第7章 习题解答

合集下载

第7章习题解答

第7章习题解答

z 2 = z 1 + 130
2 z z ) 2 + 100 z ( z ) = 0 1 - ( 1 + 130 1 + 82 1 + 130
2 - 260 z z ´ 130 = 0 1 - 130 + 182 1 + 82
78 z ´ 130 - 130 2 = -48 ´ 130 = -6240 1 = 82 z 1 = -80 z 2 = z 1 + 130 = 130 - 80 = 50 f = 40cm
p 3 . 14 - 8 2 l 2 ´ 6328 ´ 10 - 3 ④ q= = = 2 . 315 ´ 10 rad pw0 3 . 14 ´ 0 . 0174
(5)有一个平凹腔,凹面镜曲率半径 R=5m,腔长 L=1m,光波长l=0.5mm,求①两镜 面上的基模光斑半径②基模高斯光束的远场发散角 解:①
2、双凹腔两反射镜面曲率半径分别为 R1=100cm、R2=82cm,腔长 L=130cm,求等价共焦 腔的焦参数。 解:
z1 +
f 2 = - R 1 z 1
z 1 +
f 2 = -100 z 1
2 2 z 100 z 1 + 1 + f = 0
w 0 =
f l
p
=
0 . 4 R l
p
(2)对称双凹腔长为 L,反射镜曲率半径 R=2.5L,光波长为l,求镜面上的基模光斑半 径。 解:
L L 2 f 2 = ( 2 R - L ) = (2 ´ 2 . 5 L - L ) = L 4 4 f = L
2 z 2
f
2

教材第七章习题解答

教材第七章习题解答

第七章化学平衡习题解答1.回答下列问题(1)反应商和标准平衡常数的概念有何区别? (2)能否用r m G θ∆来判断反应的自发性?为什么? (3)计算化学反应的K θ有哪些方法?(4)影响平衡移动的因素有哪些?它们是如何影响移动方向的? (5)比较“温度与平衡常数的关系式”同“温度与反应速率常数的关系式”,有哪些相似之处?有哪些不同之处?举例说明。

(6)酸碱质子理论如何定义酸和碱?有何优越性?什么叫共轭酸碱对?(7)当往缓冲溶液中加入大量的酸和碱,或者用很大量的水稀释时,pH 是否仍保持不变?说明其原因。

(8)对于一个在标准状态下是吸热、熵减的化学反应,当温度升高时,根据勒夏特列原理判断,反应将向吸热的正方向移动;而根据公式∆r G m θ=∆r H m θ-T ∆r S m θ判断,∆r G m θ将变得更正(正值更大),即反应更不利于向正方向进行。

在这两种矛盾的判断中,哪一种是正确的?简要说明原因。

(9)对于制取水煤气的下列平衡系统:22C(s)+H O(g)CO(g)+H (g) ;r m H Θ∆。

问:① 欲使平衡向右移动,可采取哪些措施?② 欲使正反应进行得较快且较完全(平衡向右移动)的适宜条件如何?这些措施对K θ及k(正)、k(逆)的影响各如何?(10)平衡常数改变时,平衡是否必定移动?平衡移动时,平衡常数是否一定改变?【解答】(1)反应商是在一定温度下,任意给定态时,生成物的相对压力(或者相对浓度)以方程式中化学计量系数为幂的乘积除以反应物的相对压力(或相对浓度)以化学计量系数为幂的乘积。

在一定温度下,当反应达到平衡时,生成物的相对压力(或者相对浓度)以方程式中化学计量系数为幂的乘积除以反应物的相对压力(或相对浓度)以化学计量系数为幂的乘积是一个常数,称为标准平衡常数,是量纲为一的量。

标准平衡常数的数值只是温度的函数。

(2)只能用r m G θ∆判断在标准态下的反应的自发性。

任意给定态时,反应的自发进行的方向只能由r m G ∆来判断。

第7章习题解答

第7章习题解答

习 题7-1为什么一般矩形波导测量线的槽开在波导宽壁的中线上?答:因为矩形波导一般工作于10TE 模,由10TE 模的管壁电流知,在矩形波导宽壁中线处只有纵向电流,因此沿波导宽壁的中线开槽不会切断高频电流的通路,不会破坏波导内的场结构,也不会引起波导内的电磁波向外辐射能量。

7-2 推导矩形波导中mn TE 波的场量表达式。

7-3 已知空气填充的矩形波导截面尺寸为21023mm b a ⨯=⨯,求工作波长mm 20=λ时,波导中能传输哪些模式?mm 30=λ时呢? 解:矩形波导的截止波长22c 2⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m πππλ当0,1==n m 时,mm a C 462==λ,1,0==n m 时,mm b C 202==λ, 0,2==n m 时,mm a C 23==λ, 1,1==n m 时,mm b a 34.181********222c =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=πππλ满足电磁波在波导中传播条件c λλ<的模式有10TE 、01TE ;当mm 30=λ时,只能传输10TE 模。

7-4 已知空气填充的矩形波导截面尺寸为248cm b a ⨯=⨯,当工作频率GHz 5=f 时,求波导中能传输哪些模式?若波导中填充介质,传输模式有无变化?为什么?解: cm f C 6105103910=⨯⨯==λ,矩形波导的截止波长22c 2⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=b n a m πππλ,当0,1==n m 时,cm a C 162==λ,1,0==n m 时,cm b C 82==λ, 0,2==n m 时,cm a C 8==λ, 2,0==n m 时,cm b C 4==λ 1,1==n m 时,mm b a 15.74181222222c =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=πππλ满足电磁波在波导中传播条件c λλ<的模式有10TE 、01TE 、20TE 、11TE 、11TM ; 若波导中填充介质,工作波长变短,所以传输模式增多。

第7章 信号处理电路 习题解答

第7章 信号处理电路 习题解答
综上所述,仪表放大器的特点是:具备足够大的放大倍数、高的输入电阻和高共模抑制比。
7.3简述电荷放大器有什么特点,应用于何种场合。
解:电荷放大器应用于压电式加速度传感器、压力传感器等的后端放大。
上述两种传感器属于电容性传感器,这类传感器的阻抗非常高,呈容性,输出电压很微弱;他们工作时,将产生正比于被测物理量的电荷量,积分运算电路可以将电荷量转换成电压量,电路如下图所示。
解:1)LBF;2)BPF;3)HPF;4)BEF。
二、判断下列说法是否正确,用 “√”(正)和“ ”(误)填入括号内。
1)高通滤波器的通频带是指电压的放大倍数不变的频率范围。()
2)低通滤波器的截止频率就是电压放大倍数下降1/2的频率点。()
3)带通滤波器的频带宽度是指电压放大倍数大于或等于通带内放大倍数0.707的频率范围。()
其中 ;
该滤波器为二阶低通滤波电路,幅频特性如下图:
7.7试说明图P7-8所示各电路属于哪种类型的滤波电路,是几阶滤波电路。
(1)
(2)
图P7-7
解:
图(1)所示电路二阶带通滤波器或者二阶带阻滤波器。
前一个运放为高通滤波器(截止频率f1),后一个运放为低通滤波器(截止频率f2),如果 ,则f1<f2,该滤波器为二阶带通滤波器;如果 ,则f1>f2,该滤波器为二阶带阻滤波器。
电容性传感器可等效为因存储电荷而产生的电动势Ut与一个输出电容Ct串联,如图中虚线框内所示。根据集成运放的特点,可得到输出电压为: 。
7.4简述隔离放大器有什么特点,应用于何种场合。
解:隔离放大器通常应用于远距离信号传输。
在远距离信号传输的过程中,常因强干扰的引入使放大电路的输出有很强的干扰背景,甚至将有用信号淹没,造成系统无法正常工作。隔离放大器将电路的输入侧和输出侧在电气上完全隔离,它既可切断输入侧和输出侧电路间的直接联系,避免干扰混入输出信号,又可使有用信号畅通无阻。目前集成隔离放大器有变压器耦合式、光电耦合式和电容耦合式三种。

第七章习题解答

第七章习题解答

计算图示各系统的动能:(1)偏心圆盘的质量为,偏心距OC m e =,对质心的回转半径为C ρ,绕轴O 以角速度0ω转动(图a )。

(2)长为l ,质量为的匀质杆,其端部固结半径为,质量为的匀质圆盘。

杆绕轴O 以角速度m r m 0ω转动(图b )。

(3)滑块A 沿水平面以速度移动,重块B 沿滑块以相对速度下滑,已知滑块A 的质量为,重块B 的质量为(图c )。

1v 2v 1m 2m (4)汽车以速度沿平直道路行驶,已知汽车的总质量为0v M ,轮子的质量为m ,半径为R ,轮子可近似视为匀质圆盘(共有4个轮子)(图d )。

解:(1) 222200111()222C C C T mv J m e 2ωρω=+=+(2) 2222111(83)326O J ml mr ml m l r =++=+2220011(83)212O T J m l r 22ωω==+(3) 22121122A B T m v m v =+2221121212221212221211(2cos150)2211()m v m v v v v m m v m v m v v °=+++=++(4) ()2222000211111(4)422222v T M m v mv mR M m v R ⎛⎞=−+⋅+⋅⋅=+⎜⎟⎝⎠20一常力矩M 作用在绞车的鼓轮上,轮的半径为r ,质量为。

