《一元一次方程的应用》教案
《一元一次方程》的优秀教案(9篇)精选全文完整版
可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程的应用 教学设计
一元一次方程的应用【教学目标】(一)知识与技能1.知道一元一次方程解简单应用问题的方法和步骤,并会列出一元一次方程解简单的应用题;2.从不同的实际问题中分析数量关系,会从各种实际问题中恰当地把握不同形式的等量关系。
(二)过程与方法1.通过运用方程解决实际问题,体会运用方程解决实际问题的一般过程。
提高分析问题和解决问题的能力。
2.让学生独立思考、积极探究,从而发现解决问题的最佳方案。
(三)情感态度价值观:通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情。
【教学重难点】1.重点:一元一次方程解应用题的方法和步骤;用列方程的方法解决各类不同的实际问题。
2.难点:弄清问题,合理地选择未知数,正确地列出方程。
【教学方法】采用直观分析法,引导发现法及尝试指导法充分发挥学生的主体作用。
【教学准备】投影仪。
【课时安排】4课时【教学过程】【第一课时】一、情境导入一起探究:1.本题中已知量有哪些?答:(1)大、小两台拖拉一天耕地19公顷。
(2)大拖拉机耕地的面积比小拖拉机耕地面积的2倍还多1公顷。
2.求什么?3.本题中含有的所求数量的等量关系是什么?答:拖拉机一天耕地公顷数+小拖拉机一天耕地公顷数=19。
4.若设小拖拉机一天耕地x 公顷,那么能求出大拖拉机一天的耕地面积,进而列出方程求得x 吗?谈谈你的认识和做法。
用投影展示学生解题过程。
解:设小拖拉机一天耕地x 公顷,依题意,列方程:解这个方程,得。
故或19-6=13.答:小拖拉机一天耕地6公顷,大拖拉机一天耕地13公顷。
5.若本题设大拖拉机耕地x 公顷,那么该选项哪个等量关系列方程比较好呢?请你试一试,并比较两种解法。
解法二:等量关系为:大拖拉机一天耕地公顷数=2×小拖拉机一天耕地公顷数+1。
即显然解法一简便。
通过上面问题的解答,你能说出列一元一次方程解运用问题的一般步骤吗?一般步骤如下:1.认真审题,找出能够表达题目含义的等量关系;2.分析等量关系中,已知量与未知量的关系,适当设未知数x ;3.将等量关系中,其余的未知量用含x 的代数式表示,再根据等量关系,列出方程;4.解这个方程;5.检验答案是否合理、正确(不必写出来)。
一元一次方程的应用教学设计
一元一次方程的应用教学设计一、课程背景该课程是初中数学中的一节课,属于代数学的一块内容:一元一次方程。
在该课中,主要涉及到一元一次方程的基本概念、性质、解法和应用等。
二、教学目标1.掌握一元一次方程的实际应用场景;2.学会解决实际问题中的一元一次方程,并理解解决问题的过程;3.培养学生的思考和解决问题的能力。
三、教学重难点重点1.一元一次方程的应用场景;2.解题技巧。
难点1.如何抓住实际问题,构造一元一次方程;2.如何解决复杂的实际问题。
四、教学内容与方法1. 内容1.一元一次方程的基础知识回顾;2.实际应用场景;3.实际问题的解法。
2. 方法1.问题导入:通过生活实例引导学生思考一元一次方程的实际应用,激发学生学习的兴趣。
2.教师示范:通过具体的实例,讲解构造方程的方法和解题技巧,并配合问题解答,帮助学生逐步掌握一元一次方程的实际应用。
3.班内讨论:提供给学生一些练习题,并通过班内讨论的方式,让学生有机会分享自己的解题思路,并互相学习借鉴。
五、教学步骤1. 导入生活中遇见的问题,引出一元一次方程的应用场景。
2. 讲解通过一个具体的案例,介绍实际应用场景,并辅以教师解答和学生思考。
3. 上机操作提供给学生练习题,并引导学生构造一元一次方程,帮助学生通过实践练习和实例解析掌握一元一次方程的解法。
4. 讨论分组讨论,让学生有机会分享自己的解题思路,并互相学习借鉴,进一步提高学生的思考和解题能力。
六、教学评估1. 内容评估通过老师的现场评估或随堂测试,对学生的掌握程度进行评估。
2. 能力评估评估学生解决实际问题的思考和解题能力。
七、教学参考资料1.《初中数学》(七年级);2.《小学数学遇到数学难题怎么办》(作者:彭婉芳);3.《人民教育出版社初中数学》(作者:杨东风、李秋枫)。
浙教版数学七年级上册5.4《一元一次方程的应用》教学设计
浙教版数学七年级上册5.4《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是浙教版数学七年级上册第五章第四节的内容。
这部分内容是在学生已经掌握了方程的解法的基础上进行的,旨在让学生能够运用一元一次方程解决实际问题。
教材通过引入实际问题,引导学生列出方程,并运用方程的解法求解,从而培养学生解决实际问题的能力。
二. 学情分析学生在学习这一节内容之前,已经学习了方程的基本概念和解法,对解方程有一定的理解。
但学生在解决实际问题时,可能还不太会运用方程,需要通过实例的引导和练习,来提高学生运用一元一次方程解决实际问题的能力。
三. 教学目标1.知识与技能目标:学生能够理解一元一次方程在实际问题中的应用,学会列方程解决实际问题。
2.过程与方法目标:通过实例的引导,学生能够独立思考,列出方程,并运用解法求解,提高解决实际问题的能力。
3.情感态度与价值观目标:学生能够感受到数学与生活的联系,培养学习数学的兴趣。
四. 教学重难点1.重点:学生能够理解一元一次方程在实际问题中的应用,学会列方程解决实际问题。
2.难点:学生能够独立思考,列出方程,并运用解法求解实际问题。
五. 教学方法采用问题驱动的教学方法,通过实例的引入,引导学生思考,自主列出方程,并运用解法求解。
同时,采用小组合作学习的方式,让学生在讨论中加深对一元一次方程应用的理解。
六. 教学准备1.准备相关实例,用于引导学生思考和练习。
2.准备课件,用于展示和解说一元一次方程的应用。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何用数学方法来解决实际问题。
例如,某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
2.呈现(10分钟)呈现更多的实际问题,让学生独立思考,列出方程,并求解。
例如,一个长方形的长比宽多5厘米,长方形的周长是30厘米,求长方形的面积。
3.操练(10分钟)学生分组讨论,每组选择一个实际问题,列出方程,并求解。
新人教版七年级数学上册3.4 《一元一次方程的应用》教学设计2
新人教版七年级数学上册3.4 《一元一次方程的应用》教学设计2一. 教材分析新人教版七年级数学上册3.4《一元一次方程的应用》是学生在掌握了方程的解法和性质的基础上,进一步学习方程在实际问题中的应用。
本节内容通过解决实际问题,让学生理解一元一次方程在生活中的意义,培养学生运用数学知识解决实际问题的能力。
教材通过丰富的案例,引导学生发现方程、列出方程、求解方程,从而达到解决实际问题的目的。
二. 学情分析七年级的学生已经掌握了方程的基本解法和性质,对一元一次方程有一定的理解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为方程,缺乏将数学知识应用到实际问题中的意识。
因此,在教学本节内容时,需要引导学生发现方程、列出方程,并培养学生运用数学知识解决实际问题的能力。
三. 教学目标1.理解一元一次方程在实际问题中的应用,培养学生运用数学知识解决实际问题的能力。
2.学会将实际问题转化为方程,掌握一元一次方程的求解方法。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.教学重点:引导学生发现方程、列出方程,并求解方程。
2.教学难点:如何将实际问题转化为方程,理解方程在实际问题中的意义。
五. 教学方法1.情境教学法:通过丰富的案例,引导学生发现方程、列出方程,求解方程。
2.小组讨论法:学生分组讨论,培养团队协作能力和逻辑思维能力。
3.练习法:通过适量练习,巩固所学知识。
六. 教学准备1.教学PPT:制作包含丰富案例的教学PPT。
2.练习题:准备适量的一元一次方程应用题。
3.教学道具:准备一些实物道具,以便于学生更好地理解实际问题。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学知识解决这些问题。
