北师版新课标高中数学必修一同步练习题函数的零点及判断零点个数提高题

合集下载

2024-2025学年高一数学必修第一册(配北师版)教学课件1.1利用函数性质判定方程解的存在性

2024-2025学年高一数学必修第一册(配北师版)教学课件1.1利用函数性质判定方程解的存在性
C.(-1,1)和(1,2)
D.(-∞,-3)和(4,+∞)
解析 易知f(x)=ax2+bx+c(a≠0)的图象是一条连续不断的曲线,又f(-3)·f(-1)
(1)函数的零点是一个点.( × )
(2)函数的零点是一个点的坐标.( × )
1
2.函数y=1+ 的零点是( B )
A.(-1,0)
B.-1
C.1
D.0
3.[人教B版教材例题]如图所示是函数y=f(x)的图象,分别写出
f(x)=0,f(x)>0,f(x)≤0的解集.
解 由图可知,f(x)=0的解集为{-5,-3,-1,2,4,6}.
f(x)=0,通过求方程f(x)=0的解求得函数的零点;二是几何法,画出函数y=f(x)
的图象,图象与x轴交点的横坐标即函数的零点.
变式训练1已知函数f(x)=x2+3(m+1)x+n的零点是1和2,求函数y=logn(mx+1)
的零点.
解 由题意知函数f(x)=x2+3(m+1)x+n的零点为1和2,则1和2是方程
【例2】 判断下列函数零点的个数:
(1)f(x)=(x2-4)log2x;
(2)f(x)=x2-
1
;

(3)f(x)=2x+lg(x+1)-2.
解 (1)令f(x)=0,得(x2-4)log2x=0,因此x2-4=0或log2x=0,解得x=±2或x=1.
又因为函数定义域为(0,+∞),所以-2不是函数的零点,故函数有1和2两个零点.
(方法二)令h(x)=2-2x,g(x)=lg(x+1),在同一平面直

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-14.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉5.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦6.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-311.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+;③设{}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,对任意*i N ∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.17.函数2()23||f x x x =-的单调递减区间是________.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________20.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________. 三、解答题21.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域.22.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 23.已知22()2x af x x -=+. (1)若0a =,证明:()f x在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =,当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 4.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.5.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.8.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.9.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减,∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i A B ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.14.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +,由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.16.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种. 故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.17.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题18.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.19.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.20.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.三、解答题21.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数.22.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷一、单选题 1.函数()g x =) A .(2,0)(0,1)- B .[2,0)(0,1]- C .(1,0)(0,1]-⋃ D .[1,0)(0,2]-⋃2.已知(),()f x g x 都是定义在R 上的函数,下列两个命题: ①若()f x 、()g x 都不是单调函数,则(())f g x 不是增函数. ①若()f x 、()g x 都是非奇非偶函数,则(())f g x 不是偶函数. 则( ) A .①①都正确B .①正确①错误C .①错误①正确D .①①都错误3.设()f x 为定义在R 上的奇函数,且满足()(4)f x f x =+,(1)1f =,则(1)(8)f f -+=( ) A .2-B .1-C .0D .14.设函数17,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若()1f a <,则实数a 的取值范围是( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-⋃+∞5.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f =-,则满足()111f x -≤-≤的x 的取值范围为( )A .[]22-,B .[]1,3-C .[]1,3D .[]1,1-6.函数y =331x x -的图象大致是( )A .B .C .D .7.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大整数,如[]1,81=,[]1,82-=-.下面说法错误的是( )A .当[)0,1x ∈时,()f x x =;B .函数()y f x =的值域是[)0,1;C .函数()y f x =与函数14y x =的图象有4个交点;D .方程()40f x x -=根的个数为7个.8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对二、多选题9.函数()y f x =的图象如图所示,则( )A .函数()f x 的定义域为[-4,4)B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应10.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图8-3-1所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映建议(1)B .①反映建议(1)C .①反映建议(2)D .①反映建议(2)11.有下列几个命题,其中正确的是( ) A .函数y =2x 2+x +1在(0,+∞)上是增函数 B .函数y =11x +在(-∞,-1)①(-1,+∞)上是减函数C .函数y [-2,+∞)D .已知函数g (x )=23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +312.对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数三、填空题 13.若函数()2743kx f x kx kx +=++的定义域为R ,则实数k 的取值范围是__________ .14.已知函数()()3,01,0x x f x f x x ≤⎧=⎨->⎩,则56f ⎛⎫= ⎪⎝⎭_______ 15.已知函数()f x x=()2g x x ,则()()f x g x +=_________. 16.已知偶函数()y f x =定义在(1,1)-上,且在(1,0]-上是单调增加的.若不等式(1)(31)f a f a -<-成立,则实数a 的取值范围是___________.四、解答题17.已知幂函数22()(22)m f x m m x +=+-,且在(0,)+∞上是减函数. (1)求()f x 的解析式;(2)若(3)(1)m m a a ->-,求a 的取值范围.18.已知函数11()1(0)2f x x x =-+>.(1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出函数()f x 在R 上的解析式,并补出函数()f x 在y 轴右侧的图像; (2)①根据图像写出函数()f x 的单调递减区间;①若[]1,x m ∈-时函数()f x 的值域是[]1,1-,求m 的取值范围.20.已知函数f (x )=221x x +.(1)求f (2)+f 12⎛⎫ ⎪⎝⎭,f (3)+f 13⎛⎫⎪⎝⎭的值;(2)由(1)中求得的结果,你发现f (x )与f 1x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现.(3)求2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭的值.21.已知函数2(1)(f x ax bx a b =++,均为实数),x ∈R , (),0()(),0f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0f -=,且函数()f x 的值域为[0)+∞,,求()F x 的解析式; (2)在(1)的条件下,当2][2x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围; (3)设000mn m n a <+>>,,,且()f x 为偶函数,判断()()F m F n +是否大于零,并说明理由.22.已知函数()y x ϕ=的图象关于点(),P a b 成中心对称图形的充要条件是()()2a x a x b ϕϕ++-=.给定函数()61f x x x =-+. (1)求函数()f x 图象的对称中心;(2)判断()f x 在区间()0,∞+上的单调性(只写出结论即可);(3)已知函数()g x 的图象关于点()1,1对称,且当[]0,1x ∈时,()2g x x mx m =-+.若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.参考答案1.B 【分析】首先根据题中所给的函数解析式,结合偶次根式和分式的要求列出不等式组求得结果.【解析】由题意得2200x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,所以函数()g x =[2,0)(0,1]-, 故选:B. 2.D【解析】解::当1,0()()0,0x f x g x x x ⎧≠⎪==⎨⎪=⎩,则(())f g x x =,故①不正确;当2()(1)f x x =+,()1g x x =-,则2(())f g x x =,故①不正确. ①①①都错误. 故选:D . 3.B 【解析】解:()f x 是定义在R 上的奇函数,(0)0f =,满足()(4)f x f x =+,(8)(4)(0)0f f f ∴===,又(1)(1)1f f -=-=-,(1)(8)1f f ∴-+=-.故选:B. 【点睛】本题考查了利用奇偶性和周期性求函数值,属于基础题. 4.C 【分析】0a <时,()1f a <即1()712a-<,0a1<,分别求解即可.【解析】0a <时,()1f a <即1()712a-<,解得3a >-,所以30a -<<;0a1,解得01a <综上可得:31a -<< 故选:C . 【点睛】本题考查分段函数解不等式问题,考查了分类讨论思想的应用,属基本题,难度不大. 5.B【分析】根据函数的奇偶性以及函数的单调性求出x 的范围即可. 【解析】解:因为()f x 为奇函数, 所以()()221f f -=-=,于是()111f x -≤-≤等价于()()()212f f x f ≤-≤-, 又()f x 在(,)-∞+∞单调递减,212x ∴-≤-≤,13x ∴-≤≤.故选:B . 【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,属于中档题. 6.C【解析】由函数解析式可得,该函数定义域为(-∞,0)①(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x→+∞时,3x-1远远大于x 3的值且都为正,故331xx -→0且大于0,故排除D ,选C. 7.C 【分析】作出函数()[]f x x x =-的图像,结合图像可判断A ,B 均正确,再作出14y x =,14y x =的图像,结合方程的根与函数零点的关系,可判断C ,D 是否正确.【解析】解:作出函数()[]f x x x =-的图像如图所示,显然A ,B 均正确; 在同一坐标系内作函数14y x =的图像(坐标系内第一象限的射线部分), 作出14y x =的图像(图像中的折线部分),可以得到C 错误,D 正确. 故选:C.【点睛】本题考查了函数图像的应用,考查了函数值域的求解,考查了函数的零点与方程的根.本题的关键是由题目条件,作出()[]f x x x =-的图像.本题的难点是作图时,临界点空心圆、实心圆的标定. 8.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;①a B ∈,b B ∈;①a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【解析】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ①当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;①当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 9.BD 【分析】结合函数图象一一分析即可;【解析】解:由题图可知,函数()f x 的定义域为[][)4,01,4-⋃,故A 错误; 函数()f x 的值域为[)0,+∞,故B 正确; 函数()f x 在定义域内不单调,故C 错误;对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD .【分析】由于图象表示收支差额y 与乘客量x 的函数关系,因此需要正确理解图中直线的倾斜角及纵截距的含义.同时对于建议(1)(2)前后图象的变化,也可以理解为对原图象做平移或旋转得到新的图象【解析】对于建议(1)因为不改变车票价格,故建议后的图象(虚线)与目前的图象(实线)倾斜方向相同(即平行),由于减少支出费用,收支差变大,则纵截距变大,相当于将原图象向上平移即可得到,故①反映建议(1);对于建议(2)因为不改变支出费用,则乘客量为0时前后的收支差是相等的,即前后图象纵截距相等,由于提高车票价格,故建议后的图象(虚线)比目前的图象(实线)的倾斜角大.相当于将原图象绕与y 轴的交点按逆时针旋转一定的角度得到的图象,故①反映建议(2). 故选:AC. 11.AD 【分析】根据简单函数的单调性,复合函数的单调性,以及由函数奇偶性求函数解析式,即可容易判断和选择.【解析】由y =2x 2+x +1=2217()48x ++在1[,)4-+∞上递增知,函数y =2x 2+x +1在(0,+∞)上是增函数,故A 正确; y =11x +在(-∞,-1),(-1,+∞)上均是减函数, 但在(-∞,-1)①(-1,+∞)上不是减函数, 如-2<0,但112101<-++故B 错误;y [),(5,)2,1--+∞上无意义, 从而在[-2,+∞)上不是单调函数,故C 错误; 设x <0,则-x >0,g (-x )=-2x -3,因为g (x )为奇函数,所以f (x )=g (x )=-g (-x )=2x +3,故D 正确. 故选:AD . 【点睛】本题考查函数单调区间的求解,复合函数的单调性判断以及利用函数奇偶性求函数解析式,属中档题. 12.ACD利用单调性的定义及性质,奇偶函数定义进行判断即可.【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD 【点睛】本题考查了函数的单调性的定义和性质,考查了函数奇偶性的性质,属于基础题. 13.30,4⎡⎫⎪⎢⎣⎭【分析】分析可知,对任意的x ∈R ,2430kx kx ++≠恒成立,分0k =、0k ≠两种情况讨论,结合已知条件可求得实数k 的取值范围. 【解析】因为函数()2743kx f x kx kx +=++的定义域为R ,所以,对任意的x ∈R ,2430kx kx ++≠恒成立. ①当0k =时,则有30≠,合乎题意;①当0k ≠时,由题意可得216120k k ∆=-<,解得304k <<. 综上所述,实数k 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭.14.12-【分析】利用函数()f x 的解析式可求得56f ⎛⎫⎪⎝⎭的值.【解析】因为()()3,01,0x x f x f x x ≤⎧=⎨->⎩,所以,511136662f f ⎛⎫⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:12-.15.()0x x -> 【分析】求出函数()f x 、()g x 的定义域,将函数()f x 、()g x 解析式相加即可得解.【解析】函数()f x x =()2g x x =的定义域均为()0,∞+, 因此,()()()0f x g x x x +=->.故答案为:()0x x ->.16.1(0,)2【分析】由()y f x =在(1,0]-上为单调增,结合函数的奇偶性,可得()y f x =在[)0,1上为单调减,将(1)(31)f a f a -<-转化为131a a ->-,结合定义域,解不等式可得a 的取值范围. 【解析】偶函数()y f x =在(1,0]-上为单调增,∴()y f x =在[)0,1上为单调减,∴(1)(31)f a f a -<-等价于1311111311a a a a ⎧->-⎪-<-<⎨⎪-<-<⎩,解得:10202203a a a ⎧<<⎪⎪<<⎨⎪⎪<<⎩∴实数a 的取值范围是1(0,)2. 故答案为:1(0,)2. 【点睛】本题主要考查利用函数的奇偶性和单调性求解不等式问题,考查计算能力,属于中档题. 17.(1)()1f x x=;(2){|23a a <<或1}a <. 【分析】(1)根据幂函数的定义和单调性建立条件关系即可得到结论,(2)令3()g x x -=,根据其单调性即可求解结论.【解析】解:(1)函数是幂函数,2221m m ∴+-=, 即2230m m +-=,解得1m =或3m =-,幂函数()f x 在(0,)+∞上是减函数,20m ∴+<,即2m <-,3m ∴=-,(2)令3()g x x -=,因为()g x 的定义域为(-∞,0)(0⋃,)+∞,且在(,0)-∞和(0,)+∞上均为减函数,33(3)(1)a a --->-,310a a ∴-<-<或031a a <-<-或301a a ->>-,解得23a <<或1a <,故a 的取值范围为:{|23a a <<或1}a <.18.(1)2;(2)32m =,12n =. 【分析】(1)根据绝对值定义去掉绝对值,由()()f m f n =化简即可得出结果;(2)根据01n m <<≤,1m n >≥,01n m <<<三种情况去掉绝对值,根据函数的单调性,列出方程,计算求解即可得出结果.【解析】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, 所以1111m n -=-或1111m n -=-,因为0m n >>,所以112m n+=. (2)1 当01n m <<≤时,11()2f x x =-在[],n m 上单调递减,因为函数()f x 的定义域与值域均为[],n m ,所以()()f n m f m n=⎧⎨=⎩,两式相减得1mn =不合,舍去. 2 当1m n >≥时,31()2f x x =-在[],n m 上单调递增,因为函数()f x 的定义域与值域均为[],n m ,所以()()f m m f n n =⎧⎨=⎩,无实数解. 3 当01n m <<<时,11,[,1],2()31,(1,],2x n x f x x m x⎧-∈⎪⎪=⎨⎪-∈⎪⎩ 所以函数()f x 在[,1]n 上单调递减,在(]1,m 上单调递增.因为函数()f x 的定义域与值域均为[],n m ,所以1(1)2n f ==,13()22m f ==.综合所述,32m =,12n =. 【点睛】本题考查分段函数的单调性及值域问题,考查分类讨论的思想,属于中档题.19.(1)()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩,图象答案见解析;(2)①减区间为:(),1-∞-和()1,+∞;①1m ⎡⎤∈⎣⎦.【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.(2)由图象的上升与下降得增减区间,解出方程221x x -+=-的正数解,可得结论.【解析】(1)当0x >,0x -<,则()()2222f x x x x x -=--=-因为()f x 为奇函数,则()()f x f x -=-,即0x >时,()22f x x x =-+ 所以()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩, 图象如下:(2)如图可知,减区间为:(),1-∞-和()1,+∞()11f -=-,()11f =令22212101x x x x x -+=-⇒--=⇒==①1x >①1x =故由图可知1m ⎡⎤∈⎣⎦. 【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.20.(1)f (2)+f 12⎛⎫ ⎪⎝⎭=1,f (3)+f 13⎛⎫ ⎪⎝⎭=1;(2)f (x )+f 1x ⎛⎫ ⎪⎝⎭=1;证明见解析;(3)2018. 【分析】(1)根据函数解析式,代值计算即可;(2)观察(1)中所求()11f x f x ⎛⎫+= ⎪⎝⎭,结合函数解析式,即可证明; (3)根据(2)中所求,两两配对,即可容易求得结果.【解析】(1)因为f (x )=221x x +, 所以f (2)+f 12⎛⎫ ⎪⎝⎭=22212++2212112⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1 f (3)+f 13⎛⎫ ⎪⎝⎭=22313++2213113⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1. (2)由(1)可发现f (x )+f 1x ⎛⎫ ⎪⎝⎭=1.证明如下: f (x )+f 1x ⎛⎫ ⎪⎝⎭=221x x ++22111x x ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭ =221x x ++211x +=2211x x ++=1,是定值. (3)由(2)知,f (x )+f 1x ⎛⎫ ⎪⎝⎭=1, 因为f (1)+f (1)=1,f (2)+f 12⎛⎫ ⎪⎝⎭=1, f (3)+f 13⎛⎫ ⎪⎝⎭=1, f (4)+f 14⎛⎫ ⎪⎝⎭=1, …f (2018)+f 12018⎛⎫ ⎪⎝⎭=1,所以2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫ ⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭=2018.【点睛】本题考查函数值的求解,注意观察,属基础题.21.(1)22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩;(2)(][)26∞∞-,-,+;(3)大于零,理由见解析. 【分析】(1)由(1)0f -=,得10a b -+=及函数()f x 的值域为[0)+∞,,得240a b -=, 联立求解可得;(2)由222(2)()124()k k g x x --=++-,当2][2x ∈-,时,()()g x f x kx =-是单调函数,则222k -≤-或222k -≥得解; (3)()f x 为偶函数,则2()1f x ax =+,不妨设m n >,则0n <,由0m n +>,得0m n >->,则22m n >所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=得解【解析】(1)因为(1)0f -=,所以10a b -+= ①.又函数()f x 的值域为[0)+∞,,所以0a ≠. 由224()24b a b y a x a a-=++知2404a b a -=, 即240a b -=①.解①①,得12a b ==,. 所以22()21(1)f x x x x =++=+.所以22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩; (2)由(1)得2222(2()())()21()124k k g x f x kx x k x x --=-=-=++-++ 因为当2][2x ∈-,时,()()g x f x kx =-是单调函数, 所以222k -≤-或222k -≥, 即2k ≤-或6k ≥,故实数k 的取值范围为(][)26∞∞-,-,+(3)大于零.理由如下:因为()f x 为偶函数,所以2()1f x ax =+,所以221,0()1,0ax x F x ax x ⎧+>=⎨--<⎩不妨设m n >,则0n <由0m n +>,得0m n >->所以22m n >又0a >,所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=,所以()()F m F n +大于零.【点睛】本题考查函数性质的应用,涉及分段函数解析式、函数的值域,单调性,奇偶性,属于基础题.22.(1)()1,1--;(2)()f x 在区间()0,∞+上为增函数;(3)[]2,4-.【分析】(1)根据题意可知,若函数()f x 关于点(),a b 中心对称,则()()2f a x f a x b ++-=, 然后利用()61f x x x =-+得出()f a x +与()f a x -,代入上式求解; (2)因为函数y x =及函数61y x =-+在()0,∞+上递增,所以函数()61f x x x =-+在()0,∞+上递增; (3)根据题意可知,若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,则只需使函数()g x 在[]10,2x ∈上的值域为()f x 在[]21,5x ∈上的值域的子集,然后分类讨论求解函数()g x 的值域与函数()f x 的值域,根据集合间的包含关求解参数m 的取值范围.【解析】解:(1)设函数()f x 图象的对称中心为(),a b ,则()()20f a x f a x b ++--=. 即()()662011x a x a b x a x a +-+-+--=++-++, 整理得()()()()22161a b x a b a a -=-+-+,于是()()()()21610a b a b a a -=-+-+=,解得1a b ==-.所以()f x 的对称中心为()1,1--;(2)函数()f x 在()0,∞+上为增函数;(3)由已知,()g x 值域为()f x 值域的子集.由(2)知()f x 在[]1,5上单增,所以()f x 的值域为[]2,4-.于是原问题转化为()g x 在[]0,2上的值域[]2.4A ⊆-.①当02m ≤,即0m ≤时,()g x 在[]0,1单增,注意到()2g x x mx m =-+的图象恒过对称中心()1,1,可知()g x 在(]1,2上亦单增,所以()g x 在[]0,2上单增,又()0g m =,()()2202g g m =-=-,所以[],2A m m =-.因为[][],22,4m m -⊆-,所以224m m ≥-⎧⎨-≤⎩,解得20m -≤≤. ①当012m <<,即02m <<时,()g x 在0,2m ⎛⎫ ⎪⎝⎭单减,,12m ⎛⎫ ⎪⎝⎭单增, 又()g x 过对称中心()1,1,所以()g x 在1,22m ⎛⎫- ⎪⎝⎭单增,2,22m ⎛⎤- ⎥⎝⎦单减; 此时()()min 2,,max 0,222m m A g g g g ⎛⎫⎧⎫⎧⎫⎛⎫⎛⎫=-⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭⎝⎭. 欲使[]2,4A ⊆-,只需()()222022224g g m m m g m ⎧=-=-≥-⎪⎨⎛⎫=-+≥- ⎪⎪⎝⎭⎩且()2042224224g m m m m g g m ⎧=≤⎪⎨⎛⎫⎛⎫-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩解不等式得24m -≤,又02m <<,此时02m <<.①当12m ≥,即2m ≥时,()g x 在[]0,1单减,在(]1,2上亦单减, 由对称性,知()g x 在[]0,2上单减,于是[]2,A m m =-.因为[][]2,2,4m m -⊆-,所以224m m -≥-⎧⎨≤⎩,解得24m ≤≤. 综上,实数m 的取值范围为[]2,4-。