缠在鼓轮上绳索的末端A 系一质量为的重物,沿着与水平倾斜角为1m 2m α的斜面上升,如图所示。

重物与斜面间的滑动摩擦系数为μ。

绳索的质量不计,鼓轮可看成为匀质圆柱体,开始时系统静止。

求鼓轮转过ϕ角时的角速度。

解:为一自由度理想约束系统。

取鼓轮、重物及绳索组成的系统为研究对象,受力图如下图所示。

鼓轮转过ϕ角时系统的动能为2222212111222T m r m r 2ωω=⋅⋅+ 重力、摩擦力和力矩M 在此有限路程上所做的功为122sin W M Fr m gr ϕϕϕ→α=−−根据动能定理,有()222212211sincos 42m r m r M m gr ωωαμ+=−+αϕ⎡⎤⎣⎦ ω=绞车提升一质量为m 的重物,如图所示。

第7章习题详细解答

第7章习题详细解答

第7章习题解答7—1判断题(对的打√,不对的打×)1。

数字电路分为门电路和时序逻辑电路两大类。

(× )2。

边沿触发器和基本RS触发器相比,解决了空翻的问题.(×)3. 边沿触发器的状态变化发生在CP上升沿或下降沿到来时刻,其他时间触发器状态均不变。

(√)4. 基本RS 触发器的输入端就是直接置0端和直接置1端。

(√)23 的计数器。

(×)5。

3位二进制计数器可以构成模为16。

十进制计数器最高位输出的周期是输入CP脉冲周期的10倍。

(√)7. 构成一个7进制计数器需要7个触发器。

(×)8.当时序电路存在无效循环时该电路不能自启动.( √)9。

寄存器要存放n位二进制数码时,需要n2个触发器。

(×)10.同步计数器的计数速度比异步计数器快。

(√)11。

在计数器电路中,同步置零与异步置零的区别在于置零信号有效时,同步置零还需要等到时钟信号到达时才能将触发器置零,而异步置零不受时钟的控制。

(√)12。

计数器的异步清零端或异步置数端在计数器正常计数时应置为无效状态。

(√)13。

自启动功能是任何一个时序电路都具有的。

(× )14。

无论是用置零法还是用置数法来构成任意N进制计数器时,只要置零或置数控制端是异步的,则在状态循环过程中一定包含一个过渡状态;只要是同步的,则不需要过渡状态。

(√)15。

用置零法或置位法可以设计任意进制的计数器.(×)7—2 由或非门组成的基本RS触发器如图7—38所示,已知R、S的电压波形,试画出与之对应的Q和Q的波形。

图7—38 题7-2图解:由或非门组成的基本RS触发器的特性表,可得该题的输出端波形如下图所示:或非门RS 触发器特性表 题7—2 波形图7—3由与非门组成的基本RS 触发器如图7-39所示,已知R 、S 的电压波形,试画出与之对应的Q 和Q 的波形。

图7-39 题7-3图解:由与非门组成的基本RS 触发器的特性表,可得该题的输出端波形如下图所示:与非门RS 触发器特性表 题7—3波形图7-4已知如图7-40所示的各触发器的初始状态均为0,试对应画出在时钟信号CP 的连续作用下各触发器输出端Q 的波形。

无机及分析化学第7章 习题解答

无机及分析化学第7章 习题解答

第七章 水溶液中的解离平衡 习题解答1.写出下列物质的共轭酸。

S 2-、SO 42-、H 2PO 4-、HSO 4-、NH 3、NH 2OH 、55C H N 。

1.依次为:HS -、HSO 4-、H 3PO 4、H 2SO 4、NH 4+、NH 2OH ⋅H +、55C H N ⋅H +。

2.写出下列物质的共轭碱。

H 2S 、HSO 4-、H 2PO 4-、H 2SO 4、NH 3、NH 2OH 、3+26[Al(H O)]。

2.依次为:HS -、SO 42-、HPO 42-、HSO 4-、NH 2-、NH 2O -、2+25[Al(OH)(H O)]。

3.根据酸碱质子理论,按由强到弱的顺序排列下列各碱。

NO 2-、SO 42-、HCOO -、HSO 4-、Ac -、CO 32-、S 2-、ClO 4-。

3.下列碱由强到弱的顺序:S 2-> CO 32-> Ac-> HCOO-> NO 2-> SO 42-> HSO 4-> ClO 4-1414.151010-- 1410.251010-- 144.741010-- 143.741010-- 143.371010-- 141.991010--4.pH =7.00的水溶液一定是中性水溶液吗?请说明原因。

4.不一定。

K w 随温度的改变而改变,在常温下它的值为10-14,此时的中性溶液pH 为7.005.常温下水的离子积w K θ=1.0×10-14,是否意味着水的解离平衡常数K θ=1.0×10-14?5.不。

w K θ=[H +][OH -],而K θ=[H +][OH -]/c (H 2O);c (H 2O)=11000/18.0255.5mol L 1-=⋅ 6.判断下列过程溶液pH 的变化(假设溶液体积不变),说明原因。

(1)将NaNO 2加入到HNO 2溶液中; (2)将NaNO 3加入到HNO 3溶液中; (3)将NH 4Cl 加入到氨水中; (4)将NaCl 加入到HAc 溶液中;6. (1)pH 变大。

理论力学(胡运康)第七章作业答案

理论力学(胡运康)第七章作业答案
aC
aτ e
a
n a
aC 方向投影 :
n τ aa cos 60° + aτ sin 60 ° = a a e + aC
2 2 v 600 n aa = a = = 1200mm/s 2 OA 300
aen
α1
2 aτ = α ⋅ AB = 1000 3 mm/s e 1
aC = 2ω 1 vr = 2 × 3 × 300 = 1800mm/s 2
第7章 习题解答
1
7-1求轮边缘处水流对轮的vr
ve vr va
【解】 动点: M,动系: 轮
r r r va = ve + v r
va = 15 m s
nπ ve = R ⋅ = 6.28m s 30
x : va sin60 o = ve + vrx
⇒ v rx = 6.7 m s
y : − va cos60 o = 0 + vry
300
解 动点A,动系:BC
r r r va = ve + vr
ve = ω1 ⋅ AB = 3 OA = 300 3mm/s 3
va = ve / cos 30° = 600mm/s vr = va sin 30° = 300mm/s
12
aτ a ar
300
r n rτ r n r τ r r aa + aa = ae + ae + ar + aC
ω ω1 = ve / O1 D = 2
18
a
n ae
t e
r n r n rτ r r aa = ae + ae + ar + aC

大学数据库-第7章习题解答

大学数据库-第7章习题解答

〖7.2〗 在关系模式选课(学号, 课程号, 成绩)中,“学号→→课程号”正确吗?为什么?
答: 正确。因为学号能够多值决定课程号,且除了学号和课程号外还有成绩属性,它不是
平凡的多值依赖。
〖7.3〗 设有关系模式 R(A, B, C),数据依赖集 F={AB→C, C→→A},R 属于第几范式?为
什么?
〖7.6〗 在分解具有无损分解时,系统具有什么特点? 答:在分解具有无损分解时,系统具有下列特点:对关系模式 R 中满足函数依赖集 FD 的每
一个关系 r,都有 r=R1(r)⋈R2(r)⋈ …⋈Rk(r),即 r=mρ(r)。
〖7.7〗 试述查询优化的一般步骤。
答:① 把查询转换成语法树表示;② 把语法树转换成标准(优化)形式;③ 选择低层的
(7)若 R.B→R.A,R.C→R.A,则 R.(B, C)→R.A。
(8)若 R.(B, C)→R.A,则 R.B→R.A,R.C→R.A。
答:① 正确。② 正确。③ 正确。④ 正确。⑤ 正确。⑥ 正确。⑦ 正确。⑧ 不正确。例
如,(学号,课程号)→成绩,则不存在:学号→成绩,课程号→成绩。
〖7.5〗 试证明“3NF 的模式也一定是 2NF 模式”这个结论。
第 7 章习题解答
〖7.1〗 给出下列术语的定义,并加以理解。
函数依赖,部分函数依赖,完全函数依赖,传递函数依赖,候选关键字,主关键字,全
关键字,1NF,2NF,3NF,BCNF,多值依赖,4NF,连接依赖,5NF。
答:
函数依赖:设 R〈U〉是属性集 U 上的关系模式,X、Y 是 U 的子集。若对于 R〈U〉的
描述系的属性有:系名、系号、系办公室地点、人数;
描述学会的属性有:学会名、成立年份、地点、人数、学生参加某会有一个入会年

(7.12)--第7章部分习题解答

(7.12)--第7章部分习题解答

第7章 习题解答7-1估计fcc 结构以{111}、{100}和{110}作表面(T =0 K )的表面能。

设升华热为L S (J/mol),点阵常数为a 。

解:升华热相当于把晶体所有结合键断开的能量,现忽略次近邻键,认为升华热只由最近邻键所贡献。

设U b 为平均键能,每摩尔有N 0(亚佛加德罗常数)个原子,fcc 结构的配位数为12,最近邻键对数是12N 0/2,所以2120b S U N L = 即06N L U Sb =晶体表面能的式子是∑∑⋅===j q j j q q j j j n q )(A)()(S S 2121ϕϕργV E fcc 结构中每个晶胞含4个原子,所以原子体积43a V a =。