例如,某商场举行促销活动,购买一件商品需要支付x元,现在有100元,问最多能购买几件商品?2.呈现(10分钟)展示教材中的案例,讲解如何将实际问题转化为方程。
以教材中的案例为例,假设一个人每小时走5千米,问这个人走x千米需要多少时间?引导学生列出方程,并求解方程。
浙教版数学七年级上册5.3《一元一次方程的应用》教学设计
浙教版数学七年级上册5.3《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是浙教版数学七年级上册第五章第三节的内容。
本节内容是在学生学习了代数式、方程的概念以及一元一次方程的解法的基础上进行的。
本节主要让学生学会运用一元一次方程解决实际问题,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们对一元一次方程的解法也已经有所了解。
但是,学生在解决实际问题时,可能会对问题分析不够清晰,找不准等量关系,因此在教学过程中,需要教师引导学生分析问题,找到问题的等量关系,从而解决问题。
三. 教学目标1.知识与技能:学生会运用一元一次方程解决实际问题,提高解决问题的能力。
2.过程与方法:学生通过解决实际问题,培养逻辑思维能力和分析问题的能力。
3.情感态度与价值观:学生体验数学与生活的联系,提高学习数学的兴趣。
四. 教学重难点1.重点:学生会运用一元一次方程解决实际问题。
2.难点:学生能准确找到实际问题的等量关系,建立方程。
五. 教学方法采用情境教学法、引导发现法、合作交流法等,教师引导学生分析问题,找到问题的等量关系,从而解决问题。
六. 教学准备1.教师准备相关的实际问题,用于引导学生解决实际问题。
2.教师准备多媒体教学设备,用于展示问题和解答过程。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一些实际问题,让学生观察并思考,这些问题可以用数学方法解决吗?如何解决?2.呈现(15分钟)教师展示一个实际问题,例如“甲、乙两地相距120千米,甲地有一辆汽车以每小时60千米的速度前往乙地,问几小时后汽车离甲地90千米?”让学生尝试解决。
3.操练(20分钟)教师引导学生分析问题,找到等量关系,建立方程。
例如,汽车离甲地的距离可以表示为:汽车速度 × 时间 = 路程 - 90千米。
让学生分组讨论,尝试解方程。
4.巩固(15分钟)教师让学生回答问题,并解释解题过程。
一元一次方程的应用教案(通用5篇)
一元一次方程的应用教案(通用5篇)一元一次方程的应用篇1一、教学分析:本节课设计简析:本节课内容是列方程解应用题,主要是小学解应用题和中学解应用题的衔接,让学生感受数学与现实生活息息相关,并且体验数学的趣味性,提高学习数学的积极性。
二、教学目标:(一)知识目标:1、通过身边的故事,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。
2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。
(二)能力目标:1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。
2、培养学生的观察、分析能力以及用方程思维解决问题的能力。
(三)情感目标:1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。
2、在分析应用题的过程中,培养学生勇于探索、自主学习的精神。
感受到生活中处处存在数学,体验数学的趣味性教学重点、难点:能分析题意,正确找出题中的等量关系,列出方程解决问题。
教学过程:一、温故:分别算出下列绳子的总长度【设计意图:为下面的例题做好铺垫】二、新课引入:我今天给大家讲一个故事,故事的主人翁是丢番图,希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一:再过五年,他有了儿子,感到很幸福;可是,儿子只活了他父亲全部生命的一半;儿子死后,他又在极度的悲伤中度过了四年,也与世长辞了。
” 根据以上的信息,请你计算出:丢番图死时多少岁;或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为84,168但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让-卡尔门特,他在1997年8月4日去世时享年122岁。
所以丢番图的年龄为84岁。
【设计意图:这个题目有一定的难度和趣味性,可以在开课时吸引全班学生的注意力,同时这个题目可以用方程解法和算式解法,甚至还可以用以前学过的倍数来解决,解题方法多样性,可以锻炼学生的思维,也可以做到小学用算式和中学列方程解应用题的衔接。
一元一次方程应用教案
一元一次方程应用教案第一章:一元一次方程的概念与性质一、教学目标:1. 了解一元一次方程的概念及其的一般形式。
2. 掌握一元一次方程的解法及其性质。
3. 能够应用一元一次方程解决实际问题。
二、教学内容:1. 一元一次方程的概念:介绍一元一次方程的定义,解释方程中的未知数、系数等概念。
2. 一元一次方程的一般形式:展示一元一次方程的标准形式,即ax + b = 0。
3. 一元一次方程的解法:介绍解一元一次方程的方法,如移项、合并同类项、化简等。
4. 一元一次方程的性质:讲解一元一次方程的解的性质,如唯一性、实数性等。
三、教学方法:1. 采用讲授法,讲解一元一次方程的概念、性质和解法。
2. 利用例题,演示一元一次方程的解题过程。
3. 开展小组讨论,让学生共同探讨一元一次方程的解法及其应用。
四、教学评估:1. 课堂练习:布置相关习题,巩固学生对一元一次方程的理解。
2. 课后作业:布置综合性的习题,检验学生对一元一次方程的应用能力。
3. 课堂提问:引导学生积极参与课堂讨论,检查学生对一元一次方程知识的掌握程度。
一、教学目标:1. 掌握一元一次方程在实际问题中的应用。
2. 能够正确列出并解决实际问题中的一元一次方程。
3. 培养学生的数学思维能力,提高解决实际问题的能力。
二、教学内容:1. 实际问题中的一元一次方程:介绍实际问题中的一元一次方程,如长度、重量等问题。
2. 列方程:讲解如何将实际问题转化为一元一次方程,强调正确列出方程的重要性。
3. 解方程:演示如何利用一元一次方程的解法解决实际问题,如求解长度、重量等问题。
三、教学方法:1. 采用案例分析法,让学生通过实际问题理解一元一次方程的应用。
2. 利用多媒体演示,直观展示一元一次方程在实际问题中的应用。
3. 开展小组合作,让学生共同解决实际问题中的一元一次方程。
四、教学评估:1. 课堂练习:布置实际问题相关的习题,巩固学生对一元一次方程的应用。
2. 课后作业:布置综合性的实际问题,检验学生对一元一次方程解决实际问题的能力。
一元一次方程组的应用教案
一元一次方程组的应用教案一、教学目标1. 理解一元一次方程组的定义及其解法。
2. 能够运用一元一次方程组解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 一元一次方程组的定义及解法。
2. 一元一次方程组在实际问题中的应用。
三、教学重点与难点1. 教学重点:一元一次方程组的解法及其应用。
2. 教学难点:一元一次方程组在实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生自主探究一元一次方程组的解法。
2. 通过实例分析,让学生学会将实际问题转化为方程组求解。
3. 利用小组讨论法,培养学生的合作意识与沟通能力。
五、教学过程1. 引入新课:通过讲解生活中的实际问题,引导学生认识一元一次方程组。
2. 讲解概念:讲解一元一次方程组的定义及其解法。
3. 例题解析:分析并解答几个典型的一元一次方程组实例。
4. 实践操作:让学生尝试解决一些实际问题,运用一元一次方程组求解。
6. 课后作业:布置一些有关一元一次方程组的练习题,巩固所学知识。
六、教学评价1. 评价目标:检查学生对一元一次方程组的理解和应用能力。
2. 评价方法:通过课堂练习、课后作业和小组讨论,评估学生的学习效果。
3. 评价内容:a. 一元一次方程组的定义和解法的掌握程度。
b. 学生运用一元一次方程组解决实际问题的能力。
c. 学生在小组讨论中的参与度和合作能力。
七、教学资源1. 教学课件:用于展示一元一次方程组的定义、解法及实例。
2. 实际问题案例:用于引导学生将理论知识应用于实际问题解决。
