解析函数的充要条件(精选)
函数解析的充要条件
函数解析的充要条件函数解析是研究函数的定义域和值域的一种方法,用于确定函数的限制条件和特性。
在数学中,函数解析的充要条件对于理解和推导函数的性质至关重要。
本文将介绍函数解析的充要条件及其应用。
一、函数解析的定义和概念在开始讨论函数解析的充要条件之前,我们先来了解一下函数解析的定义和概念。
函数解析是指确定函数的定义域和值域的过程。
函数的定义域是指使函数有意义的自变量的取值范围,而值域则是函数在定义域内所有可能的函数值的集合。
二、函数解析的充要条件函数解析的充要条件有以下几个要点:1. 定义域的确定:函数的定义域是使函数有意义的自变量的取值范围。
在确定定义域时,需要避免出现分母为零、负数开偶次方根、负数的对数等不合法的情况。
2. 垂直渐近线的存在性:如果函数在某个点x=a的左右极限存在且相等,那么该点x=a处就存在着一个垂直渐近线。
3. 水平渐近线的存在性:如果函数在无穷远处的左右极限存在且相等,那么函数就存在一个水平渐近线。
4. 每一个分段函数段的解析条件:对于分段函数,每一个分段函数段都要满足解析条件。
也就是说,每一个函数段都需要符合函数解析的充要条件。
三、函数解析的应用函数解析的充要条件在解析函数性质和求解问题中有着广泛的应用。
1. 确定函数的定义域:通过函数解析的充要条件,我们可以确定函数的定义域,从而确定函数的取值范围。
2. 求解极限:函数的垂直渐近线和水平渐近线的存在性可以帮助我们求解函数的极限。
3. 分段函数的分析:分段函数的每一个函数段都需要满足解析条件,通过函数解析的充要条件,我们可以分析每一个函数段的性质。
4. 函数的图像绘制:根据函数解析的充要条件,我们可以确定函数的特性,从而绘制出函数的图像。
四、总结函数解析的充要条件是确定函数的定义域和值域的重要方法,对于理解和推导函数的性质具有重要意义。
本文介绍了函数解析的定义和概念,以及函数解析的充要条件及其应用。
通过了解和应用函数解析的充要条件,我们可以更加深入地研究和理解函数的性质。
f(z)解析的充要条件
f(z)解析的充要条件f(z)是复变函数中的一个概念,它的解析性是一个重要的性质。
在本文中,我将探讨f(z)解析的充要条件。
复数是由实部和虚部组成的,可以用z = x + yi表示,其中x和y 分别为实数部分和虚数部分。
在复变函数中,f(z)是一个将复数域映射到复数域的函数。
我们来定义f(z)在复平面上的解析性。
f(z)在复平面上解析的充要条件是它在复平面的某个区域内连续且具有一阶偏导数。
这意味着f(z)在该区域内可以展开为幂级数,即存在一个圆盘D内的幂级数展开,使得f(z)在该圆盘内解析。
我们来讨论f(z)解析的一些重要性质。
如果f(z)在某个区域内解析,那么它在该区域内无处不可导。
这是因为解析函数是可微的,即它在解析区域内的每个点都具有导数。
如果f(z)在某个区域内解析,并且在该区域内处处可导,那么它在该区域内是无穷次可导的。
这是因为解析函数具有良好的性质,可以通过求导的方式来计算其高阶导数。
如果f(z)在某个区域内解析,并且在该区域内处处可导,那么它在该区域内的导数也是解析的。
这意味着解析函数可以通过求导的方式来获得新的解析函数。
对于复变函数而言,解析函数在理论和应用中都具有重要的地位。
在理论上,解析函数是复变函数的一个基本概念,它具有丰富的性质和应用。
在应用上,解析函数在物理学、工程学和金融学等领域有广泛的应用。
例如,在物理学中,解析函数被广泛应用于电磁场和流体力学等领域的数学建模中。
在工程学中,解析函数被应用于信号处理和图像处理等领域。
在金融学中,解析函数被用于期权定价和风险管理等领域。
f(z)解析的充要条件是它在某个区域内连续且具有一阶偏导数。
解析函数具有一些重要的性质,包括无处不可导、无穷次可导以及导数也是解析的。
解析函数在理论和应用中都具有重要的地位。
它在复变函数的研究中起着核心的作用,并在物理学、工程学和金融学等领域有广泛的应用。
函数解析的充要条件概述
v 0, x
v 1. y
上一节是由 解析定义判断 处处不解析
不满足柯西-黎曼方程, 故 w z 在复平面内处处不可导,处处不解析.