(1)对于{111}为表面,单位法线矢量3]111[=n ,它割断最近邻的键矢量为2]101[a 、2]110[a 和2]011[a 。

故表面能为2)(A S 3332]}011[]110[]101{[]111[233421N a L U a a a 2U V Sb 23b==++⋅=⋅=∑j q j j n q ϕγ(2)对于{110}为表面,单位法线矢量]110[=n /2,它割断最近邻的键矢量为2]101[a 、2]011[a 、]110[a 、2]101[a 和]110[a ,因为(110)面的面间距为4]110[a ,2]110[a 穿过两个(110)面,所以对于[110]方向的键矢量为4]110[a 。

表面能为2)(A S 1225225]}110[21]110[]101[]011[]101{[]110[2224221N a L U a a a U V S b 23b ==+-+-++⋅=⋅=∑j q j j n q ϕγ(3)对于{100}为表面,单位法线矢量]100[=n ,它割断最近邻的键矢量为2]101[a 、2]011[a 、]110[a 和]101[a 。

故表面能为02)(A S 324]}101[]101[]110[]101{[]100[2421N a L U a a a 2U V S b 23b ==-+-++⋅=⋅=∑j q j j n q ϕγ另外,我们可以用简单的比较直观的方法计算。

基础电子技术 习题解答 第7章 集成逻辑门习题解答

基础电子技术 习题解答 第7章  集成逻辑门习题解答

第7章 集成逻辑门习题解答【7-1】 选择填空:1.在数字电路中,稳态时晶体管一般工作在 开关(放大,开关)状态。

在图中,若u I <0,则晶体管T (截止,饱和),此时u O = (5V ,3.7V ,2.3V);欲使晶体管处于饱和状态,u I 需满足的条件为 (a. I 0u > b.I CC b c 0.7u V R R β-≥ c. I CCb c0.7u V R R β-<)。

在电路中其他参数不变的条件下,仅R b 减小时,晶体管的饱和程度 (减轻,加深,不变);仅R c 减小时,饱和程度 (减轻,加深,不变),饱和压降U CES (增大,减小,不变)。

图7-1(a)中C 的作用是 (去耦,加速,隔直)。

2.由TTL 门组成的电路如图7-1(b)所示,已知它们的输入短路电流为I Is =1.6mA ,高电平输入漏电流I IH =40μA 。

试问:当A =B =1时,G 1的 (拉,灌)电流为 ;A =0时,G 1的 (拉,灌)电流为 。

3G A B图7-1(a) 图7-1(b)3.图7-1(c)中示出了某门电路的特性曲线,试据此确定它的下列参数:输出高电平U OH = ;输出低电平U OL = ;输入短路电流I IS = ;高电平输入漏电流I IH = ;阈值电平U T = ;开门电平U ON = ;关门电平U OFF = ;低电平噪声容限U NL = ;高电平噪声容限U NH = ;最大灌电流I OLmax = ;扇出系数N o =。

I1.5VOH u iOLu图7-1(c)4.TTL 门电路输入端悬空时,应视为 (高电平,低电平,不定);此时如用万用表测量输入端的电压,读数约为 (3.6V ,0V ,1.4V )。

5.集电极开路门(OC 门)在使用时须在 (输出与地,输出与输入,输出与电源)之间接一电阻。

6.CMOS 门电路的特点:静态功耗 (很大,极低);而动态功耗随着工作频率的提高而 (增加,减小,不变);输入电阻 (很大,很小);噪声容限 (高,低,等)于TTL 门。

无机化学(周祖新)习题解答-第七章

无机化学(周祖新)习题解答-第七章

第七章分子结构和晶体习题解答(7)思考题1.举例说明下列概念的区别:离子键与共价键、共价键与配位键、σ键和Л键、极性键和非极性键、极性分子与非极性分子、分子间力与氢键。

1.离子键是得到电子的阴离子与失去电子的阳离子的强烈静电吸引作用;共价键是原子间通过共用电子对(或电子云重叠)而形成的相互吸引作用,无阴、阳离子;配位键也是共价键中的一种,只不过共用的一对电子有一个原子提供。

σ键是各自电子云用密度最大的一头相互重叠,以使重叠体积最大,两原子间形成共价键时首先肯定以σ键成键,但两原子间只能形成σ键一次。

Л键是在原子间已形成一根σ键后,其余原子轨道以“肩并肩”在侧面重叠的成键方式,其重叠体积比σ键要小,但两原子间根据各自的单电子数可形成几个Л键。

极性键是两不同原子间形成共价键时,由于两原子的电负性不同,吸引公用电子对的作用不同,使某一端带有部分正电荷,另一端带有部分负电荷,这就是极性键;若两相同的原子间形成共价键,由于彼此电负性相同,吸引共用电子对的能力相同,公用电子对不偏向任何一个原子,两原子不带“净”电荷,没有“正”或“负”的一端,即非极性键。

极性分子是整个分子中正、负电荷重心不重合,使分子一端带部分正电荷,为正极,另一端带部分负电荷,为负极。

分子之间由于偶极间的相互作用力为分子间力。

氢键是氢原子与电负性大、半径小的原子形成共价键后,由于氢原子唯一的电子被其他原子吸引到离氢原子核较远的地方,氢原子几乎成了“裸露”的质子,有很强的正电场,吸引另一电负性大、半径小的原子的孤对电子,形成了一种作用力,这个作用力本质上还是分子间作用力,但比一般的分子间力强。

2.离子键是怎样形成的?离子键的特征和本质是什么?为什么离子键无饱和性和方向性?2.离子键是失电子的金属阳离子和德电子的非金属阴离子通过静电引力形成的。

离子键的特征是无方向性、无饱和性。

其本质是正、负点电荷间的静电引力。

点电荷产生的电场向空间各个方向均匀传播,每一个在其电场中的异号电荷都会受到它的吸引作用,在理论上它可吸引无数个异号电荷,所以离子键无饱和性;由于点电荷产生的电场向空间各个方向的传播是均匀的,只要距离相等,不管在哪个方向,受到的作用里是一样的,这就是离子键的无方向性。

第七章原子吸收光谱法习题解答

第七章原子吸收光谱法习题解答

5.原子吸收分析中,若采用火焰原子化法,是否火焰温度愈高,测定灵 敏度就愈高?为什么? 解:不是.因为随着火焰温度升高,激发态原子增加,电离度增大,基态原子 减少.所以如果太高,反而可能会导致测定灵敏度降低.尤其是对于易挥发 和电离电位较低的元素,应使用低温火焰. 6.石墨炉原子化法的工作原理是什么?与火焰原子化法相比较,有什么 优缺点?为什么? 解:石墨炉原子化器是将一个石墨管固定在两个电极之间而制成的,在惰性 气体保护下以大电流通过石墨管,将石墨管加热至高温而使样品原子化. 与火焰原子化相比,在石墨炉原子化器中,试样几乎可以全部原子化,因而测 定灵敏度高.对于易形成难熔氧化物的元素,以及试样含量很低或试样量很 少时非常适用. 缺点:共存化合物的干扰大,由于取样量少,所以进样量及注入管内位置的变 动会引起误差,因而重现性较差.
- 1
0 . 0 - 4 - 2 0 2 4 6 8
C
15.用原子吸收法测锑,用铅作内标.取5.00mL未知锑溶液,加入 2.00mL4.13mg.mL-1的铅溶液并稀释至10.0mL,测得ASb/APb= 0.808. 另取相同浓度的锑和铅溶液,ASb/APb= 1.31, 计算未知液 中锑的质量浓度. 解:设试液中锑浓度为Cx, 为了方便,将混合溶液吸光度比计为[Asb/Apb]1, 而将分别 测定的吸光度比计为[Asb/Apb]2 由于:ASb = KSbCSb APb =KPbCPb 故: KSb/KPb =[Asb/Apb]2 =1.31 [Asb/Apb]1=(KSb×5 × Cx/10)/(KPb × 2 × 4.13/10)=0.808
化学与化学工程学院分析化学精品课程组制
第七章 原子吸收光谱法
习题解答
二00八年五月
第七章原子吸收光谱法习题解答

第7章习题解答哈工大习题册

第7章习题解答哈工大习题册

第7章 频率特性和谐振现象习题解答7.1 求图(a)所示RC 并联电路的输入阻抗)j (ωZ ,大致画出其幅频特性和相频特性,确定通带、阻带和截止频率。

(a)Z (b)--图题7.1解:由阻抗并联等效公式得:36336310/(j 10)10(j )101/(j 10)1j 10Z ωωωω---==Ω++ 阻抗模及幅角分别为:233)10(110)j (ωω-+=Z , )10arctan()(3ωωθ--=令2/1)j (c =ωZ ,求得截止角频率rad/s 103c =ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。

幅频特性和相频特性如图(b)和(c)所示。

7.2 求图示电路的网络函数,它具有高通特性还是低通特性?2图题7.2解: RC 并联的等效阻抗RCRC R C R Z RC ωωωj 1j /1j /+=+=RCRCZ L Z U U H +==ωωj /)j (12RL LC RC L R R /j 11)j 1(j 2ωωωω+-=++=幅频特性222)/()1(1)j (R L LC H ωωω+-=当0→ω时, 1)j (=ωH ;当∞→ω时,0)j (=ωH所以它具有低通特性。

