初中数学教育教学案例

合集下载

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。

本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。

初中数学教学案例3篇

初中数学教学案例3篇

初中数学教学案例第一篇:初中数学教学案例——整数的加减法教学一、教学目标:1.了解整数的概念及其在实际生活中的运用。

2.掌握整数的加减法运算规律。

3.能够解决整数加减法运算实际问题。

二、教学内容:1.整数的概念及运用。

2.整数的加减法运算规律。

3.整数加减法运算实际问题的解决。

三、教学方法:1.概念讲解法。

2.板书法。

3.示范演示法。

4.课堂练习方法。

四、教学步骤:1.导入。

教师通过巧妙的导入,介绍整数是数学中的一种运算类型,从而激发学生的兴趣,让学生主动参与。

2.讲解整数基本概念。

通过生动的例子,引导学生了解整数的基本概念及其符号表示法。

3.掌握整数的加减法运算规律。

介绍整数加减法运算规律,由浅入深地讲解各类运算方法,同时涉及一些特殊情况的处理方法。

4.例题解析和举一反三。

通过逐步解析典型例题、变化多端的例题,让学生逐渐掌握整数加减法运算的方法和技巧,并通过举一反三的方法,培养学生发散思维。

5.课堂练习。

练习题目与教材内容相结合,使学生通过课内课后的集中、分散练习逐步掌握整数加减法运算能力。

6.总结点拨。

通过引导学生对课后练习的检查,发现和分析错误,总结提炼法则,加深认识,巩固知识。

五、教学评估:通过考试、作业、课堂表现等方式,对学生实施模拟和评估,评定学生对整数的掌握程度。

六、教学后记:本课教学过程中,教师要注重学生思维方法、技能和思维复合能力的发展,立足于问题解决,使学生掌握数学核心思想,运用数学技能和工具解决实际问题。

初中数学教学的案例分析【十二篇】

初中数学教学的案例分析【十二篇】

初中数学教学的案例分析【十二篇】【篇一】初中数学教学的案例分析一、平行四边形的定义、性质及判定1、两组对边平行的四边形是平行四边形。

2、性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3、判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4、对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1、定义:有一个角是直角的平行四边形叫做矩形2、性质:矩形的四个角都是直角,矩形的对角线相等3、判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定1、定义:有一组邻边相等的平行四边形叫做菱形(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形(4)菱形的面积等于两条对角线长的积的一半2、s菱=争6(n、6分别为对角线长)3、判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形4、对称性:菱形是轴对称图形也是中心对称图形【篇二】初中数学教学的案例分析1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

初中数学教学案例50篇

初中数学教学案例50篇

初中数学教学案例50篇1. 关于整数的加减乘除运算整数是初中数学中的重要内容,通过本教学案例,学生可以学习整数的加减乘除运算。

首先,教师可以通过具体的例子,如-5+3、-7-4、-2×6、-12÷3等,让学生掌握整数加减乘除的规律和方法。

然后,通过综合运算的练习题,让学生巩固和运用所学知识,提高整数运算的能力。

2. 解一元一次方程的基本步骤一元一次方程是初中数学中的基础内容,通过本教学案例,学生可以学习解一元一次方程的基本步骤。

首先,教师可以通过具体的例子,如2x+3=7、4x-5=11等,让学生掌握解一元一次方程的基本方法。

然后,通过练习题,让学生熟练运用所学知识,提高解方程的能力。

3. 计算平方根的方法和应用平方根是初中数学中的重要内容,通过本教学案例,学生可以学习计算平方根的方法和应用。

首先,教师可以通过具体的例子,如√9、√16、√25等,让学生掌握计算平方根的基本步骤。

然后,通过实际问题的应用,如求直角三角形的斜边长等,让学生理解平方根的意义和作用,提高解决实际问题的能力。

4. 理解和应用百分数的概念百分数是初中数学中的重要内容,通过本教学案例,学生可以学习理解和应用百分数的概念。

首先,教师可以通过具体的例子,如30%、50%、75%等,让学生掌握百分数的意义和计算方法。

然后,通过实际问题的应用,如计算打折优惠、计算增长率等,让学生应用百分数解决实际问题,提高数学运算能力。

5. 掌握正比例和反比例的关系正比例和反比例是初中数学中的重要内容,通过本教学案例,学生可以学习掌握正比例和反比例的关系。

首先,教师可以通过具体的例子,如y=2x、y=3/x等,让学生理解正比例和反比例的定义和特点。

然后,通过练习题,让学生熟练应用正比例和反比例的关系,提高数学解题的能力。

6. 计算三角形的面积和周长三角形是初中数学中的常见几何图形,通过本教学案例,学生可以学习计算三角形的面积和周长。

优秀教研案例初中数学(3篇)

