温度不变,在定温过程中是否需对气体加入热量如果加入的话应如何计算答:定温过程对气体应加入的热量过程热量q 和过程功w 都是过程量,都和过程的途径有关。
由理想气体可逆定温过程热量公式2111v q p v In v =可知,故只要状态参数1p 、1v 和2v 确定了,q 的数值也确定了,是否q 与途径无关 答:对于一个定温过程,过程途径就已经确定了。
所以说理想气体可逆过程q 是与途径有关的。
在闭口热力系的定容过程中,外界对系统施以搅拌功w δ,问这v Q mc dT δ=是否成立答:成立。
这可以由热力学第一定律知,由于是定容过2211v v dv w pdv pvpvIn RTIn v v v ====⎰⎰为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tp11(v1vv12)n0.10584k4g2=Kp2v2
RgT1
RgT2
T2
p2v2 Rg m
0.565106 0.013 287 0.058
441.25K
8
③
Q
mq
m
n
n 1
cv
(T2
T1)
3.21kJ
W
mw
2
pdV
1
n
1 1
(
p1V1
p2V2
)
8.58kJ
④ U mcv (T2 T1) 5.36kJ
3、初态为p1=0.1MPa,t1=40℃的空气,V1=0.052立 方米,在气缸中被可逆多变地压缩到p2=0.565MPa, V2=0.013立方米,试求该多变过程的多变指数n,压 缩后的温度t2,过程中空气和外界交换的功量和热 量,压缩过程中气体热力学能、焓和熵的变化。 1
1、在p-v图和T-s图上画出定比热容理想气体的可逆 定容加热过程、可逆定压加热过程、可逆定温加热 过程和可逆绝热膨胀过程。 1)可逆定容加热过程、可逆定压加热过程
v2n
T1v1n1
T2v2n1
T1 T2
vn1 2
vn1 1
1
vn1 2
vn1 1
,已知v2
v1
0 n1
5
3)n=1.6的膨胀过程,并判断q、w、△u的正负
此过程为放热,对外做功,内能减少
6
4) n=1.3的压缩过程,并判断q、w、△u的正负;
此过程为放热,外界对空气做功,内能增加。
7
3、初态为p1=0.1MPa,t1=40℃的空气,V1=0.052m3,
在气缸中被可逆多变地压缩到p2=0.565MPa, V2=0.013m3,试求该多变过程的多变指数n,压缩后 的温度t2,过程中空气和外界交换的功量和热量, 压缩过程中气体热力学能、焓和熵的变化。
可逆多边压缩过程
①
p1v1n
p2v2n
n
In( p2 / p1) In(v1 / v2 )
1.25
②
(1)T2
H mcp (T2 T1) 7.51kJ
S
m(cvIn
T2 T1
Rg In
v2 v1
)
0.0087kJ/K
9
定容过程
定压过程
2
2)可逆定温加热过程、可逆绝热膨胀过程
3
2、1)
T2
T1
0, 且T2
T1
所以: 1 n k
4
2)空气膨胀、升温,又吸热
q
n
n 1
cV
T2
T1
0, 且T2
T1
n
n 1
0
n
1或者n
p1v1n
p2v2n
RgT1 v1
v1n
RgT2 v2
习题
1、在p-v图和T-s图上画出定比热容理想气体的(1) 可逆定容加热过程、可逆定压加热过程;(2)可逆 定温加热过程和可逆绝热膨胀过程。
2、将满足空气下列要求的多变过程表示在p-v图和T-s 图上:1)空气升压、升温,又放热;2)空气膨胀、 升温,又吸热;3)n=1.6的膨胀过程,并判断q、w、 △u的正负;4) n=1.3的压缩过程,并判断q、w、 △u的正负;