7.3求图示电路的转移电压比21(j )/H U U ω=,当1122R C R C =时,此网络函数有何特性?2图 题7.3解:设1111111j j 1//C R R R C R Z ωω+==, 2222222j j 1//C R R R C R Z ωω+==由分压公式得:12122U Z Z Z U += )j 1()j 1()j 1()j (11222111212C R R C R R C R R U U H ωωωω++++== 当R 1C 1=R 2C 2时,得212)j (R R R H +=ω,此网络函数模及辐角均不与频率无关。

7.4设图示电路处于谐振状态,其中S 1A I =,150V U =,1100C R X ==Ω。

电路与模拟电子技术第7章习题解答

电路与模拟电子技术第7章习题解答

第七章 基本放大电路试判断题图中各电路能不能放大交流信号,并说明原因。

解: a 、b 、c 三个电路中晶体管发射结正偏,集电结反偏,故均正常工作,但b 图中集电极交流接地,故无交流输出。

d 图中晶体管集电结正偏,故晶体管不能正常工作,另外,交流输入信号交流接地。

因此a 、c 两电路能放大交流信号,b 、d 两电路不能放大交流信号。

单管共射放大电路如题图所示,已知三极管的电流放大倍数50=β。

C CC (a)题7.1图(1)估算电路的静态工作点; (2)计算三极管的输入电阻be r ;(3)画出微变等效电路,计算电压放大倍数;(4)计算电路的输入电阻和输出电阻。

解:(1)A A R U U I BBE CC B μ40104103007.01253=⨯≈⨯-=-=-mA A I I B C 210210405036=⨯=⨯⨯==--βV I R U U C C CC CE 61021031233=⨯⨯⨯-=-=-(2)Ω=+=+=9502265030026300C CbeI r β (3)放大电路的微变等效电路如图所示电压放大倍数7995.03||350||-=-=-=be L C u r R R A β(4)输入电阻:Ω≈⨯==950950||10300||3be B ir R r输出电阻 Ω==k R r C30单管共射放大电路如题图所示。

已知CC +o -题7.2图+u o -CC +u o -题7.3图100=β(1)估算电路的静态工作点;(2)计算电路的电压放大倍数、输入电阻和输出电阻 (3)估算最大不失真输出电压的幅值;(4)当i u 足够大时,输出电压首先出现何种失真,如何调节R B消除失真解:电路的直流通路如图所示,CC BQ E BEQ BQ B U I R U I R =+++)1(βAmA R R U U I EB BEQ CC BQ μβ435.010130015)1(=⨯+≈++-≈由此定出静态工作点Q 为mA I I BQ CQ 3.4==β,V R R I U U E C C CC CEQ 3.4)5.02(3.415)(≈+⨯-=+-=(2)Ω=⨯+=9053.426100300be r 由于R E 被交流傍路,因此16690.05.1100||-=⨯-=-=be L C u r R R A βΩ≈==k r R r be B i 9.0905.0||300||Ω==k R R C O 2CCR(3)由于U CEQ =,故最大不饱和失真输出电压为V U U CEQ 6.37.03.47.00=-=-=' 最大不截止失真输出电压近似为V R I U L CQ 4.65.13.40=⨯='⋅='' 因此,最大不失真输出电压的幅值为。