优秀教研案例初中数学(3篇)

第1篇一、案例背景随着新课程改革的深入推进,探究式学习作为一种新型的教学模式,越来越受到广大教师的关注。

在初中数学教学中,如何引导学生进行探究式学习,提高学生的数学素养,成为当前数学教育研究的热点问题。

本案例以“三角形全等的判定”这一教学内容为例,探讨如何开展基于问题解决的探究式学习。

二、案例目标1. 让学生了解三角形全等的判定方法,掌握三角形全等的判定定理。

2. 培养学生提出问题、分析问题、解决问题的能力。

3. 培养学生的合作意识、创新精神和实践能力。

4. 提高学生的数学素养,为后续数学学习奠定基础。

三、案例实施过程1. 导入新课教师通过展示一组三角形,引导学生观察三角形的特点,激发学生的学习兴趣。

接着,教师提出问题:“如何判断两个三角形是否全等?”从而引出本节课的主题——三角形全等的判定。

2. 问题提出教师将学生分成小组,要求每个小组针对以下问题进行讨论:(1)已知三角形ABC和三角形DEF,若AB=DE,BC=EF,∠A=∠D,那么这两个三角形是否全等?(2)已知三角形ABC和三角形DEF,若AB=DE,AC=DF,∠B=∠E,那么这两个三角形是否全等?(3)已知三角形ABC和三角形DEF,若∠A=∠D,∠B=∠E,∠C=∠F,那么这两个三角形是否全等?3. 问题探究(1)小组合作:每个小组针对提出的问题,进行讨论、分析,尝试找出判定三角形全等的条件。

(2)成果展示:各小组汇报讨论结果,教师引导学生总结归纳出三角形全等的判定定理。

4. 案例分析教师结合具体案例,引导学生分析三角形全等的判定定理的应用。

例如,在解决实际问题时,如何利用三角形全等的判定定理来判断两个三角形是否全等。

5. 拓展延伸教师提出以下问题,引导学生进行拓展学习:(1)三角形全等的判定定理有哪些?(2)三角形全等的判定定理在实际问题中的应用有哪些?6. 课堂小结教师对本节课的教学内容进行总结,强调三角形全等的判定定理的重要性,并鼓励学生在今后的学习中,运用所学知识解决实际问题。

初中数学教案案例模板范文(15篇)

初中数学教案案例模板范文(15篇)

初中数学教案案例模板范文(15篇)初中数学教案案例模板范文篇1教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。

教材通过一元二次方程a_2+b_+c=0(a≠0)的根_1、_2得出一元二次方程根与系数的关系,以及以数_1、_2为根的一元二次方程的求方程模型。

然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。

体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:一元二次方程根与系数的关系如果a_+b_+c=0(a≠0)的两根是_1,_2,那么_1+_2=,_1_2=。

问题6.在方程a_+b_+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4a c≥0时,_1+_2=,_1_2=。

初中数学教学教研案例(3篇)

初中数学教学教研案例(3篇)