数学试题-北师大版必修1-第四章小节练习

数学试题-北师大版必修1-第四章小节练习

第四章 4.1.1A 级 基础巩固1.函数y =x 2-5x +6的零点是( A ) A .2,3 B .-2,-3 C .1,6D .-1,-6[解析] 由x 2-5x +6=0得x =2或3,所以y =x 2-5x +6的零点是2,3,故选A . 2.函数f(x)=x 3+x -1的零点所在的区间是( C ) A .(32,2)B .(1,32)C .(12,1)D .(0,12)[解析] 因为f(12)·f(1)=-38×1=-38<0,且函数f(x)在R 上连续,所以函数f(x)=x 3+x -1的零点所在区间是(12,1).3.若方程2ax 2-x -1=0在区间(0,1)内恰有一解,则a 的取值范围是( D ) A .a<-1 B .-1<a<1 C .0≤a<1D .a>1[解析] 令f(x)=2ax 2-x -1,因为方程f(x)=0在区间(0,1)内恰有一解,所以函数f(x)在区间(0,1)内恰有一个零点. 所以f(0)·f(1)<0,即-1·(2a-2)<0. 所以a>1.故选D .4.函数f(x)=x 3-2x 2+2x 的零点个数为( B ) A .0 B .1 C .2D .3[解析] ∵f(x)=x 3-2x 2+2x =x(x 2-2x +2), 又x 2-2x +2=0,Δ=4-8<0,∴x 2-2x +2≠0,∴f(x)的零点只有1个,故选B .5.函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3(x≤0)-2+x 2(x>0)的零点个数为( B )A .3B .2C .1D .0[解析] 令f(x)=0,则x 2+2x -3=0(x≤0)或x 2-2=0(x>0), 解得:x =-3或x =2符合题意,故选B .6.(2019·山东临沂高一期末测试)函数f(x)=lnx +12x -2有零点的一个区间是( C )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] f(1)=12-2=-32<0,f(2)=ln2+1-2=ln2-1<0, f(3)=ln3+32-2=ln3-12>0.∴f(2)·f(3)<0,故选C .7.已知函数f(x)=x 2+ax +b(a ,b ∈R)的值域为[0,+∞),若关于x 的方程f(x)=c(c ∈R)有两个实根m ,m +6,则实数c 的值为9.[解析] 由函数f(x)=x 2+ax +b 的值域为[0,+∞)知方程x 2+ax +b =0有两相等实根,从而Δ=a 2-4b =0,①,方程f(x)=c 可化为x 2+ax +b -c =0,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧m +m +6=-am (m -6)=b -c ,∴⎩⎪⎨⎪⎧a =-2m -6b =m 2-6m +c,代入①,得(-2m -6)2-4(m 2-6m +c)=0, 整理,得c =9.8.设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c (x≤0)2 (x>0),若f(-4)=2,f(-2)=-2,则关于x 的方程f(x)=x 的解的个数是3.[解析] 由已知⎩⎪⎨⎪⎧16-4b +c =24-2b +c =-2,得⎩⎪⎨⎪⎧b =4c =2,∴f(x)=⎩⎪⎨⎪⎧x 2+4x +2 (x≤0)2 (x>0),作图像如图所示.由图像可知f(x)=x 的解的个数为3.9.若函数f(x)=x 2-ax -b 的两个零点是2和3,求函数g(x)=bx 2-ax -1的零点. [解析] 由已知方程得x 2-ax -b =0的两根为2和3.∴⎩⎪⎨⎪⎧2+3=a 2×3=-b,∴⎩⎪⎨⎪⎧a =5b =-6.∴g(x)=-6x 2-5x -1.令-6x 2-5x -1=0得6x 2+5x +1=0, ∴x =-12或x =-13.∴函数g(x)=-6x 2-5x -1的零点是-12,-13.10.已知二次函数f(x)=x 2-(k -2)x +k 2+3k +5. (1)当函数f(x)有两个不同零点时,求k 的取值范围; (2)若-1和-3是函数的两个零点,求k 的值.[解析] (1)令f(x)=0,得x 2-(k -2)x +k 2+3k +5=0. 由Δ=(k -2)2-4(k 2+3k +5)=-3k 2-16k -16>0, 知3k 2+16k +16<0,即(3k +4)(k +4)<0,∴-4<k<-43.∴当函数有两个不同零点时,k 的取值范围为(-4,-43).(2)∵-1和-3是函数f(x)的两个零点,∴-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两根.∴⎩⎪⎨⎪⎧-1-3=k -2(-1)×(-3)=k 2+3k +5,解之得k =-2.B 级 素养提升1.已知函数f(x)=6x-log 2x.在下列区间中,包含f(x)零点的区间是( C )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析] 因为f(1)=6-log 21=6>0,f(2)=3-log 22=2>0,f(4)=32-log 24=-12<0,所以函数f(x)的零点所在区间为(2,4),故选C .2.若函数f(x)=a x-x -a(a>0且a≠1)有两个零点,则实数a 的范围是( A ) A .(1,+∞) B .(0,1) C .(2,+∞)D .(0,1)∪(1,2)[解析] 令y 1=a x ,y 2=x +a ,则f(x)=a x-x -a 有两个零点,即函数y 1=a x与y 2=x +a 有两个交点. (1)当a>1时,y 1=a x过(0,1)点,而y 2=x +a 过(0,a)点,而(0,a)点在(0,1)点上方,∴一定有两个交点.(2)当0<a<1时,(0,a)点在(0,1)点下方,由图像知只有一个交点.∴a 的取值范围为a>1.3.关于x 的方程mx 2+2x +1=0至少有一个负根,则m 的范围为m≤1. [解析] ①m =0时,x =-12适合题意.②m≠0时,应有m<0或⎩⎪⎨⎪⎧m>0-22m <0,Δ≥0解得m<0或0<m≤1.综合①②可得,m≤1.4.方程lgx +x =0的实数解的存在区间为(110,1).[解析] 令f(x)=lgx +x ,则f(110)=lg 110+110=-910<0,f(1)=lg1+1=1>0.∴f(110)f(1)<0.而f(x)=lgx +x 在(0,+∞)上单调递增.∴f(x)仅有一个零点,且在(110,1)内.5.设函数f(x)=ax +2a +1(a≠0)在[-1,1]上存在一个零点,求实数a 的取值范围. [解析] 因为函数f(x)在[-1,1]上存在零点,所以⎩⎪⎨⎪⎧f (-1)≥0f (1)≤0或⎩⎪⎨⎪⎧f (-1)≤0f (1)≥0.即f(-1)·f(1)≤0.所以(-a +2a +1)·(a+2a +1)≤0, 即(a +1)(3a +1)≤0.解得-1≤a≤-13.6.讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由. [解析] 令f(x)=4x 3+x -15,∵y =4x 3和y =x -15在[1,2]上都为增函数. ∴f(x)=4x 3+x -15在[1,2]上为增函数,∵f(1)=4+1-15=-10<0,f(2)=4×8+2-15=19>0, ∴f(x)=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解.C 级 能力拔高求函数y =(ax -1)(x +2)的零点. [解析] (1)当a =0时,令y =0得x =-2; (2)当a≠0时,令y =0得x =1a 或x =-2.①当a =-12时,函数的零点为-2;②当a≠-12时,函数的零点为1a ,-2.综上所述:当a =0或-12时,零点为-2;当a≠0且a≠-12时,零点为1a ,-2.第四章 4.1.2A级基础巩固1.函数f(x)=-x2+4x-4在区间[1,3]上( B )A.没有零点B.有一个零点C.有两个零点D.有无数个零点[解析]∵f(x)=-(x-2)2=0,∴x=2∈[1,3],故选B.2.函数y=f(x)在区间[a,b]上的图像是不间断的,并且f(a)·f(b)<0,则这个函数在该区间上( D ) A.只有一个零点B.有二个零点C.不一定有零点D.至少有一个零点[解析]若y=f(x)在[a,b]上单调,f(a)·f(b)<0说明只有一个零点且为变号零点.若不单调,零点个数有可能多于一个.故选D.3.函数f(x)=x3-x2-x+1在[0,2]上( C )A.有3个零点B.有2个零点C.有1个零点D.没有零点[解析]∵f(0)=1>0,f(1)=0,f(2)=3>0,∴有一个零点.4.下列图像表示的函数中能用二分法求零点的是( C )[解析]A中函数没有零点,因此不能用二分法求零点;B中函数的图像不连续;D中函数在x轴下方没有图像,故选C.5.已知连续函数y=f(x),有f(a)·f(b)<0(a<b),则y=f(x)( B )A.在区间[a,b]中可能没有零点B.在区间[a,b]中至少有一个零点C.在区间[a,b]中零点的个数为奇数D.在区间[a,b]中零点的个数为偶数[解析] 因为f(a)·f(b)<0,所以由函数零点的性质判断,得f(x)在区间[a ,b]中至少存在一个零点.6.设f(x)=3x+3x -8,用二分法求方程3x+3x -8=0,在x ∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( A )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定[解析] ∵f(1.5)>0,f(1.25)<0, ∴根落在区间(1.25,1.5)间,故选A .7. 若函数y =mx 2+x -2没有零点,则实数m 的取值范围是(-∞,-18).[解析] 当m =0时,函数有零点,所以应有⎩⎪⎨⎪⎧m≠0Δ=1+8m<0,解得m<-18.8.已知函数f(2x)=3x 2+1,则f(x +5)有0个零点. [解析] ∵f(2x)=3x 2+1,∴f(x)=3x24+1,∴y =f(x +5)=3x +524+1,令y =0,方程无解. 即f(x +5)无零点.9.求证:方程5x 2-7x -1=0的根一个在区间(-1,0)上,另一个在区间(1,2)上. [解析] 设f(x)=5x 2-7x -1, 则f(-1)·f(0)=11×(-1)=-11<0, f(1)·f(2)=(-3)×5=-15<0. 而二次函数f(x)=5x 2-7x -1是连续的, ∴f(x)在(-1,0)和(1,2)上各有一个零点,即方程5x 2-7x -1=0的根一个在(-1,0)上,另一个在(1,2)上. 10.求函数y =x 3-4x 的零点,并画出它的图像. [解析] ∵x 3-4x =x(x 2-4)=x(x -2)(x +2),∴函数y =x 3-4x 的零点为0,-2,2,这三个零点把x 轴分成4个区间:(-∞,-2],(-2,0],(0,2],(2,+∞),在这4个区间内,取x 的一些值(包括零点).列出这个函数的对应值表: x … -2.5 -2 -1 -0.5 0 0.5 1 2 2.5 … y…-5.62531.875-1.875-35.625…B级素养提升1.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.7)的一个根所在的区间是( C )x -1 0 1 2 3e x0.37 1 2.72 7.39 20.09x+2 1 2 3 4 5A.(-1,0) B.(0,1)C.(1,2) D.(2,3)[解析]判断e x-(x+2)=0的一个根所在的区间转化为f(x)=e x-(x+2)零点的位置,∵f(1)=e1-(1+2)<0,f(2)=7.39-4>0.∴零点在(1,2)内.2.对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则函数f(x)在区间(a,b)内( C )A.一定有零点B.一定没有零点C.可能有两个零点D.至多有一个零点[解析]如图,若函数f(x)的图像及给定的区间(a,b)如图(1)或图(2)所示,可知A错,若如图(3)所示,可知B错、D错,C对.3.已知函数f(x)的图像是连续不断的,且有如下的对应值表:x -2 -1 0 1 2 3 4 5 6 7f(x) -136 -21 6 19 13 -1 -8 -2 4 29 则下列判断正确的是(1)(2)(3).(1)函数f(x)在区间(-1,0)内至少有一个零点;(2)函数f(x)在区间(2,3)内至少有一个零点;(3)函数f(x)在区间(5,6)内至少有一个零点;(4)函数f(x)在区间(-1,7)内有三个零点.[解析]观察对应值表,不难得到f(-1)·f(0)<0,f(2)·f(3)<0,f(5)·f(6)<0,故函数f(x)在区间(-1,0),(2,3),(5,6)内至少各有一个零点.而(-1,7)内至少有三个零点.故应填(1)(2)(3).4.设函数f(x)=⎩⎪⎨⎪⎧2x-a x <14x -ax -2a x≥1.①若a =1,则f(x)的最小值为-1;②若f(x)恰有2个零点,则实数a 的取值范围是12≤a<1或a≥2.[解析] ①a =1时f(x)=⎩⎪⎨⎪⎧2x-1x<14x -1x -2x≥1.函数f(x)在(-∞,1)上为增函数,函数值大于1,在⎣⎢⎡⎦⎥⎤1,32为减函数,在⎣⎢⎡⎭⎪⎫32,+∞为增函数,当x=32时,f(x)取得最小值为-1. ②若函数f(x)=2x-a 在x<1时与x 轴有一个交点,则a>0,并且当x =1时,f(1)=2-a>0,则0<a<2,函数f(x)=4(x -a)(x -2a)与x 轴有一个交点,所以2a≥1且a<1⇒12≤a<1;若函数f(x)=2x-a 与x 轴无交点,则函数f(x)=4(x -a)(x -2a)与x 轴两个交点,当a≤0时f(x)与x 轴无交点,f(x)=4(x -a)(x -2a)在x≥1与x 轴无交点,不合题意;当f(1)=2-a≥0时,a≥2,f(x)与x 轴有两个交点,x =a 和x =2a ,由于a≥2,两交点横坐标均满足x≥1;综上所述a 的取值范围12≤a<1或a≥2.5.图像连续不间断的函数f(x)的部分对应值如表所示:x 1 2 3 4 5 6 7 8 9 f(x)148-2273-2-18试判断函数[解析] ∵f(2)=8>0,f(3)=-2<0,函数f(x)图像又是连续不间断的, ∴一定存在x 0∈(2,3),使f(x 0)=0, 即f(x)在(2,3)内有零点.同理,f(x)在区间(3,4),(6,7),(8,9)上也有零点,而且是变号零点.6.中央电视台曾有一档娱乐节目“幸运52”,主持人李咏会给选手在限定时间内猜某一物品售价的机会,如果猜中,就把物品奖励给选手,同时获得一枚商标.某次猜一种品牌的手机,手机价格在500~1 000元之间.选手开始报价:1 000元,主持人回答:高了;紧接着报价900元,高了;700元,低了;800元,低了;880元,高了;850元,低了;851元,恭喜你,你猜中了,表面上看猜价格具有很大的碰运气的成分,实际上,游戏报价的过程体现了“逼近”的数学思想,你能设计出可行的猜价方案来帮助选手猜价吗?[解析] 取价格区间[500,1 000]的中点750,如果主持人说低了,就再取[750,1 000]的中点875;否则取另一个区间[500,750]的中点;若遇到小数,则取整数.照这样的方案,游戏过程猜价如下:750,875,812,843,859,851,经过6次可以猜中价格.C级能力拔高求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点(精确到0.1).[解析]由于f(1)=1-1-1=-1<0,f(1.5)=3.375-1.5-1=0.875>0,∴f(x)在区间[1,1.5]内存在零点,取区间[1,1.5]作为计算的初始区间,用二分法逐次计算列表如下:为1.3.第四章 4.2A 级 基础巩固1.一段导线,在0℃时的电阻为2Ω,温度每增加1℃,电阻增加0.008Ω,那么电阻R(Ω)表示为温度t(℃)的函数关系式为( B )A .R =0.008tB .R =2+0.008tC .R =2.008tD .R =2t +0.008[解析] 由题意知电阻R 与温度t 构成一次函数关系,故选B .2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( A ) A .3 B .4 C .6D .12[解析] 设隔墙的长为x ,则矩形的长为24-4x 2.由24-4x 2=12-2x>0,得0<x<6.设矩形面积为y ,则y =x·24-4x2=2x(6-x),0<x<6. 由y =2x(6-x)=-2x 2+12x =-2(x -3)2+18,知当x =3时,y 最大且y max =18.3.据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2018年北冰洋冬季冰雪覆盖面积为m ,则从2018年起,经过x 年后,北冰洋冬季冰雪覆盖面积y 与x 的函数关系式是( A )A .y =0.95x50 ·m B .y =(1-0.05x50 )·m C .y =0.9550-x·mD .y =(1-0.0550-x)·m[解析] 设北冰洋冬季冰雪覆盖面积每年为上一年的q%,则(q%)50=0.95,∴q%=0.95150 , 即x 年后北冰洋冬季冰雪覆盖面积为y =0.95x50 ·m.4.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林( C ) A .14 400亩 B .172 800亩 C .17 280亩D .20 736亩[解析] 因为年增长率为20%,所以第四年造林为10 000×(1+20%)3=17 280(亩),故选C .5.某种植物生长发育的数量y 与时间x 的关系如下表:A .y =log 2(x +1)B .y =2x-1 C .y =2x -1D .y =(x -1)2+1[解析] 代入数值检验,把x =2代入可排除A 、B 、C ,把x =1,2,3 代入D 选项,符合题意. 6.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( B )(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年D .2021年[解析] 设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x =log 1.12200130=lg2-lg1.3lg1.12≈3.80,因资金需超过200万,则x 取4,即2019年,选B .7.为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下: 明文――→加密密文――→发送密文――→解密明文已知加密函数为y =a x-2(x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是4.[解析] 依题意y =a x -2中,当x =3时,y =6, 故6=a 3-2,解得a =2, 所以加密函数为y =2x-2, 因此当y =14时,由14=2x-2, 解得x =4.8.已知气压p(hPa)与海拔高度h(m)的关系式为p =1 000×(7100)h3000 ,则海拔6 000m 处的气压为4.9hPa.[解析] 把h =6 000代入p =1 000(7100)h 3000 ,得p =4.9.9.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数P =f(x)的表达式;(2)当销售商一次订购450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂的单价-成本)[解析] (1)当0<x≤100时,P =60;当100<x≤500时,P =60-0.02(x -100)=62-x50.所以P =f(x)=⎩⎪⎨⎪⎧60(0<x≤100)62-x50(100<x≤500)(x ∈N +).(2)设销售商一次订购量为x 件时,工厂获得的利润为L 元, 则L =(P -40)x =⎩⎪⎨⎪⎧20x (0<x≤100)22x -x250(100<x≤500)(x ∈N +).当x =450时,L =5 850,因此,当销售商一次订购450件服装时,该厂获得的利润是5 850元.10.某化工厂生产一种溶液,按市场要求,杂质含量不能超过1‰,若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg2=0.301 0,lg3=0.477 1)[解析] 解法1:∵每次过滤杂质含量降为原来的23,过滤n 次后杂质含量为2100·⎝ ⎛⎭⎪⎫23n.依题意,得2100·⎝ ⎛⎭⎪⎫23n ≤11 000,即⎝ ⎛⎭⎪⎫23n ≤120,∵⎝ ⎛⎭⎪⎫237=1282 187>120,⎝ ⎛⎭⎪⎫238=2566 561<120,∴由题意知至少应过滤8次才能使产品达到市场要求. 解法2:接解法1:(23)n ≤120,则n(lg2-lg3)≤-(1+lg2), 即n≥1+lg2lg3-lg2≈7.4,又n ∈N +,∴n≥8,即至少应过滤8次才能使产品达到市场要求.B 级 素养提升1.如右图所示的是某池塘中的浮萍蔓延的面积y(m 2)与时间t(月)的关系:y =a t,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m 2; ③浮萍从4m 2蔓延到12m 2只需1.5个月; ④浮萍每月增加的面积都相等;⑤若浮萍蔓延到2m 2、4m 2、8m 2所经过的时间分别为t 1、t 2、t 3,则t 1+t 2=t 3. 其中正确的是( D ) A .①② B .①②③④ C .②③④⑤D .①②⑤[解析] 设此指数函数为y =a x(a>0且a≠1), 由图像可知:(1,2),(2,4)代入可得: a =2,∴y =2x,故①正确. 当x =5时,y =25=32>30,②正确.当y =4时,x =2,当y =12时,x =log 212>log 2272 ,从而可知浮萍从4m 2蔓延到12m 2用时超过1.5个月,③错,显然④错误.把y =2,4,8代入y =2t分别得t 1=1,t 2=2,t 3=3,故⑤正确.因此选D . 2.某食品的保鲜时间y(单位:h)与储藏温度x(单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是( C )A .16hB .20hC .24hD .21h[解析] 由题意,⎩⎪⎨⎪⎧192=eb48=e22k +b,得⎩⎪⎨⎪⎧192=e b12=e 11k.于是当x =33时,y =e33k +b=(e 11k )3·e b=(12)3×192=24(h).3.日本东京为成功举办2020年奥运会,决定从2016年底到2019年底三年间更新市内全部出租车,若每年更新的车辆数比前一年递增10%,则2017年底已更新现有总车辆数的百分比约为30.2%(保留3位有效数字).[解析] 设现有车辆总数为a,2017年底更新了现有总车辆数的百分比为x ,则a·x+a·x(1+10%)+ax(1+10%)2=a.∴x(1+1.1+1.12)=1.∴x≈30.2%.4.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y 与t 的函数关系式为y =⎝ ⎛⎭⎪⎫116t -a(a 为常数),如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的函数关系式为;(2)据测定,当空气中每立方米的含药量降低到0.25mg 以下时,学生方可进教室,那么从药物释放开始,至少需要经过0.6h 后,学生才能回到教室.[解析] 由图像可知,当0≤t<0.1时,y =10t ;当t =0.1时,由1=⎝ ⎛⎭⎪⎫1160.1-a ,得a =0.1,∴当t >0.1时,y =⎝ ⎛⎭⎪⎫116t-110 .5.某工厂生产商品A ,每件售价80元,每年产销80万件,工厂为了开发新产品,经过市场调查,决定提出商品A 的销售金额的p%作为新产品开发费(即每销售100元提出p 元),并将商品A 的年产销量减少了10p 万件.(1)若工厂提出的新产品开发费不少于96万元,求p 的取值范围; (2)若工厂仅考虑每年提出最高的开发费,求此时p 的值.[解析] 由题意知,当开发费是商品A 的销售金额的p%时,销售量为(80-10p)万件,此时销售金额为80×(80-10p)万元,新产品开发金额f(p)=80×(80-10p)×p%(万元).(1)由题设知⎩⎪⎨⎪⎧80×(80-10p )×p%≥96,0<p<8,解得2≤p≤6.即新产品开发费不少于96万元时,p 的取值范围为2≤p≤6. (2)当0<p<8时,f(p)=80×(80-10p)×p% =-8(p -4)2+128. ∴当p =4时,f(p)max =128.即当p =4时,开发金额最多,可达到128万元.6.要在墙上开一个上部为半圆,下部为矩形的窗户(如图所示),在窗框为定长l 的条件下,要使窗户透光面积最大,窗户应具有怎样的尺寸?[解析] 设半圆的直径为x ,矩形的高度为y ,窗户透光面积为S ,则窗框总长l =πx2+x +2y ,y =2l -(2+π)x 4,由y>0,得x ∈(0,2l π+2).S =π8x 2+xy =π8x 2+2l -(2+π)x4·x=-4+π8(x -2l 4+π)2+l 22(4+π),x ∈(0,2l π+2).当x =2l 4+π时,S max =l 22(4+π),此时,y =l 4+π=x 2.答:窗户中的矩形高为l 4+π,且半径等于矩形的高时,窗户的透光面积最大.C 级 能力拔高某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件.为了估计以后每个月的产量,以这三个月的产品数量为依据,用一个函数来模拟该产品的月产量y 与月份x 的关系.模拟函数可以选择二次函数或函数y =a·b x+c(其中a ,b ,c 为常数),已知4月份该产品的产量为1.37万件,试问用以上哪个函数作为模拟函数较好?并说明理由.[解析] 设两个函数y 1=f(x)=px 2+qx +r(p≠0);y 2=g(x)=a·b x+c.依题意,有⎩⎪⎨⎪⎧f (1)=p +q +r =1f (2)=4p +2q +r =1.2f (3)=9p +3q +r =1.3,解得⎩⎪⎨⎪⎧p =-0.05q =0.35r =0.7.∴y 1=f(x)=-0.05x 2+0.35x +0.7, ∴f(4)=1.3(万件),依题意,也有⎩⎪⎨⎪⎧g (1)=ab +c =1g (2)=ab 2+c =1.2g (3)=ab 3+c =1.3,解得⎩⎪⎨⎪⎧a =-0.8b =0.5c =1.4.∴y 2=g(x)=-0.8×(0.5)x+1.4, g(4)=-0.8×(0.5)4+1.4=1.35(万件).经比较可知,g(4)=1.35(万件),比f(4)=1.3(万件)更接近于4月份的产量1.37万件. ∴选用y 2=g(x)=-0.8×(0.5)x+1.4作为模拟函数较好.。