第七章习题解答

第七章习题解答

习 题 七1. 判断下面所定义的变换,哪些是线性的,哪些不是:(1) 在向量空间V 中,σ (ξ)=ξ+α,α是V 中一固定的向量;(2) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,(233221x x x x +;(3) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,2(13221x x x x x +-; (4) 把复数域看作复数域上的向量空间,σ (ξ)=ξ. 解 (1)当0=α时,σ是线性变换;当0≠α时,σ不是线性变换; (2)σ不是线性变换; (3)σ是线性变换; (4)σ不是线性变换;2. 设V 是数域F 上一维向量空间. 证明,σ是V 的一个线性变换的充要条件是:存在F 中的一个数a ,使得对任意ξ∈V ,都有σ (ξ)=a ξ .证明:充分性显然.必要性:令σ是ν的一个线性变换,设1ξ是ν的一个基.则νξσ∈)(1.那么)(1ξσ可由1ξ线性表示,不妨设11)(ξξσa =.对任意的νξ∈,有1ξξk =,则ξξξξσξσξσa k a a k k k =====)()()()()(1111.3. 设σ是向量空间V 的线性变换,如果σ k -1ξ≠0, 但σ k ξ=0,求证ξ, σξ, …, σk -1ξ (k >0)线性无关.证明: 令++σξξ10l l ┄ +011=--ξσk k l ┈┈┈┈(1)(1)式两端用1-k σ作用得:++-ξσξσkk l l 110+0221=--ξσk k l由已知得: ==+ξσξσ1k k=,022=-ξσk 01≠-ξσk ,所以有00=l .则(1)式变为: +σξ1l +011=--ξσk k l ┈┈┈┈(2)(2)式两端用2-k σ 作用得:ξσξσkk l l 211+-+0321=--ξσk k l同理01=l .重复上述过程有: ==10l l 01=-k l . 4. 在向量空间R [x ]中,σ (f (x ))=f '(x ), τ (f (x ))=xf (x ), 证明,στ -τσ=ι.证明:对任意][)(x R x f ∈,有))(())()((x f x f σττσστ=-=-+=-=-)()()()())((())(('''x xf x xf x f x f x f x x f τστσ)(x f .所以στ -τσ=ι.5. 在向量空间R 3中,线性变换σ, τ如下:σ (x 1, x 2, x 3)=(x 1, x 2, x 1+x 2)τ (x 1, x 2, x 3)=(x 1+x 2-x 3, 0, x 3-x 1-x 2)(1) 求στ, τσ, σ2;(2) 求σ+τ, σ -τ, 2σ.解: (1) =---+=),0,(),,(213321321x x x x x x x x x σστ,(321x x x -+0,),,()321321x x x x x x τ=-+,∴τστ=.)0,0,0(),,(),,(2121321=+=x x x x x x x ττσ,∴0=τσ ),,(),,(21213212x x x x x x x +=σσ=),,(2121x x x x +.∴σσ=2.(2) ),,)((321x x x τσ+=),,(321x x x σ+),,(321x x x τ ),,(2121x x x x +=+),0,(213321x x x x x x ---+),,2(32321x x x x x -+=.),,)((321x x x τσ-=),,(321x x x σ),,(321x x x τ-),,(2121x x x x +=),0,(213321x x x x x x ---+-=)22,,(321232x x x x x x -++-.2),,(2321=x x x σ),,(2121x x x x +=)22,2,2(2121x x x x +.6. 已知向量空间R 3的线性变换σ为σ (x 1, x 2, x 3)=(x 1+x 2+x 3, x 2+x 3,-x 3) 证明,σ是可逆变换,并求σ-1.证明:),0,0,1(),0,0,1(=σ, ),0,1,1(),0,1,0(=σ,),1,1,1(),1,0,0(-=σ.∴ σ关于3R 的一个基),0,0,1(, ),0,1,0(,),1,0,0(的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=100110111A . 显然,A 可逆,所以σ是可逆变换,而且⎪⎪⎪⎭⎫ ⎝⎛--=-1001100111A所以-=⎪⎪⎪⎭⎫⎝⎛=--132113211(),,(x x x x A x x x σ,2x ,32x x +)3x -.7. 设σ, τ, ρ都是向量空间V 的线性变换,试证,(1)如果σ, τ都与ρ可交换,则στ, σ2也都与ρ可交换(若对任意α∈V ,都有στ (α)=τσ (α),就说σ与τ可交换);(2)如果σ+τ, σ-τ都与ρ可交换,则σ, τ也都与ρ可交换. 证:(1)由已知ρττρρσσρ==,.那么==)()(τρσρστ)(ρτσ =)()(στρτσρ=.22)()()(ρσσσρρσσσρσρσ====.(2)同理可证.8. 证明,数域F 上的有限维向量空间V 的线性变换σ是可逆变换的充分必要条件是σ把非零向量变为非零向量.证明:不妨设ν是n 维的. ,,21ξξ,n ξ是它的一个基.σ关于这个基的矩阵为A .显然,σ可逆当且仅当A 可逆. σ把非零向量变为非零向量当且仅当{}0=σKer ,而秩σ=秩A ,σ的零度=σker dim .且秩σ+σ的零度=n.所以秩σ=n 当且仅当σ的零度是0,即A 可逆当且仅当0=σKer .故σ可逆当且仅当σ把非零向量变为非零向量.9. 证明,可逆线性变换把线性无关的向量组变为线性无关的向量组. 证明:令σ是向量空间ν的可逆线性变换, ,,21αα,m α是ν的一组线性无关的向量,令++)()(2211ασασk k +0)(=m m k ασ.两端用1-σ作用得: +11αk +0=m m k α.由已知 ,,21αα,m α 线性无关,所以: ==21k k =0=m k .故 ),(),(21ασασ,)(m ασ 线性无关.10. 设{ε1, ε2, ε3}是F 上向量空间V 的一个基. 已知V 的线性变换σ在{ε1,ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a (1) 求σ在{ε1, ε3, ε2}下的矩阵;(2) 求σ在{ε1, k ε2, ε3}下的矩阵(k ≠0,k ∈F );(3) 求σ在{ε1, ε1+ε2, ε3}下的矩阵. 解:(1)⎪⎪⎪⎭⎫⎝⎛=222321323331121311231231),,(),,(a a a a a a a a a εεεεεεσ. (2)⎪⎪⎪⎪⎭⎫⎝⎛=33323123222113121132132111),,(),,(a ka a a k a a k a ka a k k εεεεεεσ. (3) =+),,(3211εεεεσ),,(3211εεεε+⎪⎪⎪⎭⎫⎝⎛++---+-⋅33323131232221212313222112112111a a a aa a a a a a a a a a a a11. 在R 3中定义线性变换σ如下σ (x 1, x 2, x 3)=(2x 2+x 3, x 1-4x 2, 3x 1),∀(x 1, x 2, x 3)∈R 3. (1) 求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)下的矩阵;(2) 利用(1)中结论,求σ在基α1=(1, 1, 1),α2=(1, 1, 0),α3=(1, 0, 0)下的矩阵.解:(1) ⎪⎪⎪⎭⎫⎝⎛-=003041120),,(),,(321321εεεεεεσ (2)从基{}321,,εεε到基{}321,,ααα的过渡矩阵为⎪⎪⎪⎭⎫⎝⎛=001011111P .σ在{}321,,ααα下的矩阵为:⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=⋅⎪⎪⎪⎭⎫ ⎝⎛-⋅-0010111110030411200111101000030411201P P =⎪⎪⎪⎭⎫ ⎝⎛---156266333. 12. 已知M 2(F )的两个线性变换σ,τ如下σ (X )=X ⎪⎪⎭⎫⎝⎛-1111, τ (X )=⎪⎪⎭⎫⎝⎛-0201X , ∀X ∈M 2(F ). 试求σ+τ, στ在基E 11, E 12, E 21, E 22下的矩阵. 又问σ和τ是否可逆?若可逆,求其逆变换在同一基下的矩阵. 证明:⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+021202011111)(111111E E E τσ =12112E E +222102E E +-.⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+200102011111)(121212E E E τσ =12110E E +222120E E -+.⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+110002011111)(212121E E E τσ=121100E E +2221E E ++.⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+10002011111)(222222E E E τσ =121100E E +2221E E -+.所以τσ+在基22211211,,,E E E E 下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1120110200010012A . 同理可证στ在基22211211,,,E E E E 下的矩阵.121111)(E E E +=σ,121112)(E E E -=σ,222112112100)(E E E E E +++=σ,=)(22E σ2221121100E E E E -++.所以σ在此基下的矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛--=110110000110011B . 显然,B 可逆.所以σ可逆. σ在同一基下的矩阵为:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-21210021*******1210021211B. 同理可讨论τ的可逆性及求τ的矩阵.13. 设σ是数域F 上n 维向量空间V 的一个线性变换. W 1, W 2是V 的子空间,并且V =W 1⊕W 2证明,σ是可逆变换的充要条件是V =σ ( W 1)⊕σ ( W 2)证明:令 ,1α,r α是1W 的一个基. 令 ,1+r α,n α是2W 的一个基. 由已知得: ,1α, n α是ν的一个基.必要性:设σ可逆,则 ),(1ασ,)(r ασ, )(1+r ασ,)(n ασ 也是ν的一个基.但=)(1W σ£( ),(1ασ,)(r ασ). =)(2W σ£( )(1+r ασ,)(n ασ)所以=ν+)(1W σ)(2W σ,⋂)(1W σ}0{)(2=W σ,故V =σ ( W 1)⊕ σ ( W 2).充分性:将必要性的过程倒过去即可.14. 设R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(2x 1-x 2, x 2-x 3, x 2+x 3)求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1) 及基η1=(1, 1, 0), η2=(0, 1, 1),η3=(0, 0, 1)下的矩阵.解: σ在基{ε1, ε3, ε2}下的矩阵为:⎪⎪⎪⎭⎫⎝⎛--=110110012A . σ在基{321,,ηηη}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=-110110011101100121100110011B =⎪⎪⎪⎭⎫⎝⎛--211110011. 15. 在M 2(F )中定义线性变换σ为σ (X )=⎪⎪⎭⎫⎝⎛-3210X , ∀X ∈M 2(F ). 求σ在基{ E 11, E 12, E 21, E 22}下的矩阵,其中E 11=⎪⎪⎭⎫⎝⎛0001, E 12=⎪⎪⎭⎫ ⎝⎛0010, E 21=⎪⎪⎭⎫ ⎝⎛0100, E 22=⎪⎪⎭⎫⎝⎛1000. 解: σ在基{22211211,,,E E E E }下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=30200302100001A . 16. 证明,与n 维向量空间V的全体线性变换可交换的线性变换是数量变换.证明:由105P 习题二及第10题的结论易得. 17. 给定R 3的两个基α1=(1, 0, 1), α2=(2, 1, 0), α3=(1, 1, 1);和 β1=(1, 2,-1), β2=(2, 2, -1), β3=(2, -1, -1). σ是R 3的线性变换,且σ(αi )=βi ,i =1, 2,3. 求(1) 由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵; (2) σ关于基{α1, α2 , α3}的矩阵; (3) σ关于基{β1, β2 , β3}的矩阵.解: (1)令)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε.则由{α1, α2 , α3}到{ε1,ε3, ε2}的过渡矩阵为:1101110121-⎪⎪⎪⎭⎫⎝⎛. 由基{ε1, ε3, ε2}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛101110221. 所以由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛----⋅⎪⎪⎪⎭⎫ ⎝⎛---=-1111222211111101211P =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 (2) σ ==),,(),,(321321βββαααP ),,(321ααα.所以σ在),,(321ααα下的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232. σ关于基{β1, β2 , β3}的矩阵为: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 18. 设α1=(-1, 0, -2), α2=(0, 1, 2), α3=(1, 2, 5),β1=(-1, 1, 0), β2=(1, 0, 1), β3=(0, 1, 2),ξ=(0, 3, 5)是R 3中的向量,σ是R 3的线性变换,并且σ(α1)=(2, 0, -1), σ(α2)=(0, 0, 1),σ(α3)=(0, 1, 2).(1) 求σ关于基{β1, β2 , β3}的矩阵; (2) 求σ(ξ)关于基{α1, α2 , α3}的坐标; (3) 求σ(ξ)关于基{β1, β2 , β3}的坐标. 解:令⎪⎪⎪⎭⎫⎝⎛--=5222101011T ,⎪⎪⎪⎭⎫⎝⎛-=2101011112T .