第1篇一、案例背景随着我国素质教育的深入推进,初中数学教学面临着前所未有的挑战。

如何提高数学教学质量,培养学生的数学素养,成为广大数学教师关注的热点。

本案例以“初中数学课堂有效教学策略研究”为主题,通过分析教学实践中的问题,探讨有效的教学策略,以期为初中数学教学提供有益的启示。

二、案例描述1. 教学情境某初中八年级数学教师在教授“一次函数”这一课时,发现部分学生对函数概念理解困难,课堂参与度不高,教学效果不佳。

2. 教学问题(1)学生对函数概念理解困难,难以将抽象的数学概念与实际生活联系起来。

(2)课堂气氛沉闷,学生参与度不高,教学效果不佳。

(3)教师对课堂管理不够重视,教学过程中存在纪律问题。

3. 教学策略(1)创设情境,激发学生学习兴趣教师通过多媒体展示生活中常见的函数现象,如气温变化、人口增长等,引导学生思考这些现象背后的数学规律。

同时,结合实际问题,让学生尝试用函数知识解释现象,提高学生的兴趣。

(2)采用小组合作学习,培养学生的合作能力教师将学生分成若干小组,每组负责研究一个函数问题。

在小组讨论过程中,学生互相启发,共同解决问题。

教师巡回指导,关注每个学生的学习情况,及时解答学生疑问。

(3)注重教学评价,激发学生学习动力教师采用多元化的评价方式,关注学生的个体差异,给予学生及时的反馈。

在评价过程中,注重学生的进步和努力,激发学生的学习动力。

(4)加强课堂管理,营造良好的学习氛围教师重视课堂纪律,对学生的行为进行规范。

同时,通过表扬优秀学生,树立榜样,营造良好的学习氛围。

三、教学反思1. 创设情境,激发学生学习兴趣是提高教学质量的关键。

教师应关注学生的生活实际,将数学知识与生活相结合,提高学生的学习兴趣。

2. 小组合作学习能够培养学生的合作能力,提高学生的综合素质。

教师应合理安排小组合作学习,关注每个学生的学习情况,确保教学效果。

3. 注重教学评价,关注学生的个体差异,激发学生的学习动力。

初中数学教学案例50篇

初中数学教学案例50篇

初中数学教学案例50篇案例1:整数运算应用问题描述:小明乘以一个整数后得到的结果是-30,如果小明除以这个整数,商是-6。

请问这个整数是多少?解决思路:设这个整数为x,根据题意可以建立如下方程:x * (-30) = -6。

解这个方程可以得到整数x的值。

案例2:解一元一次方程问题描述:有一辆火车从A地出发,以每小时60公里的速度向B 地行驶。

另外一辆从B地出发,以每小时80公里的速度向A地行驶。

两车相遇时,两地相距1200公里,则两车分别行驶多长时间?解决思路:假设两车相遇所行驶的时间为t小时,利用速度和时间的关系可以建立方程:60t + 80t = 1200。

解这个方程可以得到时间t的值。

案例3:等差数列求和问题描述:有一个等差数列,首项是5,公差是2,求这个数列的前10项和。

解决思路:根据等差数列的求和公式,可以得到这个数列的前10项和。

案例4:三角形面积计算问题描述:已知一个三角形的底是5cm,高是8cm,求这个三角形的面积。

解决思路:利用三角形面积的计算公式,可以得到这个三角形的面积。

案例5:平方根运算问题描述:求解方程x^2 = 16的解。

解决思路:通过开平方的运算,可以得到方程的解。

案例6:倍数关系问题描述:某个数的13倍再加上5等于123,请问这个数是多少?解决思路:设这个数为x,可以建立如下方程:13x + 5 = 123。

解这个方程可以得到数x的值。

案例7:解一元二次方程问题描述:解方程x^2 + 5x - 6 = 0。

解决思路:通过解一元二次方程的方法,可以得到方程的解。

案例8:等差数列通项计算问题描述:有一个等差数列,公差是3,第5项是14,求解这个数列的通项。

解决思路:利用等差数列的通项公式,可以得到数列的通项。

案例9:计算百分比问题描述:小明考试得了80分,满分是100分,他的得分占总分的百分之多少?解决思路:通过计算分数所占百分比的方法,可以得到小明的得分在总分中的百分比。

初中数学教学实践案例(3篇)

初中数学教学实践案例(3篇)