2022年北师大版高中数学必修第一册同步培优第五章函数应用第1节第2课时利用二分法求方程的近似解

2022年北师大版高中数学必修第一册同步培优第五章函数应用第1节第2课时利用二分法求方程的近似解

第五章 §1 1.2A 组·素养自测一、选择题1.若函数f (x )在[a ,b ]上连续,且同时满足f (a )f (b )<0,f (a )f (a +b2)>0.则( B )A .f (x )在[a ,a +b2]上一定有零点B .f (x )在[a +b2,b ]上一定有零点C .f (x )在[a ,a +b2]上一定无零点D .f (x )在[a +b2,b ]上一定无零点[解析] a <a +b 2<b ,由题意知f ⎝ ⎛⎭⎪⎫a +b 2f (b )<0,所以f (x )在⎣⎢⎡⎦⎥⎤a +b 2,b 上有零点. 2.若方程x 2-2mx +4=0的两根满足一根大于2,一根小于1,则m 的取值范围是( B ) A .(-∞,52)B .(52,+∞)C .(52,3)D .(1,52)[解析] 令f (x )=x 2-2mx +4,由题意可知⎩⎪⎨⎪⎧f (1)<0,f (2)<0,即⎩⎪⎨⎪⎧1-2m +4<0,4-4m +4<0,所以⎩⎪⎨⎪⎧m >52,m >2,即m >52.3.以下每个图象表示的函数都有零点,能用二分法求函数零点近似值的是( ABD )[解析] 由二分法的定义,可知只有当函数f (x )在区间[a ,b ]上的图象连续不断,且f (a )f (b ) <0,即函数的零点是变号零点时,才能将区间[a ,b ]一分为二,逐步得到零点的近似值.对各选项分析可知,选项A ,B ,D 都符合,而选项C 不符合,因为在零点两侧函数值不异号,因此不能用二分法求函数零点的近似值.故选ABD .4.已知f (x )=1-(x -a )(x -b )(a <b ),m ,n 是f (x )的零点,且m <n ,则实数a ,b ,m ,n 的大小关系是__m <a <b <n __.[解析] 由题意知,f (x )的图象是开口向下的抛物线,f (a )=f (b )=1,f (m )=f (n )=0,如图所示.所以m <a <b <n . 二、填空题5.若定义在[-1,1]上的函数f (x )=3ax +1-2a 在(-1,1)上存在零点,则实数a 的取值范围为__(-∞,-1)∪⎝⎛⎭⎫15,+∞__. [解析] 由题意可知f (-1)·f (1)<0, 即(-5a +1)(a +1)<0, 解得a <-1或a >15.∴a ∈(-∞,-1)∪⎝⎛⎭⎫15,+∞. 三、解答题6.求函数y =x 3-2x 2-3x 的零点,并作出它的图象. 解:∵x 3-2x 2-3x =x (x 2-2x -3)=x (x -3)(x +1),∴函数的零点为-1,0,3.三个零点把x 轴分成四个区间:(-∞,-1],(-1,0],(0,3],(3,+∞),在这四个区间内,取x 的一些值,列出这个函数的对应值表如下: x … -2 -1 -12 0 1 234 … y…-1078-4-620…B 组·素养提升一、选择题1.已知函数f (x )在(1,2)内有1个零点,用二分法求零点的近似值时,若精度小于0.01,则至少计算中点函数值( C )A .5次B .6次C .7次D .8次[解析] 设对区间(1,2)二等分n 次,初始区间长度为1.第1次计算后区间长度为12;第2次计算后区间长度为122;第3次计算后区间长度为123;……;第5次计算后区间长度为125>0.02;第6次计算后区间长度为126<0.02;第7次计算区间长度为127<0.01.故至少计算7次.故选C .2.若函数f (x )的图象是连续的,且函数f (x )的唯一零点同时在(0,4),(0,2),(1,2),⎝⎛⎭⎫1,32,⎝⎛⎭⎫54,32内,则与f (0)符号不同的是( ABD )A .f (4)B .f (2)C .f (1)D .f ⎝⎛⎭⎫32E .f ⎝⎛⎭⎫54[解析] 由二分法的步骤可知:①零点在(0,4)内,则有f (0)·f (4)<0,不妨设f (0)>0,f (4)<0,取中点2; ②零点在(0,2)内,则有f (0)·f (2)<0,则f (0)>0,f (2)<0,取中点1; ③零点在(1,2)内,则有f (1)·f (2)<0,则f (1)>0,f (2)<0,取中点32;④零点在⎝⎛⎭⎫1,32内,则有f (1)·f ⎝⎛⎭⎫32<0,则f (1)>0,f ⎝⎛⎭⎫32<0,取中点54;⑤零点在⎝⎛⎭⎫54,32内,则有f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,则f ⎝⎛⎭⎫54>0,f ⎝⎛⎭⎫32<0. 所以与f (0)符号不同的是f (4),f (2),f ⎝⎛⎭⎫32,故选ABD .3.设函数f (x )=x |x |+bx +c ,给出如下命题,其中正确的是( ABC ) A .c =0时,y =f (x )是奇函数B .b =0,c >0时,方程f (x )=0只有一个实数根C .y =f (x )的图象关于点(0,c )对称D .方程f (x )=0最多有两个实根[解析] 当c =0时,f (x )=x |x |+bx ,此时f (-x )=-f (x ),故f (x )为奇函数,A 正确;当b =0,c >0时,f (x )=x |x |+c ,若x ≥0,f (x )=0无解,若x <0,f (x )=0有一解x =-c ,B 正确,结合图象(如图)知C 正确,D 不正确.故选ABC .二、填空题4.给出以下结论,其中正确结论的序号是__②③__. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效.解析:零点有变号零点与不变号零点,故①不对;“二分法”针对的是连续不断的函数的变号零点,故④不对.据零点的性质知②③都正确.5.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≤0),2 (x >0),若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是__3__.解析:由已知⎩⎪⎨⎪⎧ 16-4b +c =2,4-2b +c =-2,得⎩⎪⎨⎪⎧b =4,c =2,∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 (x ≤0),2 (x >0),作图象如图所示.由图象可知f (x )=x 的解的个数为3. 三、解答题6.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在[0,1]内有两个实根.解析:∵f (1)>0,∴3a +2b +c >0, 即3(a +b +c )-b -2c >0,∵a +b +c =0,∴-b -2c >0,则-b -c >c ,即a >c . ∵f (0)>0,∴c >0,则a >0. 在[0,1]内选取二等分点12,则f ⎝⎛⎭⎫12=34a +b +c =34a +(-a )=-14a <0. ∵f (0)>0,f (1)>0,∴f (x )在区间⎝⎛⎭⎫0,12和⎝⎛⎭⎫12,1上至少各有一个零点, 又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根.。

【高中数学新人教B版必修1】2.4.1《函数的零点》测试.docx

【高中数学新人教B版必修1】2.4.1《函数的零点》测试.docx

高中数学学习材料马鸣风萧萧*整理制作【高中数学新人教B 版必修1】2.4.1《函数的零点》测试一、选择题 1.函数f(x)=x-x4的零点是( ) A.0 B.1 C.2 D.无数个2.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-2 3.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)∙f(4)的值( )A.大于0 B.小于0 C.等于0 D.无法判断4.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )A.1 B.2 C.3 D.4 5.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.5 6.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根C. 有唯一的实数根 D .没有实数根7.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]8.给出下列三个函数的图象;07徐州三练) 3.方程2x +x-4=O 的解所在区间为A .(-1,0)B .(0,1)C .(1,2)D .(2,3)9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c 为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解二、填空题:10.关于x的方程2k2x -2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围 .11.若函数f(x)=2x -ax-b的两个零点时2和3,则函数g(x)=b2x -ax-1的零点 .三、解答题12.已知函数f(x)=2(m-1)2x -4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.13.已知二次函数f (x )=a 2x +bx (a,b是常数且a≠0)满足条件:f(2)=0.方程有等根(1)求f (x )的解析式;(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,说明理由.参考答案:一、选择题1. C2.B3.D4.C5.D6. C7. A8. C9. C二、填空题:10.k>0或k<-412.31,21-- 三、解答题13.解:(1)由条件知;Δ=24m --8(m-1)(2m-1)又Δ>0 即m>31 所以函数与x轴有两个交点 (2)函数一个零点在原点即x=0为其方程的一个根,∴有2(m-1)⨯20-4m0⋅+2m-1=0∴m=0.514.(1)由f(2)=0得:4a+2b=0,方程f(x)=x即ax 2+(b -1)x=0.有等根∴Δ=)1(2-b =0, 解方程组⎪⎩⎪⎨⎧==+-0024)1(2b b a ,得⎪⎩⎪⎨⎧=-=121b a ,∴f(x)=-x 221+x (2)f(x)=-x 221+x=-212121)1(2≤+-x ∴2n21≤ ,∴ n41≤∴函数f(x)在[m,n]上是增函数 ∴⎪⎪⎩⎪⎪⎨⎧=+-==+-=n n n f m m m f n m 2221)(,221)(2,解得m=2,n=0。

高一数学必修一 第三章函数的零点(教师)

高一数学必修一 第三章函数的零点(教师)

高一数学必修一 第三章函数的零点(教师)1.函数2231y x x =-+的零点个数是( )A.0个B.1个C.2个D.不能确定【详解】取22310y x x =-+=解得1211,2x x ==有两个解故答案选C 2.函数()1ln f x x x =-⋅的零点所在的区间( )A.1(0,)2B.1(,1)2C.(1,2)D.(2,3)【详解】由于()()()()1211ln112ln 2f f ⋅=-⨯-⨯12ln 21ln 40=-⨯=-<,根据零点存在性定理可知,函数的零点在区间()1,2.故选:C. 3.下列图象表示的函数中没有零点的是A .B .C . D【详解】B 选项的图象与x 轴有一个交点,B 选项的图象表示的函数有一个零点; C 选项的图象与x 轴有两个交点,C 选项的图象表示的函数有两个零点; D 选项的图象与x 轴有两个交点,D 选项的图象表示的函数有两个零点;而A 选项的图象与x 轴没有交点,所以A 选项的图象表示的函数没有零点.故选:A . 4.函数3()5f x x x =+-的零点所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【详解】由函数f (x )=x 3+x –5可得f (1)=1+1–5=–3<0,f (2)=8+2–5=5>0,故有f (1)f (2)<0,根据函数零点的判定定理可得,函数f (x )的零点所在区间为(1,2),故选B . 5.一元二次方程240x x m -+=没有实数根,则m 的取值范围为( )A .m <2B .m >4C .m >16D .m <8【详解】∵一元二次方程x 2–4x +m =0没有实数根,∴∆=16–4m <0,即m >4,故选B . 6.函数f (x )=2x –1的零点为( )A .2B .12C .12-D .–2【详解】根据题意,函数f (x )=2x –1,令f (x )=0,即2x –1=0,解可得x 12=, 即函数f (x )=2x –1的零点为12,故选B . 7.在下列个区间中,存在着函数3()239f x x x =--的零点的区间是( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)【解析】由()()1239100,2166910f f =--=-=--=.由零点存在定理知函数()3239f x x x =--在()1,2上必有零点。

北师版新课标高中数学必修一同步练习题函数的零点与方程的解同步练习题

北师版新课标高中数学必修一同步练习题函数的零点与方程的解同步练习题

同步测试
6 . 若函数 f(x)=2x2-ax+3 有一个零点为 3,求 f(x) 的所有零点 .
2
【解析】f(x)=2x
3 2
是方程
2x2-ax+3=0 的一个根,则 2 9 - 3 a + 3 = 0,解得 a=5,所以
42
f(x)=2x2-5x+3,令 f(x)=0,得 x= 3 或 x=1,所以 f(x) 的零点
函数的零点与方程的解 同步测试
同步测试
1 . 函数 f(x)= -2x+m 的零点为 4,则实数 m 的值为( )
A . -6
B.8
3
C. 2
D. - 3
2
【解析】f(x)= -2x+m 的零点为 4,所以 -2×4+m=0,m=8 . 【答案】B.
同步测试
2 . 若函数 f(x)=x2+2x+a 没有零点,则实数 a 的取值范围是 ( ) A. a<1 B. a>1 C. a≤1 D. a≥1
2
为 3,1 .
2
再见
【解析】函数 f(x)=x2+2x+a 没有零点,即方程 x2+2x+a=0 没有 实数根,所以 Δ=4 -4a<0,得 a>1 . 【答案】B .
同步测试
3 . 函数 f(x)=x3 -2x2+3x 的零点有 ( )
A. 一个
B. 两个
C. 三个
D. 无零点
【解析】令 x3-2x2+3x=x(x2-2x+3)=0, ∵方程 x2-2x+3=0 的 Δ=(-2)2-4×3<0, ∴ x2-2x+3=0 没有实数根,故方程x3-2x2+3x=0有实数根 x=0, 所以 f(x)=x3 -2x2+3x 只有一个零点 . 【答案】A .