盐城工学院基础部应用数学课程组
(2) f ( z) e x (cos y i sin y)
u e x cos y, v e y y x
u 常数, v 常数,
因此 f ( z) 在区域 D 内为一常数.
盐城工学院基础部应用数学课程组
例4 问常数 a, b, c, d 取何值时, f ( z ) 在复平面内处处
设 f ( z ) x 2 axy by 2 i (cx 2 dxy y 2 ),
盐城工学院基础部应用数学课程组
(3) w z Re( z) x xyi,
2
u x , v xy,
2
u 2 x, x
u 0, y
v y, x
v x. y
四个偏导数均连续
仅当 x y 0 时, 满足柯西-黎曼方程, 故函数 w z Re( z) 仅在 z 0 处可导,
u u x e cos y, e x sin y, x y v v x e sin y, e x cos y, x y u v u v 即 , . x y y x
由于四个偏导 数均连续
故 f ( z) 在复平面内处处可导, 处处解析.
f ( z) e x (cos y i sin y) f ( z). 指数函数
解析? u u 解 2 x ay , ax 2by, x y v v 2cx dy , dx 2 y , x y u v u v 欲使 , , x y y x
复变函数22函数解析充要条件
黎曼介绍
课件
2
证 (1) 必要性. 设 f(z)u(x,y)iv (x,y)定义在 D 内 , 区域 且 f(z)在 D 内一 zx点 y可 i ,导 则对于充 z分 xi小 y的 0,
有 f ( z z ) f ( z ) f ( z ) z ( z ) z ,
其l中 im ( z)0, z 0
令 f ( z z ) f ( z ) u i v ,
f(z)aib , ( z )1 i2 ,
课件
3
所 u 以 i v
(aib)(xiy)(1i2)(xiy)
(a x b y1 x2 y) i(b xa y2 x1 y)
于 u a x 是 b y 1 x 2 y ,
[证毕]
课件
8
根据 ,可 定得 理 f(z)函 一 u (x ,y 数 )i(v x ,y)在 点 zxy处 i 的导 : 数公式
f(z)uiv1uv. x x iy y
函数在区 D内域解析的充要条件 定理二 函数 f(z)u(x,y)iv(x,y)在其定义 域D内解析的充:要 u(x条 ,y)与 件 v(x是 ,y)在 D内可,并 微且满足柯西 程.-黎曼方
课件
11
(2 )f(z) ex (cy o issiy )n 指数函数
u exco y, s v exsiy,n
uexcoy,suexsiyn ,
x
y
四个偏导数
vexsiyn, vexcoy,s 均连续
x
y
即uv, uv. x y y x
故f(z)在复平面内处 ,处处 处可 解 . 导 析
且 f ( z ) e x (c y i s o y ) i s n f ( z ).
复变函数第三讲解析函数的充要条件初等函数
前面我们常把复变函数看成是两个实函数拼 成的, 但是求复变函数的导数时要注意, 并不是两个 实函数分别关于x,y求导简单拼凑成的.
二. 举例
例1 判定下列函数在何处可导,在何处解析:
若沿平行于实轴的方式 zቤተ መጻሕፍቲ ባይዱz z ( y0 )
f(z z)f(z) f(z)lim z 0 z [u (x x ,y )iv (x x ,y )] [u (x ,y )iv (x ,y )] lim x 0 x u (x x ,y )u (x ,y ) v (x x ,y )v (x ,y ) lim i lim x 0 x 0 x x
1 u v v u i i y y y y
f ' ( z ) 存在 u v v u i i x x y y u v x y
定义 方程
u x v x
记忆
v u x y
u y v y
Cauchy-Riemann方程
u v v u x y x y
上述条件满足时,有
f ' ( z ) u iv u iu v iu v iv x x x y y y y x
定理2 函数f (z)=u(x, y)+iv(x, y)在D内解析充要 条件是 u(x, y) 和 v(x, y)在D内可微,且 满足Cauchy-Riemann方程
第三讲 解析函数的充要条件 初等函数
§2.2 解析函数的充要条件
1. 解析函数的充要条件
课件:解析函数的充要条件
解析函数的判定方法: (1) 如果能用求导公式与求导法则证实复变函 数 f (z) 的导数在区域D内处处存在, 则可根据 解析函数的定义断定f (z) 在 D内是解析的.