第1篇一、案例背景随着新课程改革的不断深入,初中数学教学越来越注重培养学生的逻辑思维能力、空间想象能力和实际问题解决能力。

三角形全等是初中数学教学中的重要内容,也是学生必须掌握的基础知识。

为了提高学生对三角形全等判定方法的理解和应用能力,我设计了一节以“三角形全等的判定方法”为主题的数学课。

二、教学目标1. 知识与技能:掌握三角形全等的判定方法,并能熟练运用这些方法解决实际问题。

2. 过程与方法:通过观察、实验、讨论、归纳等方法,引导学生发现和总结三角形全等的判定方法。

3. 情感态度与价值观:培养学生的逻辑思维能力、空间想象能力和实际问题解决能力,激发学生对数学学习的兴趣。

三、教学重难点1. 教学重点:三角形全等的判定方法,包括SSS、SAS、ASA、AAS、HL。

2. 教学难点:运用三角形全等的判定方法解决实际问题,提高学生的空间想象能力和逻辑思维能力。

四、教学过程1. 导入新课(1)回顾三角形全等的定义,引导学生思考如何判断两个三角形是否全等。

(2)提出问题:有哪些方法可以判断三角形全等?2. 新课讲授(1)教师引导学生观察课本上的三角形全等判定方法,并举例说明。

(2)学生分组讨论,尝试运用SSS、SAS、ASA、AAS、HL等方法证明两个三角形全等。

(3)每组派代表展示证明过程,其他组进行评价和补充。

(4)教师点评学生的证明过程,强调证明方法的选择和逻辑推理的重要性。

3. 巩固练习(1)教师出示一些三角形全等的证明题,要求学生独立完成。

(2)学生互相批改,教师巡视指导。

(3)对学生的解答进行点评,指出错误和不足,引导学生总结经验。

4. 应用拓展(1)教师出示一些实际问题,要求学生运用三角形全等的判定方法解决。

(2)学生分组讨论,尝试找出解题思路。

(3)每组派代表展示解题过程,其他组进行评价和补充。

(4)教师点评学生的解题过程,强调实际问题解决能力的重要性。

5. 总结与反思(1)教师引导学生回顾本节课所学内容,总结三角形全等的判定方法。

初中数学教研组教学案例(3篇)

初中数学教研组教学案例(3篇)

第1篇一、案例背景随着新课程改革的不断深入,初中数学教学面临着前所未有的挑战和机遇。

为了提高教学质量,我校初中数学教研组积极开展教学研究,探索有效的教学方法。

本案例以“探索三角形面积计算方法”为例,阐述教研组在教学研究中的实践与成果。

二、案例描述1. 教学目标(1)知识与技能:掌握三角形面积计算公式,能够运用公式解决实际问题。

(2)过程与方法:通过小组合作、探究、实验等方法,培养学生的动手操作能力和合作学习能力。

(3)情感态度与价值观:激发学生对数学学习的兴趣,培养学生的创新精神和实践能力。

2. 教学内容三角形面积计算方法。

3. 教学过程(1)导入教师通过展示生活中常见的三角形图片,引导学生回顾三角形的概念,激发学生的学习兴趣。

(2)探究新知①小组合作:将学生分成若干小组,每组选择一个三角形,测量其三边长度,并记录下来。

②探究三角形面积计算方法:教师引导学生通过观察、比较、分析等方法,尝试找出三角形面积计算的方法。

③实验验证:教师组织学生进行实验,利用平行四边形面积计算方法,验证三角形面积计算公式的正确性。

④总结归纳:教师引导学生总结三角形面积计算公式,并强调公式的适用范围。

(3)巩固练习教师设计一系列练习题,让学生运用所学知识解决实际问题。

(4)课堂小结教师对本节课的内容进行总结,强调重点和难点,并对学生的学习情况进行评价。

4. 教学反思(1)教学过程中的亮点本节课通过小组合作、探究、实验等方法,激发了学生的学习兴趣,培养了学生的动手操作能力和合作学习能力。

同时,教师注重引导学生总结归纳,使学生能够牢固掌握三角形面积计算公式。

(2)教学过程中的不足在教学过程中,教师对学生的个别辅导不够,导致部分学生对三角形面积计算公式的理解不够深入。

此外,课堂练习题的设计不够丰富,未能充分调动学生的学习积极性。

三、案例总结1. 教学效果本节课的教学效果良好,学生掌握了三角形面积计算公式,并能运用公式解决实际问题。

初中生数学实践教学案例(3篇)

初中生数学实践教学案例(3篇)

第1篇一、案例背景随着新课程改革的不断深入,数学教育越来越注重实践性,旨在培养学生的数学思维能力、解决问题的能力和创新精神。

初中数学教学也不例外,为了提高学生的数学素养,教师需要将数学知识与实践相结合,设计富有实践性的教学活动。

本文以“三角形全等的证明”这一教学内容为例,阐述如何进行初中数学实践教学。

二、案例目标1. 知识与技能目标:通过实践探究,使学生掌握三角形全等的判定方法,并能运用所学知识解决实际问题。

2. 过程与方法目标:通过小组合作、探究讨论等方式,培养学生的团队协作能力和创新思维。

3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生严谨求实的科学态度。

三、案例实施1. 教学过程(1)创设情境,导入新课教师通过展示生活中常见的三角形全等现象,如:剪纸、拼图等,激发学生的学习兴趣,引导学生思考三角形全等的判定方法。