北师大版高中数学必修一第四单元《函数应用》测试卷(有答案解析)(2)

北师大版高中数学必修一第四单元《函数应用》测试卷(有答案解析)(2)

一、选择题1.已知函数()102xx f x =+-的零点为a ,()()lg 13g x x x =-+-的零点为b ,则a b +=( )A .1B .2C .3D .42.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫--⎪⎝⎭C .(-3,-1)D .(-3,-1]3.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006B .1007C .2016D .20174.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,25.已知函数24,?0()7,?0x f x xx x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a 的取值范围是( ) A .(﹣4,0] B .(-∞,﹣9) C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]6.已知函数21,1()1,1x x x f x x x⎧-+<⎪=⎨⎪⎩,若函数()y f x a =-有三个零点,则实数a 的取值范围为( )A .3[4,1]B .3(4,1)C .(0,1)D .3(4,)+∞7.已知函数1,0(),0x x m f x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1B .2C .3D .48.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①9.若函数()af x x x=+(a ∈R)在区间(1,2)上有零点,则a 的值可能是( ) A .-2 B .0 C .1 D .310.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对11.函数121()()2x f x x =-的零点个数为 ( ) A .0B .1C .2D .312.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞-⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞二、填空题13.函数()e |ln |2x f x x =-的零点个数为______________.14.已知函数()2log ,02 sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,若1234x x x x <<<且()()()()1234f x f x f x f x ===,则()()341222x x x x --的取值范围为____________.15.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________.16.若方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,则实数k 的取值范围是__________.17.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______.18.已知函数()2f x x ax b =++的两个零点为1x ,2x ,且满足1202x x <<<,记()()f x x R ∈的最小值为m ,则m 的取值范围是______.19.对于实数a b ,,定义运算“*”:22*a ab a ba b b ab a b ⎧-≤=⎨->⎩,,,设()()2*1f x x x =+,且关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根,则m 的取值范围是________. 20.函数13()3log 1xf x x =-的零点个数为______三、解答题21.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每千件商品售价为50万元.通过市场分析,该厂生产的产品能全部售完. (1)写出年利率()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 22.有A 、B 两城相距120km ,某天然气公司计划修建一条管道为两城供气,并在两城之间设立供气站点D (如图),为保证城市安全,规定站点D 距两城市的距离均不得少于15km .又已知A 城一边有段10km 长的旧管道AC ,准备改造利用,改造费用为5万元//km ,其余地段都要新建,新建的费用(含站点D )与站点D 到A 、B 两城方向上新修建的长度的平方和成正比.........,并且当站点D 距A 城距离为40km 时,新建的费用为1825万元.设站点D 距A 城的距离为km x ,A ,B 两城之间天然气管道的建设总费用为y 万元.(1)求y 与x 之间的函数关系式,并写出其定义域;(2)天然气站点D 距A 城多远时,建设总费用最小?最小总费用多少?23.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目,经测算该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:[)[)3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元.(1)当[]200,300x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则月处理量x 为多少吨时可使亏损量最小?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?24.某蔬菜基地种植西红柿,由历年市场行情知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图①的一条折线表示;西红柿的种植成本与上市时间的关系用图②的抛物线段表示.(Ⅰ)写出图①表示的市场售价与时间的函数关系式()f t ;写出图②表示的种植成本与时间的函数关系式()g t ;(Ⅱ)若记市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/100kg ,时间单位:天).25.科学家发现一种可与污染液体发生化学反应的药剂,实验表明每投a (14a ≤≤且a R ∈)个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (小时)化的函数关系式近似为()y a f x =⋅,其中()161,04815,4102x xf x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间能持续多久?(2)若第一次投放2个单位的药剂,6小时后再投放1个单位的药剂,则在接下来的4小时内,什么时刻,水中药剂的浓度达到最小值?最小值为多少?26.已知定义在R 上的奇函数()f x 满足,当(,0)x ∈-∞时,1()1f x x x=++. (1)求函数()f x 的解析式;(2)若函数()()224g x f x x x =+-,证明:函数()g x 的图像在区间1,内与x 轴恰有一个交点.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设()()1lg 2h x g x x x =+=+-,可知函数()h x 的零点为1b -,令()0f x =,可得出102x x =-,令()0h x =可得出lg 2x x =-,在同一平面直角坐标系中作出函数10x y =、lg y x =、y x =、2y x =-的图象,利用函数10x y =、lg y x =的图象关于直线y x =的对称,并求出直线y x =、2y x =-的交点坐标,进而可求得+a b 的值. 【详解】设()()1lg 2h x g x x x =+=+-,由于函数()()lg 13g x x x =-+-的零点为b ,则函数()h x 的零点为1b -.令()0f x =,可得102x x =-,令()0h x =,可得出lg 2x x =-,在同一平面直角坐标系中作出函数10xy =、lg y x =、y x =、2y x =-的图象,如下图所示:由于函数10xy =、lg y x =的图象关于直线y x =的对称,直线2y x =-与直线y x =垂直,设直线2y x =-与函数10xy =的交点为点A ,直线2y x =-与函数lg y x =的图象的交点为点B ,易知点A 、B 关于直线y x =对称,直线2y x =-与直线y x =的交点为点()1,1C ,且C 为线段AB 的中点,所以12a b +-=,因此,3a b +=. 故选:C. 【点睛】易错点点睛:本题考查函数零点之和,解题的关键在于利用函数10x y =、lg y x =互为反函数,这两个函数的图象关于直线y x =对称,结合对称性来求解.2.C解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-,∴112a a <-⎧⎨--<⎩,解得31a -<<-. 故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.3.D解析:D 【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=, 故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+, 即有()()f x f x -=,1()02f =, 1()02f ∴-=,再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点, 即函数()f x 在每两个整数之间都有一个零点, ()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D . 【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.4.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<, 故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解5.C解析:C 【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解. 【详解】令()()0g x f x x a =+-=,得24,?06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x存在两个零点,由图象可得:a<﹣9或﹣4<a≤0,故选:C【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.6.B解析:B【分析】画出函数21,1 ()1,1x x xf xxx⎧-+<⎪=⎨⎪⎩的图象,函数()y f x a=-有三个零点等价于()y f x=与y a=的图象有3个不同交点,数形结合得答案.【详解】作出函数21,1()1,1x x xf xxx⎧-+<⎪=⎨⎪⎩的图象如图,函数()y f x a=-有三个零点,即()y f x=与y a=的图象有3个不同交点,由图可知,实数a的取值范围为3(4,1).故选:B. 【点睛】方法点睛:由零点求参数范围:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.7.C解析:C 【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m=的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解, 由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对; 当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m=共有五个交点,所以直线1y m=与函数()y f x =的图象有三个交点, 数形结合可得101123mm ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,故④对.故正确结论有3个. 故选:C . 【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.8.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论9.A解析:A 【分析】利用零点存在性定理逐个选项代入验证,即可得到答案. 【详解】 函数()af x x x=+()a R ∈的图象在()12,上是连续不断的,逐个选项代入验证,当2a =-时,()()112022110f f =-<,=-=>,.故()f x 在区间()12,上有零点,同理,其他选项不符合, 故选A. 【点睛】本题考查了函数的零点与方程的根的应用,属于基础题.10.C解析:C 【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答 【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对 故选:C 【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题11.B解析:B 【解析】 函数()12(12)f x xx =-的零点,即令()0f x =,根据此题可得12(12)xx=,在平面直角坐标系中分别画出幂函数12y x=和指数函数(12)y x=的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数12.D解析:D 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题13.2【分析】令可得可将函数的零点可以转化为:函数和的图象的交点问题进而画出函数的图象可得出答案【详解】令可得所以函数的零点可以转化为:函数和的图象的交点问题函数和的图象如下图所示:根据图象可得有两个交解析:2 【分析】令()e |ln |20xf x x =-=,可得2ln ex x =,可将函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题,进而画出函数的图象,可得出答案. 【详解】令()e |ln |20xf x x =-=,可得2ln ex x =, 所以函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题. 函数ln y x =和2e xy =的图象,如下图所示:根据图象可得有两个交点,故原函数有两个零点. 故答案为:2. 【点睛】方法点睛:本题考查求函数零点的个数(方程解的个数)问题.常用的方法:(1)直接解方程()0f x =,求出方程的解的个数,也就是函数()y f x =的零点个数; (2)作出函数()y f x =的图象,其图象与x 轴交点的个数就是函数()y f x =的零点的个数;(3)化函数零点个数问题为方程()()=g x h x 的解的个数问题,在同一平面直角坐标系中画出两个函数的图象,两函数图象的交点个数就是函数()y f x =的零点的个数.14.【分析】根据解析式画出函数图象去绝对值并结合对数的运算性质求得根据正弦函数的对称性求得将化为结合二次函数的性质即可得出结果【详解】函数画出函数图象如下图所示:由函数图象可知若则因为与关于对称则且去绝 解析:()0,12【分析】根据解析式,画出函数图象.去绝对值并结合对数的运算性质求得12x x ⋅,根据正弦函数的对称性求得34x x +,将()()341222x x x x --化为2441220x x -+-,结合二次函数的性质,即可得出结果. 【详解】函数()2log ,02sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,画出函数图象如下图所示:由函数图象可知,若()()()()1234f x f x f x f x k ====,则()0,1k ∈, 因为1234x x x x <<<,3x 与4x 关于6x =对称, 则2122log log x x =,3412x x +=,且4810x <<, 去绝对值化简可得2122log log x x -=,即2122log log 0x x +=,由对数运算可得()212log 0x x ⋅= 所以121x x ⋅=,则()()()3434343412222420x x x xx x x x x x --=-=++-()23444442012201220x x x x x x =-=--=-+-,令21220y x x =-+-,()8,10x ∈,因为21220y x x =-+-是开口向下,对称轴为6x =的二次函数, 所以21220y x x =-+-在()8,10x ∈上单调递减,所以10012020649620y -+-<<-+-, 即012y <<; 即()()()34244122212200,12x x x xx x --=-+-∈故答案为: ()0,12.【点睛】本题考查了分段函数的性质及应用,涉及求二次函数的最值,根据数形结合的方法求解即可,属于中档题.15.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2 【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.16.【分析】将方程的根转化为函数零点问题再利用零点存在性定理求解【详解】由题知方程的两根为且故设则有故答案为:【点睛】本题考查二次函数根的分布问题需要学生熟悉二次函数的图像性质解决此类问题时常结合零点存解析:3(,1)4【分析】将方程的根转化为函数零点问题,再利用零点存在性定理求解. 【详解】由题知方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,故设()f x =22(1)1kx k x k +-+-,(0)k >则有(1)2210103(0)10114(1)221034f k k k f k k k f k k k k ⎧⎪-=-++->>⎧⎪⎪=-<⇒<⇒<<⎨⎨⎪⎪=+-+->⎩⎪>⎩, 故答案为:3(,1)4. 【点睛】本题考查二次函数根的分布问题,需要学生熟悉二次函数的图像性质,解决此类问题时常结合零点存在性定理解决.17.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k <≤ 且1k ≠【分析】 先化简函数()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,再由()2g x kx =+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解. 【详解】()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,()2g x kx =+, 在同一坐标系中作出两个函数的图象,如图所示:因为函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,所以04k <≤ 且1k ≠,故答案为:04k <≤ 且1k ≠,【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.18.【分析】根据二次方程根的分布得出满足的关系在坐标系中作出这个关系式表示的平面区域求出的最小值平移根据这个目标函数对应的曲线可得其取值范围【详解】由题意即在直角坐标系中作出此不等式组表示的平面区域如图 解析:()1,0-【分析】根据二次方程根的分布得出,a b 满足的关系,在坐标系O ab -中作出这个关系式表示的平面区域,求出()f x 的最小值,平移根据这个目标函数对应的曲线可得其取值范围. 【详解】由题意240(0)0(2)420 022a bfbf a ba⎧->⎪=>⎪⎪⎨=++>⎪⎪<-<⎪⎩,即24040420a bbaa b⎧->⎪>⎪⎨-<<⎪⎪++>⎩,在直角坐标系O ab-中作出此不等式组表示的平面区域,如图阴影部分(不含边界),()f x的最小值为24az b=-,作出曲线24ab-=,它正好是图象阴影部分的一个曲边边界,把这个曲线向下平移,24az b=-在减小,当它在阴影部分边界时,0z=,当它过点(2,0)-时,1z=-,所以(1,0)z∈-.故答案为:(1,0)-.【点睛】本题考查二次方程根的分布,考查非线性平面区域的非线性规划问题(仿照简单的线性规划处理方法),解题时根据二次方程根的分布求出条件,再求出最小值的表达式,然后仿照简单的线性规划问题求解,考查了学生的创新意识.19.【分析】根据对运算的定义将写成分段函数画出该函数的图像将问题转化为直线与函数的图像有3个交点求参数的范围问题【详解】根据题意在直角坐标系中画出该函数的图像如下所示:由图可知当时由最小值故数形结合可知解析:1,02⎛⎫- ⎪⎝⎭【分析】根据对运算的定义,将()f x写成分段函数,画出该函数的图像,将问题转化为直线y m =与函数()f x 的图像有3个交点求参数的范围问题.【详解】根据题意()()221,11,1x x x f x x x ⎧-≤=⎨-+>⎩在直角坐标系中画出该函数的图像如下所示:由图可知,当()0,1x ∈时,由最小值1122f ⎛⎫=-⎪⎝⎭, 故数形结合可知,当1,02m ⎛⎫∈- ⎪⎝⎭时,直线y m =与函数()f x 的图像有3个交点,即()()f x m m R =∈恰有三个互不相等的实数根. 故答案为:1,02⎛⎫- ⎪⎝⎭【点睛】本题考查由函数的零点个数求参数的取值范围,本题中采用数形结合的方法,将问题转化为函数图像交点的问题进行处理.20.2【分析】化简得到画出函数图像根据图像得到答案【详解】取则即画出函数图像如图所示:根据图像知有两个交点故函数有两个零点故答案为:【点睛】本题考查了函数零点问题画出函数图像是解题的关键解析:2 【分析】化简得到131log =3xx ⎛⎫⎪⎝⎭,画出函数图像,根据图像得到答案.【详解】取13()3log 1=0x f x x =-,则133log =1xx ,即131log =3xx ⎛⎫ ⎪⎝⎭,画出函数图像,如图所示:根据图像知有两个交点,故函数有两个零点. 故答案为:2.【点睛】本题考查了函数零点问题,画出函数图像是解题的关键.三、解答题21.(1)2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩;(2)30千件;250万元.【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】(1)∵每千件商品售价为50万元.则x 千件商品销售额50x 万元 当080x <<时,2211()50202003020022L x x x x x x ⎛⎫=-+-=-+-⎪⎝⎭当80x 时,1000010000()5051600200400L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪∴=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(30)2502L x x =--+ 此时,当30x =时,即()(30)250L x L =万元当80x 时,1000010000()4004002L x x x x x⎛⎫=-+≤-⋅ ⎪⎝⎭400200200=-=此时10000x x=,即100x =,则()(100)200L x L =万元 由于250200>所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.22.(1)y 21(1307350)2x x =-+,定义域为[15,105](2)天然气站点D 距A 城65km 时,建设总费用最小,最小总费用为1562.5万元. 【分析】(1)根据站点D 距两城市的距离均不得少于15km .可求得15105x ≤≤,设22[(10)(120)]510y k x x =-+-+⨯,根据当40x =时,1825501875y =+=,求出k ,从而可得y 与x 之间的函数关系式; (2)根据二次函数知识可求得最值. 【详解】(1)因为站点D 距两城市的距离均不得少于15km .所以1512015x x ≥⎧⎨-≥⎩,解得15105x ≤≤,设22[(10)(120)]510y k x x =-+-+⨯,15105x ≤≤,当40x =时,1825501875y =+=,所以22(3080)501875k ++=,解得14k =, 所以221[(10)(120)]5104y x x =-+-+⨯21(1307350)2x x =-+,15105x ≤≤. (2)y 21(1307350)2x x =-+21(65)1562.52x =-+, 所以当65x =时,min 1562.5y =万元.所以当天然气站点D 距A 城65km 时,建设总费用最小,最小总费用为1562.5万元. 【点睛】关键点点睛:理解题意,建立正确的数学模型是解决函数应用题的关键.23.(1)不能获利,当月处理量为300吨时可使亏损最小;(2)每月处理量为400吨时,才能使每吨的平均处理成本最低. 【分析】(1)设项目获利为S ,根据二次函数知识可知,当[]200,300x ∈时,0S <,因此,该项目不会获利:当300x =时,S 取得最大值-5000;(2)根据题意可知,[)[)21805040,120,1443180000200,144,5002x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩,分段求出最小值,比较可得答案. 【详解】(1)当[]200,300x ∈时,该项目获利为S ,则()2221112002008000040080000400222S x x x x x x ⎛⎫=--+=-+-=-- ⎪⎝⎭,当[]200,300x ∈时,0S <,因此,该项目不会获利:当300x =时,S 取得最大值-5000,故当月处理量为300吨时可使亏损最小,为5000元;(2)由题意知,生活垃圾每吨的平均处理成本为:[)[)21805040,120,1443180000200,144,5002x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩当[)120,144x ∈时,()211202403y x x =-+,所以当120x =时,y x 取得最小值240,当[)144,500x ∈时,1800002002002002y x x x =+-≥=, 当且仅当1800002x x =时等号成立,即400x =时,yx取得最小值200, ∵200240∴每月处理量为400吨时,才能使每吨的平均处理成本最低. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 24.(Ⅰ)300,0200()2300,200300t t f t t t -≤≤⎧=⎨-<≤⎩,()21()150100,0300200g t t t =-+≤≤;(Ⅱ)从二月一日开始的第50天上市的西红柿收益最大. 【分析】(Ⅰ)根据图①的图象可知:是由一次函数构成的分段函数由点()()()0,300,200,100,300,300写出函数解析式;根据图②的图象是二次函数;由顶点()150,100和过点()250,150,写出函数解析式;(Ⅱ)设纯收益为h ,市场售价减去种植成本为纯收益,得到()()2211175+,020020022171025+,20030020022t t t h f t g t t t t ⎧-+≤≤⎪⎪=-=⎨⎪--<≤⎪⎩求解.【详解】(Ⅰ)当0200t ≤≤时,设()111()0f t k t b k =+≠,则111300200100b k b =⎧⎨+=⎩,解得113001b k =⎧⎨=-⎩,所以()300f t t =-.当200300t <≤时,设()222()0f t k t b k =+≠,则2222300300200100k b k b +=⎧⎨+=⎩,解得223002b k =-⎧⎨=⎩,所以()2300f t t =-.综上市场售价与时间的函数关系式300,0200()2300,200300t t f t t t -≤≤⎧=⎨-<≤⎩;设()2()150100g t a t =-+,则()2150250150100a =-+,解得1200a =, 所以种植成本与时间的函数关系式()21()150100,0300200g t t t =-+≤≤; (Ⅱ)设纯收益为h ,因为 若记市场售价减去种植成本为纯收益,所以()()2211175+,020020022171025+,20030020022t t t h f t g t t t t ⎧-+≤≤⎪⎪=-=⎨⎪--<≤⎪⎩,当0200t ≤≤时,()22111751+50+10020022200h t t t =-+=--, 所以当50t =时,纯收益h 取得最大值100; 当200300t <≤时,()221710251+350+10020022200h t t t =-+=-- 当300t =时,纯收益h 取得最大值87.5, 因为10087.5>,所以当50t =即从二月一日开始的第50天上市的西红柿收益最大. 【点睛】结论点睛:函数模型的应用一般分为三类:(1)已知函数的图象,可根据图象得到函数类型利用待定系数法建立模型; (2)已知函数有关数表,可根据数据分析函数类型利用待定系数法建立模型; (3)已知函数模型的定义,可根据其定义建立模型. 25.(1)8小时;(2)10小时时浓度达到最小值3 【分析】(1)根据题意列出不等式()44f x ≥,求解出不等式解集,即可得到有效治污的持续时间;(2)根据条件求解出药剂在水中释放的浓度y 的解析式,然后利用基本不等式求解出对应的最小值,并计算出取最小值时对应的时间. 【详解】(1)因为()644,0448202,410x y f x x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,令64448x-≥-,解得04x ≤≤, 当410x <≤时,令2024x -≥,解得48x <≤, 所以有效治污时间能持续8小时;(2)设在第x 个小时达到最小值,则610x ≤≤,所以()116162511928614y x x x x ⎡⎤⎛⎫=-+⋅-=-+⎢⎥ ⎪---⎝⎭⎣⎦, 所以()161455314y x x =-+-≥=-, 取等号时161414x x-=-,即10x =, 所以10小时的时候浓度达到最小值,最小值为3. 【点睛】易错点睛:实际问题中求解函数解析式以及采用基本不等式求最值需要注意的事项: (1)函数应用类型的问题,写函数解析式时一定要注意函数的定义域不能丢; (2)利用基本不等式求解最值的时候,注意“一正、二定、三相等”,缺一不可.26.(1)()11,00,011,0x x x f x x x x x ⎧++<⎪⎪==⎨⎪⎪+->⎩;(2)证明见解析.【分析】(1)当(0,)x ∈+∞时,(,0)x -∈-∞,利用()()f x f x =-- 求当(0,)x ∈+∞时的解析式,结合(0)(0)f f =-即可得答案;。