(2) 如果复变函数 f (z) u iv 中 u,v 在 D 内 的各一阶偏导数都存在且连续(因而 u, v( x, y) 可微)并满足 C R 方程, 那么根据解析函数 的充要条件可以断定 f (z) 在 D 内解析.
Died: 23 May 1857 in Sceaux (near Paris),
France
16
u v , u v . x y y x
2
根据定理一, 可得函数 f (z) u( x, y) iv( x, y) 在 点 z x yi 处的导数公式:
f (z) u i v 1 u v . x x i y y
函数在区域 D内解析的充要条件 定理二 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是 : u( x, y)与 v( x, y) 在 D 内可微, 并且满足柯西-黎曼方程.
ux (0,0)
lim
x0
u( x,0) x
u(0,0) 0
0
vy (0,0),
uy
(0,0)
lim
y0
u(0,
y) y
u(0,0) 0
0
vx
(0,0),
柯西-黎曼方程在点z 0 成立.
8
但当 z 沿第一象限内的射线y kx 趋于零时,
f (z) f (0) z0
xy
x iy
k, 1 ik
4
二、典型例题
例1 判定下列函数在何处可导, 在何处解析: (1) w z; (2) f (z) e x (cos y i sin y); (3) w z Re(z).
2-2 函数解析的充要条件
u=0 v=10
x 0 y 0
x 0 y 0
u ax by 1x 2 y , v bx ay 2 x 1y
当 y 0 时,
0
当 x 0 时,
u u u u lim b lim 2 b lim a lim 1 a y 0 y y 0 y x 0 x x 0 x
z 0
令 f z a ib , z 1 i 2 其中 lim 1 0 , lim 2 0
故
ax by 1x 2 y i bx ay 2 x 1y
u iv a ibx iy 1 i 2 x iy
u e x cos y
[解] w x yi 故 u =x ,v =-y
[解 ]
v e x sin y
u v 1 1 x y u v 00 y x
不满足C-R方程
u v x e cos y x y
u v x e sin y y x
0 0
v v v v lim a lim 1 a lim b lim 2 b y 0 y y 0 y x 0 x x 0 x
u v 因此 u(x,y)和v(x,y)在(x,y)可微, 且 x y
0
u v y x
u v v u i i y 1 i 3 x 2 i 4 y x x y x y
x0 y0
根据柯西-黎曼方程得
f z z f z u v x y i 1 i 3 2 i 4 所以 z x x z z
第2节:函数解析的充要条件
vx=2cx+dy, vy=dx+2y 则由ux=vy, uyvx, 得
2x+ay=dx+2y, 2cx+dyax2by
a=2, b1, c1, d=2
故此时函数在复平面内处处解析, 且
f(z)=x2+2xyy2+i(x2+2xy+y2) =(1i)(x+iy)2=(1i)z2
例3. 求证 f '(z)≡0, z∈D f(z)≡C, z∈D
证 ) 显然 ) f (z) u i v v i u 0 x x y y
故 u u v v 0 x y x y
所以u=常数, v=常数, 因而 f(z)在D内是常数.
例4. 设函数 w=f(z)=u(x,y)+ iv(x,y)在区域D内解析, 并 满足下列条件之一,那么 f(z)是常数: [书P67: 10]
u v , u v
(*)
x y y x
这时f (z) u i v 1 u v x x i y y
定理二: 函数 f(z)=u(x,y)+iv(x,y)在区域D内解析(可导) 的充要条件是: (1) u(x,y)与v(x,y)在D内可微, 并且(2)
在D内满足柯西-黎曼方程(*)式.
注: (1) 如函数 f(z)在区域D内不满足C-R方程, 则 f(z) 在D内不解析;
r r r r
例1. 判断下列函数在何处可导, 在何处解析:
1) f (z) x 2iy; 2) w z 2 ;
3) f (z) x2 y2 x i(2xy y2 ).
4) f (z) ex (cos y i sin y).