(2)小组合作,探究新知教师将学生分成若干小组,每组选择一种三角形全等的判定方法(SSS、SAS、ASA、AAS),进行小组合作探究。

① 小组讨论:分析三角形全等的判定方法,找出其适用条件。

② 小组汇报:各小组汇报探究成果,教师点评并总结。

③ 实践应用:教师给出几个实际问题,让学生运用所学知识进行解答。

(3)巩固练习,提升能力教师设计一系列三角形全等的证明题目,让学生在练习中巩固所学知识,提高解题能力。

(4)总结反思,拓展延伸教师引导学生总结本节课所学内容,并提出拓展延伸问题,如:三角形全等的性质、三角形相似等。

2. 教学方法(1)情境教学法:通过创设生活情境,激发学生的学习兴趣。

(2)小组合作探究法:通过小组合作,培养学生的团队协作能力和创新思维。

(3)练习巩固法:通过设计练习题,让学生在练习中巩固所学知识。

四、案例反思1. 教学效果本节课通过实践探究,使学生在轻松愉快的氛围中掌握了三角形全等的判定方法,提高了学生的数学素养。

2. 教学反思(1)注重实践性:将数学知识与实践相结合,提高学生的实践能力。

初中数学教学案例(精选8篇)

初中数学教学案例(精选8篇)

初中数学教学案例(精选8篇)1. 线性方程组的解法教学目标:理解线性方程组的概念,掌握解法方法。

教学内容:线性方程组的定义,解法方法,实例演练等。

教学过程:教师引导学生理解线性方程组的概念,引入解法方法,通过实例演练提高学生的解题能力。

教学效果:学生在实践中掌握了线性方程组的解法方法,能够独立完成相关题目。

2. 平面几何与三维几何的联系教学目标:认识平面几何与三维几何的联系,培养学生的几何思维。

教学内容:平面几何与三维几何的基本概念及联系,实例演练。

教学过程:教师通过生动的例子和图像让学生了解平面几何与三维几何的联系,鼓励学生发挥几何思维来解决相关问题。

教学效果:学生掌握了平面几何与三维几何的联系,培养了几何思维。

3. 十字相乘法因式分解教学目标:掌握十字相乘法因式分解的方法。

教学内容:十字相乘法因式分解的概念,方法和实例演练。

教学过程:教师通过具体的实例,引导学生理解十字相乘法因式分解的方法,提高学生的解题能力。

教学效果:学生掌握了十字相乘法因式分解的方法,能够独立解题。

4. 直线与平面的位置关系教学目标:了解直线与平面的位置关系,培养学生的几何思维。

教学内容:直线与平面的基本概念、位置关系及公式推导,实例演练。

教学过程:教师通过生动的图像,引导学生了解直线与平面的位置关系,鼓励学生发挥几何思维来解决相关问题。

教学效果:学生掌握了直线与平面的位置关系,培养了几何思维。

5. 平移、旋转和翻转变换教学目标:了解平移、旋转和翻转变换的概念及应用。

教学内容:平移、旋转和翻转变换的基本概念,公式推导及实例演练。

教学过程:教师以具体的图像为例,引导学生了解平移、旋转和翻转变换的概念及公式推导,并通过实例演练提高学生的应用能力。

教学效果:学生掌握了平移、旋转和翻转变换的概念及应用。

6. 加减法与倍数基本关系教学目标:认识加减法与倍数基本关系,掌握解题方法。

教学内容:加减法与倍数基本关系的定义,解题方法及实例演练。

初一数学教学实践案例(3篇)

初一数学教学实践案例(3篇)

第1篇一、案例背景随着新课程改革的不断深入,我国初中数学教学越来越注重培养学生的数学思维能力和实践能力。

图形变换是初中数学的重要内容,它不仅有助于学生理解图形的内在联系,还能培养学生的空间想象力和几何直观能力。

为了提高学生对图形变换中对称性的认识,本案例以“探究图形变换中的对称性”为主题,通过一系列教学活动,引导学生深入理解对称性的概念及其在图形变换中的应用。

二、案例设计(一)教学目标1. 知识与技能:理解轴对称图形的概念,掌握轴对称变换的基本方法,能够识别和构造轴对称图形。

2. 过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、动手操作能力和合作学习能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的审美情趣和探究精神。

(二)教学重点与难点1. 教学重点:轴对称图形的概念,轴对称变换的基本方法。

2. 教学难点:轴对称图形的识别和构造,轴对称变换的应用。

(三)教学过程1. 导入新课- 教师展示生活中常见的轴对称图形,如蝴蝶、剪纸等,引导学生观察并思考这些图形的特点。

- 学生分享观察到的特点,教师总结:这些图形都是关于某条直线对称的,这条直线就是它们的对称轴。

2. 探究活动- 教师分发轴对称图形的模板,让学生动手操作,将图形沿对称轴折叠,观察折叠后的结果。

- 学生汇报操作过程和结果,教师引导学生总结出轴对称图形的定义:如果一个图形沿某条直线折叠后,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形。