陕西省石泉县高中数学 第二章 函数零点练习题 北师大

陕西省石泉县高中数学 第二章 函数零点练习题 北师大

函数的零点1.函数21y x =-的零点是 变式:函数y =3x -1x 2的一个零点是( ) A .-1 B .1 C .(-1,0) D .(1,0)变式:函数f (x )=23x +1+a 的零点为1,则实数a 的值为______. 2.若函数f (x )=ax +b 的零点是2,则函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,12C .0,-12D .2,-12变式:若函数f (x )=x 2-ax +b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( )A .-1和16B .1和-16 C.12和13 D .-12和-133、若函数f (x )是奇函数,且有三个零点x 1、x 2、x 3,则x 1+x 2+x 3的值为( )A .-1B .0C .3D .不确定变式:定义在R 上的偶函数()x f y =在(-∞,0]上递增,函数()x f 的一个零点为-12,则满足0log 41≥⎪⎪⎭⎫ ⎝⎛x f 的x 的取值集合4、函数()x x f x 32+=的零点所在的一个区间为A. ()1,2--B.()0,1-C. ()1,0D. ()2,1变式:(2010·天津)函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 变式:函数3log )(3-+=x x f x 零点所在大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.函数f (x )=⎩⎪⎨⎪⎧ x 2+2x -3 x ≤0,-2+ln x x >0的零点个数为( )A .3B .2C .1D .0变式:函数f (x )=(x -1)ln(x -2)x -3的零点有( ) A .0个 B .1个 C .2个 D .3个6、函数()62ln -+=x x x f 有_____个零点变式:(08湖北)方程223x x -+=的实数解的个数为 . 变式:(11陕西)函数f(x)=x —cosx 在[0,+∞)内 ( )A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点7、方程m x x =+-|34|2有三个根,则m 的取值范围变式:(10全国)直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 。

北师大版数学高一必修1学案第四章4.1函数与方程

北师大版数学高一必修1学案第四章4.1函数与方程

[核心必知]1.利用函数性质判定方程解的存在(1)函数零点:函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点,其就是方程f(x)=0的解.(2)函数零点的判定定理:若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解.2.利用二分法求方程的近似解(1)二分法:在区间[a,b]上f(x)的图像是一条连续的曲线,且f(a)·f(b)<0,通过不断地把方程的解所在区间一分为二,使区间的两个端点逐步逼近方程的解,进而得到一个近似解.像这样每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.(2)用二分法求方程近似解的过程(如图):其中“初始区间”是一个两端函数值异号的区间;“M”的含义:取新区间,一个端点是原区间的中点,另一端点是原区间两端点中的一个,新区间两端点的函数值反号;“N”的含义:方程解满足要求的精确度.[问题思考]1.函数的零点是一个点吗?提示:不是,是一个使f(x)=0的x的取值.2.函数的零点、相应方程的根、相应函数图像与x轴交点的横坐标三者之间有何关系?提示:等价关系,函数有几个零点⇔相应方程有几个根⇔相应函数的图像与x轴有几个交点.3.如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么在(a,b)上零点的个数是多少?什么情况下在(a,b)上有且只有一个零点?若f(a)f(b)>0,在区间(a,b)上就没有零点吗?提示:若函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,当f(a)·f(b)<0时在(a,b)上一定有零点,但是零点的个数不能确定;当(a,b)是f(x)的单调区间时只有一个零点;当f(a)·f(b)>0时也不一定没有零点.讲一讲1.(1)函数f (x )=4x -16的零点为________. (2)函数f (x )=x -4x 的零点的个数是( )A .0B .1C .2D .3(3)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(4)已知函数f (x )=2x -3x 2.问方程f (x )=0在区间[-1,0]内有没有实数解?为什么? [尝试解答] (1)令4x -16=0,则4x =42,解得x =2,所以函数的零点为x =2. 答案:2(2)选C 令f (x )=0,而x -4x =0,∴x =±2,故有两个.(3)选C 由f (0)=-1<0,f (1)=e -1>0,知函数f (x )的零点在区间(0,1)内. (4)∵f (-1)=12-3<0,f (0)=1>0,又∵函数f (x )=2x -3x 2的图像是连续曲线, ∴f (x )在区间[-1,0]内有零点, 即f (x )=0在区间[-1,0]内有实数解.(1)求函数f (x )的零点的方法:令f (x )=0,解方程f (x )=0即可. (2)判断函数零点的个数,常用的方法有:①解方程法:当能直接求解零点时,就直接求出进行判断. ②用定理法:用零点存在性定理并结合函数的单调性.③利用图像的交点法:有些题目可先画出某两个函数y =f (x ),y =g (x )的图像,其交点的横坐标是函数y =f (x )-g (x )的零点.(3)判断方程的解所在的区间常转化为函数的零点问题,当方程f (x )=0无法解出时,常用函数零点的判定定理:①函数图像的连续性;②区间端点函数值的符号相反.练一练1.函数f (x )=πx +log 2x 的零点所在区间为( ) A.⎣⎡⎦⎤0,18 B.⎣⎡⎦⎤18,14 C.⎣⎡⎦⎤14,12 D.⎣⎡⎦⎤12,1 解析:选C f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12=⎝⎛⎭⎫π4+log 214π2+log 212=⎝⎛⎭⎫π4-2⎝⎛⎭⎫π2-1<0. 2.试判断方程x 3=2x 在区间[1,2]内是否有实数解. 解:设函数f (x )=x 3-2x ,则f (1)=1-2=-1<0,f (2)=8-4=4>0, ∴f (1)·f (2)<0.又函数f (x )=x 3-2x 的图像是连续曲线,∴函数f (x )=x 3-2x 在区间[1,2]内至少有一个零点,即方程x 3=2x 在区间[1,2]内至少有一个实数解.讲一讲2.当a 取何值时,方程ax 2-2x +1=0的一个根在(0,1)上,另一个根在(1,2)上? [尝试解答] (1)当a =0时,方程即为-2x +1=0,只有一根,不符合题意. (2)当a >0时, 设f (x )=ax 2-2x +1,因为方程的根分别在区间(0,1),(1,2)上, 所以⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧1>0,a-2+1<0,4a-4+1>0,解得34<a<1.(3)当a<0时,设方程的两根为x1,x2,则x1·x2=1a<0,x1,x2一正一负,不符合题意.综上,当34<a<1时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.若将本例中根的存在情况变为一根小于1,另一根大于1,则a的取值如何?解:设f(x)=ax2-2x+1,由已知得:⎩⎪⎨⎪⎧a>0,f(1)<0或⎩⎪⎨⎪⎧a<0,f(1)>0,即⎩⎪⎨⎪⎧a>0,a-2+1<0或⎩⎪⎨⎪⎧a<0,a-2+1>0.解得0<a<1.解决该类问题,有两种常用途径:(1)利用零点的判定定理构建不等式求解.(2)画出符合题意的草图,转化为函数问题.数形结合构建关于参数的方程或不等式,从而求解.练一练3.已知函数f(x)=x2-x-m在区间(-1,1)上有零点,求实数m的取值范围.解:法一:①当函数f(x)=x2-x-m=⎝⎛⎭⎫x -122-m -14, 其对称轴x =12∈(-1,1),故函数在区间(-1,1)上只有1个零点时,Δ=0或⎩⎪⎨⎪⎧ Δ>0,f (-1)·f (1)<0或⎩⎪⎨⎪⎧Δ>0,f (1)=0.即1+4m =0或⎩⎪⎨⎪⎧1+4m >0,m (m -2)<0或⎩⎪⎨⎪⎧1+4m >0,-m =0. 解得m =-14或0<m <2或m =0.②当函数f (x )=x 2-x -m 在区间(-1,1)上有2个零点时,⎩⎪⎨⎪⎧Δ>0,f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧1+4m >0,2-m >0,-m >0.解得-14<m <0.综上所述,实数m 的取值范围为⎣⎡⎭⎫-14,2. 法二:函数f (x )=x 2-x -m 在区间(-1,1)上有零点 ⇔方程x 2-x -m =0在区间(-1,1)上有解 ⇔方程x 2-x =m 在区间(-1,1)上有解 ⇔函数y =x 2-x 与函数y =m 在区间 (-1,1)上有交点,∵函数y =x 2-x 在区间(-1,1)上的值域为⎣⎡⎭⎫-14,2,∴-14≤m <2,∴实数m 的取值范围为⎣⎡⎭⎫-14,2.讲一讲3.求方程lg x =3-x 的近似解(精确到0.1). [尝试解答]令f (x )=lg x +x -3,在同一坐标系中,作出y =lg x 和y =3-x 的图像如图所示,观察图像可以发现lg x =3-x 有唯一解x 0,x 0∈[2,3],且f (2)<0,f (3)>0, 利用二分法可列下表:计算次数左端点 右端点 1 2 3 2 2.5 3 3 2.5 2.75 4 2.5 2.625 52.562 52.625由于区间(2.562 5,2.625)内的所有值若精确到0.1都为2.6,所以原方程的近似零点为2.6.求方程近似解的步骤:①构造函数,利用图像或单调性确定方程解所在的大致区间,通常限制在区间(n ,n +1),n ∈Z ;②利用二分法求出满足精确度的方程解所在的区间M ;③写出方程的近似解.练一练4.求函数f (x )=x 3+2x 2-3x -6的一个正数零点(精确到0.1).解:由于f(1)=-6<0,f(2)=4>0,可取区间[1,2]作为计算的初始区间.用二分法逐次计算,列表如下:计算次数左端点右端点11 22 1.5 23 1.5 1.754 1.625 1.755 1.687 5 1.756 1.718 75 1.757 1.718 75 1.734 375由上表可知,区间[1.718 75,1.734 375]中的每一个数精确到0.1都等于1.7,所以1.7就是函数的一个误差不超过0.1的正数零点.求函数f(x)=2x+lg(x+1)-2的零点个数.[解]法一:∵f(0)=1+0-2=-1<0,f(2)=4+lg 3-2=2+lg 3>0,∴f(x)在(0,2)上必定存在零点.又显然f(x)=2x+lg(x+1)-2在(-1,+∞)上为增函数,故f(x)有且只有一个零点.[尝试用另一种方法解题]法二:在同一平面直角坐标系中作出h(x)=2-2x和g(x)=lg(x+1)的图像.由图像,知y=lg(x+1)和y=2-2x有且只有一个交点.1.函数y =x 2+2x -3的零点和顶点的坐标为( ) A .3,1;(-1,-4) B .-3,-1;(-1,4) C .-3,1;(1,-4) D .-3,1;(-1,-4) 答案:D2.下列图像表示的函数中能用二分法求零点的是( )解析:选C 当且仅当函数f (x )在区间[a ,b ]上连续且f (a )·f (b )<0时,才能用二分法求其零点,观察函数的图像知:选项A 中函数没有零点;选项B 和D 中函数虽然有零点,但是在零点附近的函数值符号相同,故不能用二分法求零点;选项C 中函数有零点,且符合零点存在定理的条件.3.(北京高考)函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 解析:选B 因为y =在x ∈[0,+∞)上单调递增,y =⎝⎛⎭⎫12x在x ∈R 上单调递减,所以f (x )=-⎝⎛⎭⎫12x 在x ∈[0,+∞)上单调递增,又f (0)=-1<0,f (1)=12>0,所以f (x )=-⎝⎛⎭⎫12x 在定义域内有唯一零点.4.已知函数f (x )=x 3+x 2-2x -2,f (1)·f (2)<0,用二分法逐次计算时,若x 0是[1,2]的中点,则f (x 0)=________.解析:由题意知f (x 0)=f ⎝ ⎛⎭⎪⎫1+22=f (1.5),代入解析式易计算得0.625. 答案:0.6255.(湖南高考)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 解析:由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示,则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 答案:(0,2)6.判断下列函数在给定的区间内是否存在零点. (1)f (x )=x 2-8x +16,x ∈[1,8]; (2)f (x )=log 2(x +2)-x ,x ∈[1,3]; (3)f (x )=2x -3,x ∈[2,4].解:(1)f (1)=9,f (8)=16,f (1)·f (8)>0,但是f (4)=0且4∈[1,8],所以函数在区间[1,8]内存在零点4.(2)由于f (1)=log 2(1+2)-1=log 232>0,f (3)=log 2(3+2)-3=log 258<0,因此f (1)·f (3)<0,又函数f (x )在区间[1,3]上的图像是连续曲线,所以函数在区间[1,3]内存在零点.(3)因为函数的定义域为(-∞,3)∪(3,+∞),所以函数y =f (x )的图像在区间[2,4]上不是一条连续曲线,故不能用零点的存在性定理来判断是否存在零点.函数的图像如图所示,观察图像,可得函数在区间[2,4]内不存在零点.一、选择题1.下列函数有两个零点的是( )A .y =x +1B .y =x 2+2x +3C .y =2log 2xD .y =⎩⎪⎨⎪⎧x -2 012,x >0,x 3,x ≤0 解析:选D 易知A 只有一个零点;对于B ,方程x 2+2x +3=0无解;对于C ,令2log 2x =0,也无解;对于D ,y =0有两解x =2 012和x =0.2.(重庆高考)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )·(x -a )的两个零点分别位于区间( )A .(a ,b ) 和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a ) 和(c ,+∞)内解析:选A 令y 1=(x -a )(x -b )+(x -b )(x -c )=(x -b )·[2x -(a +c )],y 2=-(x -c )(x -a ),由a <b <c 作出函数y 1,y 2的图像(图略),由图可知两函数图像的两个交点分别位于区间(a ,b )和(b ,c )内,即函数f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.3.函数f (x )=ln(x +1)-2x的零点所在的大致区间是 ( ) A .(0,1) B .(1,2)C .(2,e)D .(3,4)解析:选B ∵f (1)=ln 2-2<0,f (2)=ln 3-1>0,则函数f (x )的零点所在的大致区间是(1,2).4.若方程|ax |=x +a (a >0)有两个解,则a 的取值范围是 ( )A .(1,+∞)B .(0,1)C .(0,+∞)D .∅解析:选A 分三种情况,在同一坐标系中画出y =|ax |和y =x +a 的图像如图:结合图像可知方程|ax |=x +a 有两个解时,有a >1.二、填空题5.用二分法求方程x 3-2x -5=0在区间[2,3]内的实根,取区间中点为x 0=2.5,那么下一个有根的区间是________.解析:令f (x )=x 3-2x -5,可知,f (2)、f (3)分别等于-1、16,又因为f (2.5)=458>0,显然下一个有根的区间为[2,2.5). 答案:[2,2.5)6.方程2-x +x 2=3的实数解的个数为________.解析:分别作出函数f (x )=3-x 2与函数g (x )=2-x 的图像,如图所示.∵f (0)=3,g (0)=1,∴从图像上可以看出它们有2个交点.答案:27.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,则函数y =f (x )-2的零点是________. 解析:当x ≤1时,y =3x -2,令y =0,得x =log 32≤1,当x >1时,y =-x -2,令y =0,得x =-2不合题意,综上,零点是log 32.答案:log 328.已知y =x (x -1)·(x +1)的图像如图所示,今考虑f (x )=x (x -1)·(x +1)+0.01,则方程式f (x )=0①有三个实根;②当x <-1时,恰有一实根(有一实根且仅有一实根);③当-1<x<0时,恰有一实根;④当0<x<1时,恰有一实根;⑤当x>1时,恰有一实根.正确的有________.解析:函数f(x)的图像如图所示,由图像易知,当x<-1时,方程f(x)=0恰有一实根;当-1<x<0时,方程f(x)=0没有实根;当0<x<1时,恰有两个实根;当x>1时,没有实根.答案:①②三、解答题9.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).解:设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图像是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)<0,因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5).再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0,因为f(1.25)·f(1.375)<0,所以x0∈(1.25,1.375).同理,可得x0∈(1.312 5,1.375),x0∈(1.312 5,1.343 75).由于区间(1.312 5,1.343 75)内的所有数精确到0.1都是1.3,所以1.3是方程x3-x-1=0在区间[1,1.5]内的一个近似解.10.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f (x )的解析式;(2)若函数h (x )=f (x )-ax ,x ∈[2,3]时有唯一零点,且不是重根,求实数a 的取值范围;(3)当x ∈[-1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +c ,(a ≠0),由f (0)=1,得c =1,故f (x )=ax 2+bx +1.因为f (x +1)-f (x )=2x ,即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0.所以⎩⎪⎨⎪⎧a =1,b =-1.所以f (x )=x 2-x +1.(2)h (x )=f (x )-ax =x 2-(a +1)x +1,则h (2)=3-2a ,h (3)=7-3a . 所以h (x )=0在区间[2,3]上有唯一零点,且不是重根,只需⎩⎨⎧ h (2)≤0,h (3)≥0或 ⎩⎪⎨⎪⎧ h (2)≥0,h (3)≤0, 即⎩⎪⎨⎪⎧ 3-2a ≤0,7-3a ≥0,或⎩⎪⎨⎪⎧3-2a ≥0,7-3a ≤0,解得32≤a ≤73. 经验证,知当a =32时,方程h (x )=0在区间[2,3]上有唯一解x =2;当a =73时,方程h (x )=0在区间[2,3]上有唯一解x =3;故a 的取值范围是⎣⎡⎦⎤32,73.(3)由题意,得f (x )>2x +m ,即x 2-3x +1-m >0在区间[-1,1]上恒成立.设g (x )=x 2-3x +1-m ,其图像的对称轴为直线x =32,所以g(x)在区间[-1,1]上是减少的.所以只需g(1)>0,即m+1<0,解得m<-1. 即m的取值范围为(-∞,-1).。