解. 1) 因为 u=x, v=2y,
解析的充要条件
解析的充要条件
函数解析的充要条件:
1、f'(z)=df/dz唯一存在。
f'(z)=(∂u/∂x)+(∂v/∂x)i=(∂v/∂y)-(∂u/∂y)i。
2、满足C-R方程(柯西黎曼方程)—(∂u/∂x)=(∂v/∂y)(∂v/∂x)=-(∂u/∂y)。
同部偏导相等,异部偏导相反。
区域上处处可微的复函数称为单演函数,后人又把它们称为全纯函数、解析函数。
B.黎曼从这一定义出发对复函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程,或柯西-黎曼条件。
由于解析函数概念可推广为广义解析函数(基于把解析函数的实部、虚部所满足的柯西-黎曼方程组推广为较一般的一阶偏微分方程组),因此解析函数边值问题也可推广为广义解析函数边值问题,这是把函数论与偏微分方程结合起来的一个方向。
第二章3解析函数的充要条件
设( + Δ) − () = Δ + Δ, ′ = + ,
(Δ) = 1 + 2
所以Δ + Δ = ( + )(Δ + Δ) + (1 + 2 )(Δ + Δ)
= Δ − Δ + 1 Δ − 2 Δ
+(Δ + Δ + 2 Δ + 1 Δ)
=
−
= −.
充分性
由于 + Δ −
= ( + Δ, + Δ) − (, ) + [( + Δ, + Δ) − (, )]
= Δ + Δ
由(, ), (, )在点(, )可微,可知
Δ =
Δ +
( + ∆) − ()
1 ( ∆ ) + 2 ( ∆ )
⇒
=
+
+
Δ
∆
′ ()
( + ∆) − ()
=
+
= lim
∆→0
Δ
即 在 = + 处可导.
注:函数 = , + , 在一点可导的一个充分条件:
=− .
证明:必要性
( + Δ) − ()
()在 = + 处可导, ⇒ () = lim
存在
Δ→0
Δ
∀ > 0, ∃ > 0, 当0 < Δ < 时,有
解析函数的几个充要条件
第 4期
曲 阜 师
范
大 学
Vo . 4 No 4 13 . Oc .2 8 t 0o
20 0 8年 1 0月
Ju a o Q f N r a o r l f uu om l n
解析 函数的几个 充要条件
侯 同运①
,
张伟 志②, 李傅 山③
( 枣庄职业技术学院 , 70 0 枣庄市 ; 邹城兖矿第一 中学 , 7 50 邹城市 ; ① 2 70 , ② 2 30 ,
内连续 .
( z 在 1内连续且对任一周线 c, c Ⅲ) ) " 2 只要 及其内 部全含于1 内, J )z= . 2 就有 J d 0 C
( ) ) Ⅳ 在 内任一 点 口的邻 域 内可展 成 一0的幂 级数 . 充要 条件 (I) (Ⅱ) 明 u xY ,( Y 在 内满足 某种 微分 条件 下 与 函数 )= u xY 说 ( ,) ,) ( ,)+i( ,) vxY
p
(
)
p
( 戈
)
(. ) 2 1
因此对 调 和 函数 W ,由( . ) 2 1 式得
+mo d )
。
0 .
(. ) 22
对 (. ) 两边 关) s= od  ̄
.: . 。
( d ) s=2r ( ,  ̄ ) w ) s= d )
(i 第二均值条件可等价地写成wx J i ) ():
7 Jf ls1 r y
( r d. +y y )
定理 24 若 A ( ) =0, ∈ , W在 内满 足平均 值条件 . . wx 则 证明 取任 意 , ( )c
y
对 P E ( r , Gen公式 得 0,) 由 re
第2节:函数解析的充要条件
例2. 设函数 f(z)=x2+axy+by2+i(cx2+dxy+y2), 问 常数a,b,c,d 取何值时, f(z)在复平面内处处解析?
解. 由于 ux=2x+ay, uy=ax+2by, vx=2cx+dy, vy=dx+2y 则由ux=vy, uyvx, 得 2x+ay=dx+2y, 2cx+dyax2by
a=2, b1, c1, d=2
故此时函数在复平面内处处解析, 且 f(z)=x2+2xyy2+i(x2+2xy+y2)
=(1i)(x+iy)2=(1i)z2
例3. 求证 f '(z)≡0, z∈D f(z)≡C, z∈D 证 ) 显然
)
u v v u f ( z ) i i 0 x x y y
(4) C-R方程在极坐标下的形式为[书P67:9]:
u 1 v v 1 u , r r r r
例1. 判断下列函数在何处可导, 在何处解析:
1) f ( z
2
3) f ( z ) x y x i(2 xy y ). 4) f ( z ) ex (cos y i sin y ).
u v u v , x y y x u v 1 u v 这时f ( z ) i x x i y y
(*)
定理二: 函数 f(z)=u(x,y)+iv(x,y)在区域D内解析(可导) 的充要条件是: (1) u(x,y)与v(x,y)在D内可微, 并且(2) 在D内满足柯西-黎曼方程(*)式.