- 教师讲解轴对称变换的基本方法:将图形沿对称轴折叠,然后将折叠后的图形展开,得到新的图形。

3. 案例分析- 教师展示一些生活中的轴对称图形,如建筑、家具等,让学生分析这些图形的对称轴和对称性。

- 学生分组讨论,教师巡视指导,帮助学生总结出识别和构造轴对称图形的方法。

4. 练习巩固- 教师布置练习题,让学生独立完成,巩固所学知识。

- 学生展示解题过程,教师点评并总结。

5. 总结反思- 教师引导学生回顾本节课的学习内容,总结轴对称图形的概念、轴对称变换的方法以及应用。

初中数学教学设计优秀案例(分享九篇)

初中数学教学设计优秀案例(分享九篇)

初中数学教学设计优秀案例(分享九篇)初中数学教学设计优秀案例(分享九篇)。

初中数学教学设计优秀案例篇1一学期的工作结束了,可以说紧张忙碌却收获多多。

回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:一、在备课方面在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面在课堂教学中我一直注重学生的参与。

让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。

波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。

”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。

但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。

后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。

对学生的自主学习,合作学习,缺乏理论指导4)、差生末抓在手。

由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。

上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。

导致了教学中的盲目性。

四、今后努力的方向1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。

2023年最新的初中数学优秀教学案例范文三篇

2023年最新的初中数学优秀教学案例范文三篇

2023年最新的初中数学优秀教学案例范文三篇第一篇: 初中数学优秀教学案例一、背景新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。

在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。

二、教学片段在刚过去的这个学期,我上了一节一元一次不等式组的应用。

出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。

这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。

猜猜看,小宝的体重约多少千克?我问学生:你们玩过跷跷板吗?先看看题,一会请同学复述一下。

学生复述后,基本已经熟悉了题目。

我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:爸爸体重>小宝体重+妈妈体重爸爸体重<小宝体重+妈妈体重+一副哑铃重量我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。

一学生举手了:可以列不等式组。

我给出提示:小宝的体重应该同时满足上述的两个条件。

怎么把这个意思表达成数学式子呢?这时学生们七嘴八舌地讨论起来,都抢着回答,我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:可以设小宝的体重为x千克,能列出两个不等式。

可是接下来我就不知道了。

我听了心中一动,意识到这应是思想渗透的好机会,便解释说:我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组不等我说完,学生都齐声答:列不等式组。

全班12小组积极投入到解题活动中了。

5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教育教学案例《数学课程标准》指出,数学课程"不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上"。

①在以"课例为载体"的教师行动教育中,我们通过设计折纸活动让学生动手实践,自主探索与合作交流,丰富了学生的学习方式和教师的教学方式,在此过程中,学生找到了学习的乐趣,而教师对数学教与学的方式也有了新的认识。