3. 练习题库:用于课后作业和课堂练习,巩固所学知识。
4. 小组讨论工具:如白板、记号笔等,用于小组讨论和分享。
八、教学拓展1. 对比学习:介绍一元一次方程与一元一次方程组的区别与联系。
2. 难度提升:逐步引入更复杂的一元一次方程组,提高解题难度。
3. 实际应用:探讨一元一次方程组在其他领域的应用,如金融、物理等。
九、教学反思1. 反思内容:a. 学生对一元一次方程组的掌握程度。
沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1
沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1一. 教材分析《3.2 一元一次方程的应用》是沪科版数学七年级上册的一个重要章节。
本章主要通过实际问题引导学生学习一元一次方程的解法和应用。
教材内容主要包括:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
本节课的重点是一元一次方程的应用,难点是如何将实际问题转化为方程。
二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。
但是,对于如何将实际问题转化为方程,以及如何运用方程解决实际问题,学生可能还比较陌生。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解方程在实际问题中的应用。
三. 教学目标1.理解一元一次方程的定义,掌握一元一次方程的解法。
2.能够将实际问题转化为方程,运用方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:一元一次方程的应用。
2.难点:如何将实际问题转化为方程。
五. 教学方法1.讲授法:教师通过讲解,引导学生理解一元一次方程的定义和解法。
2.案例分析法:教师通过具体的例子,引导学生将实际问题转化为方程。
3.练习法:学生通过做练习题,巩固所学知识。
六. 教学准备1.教材:沪科版数学七年级上册。
2.教案:详细的教学设计。
3.课件:用于辅助教学的课件。
4.练习题:用于巩固所学知识的练习题。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考如何将问题转化为方程。
例如:小明买了一本书,价格为x元,他给了售货员10元,找回的钱为5元,请计算这本书的价格。
2.呈现(10分钟)教师引导学生分析问题,将问题转化为方程。
例如:小明买书的问题可以转化为方程 x + 5 = 10。
3.操练(15分钟)教师给出几个类似的实际问题,让学生独立解决。
例如:小红买了一支笔,价格为y元,她给了售货员15元,找回的钱为10元,请计算这支笔的价格。
4.巩固(10分钟)教师引导学生总结解题规律,巩固所学知识。
新人教版七年级数学上册 3.4 《一元一次方程的应用》教学设计3
新人教版七年级数学上册 3.4 《一元一次方程的应用》教学设计3一. 教材分析新人教版七年级数学上册3.4《一元一次方程的应用》是学生在掌握了方程的解法和基本性质的基础上进行学习的内容。
这一节内容主要让学生学会如何运用一元一次方程解决实际问题,培养学生的数学应用能力。
教材通过实例引入方程,使学生了解方程在实际生活中的重要性,进而引导学生掌握一元一次方程的解法和应用。
二. 学情分析学生在学习本节内容前,已经掌握了方程的基本概念和性质,对解一元一次方程也有一定的了解。
但部分学生可能对实际问题转化为方程的能力较弱,对生活中的实际问题缺乏敏感度。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.让学生掌握一元一次方程的应用,能够将实际问题转化为方程,并求解。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:让学生学会将实际问题转化为方程,并求解。
2.难点:如何引导学生将实际问题转化为方程,培养学生解决实际问题的能力。
五. 教学方法1.采用问题驱动法,让学生在解决实际问题的过程中,自然而然地引入方程。
2.使用实例讲解,让学生直观地了解方程在实际生活中的应用。
3.采用分组讨论法,让学生在小组内共同探讨实际问题的解决方法,培养学生的团队协作能力。
4.运用引导发现法,引导学生发现实际问题与方程之间的联系,培养学生自主学习的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生学习一元一次方程的应用。
2.准备多媒体教学设备,用于展示实例和讲解。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如购物问题、速度问题等,引导学生发现这些问题都可以用方程来表示。
让学生认识到方程在实际生活中的重要性。
2.呈现(10分钟)教师通过讲解实例,向学生展示如何将实际问题转化为方程,并求解。
小学数学《一元一次方程的应用》教案
小学数学《一元一次方程的应用》教案元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。
2.使学生掌握含有字母系数的一元一次方程的解法。
3.使学生会进行简单的公式变形。
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。
5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。
教学重点:(1)含有字母系数的一元一次方程的解法。
(2)公式变形。
教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。
教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。
(2)移项——未知项移到等号一边常数项移到等号另一边。
注意:移项要变号。
(3)合并同类项——提未知数。
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。
(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。
引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。
)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。
(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。
2.含有字母系数的一元一次方程的解法教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:ax=b(a≠0).由学生讨论这个解法的思路对不对,解的过程对不对?在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系。
5.6一元一次方程的应用行程问题(教案)
-理解和掌握相遇问题和追及问题的基本概念。
-学会使用一元一次方程表示行程问题中的数量关系。
-能够根据问题情境选择合适的等量关系,建立方程并求解。
-举例:在相遇问题中,两个物体从A、B两地相向而行,设它们的速度分别为v1和v2,相遇时间为t,A、B两地距离为s,则根据“路程和=速度和×时间”的关系,可得到方程(v1+v2)t=s。
4.数学运算:在求解一元一次方程的过程中,加强学生的数学运算能力,特别是对速度、时间和路程的计算方法。
5.数据分析:培养学生对实际问题的数据分析能力,能够从数据中找出关键信息,为建立方程提供依据,进而解决问题。
三、教学难点与重点
1.教学重点
-核心知识:一元一次方程在行程问题中的应用,特别是速度、时间和路程的关系。
然而,在实践活动过程中,我也发现部分同学在小组合作中参与度不高,依赖性强。为了解决这个问题,我计划在接下来的教学中,加强对学生合作学习的指导,提高他们在小组中的积极性和主动性。
此外,对于教学难点,我发现通过案例分析和具体操作,同学们更容易理解和接受。这说明在教学中,我们要注重将抽象的知识具体化、形象化,帮助学生降低学习难度。
五、教学反思
在上完这节课之后,我对整个教学过程进行了深入的思考。首先,我发现同学们在理解行程问题的基本概念上还存在一定的困难。例如,有些同学在建立一元一次方程时,对速度、时间和路程的关系把握不准确,导致解题过程中出现错误。在今后的教学中,我需要更加注重对基础知识的讲解和巩固。