注: (1) 如函数 f(z)在区域D内不满足C-R方程, 则 f(z) 在D内不解析;
函数在一点解析的充要条件
函数在一点解析的充要条件篇一:函数在一点解析的充要条件是指在一个点上,函数的值与其自变量的取值必须满足一定的关系。
在数学中,这个关系通常被称为函数的零点或者函数的极值。
下面介绍一些函数在一点解析的充要条件:1. 函数在一点处的函数值等于其自变量的取值之和:这个条件被称为函数在该点的“一次函数条件”。
如果函数是单调递增或单调递减的,那么这个条件是成立的。
如果函数是凸凹的,那么函数在一点处的函数值必须是其自变量的取值之和的相反数。
2. 函数在一点处的函数值等于其自变量的取值中最小值或最大值:这个条件被称为函数在该点的“最小值条件”或“最大值条件”。
如果函数是单调递增的,那么函数在一点处的函数值必须是在其自变量取值中的最小值。
如果函数是单调递减的,那么函数在一点处的函数值必须是在其自变量取值中的最大值。
3. 函数在一点处的函数值与该点的横坐标或纵坐标相等:这个条件被称为函数在该点的“横坐标或纵坐标条件”。
如果函数是单调递增的,那么函数在一点处的横坐标或纵坐标必须是其自变量的取值之一。
如果函数是单调递减的,那么函数在一点处的横坐标或纵坐标必须是其自变量的取值的相反数。
4. 函数在一点处的函数值与该点的坐标在函数图像上对应点处相等:这个条件被称为函数在该点的“坐标对应条件”。
如果函数是单调递增的,那么函数在一点处的坐标对应点必须在其图像上对应于其自变量的取值中的最小值或最大值。
如果函数是单调递减的,那么函数在一点处的坐标对应点必须在其图像上对应于其自变量的取值中的最大值。
这些条件是函数在一点解析中非常重要的一部分,可以帮助我们确定函数在该点处的取值,并理解函数在该点的性质。
了解这些条件可以帮助我们更好地理解函数的图像、零点和极值等概念。
篇二:函数在一点解析的充要条件是指在数学中,一个函数在某一点处取到的解析式可以表示为该点的坐标与一个常量(通常是函数的自变量或因变量)之间的关系。
具体来说,一个函数在一点处的解析式必须满足以下条件:1. 函数在该点处可导:这意味着函数在该点处的导数必须存在。
2.2 解析函数的充要条件
解 析
记 f (z) a i b, 由 w u i v , z x i y 有
函
u i v (a b i)( x i y) o(|z|),
数
u ax - b y o(|z|),
v bx a y o(|z|),
故 u( x, y) 和 v( x, y) 在点 ( x, y) 处可微,且
§2.2 解析函数的充要条件
§2.2 解析函数的充要条件
第 二
一、点可导的充要条件
章 二、区域解析的充要条件
解 析 函 数
1
§2.2 解析函数的充要条件
§2.2 解定理 函数 w f (z) u( x, y) i v( x, y) 在点 z x i y 处可导
函
数 推论 若函数 u( x, y) 和 v( x, y) 的四个偏导数 ux , uy , vx , vy
在区域 D内存在且连续,并满足 C - R方程,则函数
w f (z) u( x, y) i v( x, y) 在区域 D 内解析。
6
§2.2 解析函数的充要条件
例 讨论函数 w z 的可导性与解析性。
解 析
v vy y vx x o (| z |) ,
函 数
又由 u 和 v 满足 C - R 方程:ux vy , uy -vx , 得
u ux x - uvxy y o (| z |) ,
v uvyx y vx x o (| z |) ,
z
w u i v (ux i vx ) ( x i y) o(|z|), 即 f (z) 在 z x i y 处可微(可导),且 f (z) ux i vx .