一、设计折纸活动的背景。

"三角形的中位线"一直是各种版本的初中几何教材中的经典内容,很多公开课都选了这个内容。

但在大量的听课与教学中,我们发现,对三角形中位线性质的证明,是一个教学难点,只有少数优秀学生能在课上独立完成,大多数学生在证明中面临困难。

如何有效地解决这个教学难点是我们课例研究的出发点。

众所周知,用"操作"、"观察"、"猜想"、"分析"的手段去感悟几何图形的性质是学习几何的重要方法。

由此,我们想到了从学生已有的生活经验、数学基础出发,重新设计"三角形的中位线"的教学过程。

让学生从研究"折纸中的图形性质"探索出三角形的中位线性质并加以说明。

一方面,折纸活动本身能唤起学生很多美好的回忆,如折纸飞机、纸帆船、千纸鹤、宝葫芦等。

另一方面,折纸活动又是一种有效的操作活动,学生可以通过自己动手操作来感悟图形的几何性质,运用图形运动去发现问题、分析问题。

而且折纸活动本身也承载着许多重要的几何问题,可以提炼出更一般的几何方法,它对于培养学生的学习兴趣、好奇心与探索精神,有重要的价值。

二、教学目标。

1.在折纸的情境中,能综合运用角平分线、线段垂线的性质及与三角形、四边形相关的一些性质和判定。

2.建立生活世界中的一些活动(剪纸与折纸游戏)与几何世界的多种联系,激发学习几何的兴趣。

3.建立几何与现实生活问题的联系,培养数学的思考方式(联想、类比、直觉思维)。

4.经历数学学习过程:观察一探索一猜想一验证,体会科学发现的一般规律。

三、教学过程。

1.创设情境。

师:同学们,你们做过折纸游戏吗?折纸飞机、纸船、纸葫芦、纸鹤等都很有趣。

我们在日常生活中接触最多的纸张是长方形的,如把这样一张纸折起一个角,就得到了一个直角三角形(教师演示),那么怎样用长方形的纸片折出等腰三角形呢?请同学们折一下。

(学生联想以往的折纸方式折纸。

)2.提出问题。

(1)导入问题--把一个直角三角形折成长方形。

师:我们已经知道长方形纸片能折出直角三角形。

现在考虑反方向的问题,即直角三角形纸片能否折成长方形?(学生以小组为单位,进行观察、尝试、讨论折纸,探索折法,表达自己的发现。

)师:(实物投影)我们展开纸片,画出折痕,并标上字母(如图1)。

回想折纸过程,你有什么发现?(教师提示:注意图中线段的位置与长度的关系,图中是否有等腰三角形?哪些三角形全等?)ABGC图1生:(教师边归纳边板书)①EF=GB=GC=BC/2.EG=AF=FC=AC/2.因此E F‖BC,EG‖AC。

②折痕将三角形ABC分成四个全等的直角三角形,两个等腰三角形。

③连接EC,AE=BE=EC=AB/2,∠A+∠B=90°。

师:通过观察我们这张纸(图1),大家知道了E是AB的中点,并且得到三点发现,其中第三点中的两条性质我们以前证明过,今天我们用折纸的方法又一次进行了说明。

请大家过中点G、F作一条折痕,思考这条折痕GF与斜边AB有什么关系?它能不能成为长方形的一边?(2)一般问题--把一个任意三角形折成长方形。

师:现在,我们考虑更一般的问题,即一般三角形的纸片能否折成长方形?请同学们折一折。

(学生尝试用任意三角形折长方形。

教师巡视中指导:同学们可以回想刚才是怎样折的。

活动进行得差不多时,学生在投影仪上演示:用高线转化成两个直角三角形的折叠过程。

)师:我们打开纸片展平,画出所有折痕,并标上字母(如图2)。

从刚才的折纸活动中,你发现了这个图形中线段、角和三角形之间存在哪些位置、形状、数量关系?请各小组的同学讨论一下,发表小组讨论结果。

ABGDHC图2(教师边归纳边板书学生讨论的结果。

)①关于中点:AE=BE=AB/2,AF=CF=AC/2.BG=DG=BD/2.CH=DH=CD/2;②斜边上中线:DE=AB/2,DF=AC/2;③关于中位线:EF=BC/2,GE=AD/2。

FH=AD/2。

3.提出猜想。

师:你认为在什么条件下才能得到一条线段是另一条线段的一半长?学生发现:①线段的中点;②直角三角形斜边上的中线;③三角形两边的中点连线。

师:我们实际上是找到了△ABC两条边上的中点E、F,我们把连接三角形两边中点的线段叫做三角形的中位线。

现在你们猜测一下这个中位线与第三边有什么样的关系?(学生提出猜想:三角形的中位线平行于第三边,并且等于它的一半。

)4.说明结论。

师:刚才大家猜出了三角形中位线的性质,现在你是否能验证这个性质并加以说明。

(学生折纸,用折纸比较各条边长及各个角的大小。

)师:小组内讨论一下,如何验证?如何说明?(教师巡视中指导:你的说明要让别人相信你是正确的。

)哪位同学愿意来这里(讲台)向大家说明!你们还有什么疑问提出来。

(学生相互说明与辩论。

在实物投影仪上说明①∠A+∠B+∠C=180。

;②四边形EFHG是长方形。

)师:我们一起发现了三角形中位线的性质:三角形的中位线平行且等于第三边的一半,并通过折纸方法进行了验证与说明,以后我们还要进一步证明与应用这个性质。

5.交流体验。

师:这节课你知道了什么?学会了什么?有什么发现?有什么体会?还有什么问题与困惑?生1:这节课使我知道了折纸中也有数学道理,感觉到生活中处处有数学,今后要多观察,多思考。