则从基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=⋅=-0101210011222341212211T T T T . 又321135310311)1,0,2()(αααασ-+-=-=321203231)1,0,0()(αααασ+-==321300)2,1,0()(αααασ++==所以σ关于),,(321ααα的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---03135132310031311.从而σ关于基{β1, β2 , β3}的矩阵为:⋅⎪⎪⎪⎭⎫ ⎝⎛-==-2111000011AT T B ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311⎪⎪⎪⎭⎫ ⎝⎛-⋅010121001= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----31353103132343132310. (2)==)5,3,0(ξ321353135ααα+-.所以关于)(ξσ),,(321ααα的坐标为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅926967956353135A 由(2)可知=)(ξσ⋅),,(321ααα⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--926967956=(β1, β2 , β3)⋅⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956 所以关于)(ξσ{β1, β2 , β3}的坐标为:⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--926967956=⋅⎪⎪⎪⎭⎫ ⎝⎛-211100001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--971926956. 19. 设R 3有一个线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+x 2,x 2+x 3,x 3),∀(x 1, x 2, x 3)∈R 3.下列R 3的子空间哪些在σ之下不变?(1) {(0, 0, c )| c ∈R }; (2) {(0, b , c )| b , c ∈R };(3) {(a , 0, 0)| a ∈R }; (4) {(a , b , 0)| a , b ∈R }; (5) {(a , 0, c )| a , c ∈R }; (6) {(a , -a , 0)| a ∈R }.解:(3)与(4)在σ之下不变.20. 设σ是n 维向量空间V 的一个线性变换,证明下列条件等价: (1) σ (V )=V ; (2) ker σ={0}.证明:因为秩σ+σ的零度=n. 所以秩σ=n 当且仅当σ的零度是0,即n =)(dim νσ当且仅当0ker dim =σ,因此V V =)(σ当且仅当}0{=σK e r .21. 已知R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+2x 2-x 3, x 2+x 3, x 1+x 2-2x 3),∀(x 1, x 2, x 3)∈R 3. 求σ的值域σ (V )与核Ker σ的维数和基.解: σ关于基)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=211110121A .)1,0,1()(1=εσ,)1,1,2()(2=εσ,)(νσ ))(),((21εσεσL =.),(ker ξσL =其中)1,1,3(-=ξ,1ker dim =σ.22. 设σ是向量空间V 的一个线性变换,W 是σ的一个不变子空间,证明,W 是σ 2的不变子空间.证明:由不变子空间的定义易证. 23. 设σ是数域F 上n (>0)维向量空间V 的一个线性变换,{α1, α2 ,…, αr , αr +1,…, αn }是V 的基. 证明,如果{α1, α2 ,…, αr }是Ker σ的基,那么{σ (αr +1),…,σ (αn )}是Im σ的基.证明:已知{α1, α2 ,…, αr }是Ker σ的基, 则σ (αi )=0, i =1,2, …, r . 令 l r +1σ (αr +1)+ l r +2σ (αr +2)+ …+ l n σ (αn )=0, 则σ ( l r +1αr +1+…+ l n αn )=0, l r +1αr +1+…+ l n αn ∈ Ker σ .所以 l r +1αr +1+…+ l n αn =l 1α 1+…+ l r αr但 α1, α2 ,…, αr , αr +1,…, αn 是V 的一个基, 故 l r +1=…= l n =0. 所以 σ (αr +1),…, σ (αn ) 线性无关.又 Im σ = £(σ (α1), σ (α2)…, σ (αn )) = (σ (αr +1),…, σ (αn )).从而结论成立.24. 对任意α∈R 4,令σ (α)=A α,其中A =⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 求线性变换σ的核与象. 解: α1 = ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--02232, α2 =⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021, Ker σ =£(α1,α2). σ (ε1) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2111, σ (ε2) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2220. Im σ =£(σ (ε1), σ (ε2)).25. 设 σ,τ 是向量空间V 的线性变换,且σ+τ=ι,στ=τσ=θ. 这里ι是V 的恒等变换,θ 是V 的零变换. 证明:(1) V =σ(V )⊕τ (V ); (2) σ(V )=Ker τ.证明: (1) ∀ξ∈ V, ξ=ι (ξ)=(σ+τ)(ξ)=σ (ξ)+τ (ξ).所以V =σ (V )+τ (V ).对任意ξ∈σ (V )∩τ (V ). 则ξ=σ (ξ1)+ τ (ξ2).由已知条件可得ξ= ι (σ (ξ1)) = (σ+τ)(σ (ξ1)) = σ·(σ (ξ1) = σ·(τ (ξ2)= στ (ξ2) = 0 . 故结论成立.(2 ) 对任意σ (ξ)∈σ (V ), 则 τ(σ (ξ))= 0, 所以 σ (ξ)∈Ker τ .反之, 对任意ξ∈Ker τ , 则τ(ξ)= 0.由已知条件可得,ξ= (σ+τ)(ξ)=σ (ξ)+τ (ξ)=σ (ξ),所以ξ∈σ (V ).26. 在向量空间F n [x ]中,定义线性变换τ为:对任意f (x )∈F n [x ],τ(f (x )) =x f '(x )-f (x ). 这里f '(x )表示f (x )的导数. (1)求Ker τ及Im τ;(2)证明,V =Ker τ⊕Im τ. 解: (1) 令τ ( f (x )) = x f'(x )-f (x ) = 0其中 f (x ) = a 0 + a 1x + … + a n x n . 则(a 1x +2a 2x 2+ … +n a n x n )- f (x ) = 0(0- a 0) + ( a 1- a 1)x + (2a 2- a 2) x 2+ … + (n a n -a n )x n= 0 有 ⎪⎪⎩⎪⎪⎨⎧===00020na a a, 所以 f (x ) = a 1x ,Ker τ =£(x ), Im τ=£(1,x 2, … ,x n ).(2) 显然 .27. 已知向量空间V 的线性变换σ在基{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫⎝⎛--121101365 求σ的本征值及相应的本征向量. 问是否存在V 的一个基使得σ 关于这个基的矩阵是对角阵?解: 本征值λ=2 (三重), 属于λ=2的线性无关的本征向量为:ξ1=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0131 , ξ2=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1031, 故σ 不能对角化.28. 设σ是向量空间V 的可逆线性变换,证明 (1) σ的本征值一定不为0; (2) 如果λ是σ 的本征值,那么λ1是σ-1的本征值.证明: (1) 反设σ 有一本征值为0,则存在ξ≠0,ξ∈ V , 使得σ (ξ)=0·ξ= 0 . 因为σ 可逆, 所以 σ -1(σ (ξ))=0, 即ξ= 0.矛盾.(2) 设λ是σ 的本征值,由(1)得λ≠0,且有σ (ξ)=λξ,ξ≠0.σ -1(σ (ξ))=λσ -1 (ξ). 即 σ -1 (ξ)=λ1ξ, 所以结论成立.补 充 题1. 设σ是数域F 上n 维向量空间V 的一个线性变换. 证明 (1) Ker σ ⊆Ker σ2⊆ Ker σ3⊆…(2) Im σ ⊇Im σ2 ⊇Im σ3 ⊇…证明: (1)对任意正整数n ,下证Ker σ n ⊆ Ker σ n +1 对任意ξ∈ Ker σ n., σ n(ξ)=0, σ (σ n(ξ))=0 即σn +1(ξ)=0, 所以ξ∈ Ker σn +1.(2) 对任意正整数n ,下证Im σ n ⊇Im σ n +1.对任意ξ∈Im σ n +1, 则存在 η∈ V , 使得ξ=σn +1(η)=σ n (σ (η))∈Im σ n.2. 设A 是数域F 上的n 阶矩阵. 证明,存在F 上的一个非零多项式f (x ), 使得f (A )=0.[不用Cayley-Hamilton 定理证. ]证明: 由于dimM n (F) = n 2, 所以I, A, A 2, …, A 2n线性相关,故存在F 上的不全为零的一组数k 0,, k 1, … ,k 2n ,使得+++2210A k A k I k ┄+022=nn Ak .取=)(x f +++2210x k x k k ┄+ 022=nn xk ,结论得证.3. 设V 是n 维向量空间, σ是V 的一个可逆线性变换, W 是σ的一个不变子空间. 证明, W 也是σ-1的不变子空间.证明:令{α1, α2 ,…, αr }是W 的一个基,因为W 是σ的不变子空间,所以 ,1,)(=∈i i ωασ,r .又σ是可逆的,所以 ),(1ασ,)(r ασ线性无关,故),(1ασ,)(r ασ也是W 的一个基.因为r i i i ,,1,))((1=∈=-ωαασσ.所以W 关于1-σ不变.4. 设σ是数域F 上向量空间V 的一个线性变换, σ2=σ. 证明: (1) Ker σ ={ξ-σ (ξ)|ξ∈V }; (2) V =Ker σ ⊕Im σ ;(3) 若τ是V 的一个线性变换, 那么Ker σ 和Im σ 都在τ之下不变的充要条件是στ=τσ.[提示:证(3)的必要性,利用(2). ]证明:(1)对于任意的,ker σξ∈则.0)(=ξσ那么{}V ∈-∈-=-=ξξσξξσξξξ)()(0.反之,任意的{}V ∈-∈-ξξσξξσξ)()(,有-=-)())((ξσξσξσ0)()()(2=-=ξσξσξσ,故σξσξker )(∈-.(2)由(1)的解果可知:σσIm ker +=V ,对任意的σσξIm ker ⋂∈,则有:)()(211ησησηξ=-=,因此0)()()(121=-=ησησξσ. 同时还有:ξησησξσ===)()()(222所以0=ξ,结论成立.(3)充分性易证.必要性:设Ker σ 和Im σ 都在τ之下不变,由(2)的结论得:1,ξξξ=∈∀V ),(2ξσ+其中σξker 1∈.又因为+-=+-=-))(())(())()(())((1121ξστξτσξσξτσστξτσστ )()))(((222ξτσξστσ-.由已知,,Im ))((,ker )(21σξστσξτ∈∈不妨设)())((32ξσξστ=,所以)()())(())(())((2323=-=-=-ξτσξσξστξσσξτσστ.5. 设σ是数域F 上n 维向量空间V 的一个线性变换, σ2=ι. 证明, V =W 1⊕W 2, 这里W 1={ξ∈V |σ(ξ)=ξ},W 2={η∈V |σ(η)=-η}.[提示:∀α∈V ,α=21(α+σ(α))+21(α-σ(α)). ]证明:首先对2)(2)(,ασαασααα-++=∈∀V ,由于=+)2)((ασασ2)(2)()(2ασαασασ+=+,=-)2)((ασασ=-2)()(2ασασ 2)(ασα--所以12)(W ∈+ασα,22)(W ∈-ασα,故21W W V +=.其次对任意的21W W ⋂∈α,则αασ=)(,αασ-=)(.所以0,02==αα.那么V =W 1⊕W 2,结论成立.6. 设V 是复数域C 上一个n 维向量空间, σ, τ是V 的线性变换, 且στ=τσ . 证明(1) 对σ的每一本征值λ来说,V λ={ξ∈V |σ(ξ)=λξ}是τ的不变子空间; (2) σ与τ有一公共本征向量.[提示:证(2)时,考虑τ在V λ上的限制. ] 证明: (1)易证.(2).由(1)可知λV 是τ的不变子空间.则λτV 是λV 的一个线性变换.因此λτV 在复数域C 上一定有一个本征值,不妨设为μ.即存在λαV ∈≠0,使得μαατλ=))((V .而)())((ατατλ=V ,所以α是τ的属于μ的一个本征向量.由α的取法,结论得证.7. 设A 是秩为r 的n 阶半正定矩阵. 证明,W ={ξ∈R n |ξ T A ξ=0}是R n 的n -r 维子空间.[提示:利用习题三第33题的结论,可得W 是齐次线性方程组BX =0的解空间. ]证明:由习题三第33题的结论得:B B A T =,其中B 是秩为r 的n r ⨯矩阵.则)()(ξξξξξξB B B B A T T T T ==,那么0=ξξA T当且仅当0=ξB .=W{}0=∈ξξB Rn.因为秩r B =,所以齐次线性方程组0=Bx 的解空间是r n -维的.即r n W -=dim .8. 设σ,τ是F 上向量空间V 的线性变换,且σ2=σ,τ2=τ. 证明,(1) Im σ=Im τ 当且仅当 στ=τ, τσ=σ; (2) Ker σ=Ker τ 当且仅当 στ=σ, τσ=τ.证明:(1)必要性:设τσm m I I =,,V ∈∀ξ则σξτIm )(∈.令)()(1ξσξτ=,则)()())(()(11ξτξσξσσξστ===.所以τστ=.同理可证στσ=.充分性:设τστ=,στσ=.对任意的σξσIm )(∈,则τξστξτσξσIm ))(())(()(∈==所以τσIm Im ⊆,同理可证στIm Im ⊆. (2)必要性:设Ker σ=Ker τ.对任意的V ∈ξ,因为0)()())((2=-=-ξτξτξξττ所以τξξτker )(∈-,则0))((=-ξξτσ,即)())((ξσξτσ=,故σστ=.同理可证ττσ=.充分性:设ττσ=,σστ=.对任意的σξker ∈,则0)(=ξσ.且0)0())(())(()(====τξστξτσξτ所以τξker ∈,故τσker ker ⊆.同理可证στker ker ⊆.。