其次,通过小组讨论和实验操作,同学们对行程问题的实际应用有了更深刻的认识。他们能够将理论知识与生活实际相结合,提出一些有创意的想法。这让我意识到,引导学生从生活中发现数学问题,有助于提高他们的学习兴趣和积极性。
一元一次方程的应用教案
一元一次方程的应用教案第一章:引言1.1 教学目标了解一元一次方程的概念及其在实际生活中的应用。
学会列出一元一次方程并解之。
1.2 教学内容引出一元一次方程的概念。
通过实际例子展示一元一次方程的应用。
1.3 教学方法采用问题解决的方式,引导学生通过思考和讨论来理解一元一次方程的概念。
1.4 教学步骤引入一元一次方程的概念,并给出简单的例子。
让学生尝试解决实际问题,并引导他们发现问题可以用方程来表示。
讲解一元一次方程的解法,并通过练习题巩固学生的理解。
第二章:一元一次方程的解法2.1 教学目标学会解一元一次方程。
2.2 教学内容讲解一元一次方程的解法,包括加减法、乘除法等。
2.3 教学方法通过例题和练习题,引导学生掌握一元一次方程的解法。
2.4 教学步骤讲解一元一次方程的解法,包括加减法、乘除法等。
提供练习题,让学生通过解题来巩固所学的方法。
第三章:实际问题与一元一次方程3.1 教学目标学会将实际问题转化为一元一次方程,并解决之。
3.2 教学内容讲解如何将实际问题转化为一元一次方程。
提供实际问题的例子,让学生尝试解决。
3.3 教学方法通过实际问题的例子,引导学生将问题转化为方程,并解决之。
3.4 教学步骤给出一个实际问题,引导学生思考如何将其转化为方程。
讲解如何解这个方程,并通过练习题巩固学生的理解。
第四章:应用举例4.1 教学目标学会使用一元一次方程解决实际问题。
4.2 教学内容提供一些应用一元一次方程的例子。
4.3 教学方法通过实际问题的例子,引导学生应用一元一次方程解决问题。
4.4 教学步骤给出一个实际问题,引导学生思考如何应用一元一次方程来解决。
讲解如何应用方程,并通过练习题巩固学生的理解。
第五章:总结与提高5.1 教学目标总结一元一次方程的应用,提高解题能力。
5.2 教学内容总结一元一次方程的应用。
5.3 教学方法通过练习题,引导学生总结一元一次方程的应用。
5.4 教学步骤提供一些练习题,让学生通过解题来总结一元一次方程的应用。
一元一次方程应用教案
一元一次方程应用教案教案标题:一元一次方程的应用教案目标:1. 学生能够理解一元一次方程的概念和基本特征。
2. 学生能够应用一元一次方程解决实际问题。
3. 学生能够运用一元一次方程的解法进行问题求解和验证。
教案步骤:引入活动:1. 引入一元一次方程的概念,让学生了解方程的含义和用途。
2. 提出一个简单的实际问题,例如:小明买了一些苹果,每个苹果2元,他一共花了10元,问他买了几个苹果。
引导学生思考如何用一元一次方程解决这个问题。
知识讲解:1. 讲解一元一次方程的基本形式:ax + b = c,其中a、b、c为已知数,x为未知数。
2. 引导学生理解方程中的系数、常数和未知数的含义。
3. 通过实例演示如何将实际问题转化为一元一次方程,并解决方程得到答案。
示范练习:1. 给学生提供一些简单的应用题,例如:小明和小红一起骑自行车去公园,小明的速度是每小时10公里,小红的速度是每小时8公里,他们同时出发,3小时后相遇在公园门口,请问公园离小明家有多远?引导学生分析问题并列出方程。
2. 由学生自主解决问题,并验证答案的正确性。
拓展应用:1. 提供更复杂的应用题,例如:一个长方形的长是宽的3倍,周长是28厘米,求长和宽的长度。
引导学生分析问题并列出方程。
2. 学生自主解决问题,并验证答案的正确性。
总结回顾:1. 总结一元一次方程的基本概念和解题方法。
2. 让学生回顾本节课所学的知识点,并提出问题或疑惑。
教案评估:1. 对学生进行小组或个人练习,检查他们对一元一次方程应用的理解和解题能力。
2. 对学生的解题过程和答案进行评估,给予及时的反馈和指导。
教案延伸:1. 引导学生探索更复杂的一元一次方程应用问题,并进行解决和验证。
2. 提供更多的实际问题,让学生在实践中巩固和应用所学的知识。
教案资源:1. 一元一次方程的教学PPT或课件。
2. 实际应用题的练习册或工作纸。
3. 学生的教材和参考书。
一元一次方程教案范文3篇
⼀元⼀次⽅程教案范⽂3篇⼀元⼀次⽅程教案教学设计⽰例教学⽬标1.使学⽣初步掌握⼀元⼀次⽅程解简单应⽤题的⽅法和步骤;并会列出⼀元⼀次⽅程解简单的应⽤题;2.培养学⽣观察能⼒,提⾼他们分析问题和解决问题的能⼒;3.使学⽣初步养成正确思考问题的良好习惯.教学重点和难点⼀元⼀次⽅程解简单的应⽤题的⽅法和步骤.课堂教学过程设计⼀、从学⽣原有的认知结构提出问题在⼩学算术中,我们学习了⽤算术⽅法解决实际问题的有关知识,那么,⼀个实际问题能否应⽤⼀元⼀次⽅程来解决呢?若能解决,怎样解?⽤⼀元⼀次⽅程解应⽤题与⽤算术⽅法解应⽤题相⽐较,它有什么优越性呢?为了回答上述这⼏个问题,我们来看下⾯这个例题.例1某数的3倍减2等于某数与4的和,求某数.(⾸先,⽤算术⽅法解,由学⽣回答,教师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,⽤代数⽅法来解,教师引导,学⽣⼝述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术⽅法不易思考,⽽应⽤设未知数,列出⽅程并通过解⽅程求得应⽤题的解的⽅法,有⼀种化难为易之感,这就是我们学习运⽤⼀元⼀次⽅程解应⽤题的⽬的之⼀.我们知道⽅程是⼀个含有未知数的等式,⽽等式表⽰了⼀个相等关系.因此对于任何⼀个应⽤题中提供的条件,应⾸先从中找出⼀个相等关系,然后再将这个相等关系表⽰成⽅程.本节课,我们就通过实例来说明怎样寻找⼀个相等的关系和把这个相等关系转化为⽅程的⽅法和步骤.⼆、师⽣共同分析、研究⼀元⼀次⽅程解简单应⽤题的⽅法和步骤例2某⾯粉仓库存放的⾯粉运出15%后,还剩余42500千克,这个仓库原来有多少⾯粉?师⽣共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来⾯粉有x千克,则运出⾯粉可表⽰为多少千克?利⽤上述相等关系,如何布列⽅程?上述分析过程可列表如下:解:设原来有x千克⾯粉,那么运出了15%x千克,由题意,得x-15%x=42500,所以x=50000.答:原来有50000千克⾯粉.此时,让学⽣讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是⼀样的,可以任意选择其中的⼀个相等关系来列⽅程;(2)例2的解⽅程过程较为简捷,同学应注意模仿.依据例2的分析与解答过程,⾸先请同学们思考列⼀元⼀次⽅程解应⽤题的⽅法和步骤;然后,采取提问的⽅式,进⾏反馈;最后,根据学⽣总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并⽤字母(如x)表⽰题中的⼀个合理未知数;(2)根据题意找出能够表⽰应⽤题全部含义的⼀个相等关系.(这是关键⼀步);(3)根据相等关系,正确列出⽅程.即所列的⽅程应满⾜两边的量要相等;⽅程两边的代数式的单位要相同;题中条件应充分利⽤,不能漏也不能将⼀个条件重复利⽤等;(4)求出所列⽅程的解;(5)检验后明确地、完整地写出答案.这⾥要求的检验应是,检验所求出的解既能使⽅程成⽴,⼜能使应⽤题有意义.例3(投影)初⼀2班第⼀⼩组同学去苹果园参加劳动,休息时⼯⼈师傅摘苹果分给同学,若每⼈3个还剩余9个;若每⼈5个还有⼀个⼈分4个,试问第⼀⼩组有多少学⽣,共摘了多少个苹果?(仿照例2的分析⽅法分析本题,如学⽣在某处感到困难,教师应做适当点拨.解答过程请⼀名学⽣板演,教师巡视,及时纠正学⽣在书写本题时可能出现的各种错误.并严格规范书写格式)解:设第⼀⼩组有x个学⽣,依题意,得3x+9=5x-(5-4),解这个⽅程:2x=10,所以x=5.其苹果数为3×5+9=24.答:第⼀⼩组有5名同学,共摘苹果24个.学⽣板演后,引导学⽣探讨此题是否可有其他解法,并列出⽅程.(设第⼀⼩组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3⽀铅笔⼀共⽤了1.24元,已知铅笔每⽀0.12元,问练习本每本多少元?2.