生2:我在用直角三角形折长方形时,与组里其他同学的折法不一样,经比较发现折的长方形没有其他同学的大。

我又折了几次发现这样拆(手举如图1方式的折纸)……面积是最大的,是三角形面积的一半。

生3:我觉得用折纸比较线段和角的关系很方便,比如说可以同时折两个一样的图形比来比去……容易通过做产生出猜想,今后学几何要多用这种方法。

师:同学们,我们在折纸操作中,通过观察,发现关系,形成猜想,并证明我们的猜想,得出结论。

这是人们发现新知识的重要方法。

6.布置作业。

师:今天课后的作业是用正方形的纸片折叠图形,按工作单进行操作与探究,从中发现问题。

四、教学活动后教研从上述过程可以看出,教学活动的过程经历了创设情境、提出问题、提出猜想、说明结论、交流体验与布置作业6个环节。

在随后的教研活动中教师们对如下几个问题进行讨论,引发了我们更多的思考。

1.关于活动式教学。

活动教学方式,主要强调学生从已有生活经验出发、在动手操作的活动过程中学习,进而完成对知识的主动建构。

但是数学探究活动的发生又不同于科学探究活动,具体实物材料的摆弄和操作(折纸活动)只是"外在的活动",而实质性的数学探究往往发生在学生的头脑里--教师的任务就是使学生经历"直观一感性认识一理性思考"的活动过程,同时体验和感受数学发现过程(从猜想到说明/证明)的欣喜和挑战。

而"折纸中的图形性质"这一课例无疑关注了学生对过程性知识的学习并增强了学生对数学学习过程的情感体验。

布鲁纳也指出:"我们教一门科目,并不是希望学生成为该科目的一个小型书库,而是要他们参与获得知识的过程。

学习是一种过程,而不是结果。

"②可见,让学生在活动中"学会学习"本身比"学会什么"更重要。

2。

关于问题情境的设计。

杜威的"教学五步"③反映了他"做中学"的教育思想,具体地体现为教师在教学中要为学生准备一个应用经验的真实情境--与学生现实生活经验相联系的情境;与此同时给予一些暗示,使学生有兴趣了解某个问题。

本课例中"把三角形折成一个长方形"是以折纸情境中产生的真实问题作为思维的刺激物,来激发学生迈向几何性质的学习。

教师不是把现成的教材提供给学生,而是要学生参与到活动中去,启发与引导学生从自己的生活经验以及折纸活动中"自然"产生出方法(实际上是学生已有生活经验的有效运用),来应对折纸情境中所产生的问题、考虑从前没有认识到的事物,使经验有真正的增长,形成新性质的经验。

而且在情境的实践活动中存在着大量的默会知识,所以实施有效的活动式教学的关键在于处理好显性知识与默会知识学习的四种关系--即言传、内化、外显、意会的有机整合;。

④并在此基础之上,有效地进行知识的传承与创新。

⑤3.关于培养学生数学地思维。

数学的特点之一是高度抽象。

如抽象的概念、抽象的关系,但它们都有非常多的现实背景。

该课例在教学设计中关注了这个特点,力图体现数学事实的现实背景,并从中选取与学生生活世界密切相关的情境,使学生思维的抽象过程犹如"自然"发生。

这样,学生感受到了鲜活的数学而不仅仅是它冰冷的美丽。

数学的另一特点是严密性,表现为逻辑严格与计算精确,这种严密过程正体现了人类认识的逐渐深化。

在课例中,我们也注意了学生的认知特点,在"直观几何"到"证明几何"的严谨化过程之中做一过渡,进行几何说明,即要求学生做到"让别人信服你是正确的"。

以此启蒙证明与反驳的思维方式。

同时,这反映了一个逐渐追求严谨的过程。

在课例设计的问题解决活动中,体现了一些数学家常用的思想方法:(1)思考问题的逆(反方向)问题,以提出新问题(如从"用常见的长方形纸折出三角形问题"到反过来的"用三角形纸折长方形问题");(2)从一般问题的特例(直角三角形折为长方形)人手,寻找问题解决的思路;(3)把一个一般性问题(一般三角形折为长方形)转化为解决过的问题(直角三角形折成长方形)的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想(折纸中变化的线段长度与长度的倍半关系)。

4.关于活动课过程的展开。

活动课中学生的数学活动如何展开?这取决于多种因素,主要有教师特点、学生基础、内容水平、方法运用与情境引入,等等。

毫无疑问,学生的主动探索与尝试是活动课展开的核心,这里教师如何引导是非常关键的。

在设计教师的引导活动时,我们经历了"验证学过定理(复习)还是发现(数学)问题","以知识结构组织方式作为主要路线还是以认知活动序进为主要线索"及"活动中默会层面的知识如何感悟"等问题的困扰,曾几易教学设计,几次实践探索。

相关文档
最新文档