2022版高中数学第四章函数应用本章复习提升北师大版必修1

2022版高中数学第四章函数应用本章复习提升北师大版必修1

第四章函数应用本章复习提升易混易错练易错点1忽视对参数取值范围的讨论导致错误1.()若函数f(x)=ax2-x-1的负零点有且仅有一个,求实数a的取值范围.2.(2020北京首都师范大学附属中学高一下期中,)已知a是实数, 关于x的方程2ax2+2x-3-a=0在区间[-1,1]上有实数根, 求a的取值范围.易错点2忽视实际问题中函数的定义域导致错误3.(2021四川泸州泸县一中高一上月考,)某商品在近30天内每件的销售价格P(单位:元)和时间t(t∈N)(单位:天)的关系如图所示:(1)请确定销售价格P(元)和时间t(天)的函数解析式;(2)该商品的日销售量Q(单位:件)与时间t(天)的关系:Q=-t+40(0≤t≤30,t∈N),求该商品的日销售金额y(单位:元)与时间t(天)的函数解析式;(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?易错点3忽视分段函数的计算方法导致错误4.()某购物站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”的优惠.小淘在11日当天欲购入原价48元(单价)的商品42件,为使花钱总数最少(不能多买),他最少需要下的订单张数为()A.1B.2C.3D.45.(2021河南洛阳高一上期中,)已知函数f (x )={x +1,x ≤0,lg x ,x >0,若存在互不相等的实数a ,b ,c ,d 满足|f (a )|=|f (b )|=|f (c )|=|f (d )|,则a +b +c +d 的取值范围为 ( )A.(0,+∞)B.(-2,+∞)C.(2,8110)D.(0,8110]6.()某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购1个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)设一次订购量为x ,零件的实际出厂单价为P 元,写出函数P =f (x )的表达式;(2)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本)7.(2019四川成都石室中学高一上期末检测,)目前,某市出租车的计价标准是:路程2km以内(含2km)按起步价8元收取,超过2km后的路程按1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(1)若0<x≤20,将乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(单位:km)的分段函数;(2)某乘客行程为16km,他准备先乘一辆出租车行驶8km,然后换乘另一辆出租车完成余下路程,请问:他这样做是否比只乘一辆出租车完成全程更省钱?思想方法练一、函数与方程思想在解决函数问题中的应用1.()原有一片面积为a的森林,计划每年砍伐一些树,且每年砍伐面积的百分比相等.经计算,当砍伐到原,已知到今年为止,森林的面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14.剩余面积为原面积的√22(1)求每年砍伐面积的百分比;(2)到今年为止,已经砍伐了多少年?(3)今后最多还能砍伐多少年?二、数形结合思想在解决函数问题中的应用2.(2019浙江温州十五校联合体高一上期中联考,)函数f(x)=|log2x|-e-x的所有零点的积为m,则有()A.m=1B.m∈(0,1)C.m∈(1,2)D.m∈(2,+∞)3.()函数f(x)=(12)x-x2的零点个数为()A.1B.2C.3D.44.(2021重庆缙云教育联盟高一上月考,)已知函数f(x)=|log3(x-1)|-(13)x-1有2个不同的零点x1,x2,则()A.x1x2<1B.x1x2=x1+x2C.x1x2>x1+x2D.x1x2<x1+x2三、分类与整合思想在解决函数零点问题中的应用5.(2021四川成都外国语学校高一上月考,)已知函数f(x)={-(x-1)2+1,x<2,12x(x-2),x≥2,若函数F(x)=f(x)-mx有4个零点,则实数m的取值范围是()A.(52-√6,16) B.(52-√6,3-2√2)C.(120,3-2√2) D.(120,16)6.(2019湖南明德中学高一上期中,)函数f(x)=|x2-1|+x2+kx.(1)若k=2,求函数f(x)的零点;(2)若函数f(x)在(0,2)上有两个不同的零点x1,x2,求k的取值范围,并证明:1x1+1x2<4.四、转化与化归思想在解决函数零点问题中的应用 7.()已知函数f (x )={log x x ,x >0,|x +3|,-4≤x <0,若函数f (x )的图像上有且仅有两个点关于y 轴对称,则a 的取值范围是( ) A.(0,1)B.(1,4)C.(0,1)∪(1,+∞)D.(0,1)∪(1,4)8.()若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,则a 的取值范围是 .答案全解全析 第四章 函数应用本章复习提升 易混易错练4.C5.D1.解析 当a =0时,f (x )=-x -1,令f (x )=0,得x =-1,符合题意;当a >0时,此函数图像开口向上,f (0)=-1<0,结合二次函数图像知符合题意;当a <0时,此函数图像开口向下,f (0)=-1<0,由图像(图略)得{x =1+4x =0,--12x<0,即a =-14.综上可知,实数a 的取值范围为{-14}∪[0,+∞).2.解析 当a =0时,f (x )=2x -3, 令2x -3=0,得x =32∉[-1,1],∴f (x )在[-1,1]上没有实数根, 故a ≠0.函数f (x )=2ax 2+2x -3-a 的图像的对称轴为直线x =-12x . 当a >0时,①当-12x ≤-1,即0<a ≤12时,需使{x (-1)≤0,x (1)≥0,即{x ≤5,x ≥1,无解,∴a ∈⌀;②当-1<-12x<0,即a >12时,需使{x (-12x )≤0,x (1)≥0,即{-12x-3-x ≤0,x ≥1,解得a ≥1,∴a 的取值范围是[1,+∞). 当a <0时,① 当0<-12x≤1,即a ≤-12时,需使{x (-1)≤0,x (-12x )≥0,即{x ≤5,-12x -3-x ≥0,解得a ≤-3-√72或-3+√72≤a ≤5,又a ≤-12,∴a 的取值范围是(-∞,-3-√72);②当-12x >1时,即-12<a <0时, 需使{x (-1)≤0,x (1)≥0,即{x ≤5,x ≥1,∴a ∈⌀. 综上所述 ,a 的取值范围是(-∞,-3-√72)∪[1,+∞).易错警示本题考查的是由二次函数零点的分布求参数范围的问题,当二次函数(方程)的二次项系数含有参数时,需要对参数进行分类讨论.3.解析 (1)当0≤t <25,t ∈N 时,设P =at +b (a ≠0),将点(0,19),(25,44)代入,得{19=x ,44=25x +x ,解得{x =1,x =19,∴P =t +19(0≤t <25,t ∈N),当25≤t ≤30,t ∈N 时,同理可得P =-t +100,综上所述,销售价格P (元)和时间t (天)的函数解析式为P ={x +19,0≤x <25,x ∈x ,-x +100,25≤x ≤30,x ∈N.(2)由题意得,y =P ·Q , 由(1)得y ={(x +19)(-x +40),0≤x <25,x ∈x ,(-x +100)(-x +40),25≤x ≤30,x ∈N,即y ={-x 2+21x +760,0≤x <25,x ∈x ,x 2-140x +4000,25≤x ≤30,x ∈N.(3)由y ={-x 2+21x +760,0≤x <25,x ∈x ,x 2-140x +4000,25≤x ≤30,x ∈N,当0≤t <25,t ∈N 时,由二次函数的图像和性质,知当t =10或t =11时,y 取最大值,为870. 当25≤t ≤30,t ∈N 时,由二次函数的图像和性质,知当t =25时,y 取最大值,为1125.综上所述,在第25天,该商品的日销售金额最大为1125元.4.C 要使6折后的价格满300元,则原价应满500元,因为每张订单金额必须是48的整数倍,所以每张订单中的商品数不小于11,若每张订单购买的商品数分别为11,11,11,9,则应下4张订单,但最后一张订单金额不满500元,不能参加“满减”活动,可将最后一个订单中的9件商品分到前3个订单中,此时只需下3张订单,所以他最少需要下3张订单.5.D f (x )={x +1,x ≤0,lg x ,x >0,则|f (x )|={-x -1,x ∈(-∞,-1),x +1,x ∈[-1,0],-lg x ,x ∈(0,1),lg x ,x ∈[1,+∞),画出函数|f (x )|的图像,如图所示:设|f (a )|=|f (b )|=|f (c )|=|f (d )|=k ,则k ∈(0,1],不妨取a <b <0<c <1<d ,根据对称性知a +b =-2,-lg c =lg d ,即cd =1,c +d =d +1x ,d ∈(1,10],故d +1x ∈(2,10110],故a +b +c +d ∈(0,8110]. 故选D . 易错警示对于分段函数,需特别注意以下几点:(1)分段函数是指自变量在两个或两个以上不同的范围,有不同的对应法则的函数; (2)分段函数是一个函数;(3)分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集. 6.解析 (1)若实际出厂单价为51元,则订购量为100+60-510.02=550,当0<x ≤100时,P =60;当100<x <550时,P =60-0.02(x -100)=62-x50;当x ≥550时,P =51.因此,P ={60,0<x ≤100,62-x50,100<x <550,51,x ≥550.(2)设工厂获得的利润为L 元,当订购500个时,L =(62-50050-40)×500=6000;当订购1000个时,L =(51-40)×1000 =11000.故当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元. 7.解析 (1)由题意得车费f (x )关于路程x 的函数为 f (x )={8(0<x ≤2),8+1.9(x -2)(2<x ≤10),8+1.9×8+2.85×(x -10)(10<x ≤20),即f (x )={8(0<x ≤2),4.2+1.9x (2<x ≤10),2.85x -5.3(10<x ≤20).(2)只乘一辆车的车费为f (16)=2.85×16-5.3=40.3(元), 乘两辆车的车费为2f (8)=2×(4.2+1.9×8)=38.8(元). ∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱.思想方法练2.B3.C4.D5.B 7.D1.解析 (1)设每年砍伐面积的百分比为x (0<x <34), 则a (1-x )10=12a ,根据题设构造方程,体现了方程思想. 即(1-x )10=12,解得x =1-(12)110,所以所求百分比为1-(12)110. (2)设经过n年的砍伐,森林的剩余面积为原面积的√22,则a (12)x10=√22a ,即(12)x 10=(12)12,解得n =5,再次构造方程,利用方程思想求解. 所以到今年为止,已经砍伐了5年. (3)设该片森林一共可砍伐m 年,则a (12)x10=14a ,即(12)x10=(12)2,解得m=20,所以该片森林一共可砍伐20年,故今后最多还能砍伐20-5=15年.2.B由f(x)=0得|log2x|=e-x=(1e )x,在同一坐标系中,作出函数y=|log2x|与y=(1e)x的图像,如图所示:以形助数,借助函数图像解决零点问题.由图像知,f(x)=0有两实数解,且0<x1<1<x2, ∴-log2x1=e-x1,log2x2=e-x2,∴log2x1+log2x2=e-x2-e-x1,∴log2(x1·x2)=(1e )x2-(1e)x1<0,从而0<x1x2<1,即0<m<1,故选B.3.C由f(x)=0得(12)x=x2.在同一坐标系中作出函数y=(12)x与y=x2的图像,如图所示:同时作出两个函数的图像,数形结合,由图像交点个数得到函数零点个数.由图像知f(x)有3个零点,故选C.4.D函数f(x)=|log3(x-1)|-(13)x-1有2个不同的零点x1,x2, 即y=|log3(x-1)|与y=3-x+1的图像有2个不同的交点.分别画出y=3-x+1和y=|log3(x-1)|的图像,如图所示:以形助数,借助函数图像直观得出图像的交点个数.发现两函数的图像在(1,2)和(2,+∞)有两个交点.不妨设x1∈(1,2),x2∈(2,+∞),那么在(1,2)上有1+3-x1=-log3(x1-1),①在(2,+∞)上有1+3-x2=log3(x2-1),②①+②,得3-x2-3-x1=log3[(x1-1)(x2-1)].∵x2>x1,∴3-x2<3-x1,即3-x2-3-x1<0,∴log3[(x1-1)(x2-1)]<0,∴0<(x1-1)(x2-1)<1,∴x1x2<x1+x2,利用对数函数的单调性去掉对数符号.故选D.思想方法判断方程是否有解、解的个数及解所在的区间,判断函数零点的个数及零点所在区间等问题,往往通过构造函数,利用函数的图像求解,体现了数形结合思想.5.B函数f(x)={-(x-1)2+1,x<2, 12x(x-2),x≥2,函数F(x)=f(x)-mx有4个零点,即f(x)=mx有4个不同的交点.画出函数f(x)的图像,如图所示:以形助数,借助函数图像研究问题.由图可知,当2≤x <4时,设对应二次函数顶点为A ,则A (3,12),k OA =123=16,对x 的范围分类讨论,体现分类讨论的思想.当4≤x <6时,设对应二次函数的顶点为B ,则B (5,14),k OB =145=120, 所以120<m <16.当直线y =mx 与2≤x <4时所对应的二次函数图像相切时,直线y =mx 与函数f (x )的图像有3个交点,此时{x =xx ,x =-12(x -3)2+12,化简,得x 2+(2m -6)x +8=0,Δ=(2m -6)2-4×8=0,解得m 1=3-2√2,m 2=3+2√2(舍);将直线与二次函数图像相切转化为根的 判别式为0.当直线y =mx 与4≤x <6时所对应的二次函数图像相切时,直线y =mx 与函数f (x )的图像有5个交点,此时{x =xx ,x =-14(x -5)2+14,相切时也有两种情形,故继续分类讨论. 化简,得x 2+(4m -10)x +24=0,Δ=(4m -10)2-4×24=0,解得m 3=52-√6,m 4=52+√6(舍);故当f (x )=mx 有4个不同的交点时,m ∈(52-√6,3-2√2).故选B .思想方法本题考查函数零点与方程根的关系,依题意,函数y =f (x )的图像与直线y =mx 有4个交点,作出函数图像,通过图像分析找到临界情况,画图时要考虑自变量取值不同时.对应的函数不同.考查分类与整合的思想方法. 6.解析 (1)若k =2,则f (x )=|x 2-1|+x 2+2x. 对绝对值内的代数式分类,从而去掉绝对值.当x ≥1或x ≤-1时,f (x )=0可化为x 2-1+x 2+2x =0,即2x 2+2x -1=0, 解得x =-1-√32或x =-1+√32(舍去).当-1<x <1时,f (x )=0可化为2x +1=0, 解得x =-12.针对另一种情形求函数的零点. 综上所述,f (x )的零点为-1-√32,-12.(2)当0<x <2时,f (x )={xx +1,0<x ≤1,2x 2+xx -1,1<x <2.若f (x )的两个零点x 1,x 2都在(1,2)内,将零点所在的范围转化到更具体的范围中. 则x 1·x 2=-12,与x 1,x 2∈(1,2)不符合,因此,两个零点分别在(0,1]和(1,2)内. 不妨设x 1∈(0,1],x 2∈(1,2),由x 1∈(0,1]得f (x 1)=kx 1+1=0,k =-1x 1≤-1.由x 2∈(1,2),且f (x )=2x 2+kx -1,得f (1)·f (2)<0⇒(k +1)(2k +7)<0⇒-72<k <-1.综上所述,-72<k <-1.证明:设g (k )=1x 1+1x 2, ∵x 1=-1x ,x 2=-x +√x 2+84或x 2=-x -√x 2+84(舍去), ∴g (k )=1x 1+1x 2=-k +√=√x 2+8-x2=√,∴g (k )在(-72,-1)上单调递减, ∴g (k )=1x 1+1x 2<g (-72)=√(-72)2+8+722=4,即1x 1+1x 2<4.7.D 函数y =log a x (x >0)的图像与函数h (x )=log a (-x )(x <0)的图像关于y 轴对称,则函数f (x )图像上有且仅有两个点关于y 轴对称的问题可转化为函数y =log a (-x )-|x +3|在-4≤x <0上有唯一零点的问题. 将对称问题转化为函数零点的个数问题.当0<a <1时,作出h (x )=log a (-x )(x <0),f (x )=|x +3|(-4≤x <0)的图像(图略),显然两图像有唯一交点,符合题意;将函数零点个数问题转化为函数图像交点的 个数问题.当a >1时,由函数h (x )=log a (-x )与f (x )=|x +3|(-4≤x <0)的图像有唯一交点,得log a 4>1,又a >1,所以1<a <4. 综上所述,a 的取值范围是(0,1)∪(1,4).所以D 选项是正确的. 8.答案 (1,+∞)解析 f (x )在(0,1)上恰有一个零点可转化为2a =1x +1x 2在(0,1)内有唯一解.将函数恰有一个零点转化为方程恰有一个解.设t =1x (x ∈(0,1)),则t ∈(1,+∞),2a =t +t 2,2a =1x +1x 2在(0,1)内有唯一解,即2a =t +t 2在(1,+∞)上有唯一解. 继续转化为另一个方程仅有唯一解的问题.设h(t)=t+t2,易知函数h(t)=t+t2在(1,+∞)上单调递增, 依题意得2a>h(1)=2,即a>1,故a的取值范围是(1,+∞).将不等式恒成立转化为参数与函数的最值关系问题.。

【高中数学新人教B版必修1】2.4.1《函数的零点》测试.docx

【高中数学新人教B版必修1】2.4.1《函数的零点》测试.docx

【高中数学新人教B 版必修1】2.4.1《函数的零点》测试一、选择题 1.函数f(x)=x-x4的零点是( ) A.0 B.1 C.2 D.无数个2.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-23.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)∙f(4)的值( )A.大于0 B.小于0 C.等于0 D.无法判断4.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )A.1 B.2 C.3 D.4 5.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.5 6.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根C. 有唯一的实数根 D .没有实数根7.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]8.给出下列三个函数的图象;07徐州三练) 3.方程2x +x-4=O 的解所在区间为A .(-1,0)B .(0,1)C .(1,2)D .(2,3)9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c 为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解二、填空题:10.关于x的方程2k2x -2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围 .11.若函数f(x)=2x -ax-b的两个零点时2和3,则函数g(x)=b2x -ax-1的零点 .三、解答题12.已知函数f(x)=2(m-1)2x -4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.13.已知二次函数f (x )=a 2x +bx (a,b是常数且a≠0)满足条件:f(2)=0.方程有等根(1)求f (x )的解析式;(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,说明理由.参考答案:一、选择题1. C2.B3.D4.C5.D6. C7. A8. C9. C二、填空题:10.k>0或k<-412.31,21-- 三、解答题 13.解:(1)由条件知;Δ=24m --8(m-1)(2m-1)又Δ>0 即m>31 所以函数与x轴有两个交点 (2)函数一个零点在原点即x=0为其方程的一个根,∴有2(m-1)⨯20-4m0⋅+2m-1=0∴m=0.514.(1)由f(2)=0得:4a+2b=0,方程f(x)=x即a x 2+(b -1)x=0.有等根∴Δ=)1(2-b =0, 解方程组⎪⎩⎪⎨⎧==+-0024)1(2b b a ,得⎪⎩⎪⎨⎧=-=121b a ,∴f(x)=-x 221+x (2)f(x)=-x 221+x=-212121)1(2≤+-x ∴2n21≤ ,∴ n41≤∴函数f(x)在[m,n]上是增函数 ∴⎪⎪⎩⎪⎪⎨⎧=+-==+-=n n n f m m m f n m 2221)(,221)(2,解得m=2,n=0。