我国城乡居民1988年末的储蓄存款达到3802亿元,⽐1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.3.某⼯⼚⼥⼯⼈占全⼚总⼈数的35%,男⼯⽐⼥⼯多252⼈,求全⼚总⼈数.四、师⽣共同⼩结⾸先,让学⽣回答如下问题:1.本节课学习了哪些内容?2.列⼀元⼀次⽅程解应⽤题的⽅法和步骤是什么?3.在运⽤上述⽅法和步骤时应注意什么?依据学⽣的回答情况,教师总结如下:(1)代数⽅法的基本步骤是:全⾯掌握题意;恰当选择变数;找出相等关系;布列⽅程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3⾓4分.问每千克苹果多少钱?2.⽤76厘⽶长的铁丝做⼀个长⽅形的教具,要使宽是16厘⽶,那么长是多少厘⽶?3.某⼚去年10⽉份⽣产电视机2050台,这⽐前年10⽉产量的2倍还多150台.这家⼯⼚前年10⽉⽣产电视机多少台?4.⼤箱⼦装有洗⾐粉36千克,把⼤箱⼦⾥的洗⾐粉分装在4个同样⼤⼩的⼩箱⾥,装满后还剩余2千克洗⾐粉.求每个⼩箱⼦⾥装有洗⾐粉多少千克?5.把1400奖⾦分给22名得奖者,⼀等奖每⼈200元,⼆等奖每⼈50元.求得到⼀等奖与⼆等奖的⼈数⼀元⼀次⽅程应⽤教案教学⽬标1.使学⽣初步掌握⼀元⼀次⽅程解简单应⽤题的⽅法和步骤;并会列出⼀元⼀次⽅程解简单的应⽤题;2.培养学⽣观察能⼒,提⾼他们分析问题和解决问题的能⼒;3.使学⽣初步养成正确思考问题的良好习惯.教学重点和难点⼀元⼀次⽅程解简单的应⽤题的⽅法和步骤.课堂教学过程设计⼀、从学⽣原有的认知结构提出问题在⼩学算术中,我们学习了⽤算术⽅法解决实际问题的有关知识,那么,⼀个实际问题能否应⽤⼀元⼀次⽅程来解决呢?若能解决,怎样解?⽤⼀元⼀次⽅程解应⽤题与⽤算术⽅法解应⽤题相⽐较,它有什么优越性呢?为了回答上述这⼏个问题,我们来看下⾯这个例题.例1某数的3倍减2等于某数与4的和,求某数.(⾸先,⽤算术⽅法解,由学⽣回答,教师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,⽤代数⽅法来解,教师引导,学⽣⼝述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术⽅法不易思考,⽽应⽤设未知数,列出⽅程并通过解⽅程求得应⽤题的解的⽅法,有⼀种化难为易之感,这就是我们学习运⽤⼀元⼀次⽅程解应⽤题的⽬的之⼀.我们知道⽅程是⼀个含有未知数的等式,⽽等式表⽰了⼀个相等关系.因此对于任何⼀个应⽤题中提供的条件,应⾸先从中找出⼀个相等关系,然后再将这个相等关系表⽰成⽅程.本节课,我们就通过实例来说明怎样寻找⼀个相等的关系和把这个相等关系转化为⽅程的⽅法和步骤.⼆、师⽣共同分析、研究⼀元⼀次⽅程解简单应⽤题的⽅法和步骤例2某⾯粉仓库存放的⾯粉运出15%后,还剩余42500千克,这个仓库原来有多少⾯粉?师⽣共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来⾯粉有x千克,则运出⾯粉可表⽰为多少千克?利⽤上述相等关系,如何布列⽅程?上述分析过程可列表如下:解:设原来有x千克⾯粉,那么运出了15%x千克,由题意,得x-15%x=42500,所以x=50000.答:原来有50000千克⾯粉.此时,让学⽣讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是⼀样的,可以任意选择其中的⼀个相等关系来列⽅程;(2)例2的解⽅程过程较为简捷,同学应注意模仿.依据例2的分析与解答过程,⾸先请同学们思考列⼀元⼀次⽅程解应⽤题的⽅法和步骤;然后,采取提问的⽅式,进⾏反馈;最后,根据学⽣总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并⽤字母(如x)表⽰题中的⼀个合理未知数;(2)根据题意找出能够表⽰应⽤题全部含义的⼀个相等关系.(这是关键⼀步);(3)根据相等关系,正确列出⽅程.即所列的⽅程应满⾜两边的量要相等;⽅程两边的代数式的单位要相同;题中条件应充分利⽤,不能漏也不能将⼀个条件重复利⽤等;(4)求出所列⽅程的解;(5)检验后明确地、完整地写出答案.这⾥要求的检验应是,检验所求出的解既能使⽅程成⽴,⼜能使应⽤题有意义.例3(投影)初⼀2班第⼀⼩组同学去苹果园参加劳动,休息时⼯⼈师傅摘苹果分给同学,若每⼈3个还剩余9个;若每⼈5个还有⼀个⼈分4个,试问第⼀⼩组有多少学⽣,共摘了多少个苹果?(仿照例2的分析⽅法分析本题,如学⽣在某处感到困难,教师应做适当点拨.解答过程请⼀名学⽣板演,教师巡视,及时纠正学⽣在书写本题时可能出现的各种错误.并严格规范书写格式)解:设第⼀⼩组有x个学⽣,依题意,得3x+9=5x-(5-4),解这个⽅程:2x=10,所以x=5.其苹果数为3×5+9=24.答:第⼀⼩组有5名同学,共摘苹果24个.学⽣板演后,引导学⽣探讨此题是否可有其他解法,并列出⽅程.(设第⼀⼩组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3⽀铅笔⼀共⽤了1.24元,已知铅笔每⽀0.12元,问练习本每本多少元?2.我国城乡居民1988年末的储蓄存款达到3802亿元,⽐1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.3.某⼯⼚⼥⼯⼈占全⼚总⼈数的35%,男⼯⽐⼥⼯多252⼈,求全⼚总⼈数.四、师⽣共同⼩结⾸先,让学⽣回答如下问题:1.本节课学习了哪些内容?2.列⼀元⼀次⽅程解应⽤题的⽅法和步骤是什么?3.在运⽤上述⽅法和步骤时应注意什么?依据学⽣的回答情况,教师总结如下:(1)代数⽅法的基本步骤是:全⾯掌握题意;恰当选择变数;找出相等关系;布列⽅程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3⾓4分.问每千克苹果多少钱?2.⽤76厘⽶长的铁丝做⼀个长⽅形的教具,要使宽是16厘⽶,那么长是多少厘⽶?3.某⼚去年10⽉份⽣产电视机2050台,这⽐前年10⽉产量的2倍还多150台.这家⼯⼚前年10⽉⽣产电视机多少台?4.⼤箱⼦装有洗⾐粉36千克,把⼤箱⼦⾥的洗⾐粉分装在4个同样⼤⼩的⼩箱⾥,装满后还剩余2千克洗⾐粉.求每个⼩箱⼦⾥装有洗⾐粉多少千克?5.把1400奖⾦分给22名得奖者,⼀等奖每⼈200元,⼆等奖每⼈50元.求得到⼀等奖与⼆等奖的⼈数⼀元⼀次⽅程的应⽤教案5.3⽤⽅程解决问题(2)--打折销售学习⽬标:1、进⼀步经历运⽤⽅程解决实际问题的过程。
初中数学一元一次方程的应用教学教案设计
初中数学一元一次方程的应用教学教案设计第1篇:初中数学一元一次方程的应用教学教案设计教学目的1、使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
2、使学生加强了解列一元一次方程解应用题的方法步骤。
教学分析重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。
难点:寻找相遇问题中的相等关系。
突破:同时出发到相遇时,所用时间相等。
注重审题,从而找到相等关系。
教学过程一、复习1、列方程解应用题的一般步骤是什么?2、路程、速度、时间的关系是什么?3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了千米。
二、新授1、引入列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
例(课本p216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:慢车行程+快车行程=两站路程设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。
同样画出图形,并按课本讲解,(见教材p217~218)由学生完成求解过程,并作出*。
解:略说明:(1)本题是相向而行的相遇问题,共同点是有未完,继续阅读 >第2篇:初中数学教案设计:一元二次方程的应用一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越*。
二、重点难点疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
《一元一次方程的应用》教案