化工原理第七章

化工原理第七章

第7 章 习题解答1.含量为0.02(摩尔分数)的稀氨水在20℃时氨平衡的分压为1.66kPa ,氨水上方的总压强为常压,在此含量下相平衡关系服从亨利定律,氨水的密度可近似取1000kg/m 3,试求算亨利系数E 、H 和m 的数值各是多少?解: (1)由 A A Ex p =*可得kPa x p E A A 3.8302.0666.1*===(2) 取1kmol 氨水为基准,其中含0.98kmol 水与0.02kmol 氨,总摩尔体积为 kmol m M M V NH O H /02.098.0332ρ+=氨水的总摩尔浓度为3/6.551702.01898.0100002.098.0132m kmol M M V c NH O H =⨯+⨯=+==ρ 氨的摩尔浓度 A A cx c = 由 Hc pAA=*,可得 )./(667.03.836.55**m kN kmol E c p cx p c H AA A A =====(3)由 822.03.1013.83===P E m 2. 在01.33kPa 、20℃时,氧气在水中的溶解度可用P o2=4.06×106x 表示,式中P O2为氧在气相中的分压,kPa ,x 为氧在液相中的摩尔分数。

试求在此温度及压强下与空气充分接触后的水中,每立方米溶有多少克氧。

解:氧在空气中的摩尔分率为0.21,故666101.330.2121.2821.285.24104.0610 4.0610p py kPap x -==⨯====⨯⨯⨯ 在本题浓度范围内亨利定律适用,由p EM Hp c EM H ssρρ==⇒=*查附录表1可知,20℃时氧在水中的亨利系数E=4.06×106kPa ,因x 值甚小,所以溶液密度可按纯水计算,即取ρ=1000kg/m 3,所以单位体积溶液中的溶质的摩尔浓度为*436100021.28 2.9110/4.061018sc p kmol m EM ρ-==⨯=⨯⨯⨯ 则每立方米溶解氧气质量为*3329.31/c g m ⨯=氧气3.一直径为25mm 的萘球悬挂于静止空气中,进行分子扩散。

第7章 电化学习题解答

第7章 电化学习题解答

电化学习题解答1、计算25℃时浓度均为0.005mol·kg -1的电解质(1)NaCl 和(2)Na 2SO 4溶液的离子强度和离子平均活度因子(采用德拜-休克尔极限公式计算平均活度因子)。

解:(1)0.005mol·kg -1的NaCl 的离子强度:∑=⨯+⨯==005.0)1005.01005.0(2121222Z b I B1209.0070711.071.1)005.0(1171.171.1ln 2121=⨯=⨯==--+±I Z Z γ8861.0)1209.0(==-±e γ(2)0.005mol·kg -1的Na 2SO 4的离子强度:∑=⨯+⨯==0125.0)2005.01005.0(2121222Z b I B 3824.01118.0271.1)0125.0(2171.171.1ln 11=⨯⨯⨯=⨯==--+±I Z Z γ6822.0)3824.0(==-±e γ2、计算0.005mol·kg -1的CdCl 2(γ±=0.219)的离子平均质量摩尔浓度b ±,离子平均活度a ±及电解质的活度B α。

解:离子平均质量摩尔浓度b ±:005.0)1025.1()005.0005.0()(3173121=⨯=⨯==--+±-+νννb b b 离子平均活度a ±:3312110738.11005.0)21(219.0)(--+±±⨯=⨯⨯==-+b b a νννννγ电解质的活度a :93310252.5)10738.1()(--±⨯=⨯==νa a 3、25℃时在一电导池中注入电导率κ1=0.14106S·m -1的KCl 水溶液,测得其电阻为525Ω。

若在该电导池中注入0.1mol·dm -3的NH 3·H 2O 溶液,测得其电阻为2030Ω,求NH 3·H 2O 溶液的电离平衡常数。

高等代数第7章习题解

高等代数第7章习题解

第七章习题解答习题7.11、 在4R 中,设11022213(,,,),(,,,)αβ=-=--,计算:(1)α与β的内积;(2)α与β的长度;(3)α与β的距离;(4)α与β的夹角; 解:(1)22064αβ⋅=++-=-; (2)||||αβ====(3)||αβ-==(4)9cos ||||αβθαβ⋅===-=-所以9,arccosαβπ<>=-2、求齐次线性方程组20x y +=的所有解,说明其任一解与向量(1,2)的关系。

解这个方程组的通解为21x k y ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭,记2112(,),(,)αβ=-=,则0αβ⋅=,所以这两个向量正交。

3、证明:在2R 中,以坐标原点为起点,单位圆周上的点为终点的向量是单位向量。

证明:以坐标原点为起点,单位圆周上的点为终点的向量的长度为1,所以以坐标原点为起点,单位圆周上的点为终点的向量是单位向量。

4、证明定理7.1.2定理内容:(1)()()k k αβαβ⋅=⋅;(2)()αβγαβαγ⋅+=⋅+⋅; (3)00α⋅=;(4)1111()s tsti ij j i j i j i j i j x y x y αβαβ====⎛⎫⎛⎫⋅=⋅ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑证明:设121212(,,,),(,,,),(,,,)n n n a a a b b b c c c αβγ=== ,那么 (1)1122()()()()n n k a kb a kb a kb αβ⋅=+++1122()()n n k a b a b a b k αβ=+++=⋅ (2)111222()()()()n n n a b c a b c a b c αβγ⋅+=++++++11112222()()()n n n n a b a c a b a c a b a c =++++++11221122()()n n n n a b a b a b a c a c a c =+++++++αβαγ=⋅+⋅(3)1200000n a a a α⋅=+++= (4)略5、证明度量矩阵是可逆矩阵。

第7章习题解答

第7章习题解答

第7章思考题及习题7参考答案一、填空1. AT89S52单片机任何一个端口要想获得较大的驱动能力,要采用电平输出。

答:低2.检测开关处于闭合状态还是打开状态,只需把开关一端接到I/O端口的引脚上,另一端接地,然后通过检测来实现。

答:I/O端口引脚的电平3. “8”字型的LED数码管如果不包括小数点段共计段,每一段对应一个发光二极管,有和两种。

答:7,共阳极,共阴极4. 对于共阴极带有小数点段的数码管,显示字符“6”(a段对应段码的最低位)的段码为,对于共阳极带有小数点段的数码管,显示字符“3”的段码为。

!答:7DH,B0H5. 已知8段共阳极LED数码显示器要显示某字符的段码为A1H(a段为最低位),此时显示器显示的字符为。

答:d6. LED数码管静态显示方式的优点是:显示闪烁,亮度,比较容易,但是占用的线较多。

答:无,较高,软件控制,I/O口7. 当显示的LED数码管位数较多时,一般采用显示方式,这样可以降低,减少的数目。

答:动态,成本,I/O端口8. LCD 1602是型液晶显示模块,在其显示字符时,只需将待显示字符的由单片机写入LCD 1602的显示数据RAM(DDRAM),内部控制电路就可将字符在LCD上显示出来。

答:字符,ASCII码-9. LCD 1602显示模块内除有字节的RAM外,还有字节的自定义,用户可自行定义个5×7点阵字符。

答:80,显示数据,64,字符RAM,810.当按键数目少于8个时,应采用式键盘。

当按键数目为64个时,应采用式键盘。

答:独立,矩阵11.使用并行接口方式连接键盘,对独立式键盘而言,8根I/O口线可以接个按键,而对矩阵式键盘而言,8根I/O口线最多可以接个按键。

答:8,6412.LCD 1602显示一个字符的操作过程为:首先,然后,随后,最后。

答:读忙标志位BF,写命令,写显示字符,自动显示字符13.由于微型打印机TPµP-40A/16A是一种外设,因此单片机与微型打印机的的命令与数据传送,必须采用方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 习题解答(部分)[1]用矩形窗设计一个FIR 线性相位低通数字滤波器。

已知πω5.0=c ,51=N 。

求出)(n h 并画出滤波器的幅度响应曲线。

解:由题意得理想线性相位低通滤波器为:⎪⎩⎪⎨⎧≤<≤=-πωωωωωαω 0 )(c c j j d e e H理想低通滤波器的单位冲激响应)(n h d 为:⎰⎰+---==ccd ed eeH n h n j nj j d d ωωαωππωωωπωπ)(21)(21)(⎪⎩⎪⎨⎧=≠--=αααπαωn n n n c 0)()](sin[式中α为线性相位所必须的位移, 2521=-=N α。