高中数学 1(函数的零点) 同步练习 新人教B版必修1 试题

高中数学 1(函数的零点) 同步练习 新人教B版必修1 试题

心尺引州丑巴孔市中潭学校 函数的零点 测试题一、选择题 1.函数f〔x〕=x-x 4的零点是〔 〕A.0 B.1 C.2 D.无数个2.函数f〔x〕=3222x x x --+的零点是〔 〕A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-23.假设函数f〔X〕在[0,4]上的图像是连续的,且方程f〔x〕=0在〔0,4〕内仅有一个实数根,那么发f〔0〕•f〔4〕的值〔 〕A.大于0 B.小于0 C.等于0 D.无法判断4.假设函数f〔x〕=m2x +8mx+21,当f〔x〕<0时-7<x<-1,那么实数m的值为〔 〕 A.1 B.2 C.3 D.4 5.f〔x〕=x x 1-,方程f〔4x〕=x的根是〔 〕A.-2 B.2 C.-0.5 D.0.56.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,那么方程f(x)在[-1,1]内 A .可能有3个实数根 B .可能有2个实数根C. 有唯一的实数根 D .没有实数根7.设f (x ) = 12x 5x-3++,那么在以下区间中,使函数f (x )有零点的区间是 〔 〕 A .[0,1] B .[1,2] C .[-2,-1] D .[-1,0]8.给出以下三个函数的图象;07三练〕 3.方程2x +x-4=O 的解所在区间为A .(-1,0)B .(0,1)C .(1,2)D .(2,3)9.函数y=f(x)在定义域内是单调函数,那么方程f(x)=c(c 为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解二、填空题:x-2x-3k=0的两根一个大于1,一个小于1,那么实数的取值范10.关于x的方程2k2围.x-ax-b的两个零点时2和3,那么函数g〔x〕=b2x-ax-1的零11.假设函数f〔x〕=2点.三、解答题x-4mx+2m-112.函数f〔x〕=2〔m-1〕2〔1〕m为何值时,函数图像与x轴有一个公共点.〔2〕如果函数的一个零点为2,求m的值.x+bx〔a,b是常数且a 0〕满足条件:f〔2〕=0.方程有等根13.二次函数f〔x〕=a2〔1〕求f〔x〕的解析式;〔2〕问:是否存在实数m,n使得f〔x〕定义域和值域分别为[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,说明理由.参考答案:一、选择题1.C2.B3.D4.C5.D6. C7. A8. C9. C二、填空题:10.k>0或k<-412.31,21-- 三、解答题13.解:〔1〕由条件知;Δ=24m --8〔m-1〕〔2m-1〕又Δ>0 即m>31 所以函数与x轴有两个交点〔2〕函数一个零点在原点即x=0为其方程的一个根,∴有2〔m-1〕⨯20-4m0⋅+2m-1=0∴m=0.514.〔1〕由f〔2〕=0得:4a+2b=0,方程f〔x〕=x即a x 2+〔b -1〕x =0. 有等根∴Δ=)1(2-b =0,解方程组⎪⎩⎪⎨⎧==+-0024)1(2b b a ,得⎪⎩⎪⎨⎧=-=121b a ,∴f〔x〕=-x 221+x 〔2〕f〔x〕=-x 221+x=-212121)1(2≤+-x ∴2n21≤ ,∴ n41≤∴函数f〔x〕在[m,n]上是增函数 ∴⎪⎪⎩⎪⎪⎨⎧=+-==+-=n n n f m m m f n m 2221)(,221)(2,解得m=2,n=0。

【高中数学新人教B版必修1】2.4.1《函数的零点》测试.docx

【高中数学新人教B版必修1】2.4.1《函数的零点》测试.docx

高中数学学习材料鼎尚图文*整理制作【高中数学新人教B 版必修1】2.4.1《函数的零点》测试一、选择题 1.函数f(x)=x-x4的零点是( ) A.0 B.1 C.2 D.无数个2.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-2 3.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)∙f(4)的值( )A.大于0 B.小于0 C.等于0 D.无法判断4.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )A.1 B.2 C.3 D.4 5.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.5 6.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根C. 有唯一的实数根 D .没有实数根7.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]8.给出下列三个函数的图象;07徐州三练) 3.方程2x +x-4=O 的解所在区间为A .(-1,0)B .(0,1)C .(1,2)D .(2,3)9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c 为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解二、填空题:10.关于x的方程2k2x -2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围 .11.若函数f(x)=2x -ax-b的两个零点时2和3,则函数g(x)=b2x -ax-1的零点 .三、解答题12.已知函数f(x)=2(m-1)2x -4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.13.已知二次函数f (x )=a 2x +bx (a,b是常数且a≠0)满足条件:f(2)=0.方程有等根(1)求f (x )的解析式;(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,说明理由.参考答案:一、选择题1. C2.B3.D4.C5.D6. C7. A8. C9. C二、填空题:10.k>0或k<-412.31,21-- 三、解答题13.解:(1)由条件知;Δ=24m --8(m-1)(2m-1)又Δ>0 即m>31 所以函数与x轴有两个交点 (2)函数一个零点在原点即x=0为其方程的一个根,∴有2(m-1)⨯20-4m0⋅+2m-1=0∴m=0.514.(1)由f(2)=0得:4a+2b=0,方程f(x)=x即ax 2+(b -1)x=0.有等根∴Δ=)1(2-b =0, 解方程组⎪⎩⎪⎨⎧==+-0024)1(2b b a ,得⎪⎩⎪⎨⎧=-=121b a ,∴f(x)=-x 221+x (2)f(x)=-x 221+x=-212121)1(2≤+-x ∴2n21≤ ,∴ n41≤∴函数f(x)在[m,n]上是增函数 ∴⎪⎪⎩⎪⎪⎨⎧=+-==+-=n n n f m m m f n m 2221)(,221)(2,解得m=2,n=0。

2019—2020年高中数学必修一同步课堂精练-3.4.1函数的零点.docx

2019—2020年高中数学必修一同步课堂精练-3.4.1函数的零点.docx

(新课标)2018-2019学年度苏教版高中数学必修一函数的零点1.函数y =2x 2-4x -3的零点个数是________.2.若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围是________.3.若函数f(x)=x 2-ax -b 的两个零点是2和3,则函数g(x)=bx 2-ax -1的零点是________.4.已知方程x 2+(a -1)x +(a -2)=0的一个根比1大,另一个根比1小,则a 的取值范围是________.5.函数223,0,()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数为________. 6.设函数y =x 3与21()2x y -=的图象的交点为(x 0,y 0),则x 0所在的端点为整数的区间是______.7.求证:方程5x 2-7x -1=0的根一个在区间(-1,0)上,另一个在区间(1,2)上.8.已知函数y =2x 2+bx +c 在3(,)2-∞-上是单调减函数,在3(,)2-+∞上是单调增函数,且两个零点是x 1、x 2,满足|x 1-x 2|=2,求这个二次函数的解析式.9 若函数f(x)=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,求实数m 的取值范围.参考答案1.2 解析:∵Δ=(-4)2-4×2×(-3)=40>0,∴方程2x 2-4x -3=0有两个不相等的实数根,即函数y =2x 2-4x -3有两个零点.2.(1,+∞) 解析:令f(x)=2ax 2-x -1,∵方程在(0,1)内恰有一个解,∴f(x)与x 轴在(0,1)内恰有一个交点,∴f(0)·f(1)<0,即-1·(2a -2)<0,∴a >1.3.12-,13- 解析:由题意可知,2,3是方程x 2-ax -b =0的两根,由根与系数的关系知,a =2+3=5,-b =2×3,b =-6,∴g(x)=-6x 2-5x -1=-(2x +1)(3x +1),令g(x)=0,得12x =-,或13x =-,∴函数g(x)的零点为12-,13-. 4.(-∞,1)解析:方程一根比1大,一根比1小,即函数f(x)=x 2+(a -1)x +(a -2)的零点一个在(1,0)点的右侧,一个在(1,0)点的左侧,画出f(x)的大致图象如图所示,由题意,得f(1)<0,即1+(a -1)·1+(a -2)<0,解得a <1.5.2 解析:由f(x)=0,得20,230x x x ≤⎧⎨+-=⎩或0,2ln 0,x x >⎧⎨-+=⎩解之可得x =-3或x =e 2,故零点个数为2.6.(1,2) 解析:法一:设()2312x f x x -⎛⎫=- ⎪⎝⎭,则()02100402f -⎛⎫=-=-< ⎪⎝⎭,()13111102f -⎛⎫=-=-< ⎪⎝⎭,()03122702f ⎛⎫=-=> ⎪⎝⎭,()13113326022f ⎛⎫=-=> ⎪⎝⎭,由f(1)·f(2)<0.知f(x)在(1,2)上有零点(f(x)图象在(1,2)上连续).∴x 0∈(1,2).法二(图象法)在同一坐标系内画出两个函数的图象如图,由图象知x 0∈(1,2).7.解:设f(x)=5x 2-7x -1,则f(-1)·f(0)=11×(-1)=-11<0,f(1)·f(2)=(-3)×5=-15<0.而二次函数f(x)=5x 2-7x -1是连续的,所以f(x)在(-1,0)和(1,2)上各有一个零点,即方程5x 2-7x -1=0的根一个在(-1,0)上,另一个在(1,2)上.8.解:由题意3222b x =-=-⨯,∴b =6.故y =2x 2+6x +c. 又由韦达定理,得x 1+x 2=-3,122c x x =, ∴()21212124922x x x x x x c -=+-=-=. ∴52c =. 经检验2564202∆=-⨯⨯>,符合题意. ∴所求二次函数为25262y x x =++. 9.解:∵f(0)=1,∴(1)当m=0时,f(x)=-3x+1=0的根为13x=>,适合题意;(2)当m<0时,f(x)的图象开口向下,且f(0)=1>0,∴f(x)的图象必与x轴正半轴有交点,满足题意;(3)当m>0时,要使f(x)图象与x轴的交点至少有一个在原点右侧,必须满足()2340,0,30,2m mmmm⎧⎪∆=--≥⎪>⎨⎪-⎪->⎩∴91,0,0 3.m mmm≥≤⎧⎪>⎨⎪<<⎩或∴0<m≤1.综上,可得m∈(-∞,1].。

数学:2.4.1《函数的零点》同步测试(新人教B版必修1).docx

数学:2.4.1《函数的零点》同步测试(新人教B版必修1).docx

高中数学学习材料马鸣风萧萧*整理制作2.4.1 函数的零点 测试题一、选择题1.函数f(x)=x-x4的零点是( ) A.0 B.1 C.2 D.无数个2.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-23.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)∙f(4)的值( )A.大于0 B.小于0 C.等于0 D.无法判断4.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( ) A.1 B.2 C.3 D.4 5.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.5 6.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根C. 有唯一的实数根 D .没有实数根7.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是 ( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]8.给出下列三个函数的图象;07徐州三练) 3.方程2x+x-4=O 的解所在区间为A .(-1,0)B .(0,1)C .(1,2)D .(2,3)9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解二、填空题:10.关于x的方程2k2x-2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围.11.若函数f(x)=2x-ax-b的两个零点时2和3,则函数g(x)=b2x-ax-1的零点.三、解答题12.已知函数f(x)=2(m-1)2x-4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.13.已知二次函数f(x)=a2x+bx(a,b是常数且a 0)满足条件:f(2)=0.方程有等根(1)求f(x)的解析式;(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,说明理由.参考答案:一、选择题1.C2.B3.D4.C5.D6. C 7. A8. C9. C二、填空题:10.k>0或k<-412.31,21-- 三、解答题 13.解:(1)由条件知;Δ=24m --8(m-1)(2m-1)又Δ>0 即m>31 所以函数与x轴有两个交点(2)函数一个零点在原点即x=0为其方程的一个根,∴有2(m-1)⨯20-4m0⋅+2m-1=0∴m=0.514.(1)由f(2)=0得:4a+2b=0,方程f(x)=x即a x 2+(b -1)x =0. 有等根∴Δ=)1(2-b =0, 解方程组⎪⎩⎪⎨⎧==+-0024)1(2b b a ,得⎪⎩⎪⎨⎧=-=121b a ,∴f(x)=-x 221+x (2)f(x)=-x 221+x=-212121)1(2≤+-x ∴2n21≤ ,∴ n41≤∴函数f(x)在[m,n]上是增函数 ∴⎪⎪⎩⎪⎪⎨⎧=+-==+-=n n n f m m m f n m 2221)(,221)(2,解得m=2,n=0。

高中数学第二章函数2.4.1函数的零点练习新人教B版必修1.doc

高中数学第二章函数2.4.1函数的零点练习新人教B版必修1.doc

2.4.1 函数的零点【选题明细表】1.下列函数不存在零点的是( D )(A)y=x-(B)y=(C)y=(D)y=解析:令y=0,得选项A和C中的函数零点都为1和-1;选项B中函数的零点为-,1; 只有选项D中函数不存在零点.故选D.2.函数f(x)=的零点个数是( C )(A)0个(B)1个(C)2个(D)3个解析:法一x<0时,令x+2=0,得x=-2;x>0时,令x2-1=0,得x=1.所以函数有两个零点,故选C.法二画函数的大致图象如图,从图象易得函数有两个零点.故选C.3.若函数f(x)的零点与g(x)=2x-2的零点相同,则f(x)可以是( B )(A)f(x)=4x-1 (B)f(x)=(x-1)2(C)f(x)=x2+4x-5 (D)f(x)=x2-1解析:令g(x)=2x-2=0,得x=1,所以g(x)的零点为1.由题意知方程f(x)=0的根只有x=1.只有选项B中函数f(x)=(x-1)2满足.故选B.4.函数f(x)=2x2-ax+3有一零点为,则f(1)= .解析:因为是f(x)=2x2-ax+3的零点,所以2×-a×+3=0,所以a=5,所以f(x)=2x2-5x+3,所以f(1)=0.答案:05.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5= .解析:由奇函数的对称性知,若f(x1)=0,则f(-x1)=0,即零点关于原点对称,且f(0)=0,故x1+x2+x3+x4+x5=0.答案:06.函数f(x)=2|x|-ax-1仅有一个负零点,则a的取值范围是( B )(A)(2,+∞) (B)[2,+∞)(C)(0,2) (D)(-∞,2]解析:问题可以转化为y=2|x|与y=ax+1的图象仅有一个公共点,如图,y=2|x|是一条关于y 轴对称的折线,y=ax+1是恒过(0,1)的一条直线,由图可知a的范围是不小于2的实数,故选B.7.若方程x2-x-k=0在(-1,1)上有实数根,则k的取值范围是( C )(A)[-,-) (B)[-,)(C)[-,) (D)[-,+∞)解析:方程x2-x-k=0在(-1,1)上有实数根,即方程x2-x=k在(-1,1)上有实数根.设f(x)=x2-x.因为f(x)=x2-x=(x-)2-,所以f(x)min=f()=-,f(x)max=f(-1)=.所以k∈[-,), 故选C.8.若一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根,则有( A )(A)a<0 (B)a>0 (C)a<-1 (D)a>1解析:法一令f(x)=ax2+2x+1(a≠0),因为其图象经过(0,1)点,所以欲使方程有一正根和一负根(即f(x)图象与x轴交点一个在y轴左边,一个在y轴右边),需满足a<0.法二设方程两根为x1,x2,由题意得所以所以a<0.故选A.9.若函数y=ax2-x-1只有一个零点,则a的值为.解析:当a=0时,函数为y=-x-1,此时函数只有一个零点,当a≠0时,函数y=ax2-x-1只有一个零点,即方程ax2-x-1=0只有一个实数根,所以Δ=1+4a=0,解得a=-.答案:0或-10.(2018·广东海珠联考)已知函数f(x)=ax2+mx+m-1(a≠0).(1)若f(-1)=0,判断函数f(x)的零点个数;(2)若对任意实数m,函数f(x)恒有两个相异的零点,求实数a的取值范围.解:(1)因为f(-1)=0,所以a-m+m-1=0,所以a=1,所以f(x)=x2+mx+m-1.Δ=m2-4(m-1)=(m-2)2.当m=2时,Δ=0,函数f(x)有一个零点;当m≠2时,Δ>0,函数f(x)有两个零点.(2)已知a≠0,则Δ=m2-4a(m-1)>0对于m∈R恒成立,即m2-4am+4a>0恒成立,所以Δ′=16a2-16a<0,从而解得0<a<1.即实数a的取值范围为(0,1).11.(2018·江苏南京玄武期中)已知二次函数f(x)=ax2+bx-2(a≠0)图象的对称轴为x=,且f(2)=0.(1)求函数f(x)的解析式;(2)若方程f(x)=m(x+1)的一个根在区间(0,1)上,另一个根在区间(1,2)上,求实数m的取值范围.解:(1)由题意知,解得故函数f(x)的解析式为f(x)=7x2-13x-2.(2)设g(x)=7x2-13x-2-m(x+1)=7x2-(13+m)x-(m+2),由题意知,函数g(x)在(0,1)内有一个零点,在(1,2)内有一个零点,所以即解得解得-4<m<-2,所以实数m的取值范围为(-4,-2).12.对于函数f(x),若存在x0∈R,使f(x0)-x0=0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.解:(1)当a=1,b=-2时,f(x)=x2-x-3.因为x0是f(x)的不动点,所以-x0-3-x0=0,即-2x0-3=0,解得x0=-1或x0=3.所以-1和3是f(x)=x2-x-3的不动点.(2)因为f(x)恒有两个相异的不动点, 所以方程f(x)-x=0恒有两个不同的解. 即f(x)=ax2+(b+1)x+(b-1)-x=0,ax2+bx+(b-1)=0有两个不相等的实根, 所以b2-4a(b-1)>0恒成立,即对于任意b∈R,b2-4ab+4a>0恒成立, 所以(-4a)2-4·4a<0得a2-a<0.所以0<a<1.。