《一元一次方程的应用》教案教学目标1、了解一元一次方程在解决实际问题中的应用、体会运用方程解决问题的关键是抓住等量关系,建立数学模型等量关系,建立数学模型. .2、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题. .3、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题..熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换. .4、整体把握打折问题中的基本量之间的关系:整体把握打折问题中的基本量之间的关系:商品利润商品利润商品利润==商品售价-商品成本价;商品售价-商品成本价;商品商品的利润率的利润率==利润÷成本×100%.5、探索打折问题中的等量关系,建立一元一次方程、探索打折问题中的等量关系,建立一元一次方程. .教学重点与难点重点:重点:((1)寻找图形问题中的等量关系,寻找图形问题中的等量关系,建立方程;建立方程;建立方程;((2)根据具体问题列出的方程,根据具体问题列出的方程,掌握掌握其简单的解方程的方法其简单的解方程的方法. .难点:寻找图形问题中的等量关系,建立数学模型,建立一元一次方程,使实际问题数学化学化. .教学准备多媒体课件、例题用到的实物多媒体课件、例题用到的实物. .教学过程一、创新情境,引入新课一、创新情境,引入新课教师:怎样解答本章“情景导航”中的问题?与同学交流教师:怎样解答本章“情景导航”中的问题?与同学交流教师:根据题意,请思考下列问题:教师:根据题意,请思考下列问题:(1)题目中哪些是已知量?哪些是未知量?题目中哪些是已知量?哪些是未知量?…………(3)题目中的等量关系是什么?题目中的等量关系是什么?…………二、合作探究,展示交流二、合作探究,展示交流根据题意列出方程:根据题意列出方程:x +2x +4x +8x +16x +32x +64x =381. 我们可以把这个方程看做“宝塔问题”的一个“数学模型”我们可以把这个方程看做“宝塔问题”的一个“数学模型”. .教师:很好,我这儿有一个问题:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱、现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m ,那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?你能帮他吗?帮他吗?学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积==新水箱的体积新水箱的体积. . 教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系..下面我们如果设新水箱的高为x m ,通过填写下表来看一下旧水箱的体积和新水箱的体积、,通过填写下表来看一下旧水箱的体积和新水箱的体积、旧水箱旧水箱 新水箱新水箱 底面半径底面半径//m2 1、6 高/m4 x 体积体积//m 3 π×22×4 π×1、62×x(学生计算填表,让一位同学说出自己的结果学生计算填表,让一位同学说出自己的结果) )学生:旧水箱的圆柱的底面半径为4÷2=2m ,高为4米,所以旧水箱的圆柱的体积为π×222×4m 33;新水箱的圆柱的底面半径为3.2÷2=1.6m ,高设为x m ,所以新水箱的体积为π×1.62×x .由等量关系我们便可得到方程:π×22×4=π×1.62×x .教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢?教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢? 学生:将π换成3.14,算出x 的系数π×22,然后将系数化为1就解出了方程就解出了方程. .学生:我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单,可使方程变得简单. .教师:这位同学的想法很好、下面我们共同把这个题的过程写一下教师:这位同学的想法很好、下面我们共同把这个题的过程写一下. .解:设新水箱圆柱的高为x 厘米,厘米,根据题意,列出方程π×22×4=π×1.62×x ,解得x =254. 答:高变成了254米. 教师:通过本题的解答过程,你能总结一下列一元一次方程解决实际问题的步骤吗? (学生认真思考后,小组内交流、教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答.) .)设计意图:设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望学习的欲望. .探究:周长相等问题探究:周长相等问题教师:用你手中的铁丝围成一个四边形,在所有的四边形中他们的周长有什么特点? 学生:不变,都相等学生:不变,都相等. .教师:所围成的四边形的面积变化吗?动手操作试一试教师:所围成的四边形的面积变化吗?动手操作试一试. .(学生动手操作,操作完成后让学生汇报结果学生动手操作,操作完成后让学生汇报结果) )学生:面积发生变化学生:面积发生变化. .教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,小组内分工合小组内分工合作完成下面问题作完成下面问题. .例:用一根长为10米的铁丝围成一个长方形米的铁丝围成一个长方形. .(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有什么变化?中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与所围成的面积与((2)中相比又有什么变化?中相比又有什么变化?教学建议:小组讨论解题过程中,教师巡视课堂,指导、参与学生的讨论制作,帮助有学习有难的个人或小组有学习有难的个人或小组..在讨论解答完成后,让小组选代表阐述解题的步骤、思路并展示自己小组所做的长方形自己小组所做的长方形((或正方形或正方形)),指导学生反思各组的解答过程并讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验、通过猜测、验证说明三个长方形面积变化的规律,教师及时引导学生给予评价,表扬鼓励,同时用多媒体展示解题步骤,进一步规范学生的解题格式生的解题格式. .解:解:((1)设此时长方形的宽为x m ,则它的长为,则它的长为((x +1.4)m ,根据题意,得x +(x +1.4)=10×12, 解这个方程,得x =1.8,x +1.4=1.8+1.4=3.2,此时长方形的长为3.2m ,宽为1.8m .(2)此时长方形的宽为x m ,则它的长为,则它的长为((x +0.8)m ,根据题意,得x +(x +0.8)=10×12、解这个方程,得x =2.1, x +0.8=2.1+0.8=2.9,此时长方形的长为2.9m ,宽为2.1m ,面积为2.1×2.9=6.09m 2,(1)中长方形的面积为3、2×1.8=5.76m 2,此时长方形的面积比,此时长方形的面积比((1)中长方形面积增大6.09-5.76=0.33m 2. (3)设正方形的边长为x m ,根据题意,得4x =10×12,解这个方程,得x =2.5,正方形的边长为2.5m ,正方形的面积为2.5×2.5=6.25m 22,比,比((2)中面积增大6.25-6.09=0.16m 22. 教师:我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米,由此便可建立“等量关系”,但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大到最大. .设计意图:通过例题让学生再次感受找到题目中的等量关系是列方程解应用题的关键,让学生经历知识的探索、发现、掌握、应用的过程、使学生体验让学生经历知识的探索、发现、掌握、应用的过程、使学生体验“数学化”“数学化”过程,使学生在实际动手计算、制作中体验合作的愉快及成功的喜悦,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性. .三、训练反馈,应用提升三、训练反馈,应用提升1、问答题、问答题(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需那么小明从家到学校需_________小时小时小时. .