5
§2.2 解析函数的充要条件
§2.2 解析函数的充要条件
函数解析的充要条件
lim [u(x, y y) iv(x, y y)] [u(x, y) iv(x, y)]
y0
iy
lim u(x, y y) u(x, y) i lim v(x, y y) v(x, y)
y0
iy
y0
iy
1 u v v i u i y y y y
f 0
y v 1
u v x y
x
y
w z 在全平面不可导,不解析。
解 (2) ∵ f (z) = ex(cosy +isiny) 则 u = excosy, v = exsiny
u ex cos y x v ex sin y x
u ex sin y y v ex cos y y
ii) 验证C-R条件,
iii)求导数:
2. 举例
例1 判定下列函数在何处可导,在何处解析:
(1)w z; (2) f (z) ex (cos y i sin y);(3)w z 2
解 (1) 设 z = x + iy w = x - iy u = x, v = - y 则
u 1 u 0
i i x x y y
定义 方程
u v v u x y x y
称为Cauchy-Riemann方程(简称C-R方程).
定理1 设 f(z) = u(x, y)+ iv(x, y)在D内有定义,则 f(z)在点z = x+iy ∈D处可导的充要条件是 u(x, y) 和 v(x, y) 在点(x, y )可微,且满足 Cauchy-Riemann方程 u v v u x y x y
上述条件满足时,有
定理2 函数f (z) = u(x, y) + iv(x, y) 在D内解析充要条件 是u(x, y)和v(x, y)在D内可微,且满足 Cauchy-Riemann方程 u v v u x y x y 定理提供了判别函数解析性的方法及如何
工程数学-复变函数 2-2 函数解析的充要条件
x y
y x
第 条件的充分性 由于w u iv , 而u( x, y)、v( x, y)
二 章
在点 ( x, y)
处可微, 则
解 析 函
u
u x
x
u y
y
1x
2y
数
v
v x
x
v y
y
3x
4y
在这里 lim x0
k
u C2 ,v C3 , f (z) C2 iC3
- 11 -
y0
其中 lim x0 y0
(x)2 (y)2
0 ,但
显然不满足此式。
所以函数在原点不可导。
- 10 -
第二节 解析函数的充要条件
例4 设函数 w f (z) 在区域 D 解析,且 | f (z) |
为常数,证明: f (z) 在区域 D 为常数函数。
证 由于 | f (z) | C1 ,因此 u2 v2 C, 即
u v , u v
得 wu(xuxuxiyxxv)yzuy(y1x1ix3 )x2(y2 i4 )y
数
由于
xv z
1, xvyz x1
v , y
故y
3x
4y
liz m0(1
v bx ay 2x 2y
由于 lim (z) 0 , z0
所以
lim
x0
1
0,
lim
x0
2
0
,因此
复变函数课件2-2函数解析的充要条件
(1) w z; ( 2) f ( z ) e x (cos y i sin y ); ( 3) w z Re( z ).
解 (1) w z ,
u x, v y,
u u v v 1, 0, 0, 1. x y x y 不满足柯西-黎曼方程,
5
由于 k 的任意性,
z 1 ki 不趋于一个确定的值 . z 1 ki
h( z0 z ) h( z0 ) lim 不存在. z 0 z
因此 h( z ) z 仅在 z 0 处可导, 而在其他点都 不可导, 根据定义, 它在复平面内处处不解 析.
2
6
例2 解
函数 f ( z ) xy 在点 z 0 不可导.
18
例5 设 f ( z ) u( x , y ) iv( x , y ) 在区域 D 内解
析, 并且 v u , 求 f ( z ).
2
解
u v u 2u , x y y u v u 2 u , y x x
2 2
2
4
z ( z0 z )( z0 z ) z0 z0 z0 z z0 , z z h( z0 z ) h( z0 ) lim 0. (1) z0 0, z 0 z
( 2) z0 0,
令 z0 z 沿直线 y y0 k ( x x0 ) 趋于 z0 , y 1 i 1 ik z x i y x z x iy 1 i y 1 ik x
所以 u 常数, v 常数,
因此 f ( z ) 在区域 D 内为一常数.
21
参照以上例题可进一步证明:
如果 f ( z ) 在区域 D 内解析, 则以下条件彼此等价 . (1) f ( z ) 恒取实值;