因此⎪⎩⎪⎨⎧≤≤--=⋅=其它0500)25()]25(5.0sin[)()()(n n n n R n h n h N d ππ该低通滤波器的幅度响应曲线如图1所示。

[2]。

求出)(n h 解⎪⎩-<≤0 0c d ωπω理想高通滤波器的单位冲激响应)(n h d 为:⎰⎰+----==ccd eed eeH n h nj j nj j d d ωπωπωαπωππωωωπωπ)(21)(21)(ccn j j en j eωπωπαωαπαπ+---=)()(2[])()(sin )1(απαω---=n n c n式中α为线性相位所必须的位移, 1021=-=N α,因此⎪⎩⎪⎨⎧≤≤---=⋅=其它0200)10()]10(5.0sin[)1()()()(n n n n R n h n h n N d ππ该低通滤波器的幅度响应曲线如图2所示。

[3 (1 (2 (3)若改用汉宁窗设计,写出)(n h 的表达式。

解:根据是题意,单位冲激响应)(n h d 为:⎰⎰+---==ccd ee d eeH n h nj aj nj j d d ωπωπωπωπωωωπωπ)(2021)(21)(⎥⎦⎤⎢⎣⎡-==+--+--⎰c cca n j ja a n j ja e a n j ed eeωπωπωπωπωπωππωπ)()()(12121 )(])s i n [()1(a n a n c n---=πω式中a 为线性相位所必须的位移,已知需满足21-=N a 。

(说明:在题中只给定了)(ωj e H 在(π~0)之间的表达式,但在求解时,必须把它看成(ππ~-)或(π2~0)之间的分布,不能只用(π~0)区域求解。

)⎩⎨⎧-≤≤=⋅=nN n n h n R n h n h d d 其它010)()()()((2)情况1:N 为奇数,21-=N a 为整数,)(n h d 关于a 偶对称。

即有)1()(n N h n h --=,为第一种类型线性相位滤波器。

情况2:N 为偶数,21-=N a 不是整数,这时)(n h d 关于a 奇对称,即)1()(n N h n h ---=,因此为第四种类型线性相位滤波器。

(3)[])()()(sin )1(12cos 121)()()(n R a n a n N n n w n h n h N c n d ---⋅⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==πωπ [4]用矩形窗设计一个线性相位带通滤波器⎩⎨⎧=-0)(ωαωj j d e eH πωωωωωωωωωωω≤≤+-≤≤+≤≤-cc c c 0000,0(1)设计N 为奇数时的)(n h 。

(2)设计N 为偶数时的)(n h 。

(3)若改用汉明窗设计,写出以上两种形式的)(n h 表达式。

解:根据该线性相位带通滤波器的相位:ωωαωθ21)(--=-=N可知该滤波器只能是)(n h 为偶对称的情况,)(n h 为偶对称时,可为第一类和第二类滤波器。

(1)当N 为奇数时, )1()(n N h n h --=为第一类滤波器。

理想单位冲激响应)(n h d 为: ωπωππωd e eH n h nj j d d ⎰-=)(21)( ⎰⎰+--+----+=ccccd eed eenj aj nj a j ωωωωωωωωωωωωωπωπ00002121][)(121))(())(())(())((0000c c c c a n j a n j a n j a n j ee e ea n j ωωωωωωωωπ--+-+--+---+--⋅=])c o s [(])s i n [()(20ωαωαπα---=n n n c])cos[(])[(20ωαωαπω--=n n Sa c c所以单位冲激响应)(n h 为:⎩⎨⎧-≤≤=⋅=其它10)()()()(N n n h n R n h n h d d因为])[(c n Sa ωα-和])cos[(0ωα-n 均对α偶对称,所以)(n h d 亦对α偶对称,为保证线性需满足21-=N α。

(2)当N 为偶数时,)1()(n N h n h --=为第二类滤波器])cos[(])sin[()(2)(0ωαωαπα---=n n n n h c d⎩⎨⎧-≤≤=⋅=其它10)()()()(N n n h n R n h n h d d(3)若采用海明窗设计,则)(12cos 46.054.0)(n R N n n w N Ham ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛--=π。

N 为奇数时,)(])cos[(])sin[()(2)(0n w n n n n h Ham c d ωαωαπα---=N 为偶数时,)(])cos[(])sin[()(2)(0n w n n n n h Ham c d ωαωαπα---=[5]低通滤波器的技术指标为⎪⎩⎪⎨⎧≤≤≤01.0)(01.1)(99.0ωωj j e H e H πωππω≤<≤≤35.03.00 用窗函数法设计一个满足这些技术指标的线性相位FIR 滤波器。

解:有已知条件可知0.3p ωπ=,0.35s ωπ=,则过渡带宽0.05s p ωωωπ∆=-=。

20.01α=,220lg 20lg(0.01)40s dB δα=-=-=通过查表,选择汉宁窗。

其阻带最小衰减44dB 满足要求。

所要求的过渡带宽(数字频域)0.05s p ωωωπ∆=-=。

由于汉宁窗过渡带宽满足Nπω2.6=∆,所以滤波器阶的参数为:12405.02.62.6==∆=ππωπNπωωω325.02/)(=+=p s c所以理想低通滤波器的单位冲激响应)(n h d 为: ⎰⎰+---==ccd ed ee H n h a n j nj j d d ωωωππωωωπωπ)(21)(21)()()](sin[a n a n c --=πω式中a 为线性相位所必须的位移,需满足5.6121=-=N a 。

由汉宁窗表达式)(n w Han 确定FIR 滤波器的)(n h 。

由于汉宁窗函数序列为:)(12cos 121)(n R N n n w N Han ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=π 因此,所设计滤波器的单位冲激响应)(n h 为:)(1232cos 1)5.61()]5.61(325.0sin[21)()()(124n R nn n n w n h n h d ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---==πππ [6]用矩形窗设计线性相位低通滤波器,逼近滤波器频率响应)(ωj d e H 满足:⎩⎨⎧=-0)(ωαωj j d e eH πωωωω≤<≤≤c c 0 (1)求出相应于理想低通滤波器的单位冲激响应)(n h d ; (2)求出矩形窗设计法的)(n h 表达式,确定α与N 之间的关系; (3)N 取奇数或偶数对滤波器特性有什么影响? 解:(1)⎰⎰+---==ccd ed eeH n h a n j nj j d d ωωωππωωωπωπ)(21)(21)()()](sin[a n a n c --=πω(2) 为了满足线性相位条件,要求21-=N a ,N 为矩形窗函数长度。

加矩形窗函数得到)(n h :)()()(n R n h n h N d ⋅=)()()](sin[n R a n a n N c ⋅--=πω⎪⎩⎪⎨⎧-=-≤≤--=nN a N n a n a n c 其它 021 ,10 )()](sin[πω(3) N 取奇数时,幅度特性函数)(ωH 关于0,,2ωππ=三点偶对称,可实现各类幅频特性;N 取偶数时,)(ωH 关于ωπ=奇对称,即0)(=πH ,所以不能实现高通、带阻和点阻滤波特性。

[7]请选择合适的窗函数及N 来设计一个线性相位低通滤波器⎩⎨⎧=-0)(ωαωj j d e eH πωωωω≤<≤≤c c 0要求其最小阻带衰减为dB 45-,过渡带宽为51/8π,πω5.0=c ,求出)(n h 并出)(l o g 2010ωj e H 幅度响应曲线。

解:理想低通滤波器的单位冲激响应)(n h d 为:⎰⎰+-----==ccd ed eeH n h a n j nj j d ωωωππωωωπωπ)(21)(21)()()](sin[a n a n c --=πω式中a 为线性相位所必须的位移,需满足21-=N a 。

由阻带衰减s δ来确定窗形状,由过渡带宽确定N 。

由于dB s 45=δ,查表可选海明窗,其阻带最小衰减dB 53满足要求。

所要求的过渡带宽(数字频域)518πωωω=-=∆p s 。

由于采用海明窗,过渡带宽满足Nπω8=∆,所以5151/888==∆=ππωπN2521=-=N a由海明窗表达式)(n w Ham 确定FIR 滤波器的)(n h 。

由于海明窗函数序列为:)(12cos 46.054.0)(n R N n n w N Ham ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=π因此,所求滤波器的单位冲激响应)(n h 为:)()()(n w n h n h Ham d =)(16cos 46.054.0)25()]25(5.0sin[n R n n n N ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=πππ, 500≤≤n [8]用频率采样法设计一个线性相位低通滤波器,32=N ,2/πω=c ,边沿上设一点过渡带39.0)(=k H 。

试求各点采样值)(k H 。

解:因为32=N 为偶数,因此只能是第二种类型滤波器,即)()(k N H k H --=。

由于频率间隔162ππ==∆N F , 因此采样点的相位值为:k k N N k ππθ3231221)(-=⋅--= 而8162⋅==ππωc ,(在k =8处)为保证通带指标,取23,8=k 为过渡点,所以⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-====---- 31,,25,24 )过渡点(2339.022,,10,9 0)过渡点(839.07,,1,0 )( 3231323132313231k ek e k k e k ek H k j k j k j k j ππππ [9]用频率采样法设计一线性相位高通滤波器,通带边界频率4/3πω=p ,边沿上设一点过渡采样点39.0)(=k H ,求在(1)33=N 及(2)34=N 时的采样值)(k H 。

相关文档
最新文档