(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米千米..这列火车每小时行驶多少千米?这列火车每小时行驶多少千米?2、抢答题、抢答题(1)用一元一次方程解决问题的基本步骤:用一元一次方程解决问题的基本步骤:____________. ____________.(2)行程问题主要研究、三个量的关系行程问题主要研究、三个量的关系. .路程路程=_____=_____=_____,速度,速度,速度=_____=_____=_____,时间,时间,时间=_____. =_____.(3)若小明每秒跑4米,那么他10秒跑秒跑_________米米.自主学习自主学习例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m /min 的速度出发,5min 后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m /min 的速度去追小明,并且在途中追上了他追小明,并且在途中追上了他. .(1)爸爸追上小明用了多长时间?爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?追上小明时,距离学校还有多远?独立思考,完成上面的问题独立思考,完成上面的问题. .1、根据题目已知条件,画出线段图:、根据题目已知条件,画出线段图:2、找出等量关系:、找出等量关系:小明走过的路程=爸爸走过的路程小明走过的路程=爸爸走过的路程. .3、板书规范写出解题过程:、板书规范写出解题过程:解:解:((1)设爸爸追上小明用了x min .根据题意,得80×5+80x =180x化简得100x =400.解得,x =4.因此,爸爸追上小明用了4min .(2)180×4=720(m )1000-720=280(m )所以,追上小明时,距离学校还有280米.(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导教师巡视学生并给予检查和指导..请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.) .)分析出发时间不同的追及问题,分析出发时间不同的追及问题,能画出线段图,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题既能娴熟使用“线段图”又能利用方程的思想解决问题. .四、拓展应用四、拓展应用1、用多媒体展示收集的各商场打折销售情景;、用多媒体展示收集的各商场打折销售情景;2、通过情景剧了解打折销售活动,弄清相关概念及内在联系、通过情景剧了解打折销售活动,弄清相关概念及内在联系. .讨论分析商品销售中的几个概念:讨论分析商品销售中的几个概念:(1)进价:购进商品时的价格进价:购进商品时的价格.(.(.(有时也叫成本价有时也叫成本价有时也叫成本价) )(2)售价:在销售商品时的售出价售价:在销售商品时的售出价.(.(.(有时称成交价,卖出价有时称成交价,卖出价有时称成交价,卖出价) )(3)标价:在销售时标出的价标价:在销售时标出的价.(.(.(有时称原价,定价有时称原价,定价有时称原价,定价) )(4)利润:在销售商品的过程中纯收入,即:利润利润:在销售商品的过程中纯收入,即:利润==售价-进价售价-进价. .(5)利润率:利润占进价的百分率,即:利润率利润率:利润占进价的百分率,即:利润率==利润÷进价×100%.(6)打折:卖货时,按照标价乘以十分之几或百分之几十,按照标价乘以十分之几或百分之几十,则称将标价进行了几折则称将标价进行了几折则称将标价进行了几折((或理解为:销售价占标价的百分率解为:销售价占标价的百分率).).).例如某种服装打例如某种服装打8折即按标价的百分之八十出售折即按标价的百分之八十出售. .新课讲解新课讲解1、主题分析:一家商店将某种服装按成本价提高40%后标价,以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?元,这种服装每件的成本是多少元?想一想:这15元的利润是怎么来的?元的利润是怎么来的?2、例题分析:商店对某种商品作调价,按原价的9折出售,此时商品的利润率是15%,此商品的进价为1800元商品的原价是多少?商品的原价是多少?教师引导学生完成教师引导学生完成. .巩固新知巩固新知让学生完成课本让学生完成课本“挑战自我”“挑战自我”“挑战自我”及相关练习,做完后小组讨论交流,教师对其中出现的问及相关练习,做完后小组讨论交流,教师对其中出现的问题进行及时的指导题进行及时的指导. .五、课堂小结五、课堂小结教师:通过本节课的学习,你有哪些收获?还有那些困惑?教师:通过本节课的学习,你有哪些收获?还有那些困惑?教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:1、通过对“水箱变高了”的了解,我们知道“旧水箱的体积、通过对“水箱变高了”的了解,我们知道“旧水箱的体积==新水箱的体积”,“变形前周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么. .2、遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验方程,并进行方程解的检验. .3、解出的数学问题要联系生活实际问题来检验它的结果的合理性、解出的数学问题要联系生活实际问题来检验它的结果的合理性. .4、会借“线段图”分析行程问题、会借“线段图”分析行程问题. .5、各种行程问题中的规律及等量关系、各种行程问题中的规律及等量关系. .同向追及问题:同向追及问题:(1)同时不同地——甲路程+路程差=乙路程;甲时间=乙时间同时不同地——甲路程+路程差=乙路程;甲时间=乙时间. .(2)同地不同时——甲时间+时间差=乙时间;甲路程=乙路程同地不同时——甲时间+时间差=乙时间;甲路程=乙路程. .6、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润==售价-成本价”“利润率“利润率==利润÷成本价×100%”来寻找商品销售中的相等关系”来寻找商品销售中的相等关系. .7、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤. .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次方程的应用》教案教学目标1、了解一元一次方程在解决实际问题中的应用、体会运用方程解决问题的关键是抓住等量关系,建立数学模型.2、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题.3、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.4、整体把握打折问题中的基本量之间的关系:商品利润=商品售价-商品成本价;商品的利润率=利润÷成本×100%.5、探索打折问题中的等量关系,建立一元一次方程.教学重点与难点重点:(1)寻找图形问题中的等量关系,建立方程;(2)根据具体问题列出的方程,掌握其简单的解方程的方法.难点:寻找图形问题中的等量关系,建立数学模型,建立一元一次方程,使实际问题数学化.教学准备多媒体课件、例题用到的实物.教学过程一、创新情境,引入新课教师:怎样解答本章“情景导航”中的问题?与同学交流教师:根据题意,请思考下列问题:(1)题目中哪些是已知量?哪些是未知量?……(3)题目中的等量关系是什么?……二、合作探究,展示交流根据题意列出方程:x+2x+4x+8x+16x+32x+64x=381.我们可以把这个方程看做“宝塔问题”的一个“数学模型”.教师:很好,我这儿有一个问题:某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱、现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4 m减少为3.2m,那么在容积不变的前提下,水箱的高度将由原先的4m增高为多少米?你能帮他吗?学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积=新水箱的体积.教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系.下面我们如果设新水箱的高为x m,通过填写下表来看一下旧水箱的体积和新水箱的体积、旧水箱新水箱底面半径/m2 1、6高/m 4 x体积/m3π×22×4π×1、62×x学生:旧水箱的圆柱的底面半径为4÷2=2m,高为4米,所以旧水箱的圆柱的体积为π×22×4m3;新水箱的圆柱的底面半径为3.2÷2=1.6m,高设为x m,所以新水箱的体积为π×1.62×x.由等量关系我们便可得到方程:π×22×4=π×1.62×x.教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢?学生:将π换成3.14,算出x的系数π×22,然后将系数化为1就解出了方程.学生:我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.教师:这位同学的想法很好、下面我们共同把这个题的过程写一下.解:设新水箱圆柱的高为x厘米,根据题意,列出方程π×22×4=π×1.62×x,解得x=254.答:高变成了254米.教师:通过本题的解答过程,你能总结一下列一元一次方程解决实际问题的步骤吗?(学生认真思考后,小组内交流、教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答.) 设计意图:设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.探究:周长相等问题教师:用你手中的铁丝围成一个四边形,在所有的四边形中他们的周长有什么特点?学生:不变,都相等.教师:所围成的四边形的面积变化吗?动手操作试一试.(学生动手操作,操作完成后让学生汇报结果)学生:面积发生变化.教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,小组内分工合作完成下面问题.例:用一根长为10米的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?教学建议:小组讨论解题过程中,教师巡视课堂,指导、参与学生的讨论制作,帮助有学习有难的个人或小组.在讨论解答完成后,让小组选代表阐述解题的步骤、思路并展示自己小组所做的长方形(或正方形),指导学生反思各组的解答过程并讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验、通过猜测、验证说明三个长方形面积变化的规律,教师及时引导学生给予评价,表扬鼓励,同时用多媒体展示解题步骤,进一步规范学生的解题格式.解:(1)设此时长方形的宽为x m,则它的长为(x+1.4)m,根据题意,得x+(x+1.4)=10×12,解这个方程,得x=1.8,x+1.4=1.8+1.4=3.2,此时长方形的长为3.2m,宽为1.8m.(2)此时长方形的宽为x m,则它的长为(x+0.8)m,根据题意,得x+(x+0.8)=10×12、解这个方程,得x=2.1,x+0.8=2.1+0.8=2.9,此时长方形的长为2.9m,宽为2.1m,面积为2.1×2.9=6.09m2,(1)中长方形的面积为3、2×1.8=5.76m2,此时长方形的面积比(1)中长方形面积增大6.09-5.76=0.33m2.(3)设正方形的边长为x m,根据题意,得4x=10×12,解这个方程,得x=2.5,正方形的边长为2.5m,正方形的面积为2.5×2.5=6.25m2,比(2)中面积增大6.25-6.09=0.16m2.教师:我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米,由此便可建立“等量关系”,但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.设计意图:通过例题让学生再次感受找到题目中的等量关系是列方程解应用题的关键,让学生经历知识的探索、发现、掌握、应用的过程、使学生体验“数学化”过程,使学生在实际动手计算、制作中体验合作的愉快及成功的喜悦,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.三、训练反馈,应用提升1、问答题(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时.(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米.这列火车每小时行驶多少千米?2、抢答题(1)用一元一次方程解决问题的基本步骤:____________.(2)行程问题主要研究、三个量的关系.路程=_____,速度=_____,时间=_____.(3)若小明每秒跑4米,那么他10秒跑___米.自主学习例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m/min的速度出发,5min后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m/min的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?独立思考,完成上面的问题.1、根据题目已知条件,画出线段图:2、找出等量关系:小明走过的路程=爸爸走过的路程.3、板书规范写出解题过程:解:(1)设爸爸追上小明用了x min.根据题意,得80×5+80x=180x化简得100x=400.解得,x=4.因此,爸爸追上小明用了4min.(2)180×4=720(m)1000-720=280(m)所以,追上小明时,距离学校还有280米.(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导.请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.) 分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题.四、拓展应用1、用多媒体展示收集的各商场打折销售情景;2、通过情景剧了解打折销售活动,弄清相关概念及内在联系.讨论分析商品销售中的几个概念:(1)进价:购进商品时的价格.(有时也叫成本价)(2)售价:在销售商品时的售出价.(有时称成交价,卖出价)(3)标价:在销售时标出的价.(有时称原价,定价)(4)利润:在销售商品的过程中纯收入,即:利润=售价-进价.(5)利润率:利润占进价的百分率,即:利润率=利润÷进价×100%.(6)打折:卖货时,按照标价乘以十分之几或百分之几十,则称将标价进行了几折(或理解为:销售价占标价的百分率).例如某种服装打8折即按标价的百分之八十出售.新课讲解1、主题分析:一家商店将某种服装按成本价提高40%后标价,以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:这15元的利润是怎么来的?2、例题分析:商店对某种商品作调价,按原价的9折出售,此时商品的利润率是15%,此商品的进价为1800元.商品的原价是多少?教师引导学生完成.巩固新知让学生完成课本“挑战自我”及相关练习,做完后小组讨论交流,教师对其中出现的问题进行及时的指导.五、课堂小结教师:通过本节课的学习,你有哪些收获?还有那些困惑?教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:1、通过对“水箱变高了”的了解,我们知道“旧水箱的体积=新水箱的体积”,“变形前周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么.2、遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.3、解出的数学问题要联系生活实际问题来检验它的结果的合理性.4、会借“线段图”分析行程问题.5、各种行程问题中的规律及等量关系.同向追及问题:(1)同时不同地——甲路程+路程差=乙路程;甲时间=乙时间.(2)同地不同时——甲时间+时间差=乙时间;甲路程=乙路程.6、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润=售价-成本价”“利润率=利润÷成本价×100%”来寻找商品销售中的相等关系.7、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤.。