北师大新版数学必修第一册第五章函数的应用综合测试题

北师大新版数学必修第一册第五章函数的应用综合测试题

北师大新版数学必修第一册第五章函数的应用综合测试题一、单选题1.函数()1f x x =-的零点是( ) A .-2B .1C .2D .32.若()24f x x bx =++的零点个数为1,求b 的值( ) A .4B .4-C .4±D .5-或33.若函数f (x )=x 2-ax +b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( ) A .-1和16B .1和16-C .12 和 13D .12-和13-4.若方程2(1)230k x x --+=有两个不相等的实数根,则实数k 的取值范围是( ) A .43k <B .43k >C .43k <,且1k ≠ D .43k >,且1k ≠5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:万元)对年销售量y (单位:t )的影响,对近6年的年宣传费i x 和年销售量()1,2,,6i y i =⋅⋅⋅进行整理,得数据如表所示:根据表中数据,下列函数中,适宜作为年销售量y 关于年宣传费x 的拟合函数的是( ) A .()0.51y x =+ B .21x y =- C .3log 1.5y x =+D .22y x =-6.若()f x 为奇函数,且0x 是函数()x y f x e =-的一个零点,在下列函数中,0x -一定是其零点的函数是( ) A .()1x y f x e -=-⋅- B .()1x y f x e -=⋅+ C .()1x y f x e -=⋅-D .()1x y f x e =⋅+7.若0x 是方程26log x x=的解,则0x 属于区间 ( ) A .()0,1B .()1,2C .()2,4D .()4,+∞8.某工厂去年12月份的产量是去年1月份产量的m 倍,则该厂去年月产量的平均增长率为( )A .111m - B .112m - C .1 D .19.已知函数()f x 的图象是连续不断的,且有如下对应值表:则函数()f x 的零点所在的区间是( ) A .()1,2 B .()2,3 C .()3,4D .()4,510.已知两点()()2,0,0,,4B O 为坐标原点,动点(),P x y 在线段AB (不含端点)上运动,过P 点分别向,x y 轴作垂线,垂足分别为,M N ,则四边形PMON 的面积的最大值为( )AB .2C .D .811.用二分法研究函数()321f x x x =+-的零点时,第一次经计算()00f <,()0.50f >,可得其中一个零点0x ∈ ,第二次应计算 ,以上横线应填的内容依次为( ) A .()()0,0.5,0.25f B .()()0,1,0.25f C .()()0.5,1,0.75fD .()()0,0.5,0.125f12.已知0m >,函数2()f x x x m =-+,实数12,x x 满足120,0x x >>,若()10,0f x f==,则( )A .12x x m +<B .12x x m +=C .12x x m +>D .12x x +与m 的大小关系不能确定二、填空题13.函数()6f x x =的零点个数是________ 14.函数1()lg 1f x x m x =-++在区间()0,9上有零点,则实数m 的取值范围为____________.15.网上购鞋常常看到下面的表格:依据表中脚长与鞋号的对应规律,计算30号童鞋对应的脚长是________mm .16.若函数()f x 满足以下三个条件:①()f x 的定义域是R ,且其图象是一条连续不断的曲线;②()f x 是偶函数;③()f x 恰有3个零点.请写出一个满足上述条件的函数()f x =______.三、解答题17.某人向天上掷一小石子,设x 秒后离地面的高度为()2205x x -米.(1)几秒后,小石子离地面的高度为15米? (2)几秒后,小石子落到地面?18.已知函数()22f x ax x a =--,其中0a >.(1)若函数()f x 在区间()1,3上单调,求实数a 的取值范围;(2)若方程()0f x =在区间(),3-∞上有两个不等的实根,求实数a 的取值范围. 19.已知()f x 是定义在R 上的奇函数,当0x >时,()2f x ax bx c =++,且()()2612f f ==-.(1)若当()0,x ∈+∞时,()min 16f x =-求实数a ,b ,c 的值;(2)在(1)条件下,若关于x 的方程()()00f x m x -=≤有两个不同的实数根,求实数m 的取值范围.20.已知函数()()(23)6f x x a x =-+-(Ⅰ)若1a =-,求()f x 在[3,0]-上的最大值和最小值;(Ⅱ)若关于x 的方程()140f x +=在(0,)+∞上有两个不相等实根,求实数a 的取值范围.21.已知函数()()20f x ax bx c a ++≠=,满足()02f =,()()121f x f x x +-=-(1)求函数()f x 的解析式;(2)当[]12x ∈-,时,求函数的最大值和最小值. (3)若函数()()g x f x mx =-的两个零点分别在区间()12-,和()24,内,求m 的取值范围.22.已知函数2()=42f x ax x -+,函数()1()3f x g x ⎛⎫= ⎪⎝⎭.(1)若函数()f x 在(],2-∞和[)2,+∞上单调性相反,求()f x 的解析式; (2)若0a <,不等式()9g x ≤在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,求a 的取值范围;(3)已知1a ≤,若函数2()log 8xy f x =-在[]1,2内有且只有一个零点,试确定实数a 的取值范围.参考答案1.B 【分析】令()0f x =,由此求得()f x 的零点. 【详解】令()10f x x =-=,解得1x =,所以()f x 的零点为1. 故选:B 【点睛】本小题主要考查函数零点的求法,属于基础题. 2.C 【分析】因为()24f x x bx =++为二次函数,只需0∆=即可满足条件,求解可得结果.【详解】()24f x x bx =++的零点个数为1,∴2160b ∆=-=,解得:4b =±.故选:C. 【点睛】本题考查二次函数零点个数问题,利用判别式是解题的关键,属于基础题. 3.B 【分析】根据零点的定义,结合一元二次方程根与系数关系、一元二次方程的解法进行求解即可. 【详解】因为f (x )=x 2-ax +b 有两个零点2和3, 所以2和3是方程x 2-ax +b =0的两个根,235,236a b +==⨯==,所以2()651g x x x =--,令2()65101g x x x x =--=⇒=或16x =-. 故选:B 【点睛】本题考查了已知函数零点求参数,考查了求函数的零点,属于基础题. 4.C 【分析】由题意可得()1041210k k -≠⎧⎨∆=-->⎩,从而可求出实数k 的取值范围.【详解】解:由方程有两个不相等的实数根可知,此方程为一元二次方程且判别式大于零,即可得()1041210k k -≠⎧⎨∆=-->⎩,解得43k <,且1k ≠. 故选:C. 【点睛】本题考查了一元二次方程根的分布问题.本题的关键是由不同两根得判别式大于零.本题的易错点是忽略了1k ≠这一条件. 5.C 【分析】观察表中数据,对所给函数进行逻辑推理即可. 【详解】由题表知,当自变量增加1个单位时,函数值依次增加0.55,0.40,0.16,0.14,0.20, 因此A 、B 不符合题意,当x 取1,4时,22y x =-的值分别为1,14-,与表中数据相 差较大. 故选:C 【点睛】本题考查函数模型的选取,考查学生逻辑推理与数据分析的能力,是一道容易题. 6.D 【分析】根据题意,0x 是()xy f x e =-的一个零点,则有00()xf x e =,结合函数的奇偶性依次分析选项,验证0x -是不是其零点,即可得答案. 【详解】解:根据题意,0x 是()xy f x e =-的一个零点,则有00()xf x e =,依次分析选项: 对于A 、()1xy f x e -=-⋅-,将0x x =-代入可得:0000()110x x xy f x e e e =⋅--=⋅≠,不符合题意; 对于B 、()1xy f x e -=⋅+,将0x x =-代入可得:0000()110x x xy f x e e e =-⋅+=-⋅+≠,不符合题意; 对于C 、()1xy f x e -=⋅-,将0x x =-代入可得:0000()110x x xy f x e e e =-⋅-=-⋅-≠,不符合题意;对于D 、()1xy f x e =⋅+,将0x x =-代入可得:0000()110x x x y f x ee e --=-⋅+=-⋅+=,即0x -一定是其零点,符合题意; 故选:D. 【点睛】本题考查函数的零点的定义,涉及函数奇偶性的性质,关键是灵活运用函数的奇偶性性质. 7.C 【分析】 构造函数()26log f x x x=-,结合()f x 的单调性和零点存在性定理,求得0x 所在区间. 【详解】构造函数()26log f x x x=-,()f x 的定义域为()0,∞+,()f x 在定义域上是单调递减函数,且()()3123120,42022f f =-=>=-=-<,由零点存在性定理可知,()f x 唯一零点在区间()2,4,也即方程26log x x=的解0x 属于区间()2,4.故选:C 【点睛】本小题主要考查零点存在性定理判断零点所在区间,属于基础题. 8.C 【分析】设月产量的平均增长率x ,求出去年12月份的产量与1月的产量关系,建立关于x 等量关系,即可求出结论. 【详解】设去年1月份产量的为a ,去年12月份的产量为ma , 设月产量的平均增长率11,(1)x a x ma +=,1x =-.故选:C. 【点睛】本题考查函数模型的选择,利用了有关增长率的函数模型,属于基础题. 9.C 【分析】由函数()f x 的图象是连续不断的,且(3)(4)0f f <,结合零点定理即可得解. 【详解】解:由函数()f x 的图象是连续不断的,且(3)(4)120f f =-⨯<, 由零点定理可得函数()f x 的零点所在的区间是()3,4, 故选:C. 【点睛】本题考查了零点定理,属基础题. 10.B 【分析】设(,)P x y ,根据平行线的性质,可得y x 、 之间的关系42y x =-,可得POMN S x y =⋅,代入可得四边形PMON 的面积的最大值. 【详解】 解:如图:设(,)P x y ,根据平行线的性质,可得:424x y-=,整理可得:42y x =-, 故:22(42)242(1)2POMN S x y x x x x x =⋅=⋅-=-+=--+,当1x =,可得POMN S 的最大值为:2, 故选:B. 【点睛】本题主要考查二次函数在几何中的应用,注意建立合适的函数模型并运算准确. 11.A 【分析】首先应结合零点定理判断函数零点的所在区间,然后用二分法的思想将区间逐次减半.即可获得问题解答. 【详解】由题意可知:对函数3()21f x x x =+-,(0)0f <,(0.5)0>f ,且函数在区间(0,0.5)上连续,可得其中一个零点0(0,0.5)x ∈,使得0()0f x =, 根据二分法的思想可知在第二次计算时应计算(0.25)f , 所以答案为:(0,0.5),(0.25)f . 故选:A . 【点睛】本题考查的是二分法研究函数零点的问题.在解答的过程当中充分体现了函数与方程的思想、二分法的思想以及数据处理的能力.值得同学们体会和反思. 12.C 【分析】根据题目条件可得:()112210,0f x x fm x m x ==-+==,11,,x x m ==进一步直接化简12x x +,从而得到答案.【详解】由题易知:()112210,0f x x fm x m x ==-+==,且1x程的关系11,,x x m ==11x =≥14m ≤,则()22222112121111111112211x x m m x x x x x x x x m x x x -⎛⎫+=+=+=+=+=-+=- ⎪⎝⎭又因为14m ≤,所以14m -≥-,所以131144m -≥-=所以1231144x x m m +=-≥>≥.故选:C. 【点睛】在解题中要注意等式的变换,要适当的利用基本不等式和根与方程的关系,解题的时候要注意条件与结论的统一. 13.1 【分析】首先求出函数()f x 的定义域为{}|0x x ≥,将原问题转化为260-=,解方程,即可得出()f x 的零点个数. 【详解】由题意可知()f x 的定义域为{}|0x x ≥,令()60f x x =-=,可得260-=, 2=-(舍去)或3=,9x ∴=;所以函数()6f x x =的零点个数为1个. 故答案为:1. 【点睛】本题把二次函数与二次方程有机的结合来,由方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点. 14.()10,0- 【分析】根据零点存在原理直接求解即可. 【详解】因为函数1()lg1f x x m x =-++在区间()0,9上有零点,所以有: (0)(9)0(10)0100f f m m m ⋅<⇒+<⇒-<<.故答案为:()10,0- 【点睛】本题考查了零点存在原理,考查了解一元二次不等式的能力,考查了数学运算能力. 15.200 【分析】先根据已知求出函数的解析式,把30x =代入求出即得解. 【详解】由题意,脚的长度与鞋号是一次函数关系,设,y kx b =+所以220=34,5,5022535k bk b k b+⎧∴==⎨=+⎩ 所以函数的解析式为550y x =+, 30x =时,200y mm =,故答案为:200 【点睛】本题主要考查一次函数模型的应用,求出解析式是解题的关键,意在考查学生对这些知识的理解掌握水平,属于基础题. 16.()21x x -⋅(答案不唯一). 【分析】结合题目要求,写出满足题意的函数即可得解.【详解】若()()21f x x x =-⋅,则该函数的定义域是R ,且图象连续,由()()()()2211f x x x x x f x ⎡⎤-=--⋅-=-⋅=⎣⎦,()f x 为偶函数,且()f x 有3个零点0,1,1-,所以函数()()21f x x x =-⋅满足题意.故答案为:()21x x -⋅(答案不唯一). 17.(1)1秒或3秒;(2)4秒. 【分析】记x 秒后小石子离地面的高度为h ,则2205h x x =-; (1)令15h =,得到对应方程求解,即可得出结果; (2)令0h =,得到对应方程求解,即可得出结果. 【详解】记x 秒后小石子离地面的高度为h ,则2205h x x =-; (1)令15h =,则210525x x =-,解得1x =或3x =, 则1秒或3秒后,小石子离地面的高度为15米;(2)令0h =,则22050x x -=,解得0x =(舍)或4x =, 则4秒后,小石子落到地面. 【点睛】本题主要考查二次函数模型的应用,属于基础题型. 18.(1)106a <≤或12a ≥;(2)37a >【分析】(1)由题意得,对称轴不在区间()1,3;(2)利用根的分布可得不等式组,解不等式组即可得答案; 【详解】 (1)0a >,∴函数图象开口向上, ∴对称轴112a≤或132a ≥,解得:106a <≤或12a ≥; (2)由根的分布得:2180,133,27(3)0,a a af ⎧∆=+>⎪⎪<⇒>⎨⎪>⎪⎩. 【点睛】根据二次函数的图象与性质,只有当对称轴不穿过区间时,函数才有可能单调. 19.(1)1a =,8b =-,0c ;(2)[)0,16. 【分析】(1)由已知代入立方程组可解得;(2)方程有解转化为二次函数与直线有两个不同交点,画图可知. 【详解】(1)据题设分析知,0a >.又当0x >时,()()2612f f ==-,()min 16f x =-,所以2222221222664164a b c a b c a b c ac b a⎧⎪⨯+⨯+=-⎪⎪⨯+⨯+=⨯+⨯+⎨⎪-⎪=-⎪⎩,所以1a =,8b =-,0c.(2)据(1)求解知,当0x >时()28f x x x =-.令0x <,则0x ->,所以()()()2288f x x x x x -=---=+. 又据()f x 为定义在R 上的奇函数,所以()()280f x x x x -=+<,所以()()280f x x x x =--<.又()()00f f -=-,所以()00f =.又因为关于x 的方程()()00f x m x -≤≤有两个不同实数根, 所以据函数()f x 的图象分析知,016m ≤<,即所求实数m 的取值范围是[)0,16. 【点睛】待定系数法是确定函数表达式的基本方法,选择适当的设法可以简化过程. 20.(Ⅰ)最大值0,最小值498-;(Ⅱ)5823a <<. 【分析】(Ⅰ)根据1a =-,得到2549()(1)(23)62()48=++-=+-f x x x x ,由二次函数性质,即可得出结果;(Ⅱ)由题意得到方程22(32)380x a x a +--+=有两个不相等正根,得到2(32)8(38)032023802a a aa ⎧⎪∆=---+>⎪-⎪>⎨-⎪-+⎪>⎪⎩,求解,即可得出结果. 【详解】(Ⅰ)若1a =-,则22549()(1)(23)62532()48f x x x x x x =++-=+-=+-, 因为二次函数()f x 开口向上,对称轴为:54x =-;又[3,0]x ∈-, 所以函数()f x 在53,4⎡⎫--⎪⎢⎣⎭上单调递减,在5,04⎛⎤- ⎥⎝⎦上单调递增; 因此min 549()()48f x f =-=-;又(3)0f -=,(0)3f =-, 所以max ()(3)0f x f =-=;(Ⅱ)由关于x 的方程()140f x +=在(0,)+∞上有两个不相等实根,可得方程22(32)380x a x a +--+=有两个不相等正根,则2(32)8(38)032023802a a aa ⎧⎪∆=---+>⎪-⎪>⎨-⎪-+⎪>⎪⎩,解得5823a <<.【点睛】本题主要考查由二次函数在给定区间的最值,以及由一元二次方程根的分布求参数的问题,熟记二次函数的性质即可,属于常考题型.21.(1)()222f x x x -+=;(2)max ()(1)5f x f =-=,min ()(1)1f x f ==;(3)51,2⎛⎫⎪⎝⎭【分析】(1)由()02f =得2c =,由待定系数法得a 、b 的值; (2)利用二次函数的对称轴和单调区间即可求得最值;(3)()()222g x x m x =-++,由题意可得()()()102040g g g ⎧->⎪<⎨⎪>⎩,求解即可.【详解】(1)由()02f =得2c =,又()()121f x f x x +-=-,得()()22112221a x b x ax bx x ⎡⎤++++-++=-⎣⎦即221ax a b x ++=-,所以22a =,1a b +=- ,解得:1a = ,2b =- , 所以()222f x x x -+=,(2)()222f x x x -+=对称轴1x =,所以()12121f =-+=,()()()2121125f --⨯--+==,()222222f -⨯+==2,所以min ()(1)1f x f ==,max ()(1)5f x f =-=,(3)()()222g x x m x =-++,若()g x 有2个零点分别在区间()12-,和()24,内, 则()()()102040g g g ⎧->⎪<⎨⎪>⎩,即502201040m m m +>⎧⎪-<⎨⎪->⎩,解得:512m <<【点睛】本题主要考查了待定系数法求二次函数的解析,考查二次函数的最值,以及零点分布情况,属于中档题.22.(1)()242f x x x =-+;(2)80a -≤<;(3)[]1,1-.【分析】(1)根据函数单调性,以及函数解析式,得到其对称轴为422x a-=-=,求出1a =,即可得出解析式;(2)根据题意,将不等式恒成立,转化为224444x a x x x -≥=-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,令()12t t x=≥,则转化为244a t t ≥-在[)2,t ∈+∞上恒成立,求出2max (44)t t -,即可得出结果;(3)设()245r x ax x =-+,()2log s x x =,[]1,2x ∈,根据原函数有一个零点,得到两个函数()r x 与()s x 的图象在区间[]1,2内有唯一交点;分别讨论0a =,0a <,01a <≤三种情况,结合二次函数与对数函数的性质,即可求出结果. 【详解】(1)因为函数()f x 在(],2-∞和[)2,+∞上单调性相反, 所以函数()242f x ax x =-+为二次函数,且其对称轴为422x a-=-=,解得1a =, ∴所求()242f x x x =-+;(2)依题意得()211933f x -⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭,即24221133ax x -+-⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭在10,2x ⎛⎤∈⎥⎝⎦上恒成立,转化为2422ax x -+≥-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,2440ax x ⇔-+≥在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,转化为224444x a x x x -≥=-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立, 令()12t t x=≥,则转化为244a t t ≥-在[)2,t ∈+∞上恒成立, 即2max (44)a t t ≥-,而244y t t =-是开口向下,对称轴为12t =的二次函数, 因此其在[)2,t ∈+∞上单调递减,因此2max (48)1648t t =-=--, 所以8a ≥-,因此a 的取值范围是80a -≤< ; (3)()222log 45log 8xy f x ax x x =-=-+-, 设()245r x ax x =-+,()2log s x x =,[]1,2x ∈,则原命题等价于两个函数()r x 与()s x 的图象在区间[]1,2内有唯一交点.当0a =时,()45r x x =-+在[]1,2内为减函数,()2log s x x =,[]1,2x ∈为增函数, 且()()1110r s =>=,()()2321r s =-<=,∴函数在区间有唯一的交点; 当0a <时,()r x 图象开口向下,对称轴为20x a=<, ()r x ∴在[]1,2内为减函数,()2log s x x =,[]1,2x ∈为增函数,且()()()()11101122431r s a a r s a ⎧≥+≥⎧⎪⇒⇒-≤≤⎨⎨≤-≤⎪⎩⎩, 10a ∴-≤<.当01a <≤时,()r x 图象开口向上,对称轴为22x a=≥, ()r x ∴在[]1,2内为减函数,()2log s x x =,[]1,2x ∈为增函数,则由()()()()11101122431r s a a r s a ⎧≥+≥⎧⎪⇒⇒-≤≤⎨⎨≤-≤⎪⎩⎩,01a ∴<≤.综上,所求a 的取值范围为[]1,1-. 【点睛】本题主要考查求二次函数的解析式,考查二次不等式恒成立的问题,考查由函数零点个数求参数的问题,属于常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的零点及判断零点个数提高题
1.已知函数()22,52,x x a f x x x x a +>⎧=⎨++≤⎩,函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是( )
A .[)1,1-
B .[]0,2
C .[)2,2-
D .[
)1,2-
【答案】D .
【解析】 22()()232x x a g x f x x x x x a -+>⎧=-=⎨++≤⎩,而方程20x -+=的解为2,方程
2320x x ++=的解为1-或2-,所以⎪⎩
⎪⎨⎧≤-≤-<a a a 212,解得12a -≤<.故选D .
2.定义在R 上的奇函数()f x ,当x ≥0时,[)[)
12log (1),0,1()13,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函
数()()(01)F x f x a a =-<<,的所有零点之和为( )
A .21a -
B .2
1a -- C .12a -- D .12a -
【答案】D .
【解析】
当10x -<<时⇒10x >->,当1x ≤-⇒1x -≥,又f (x )为奇函数, ∴0x <时, ()(]
12log (1),1,0()()13,,1x x f x f x x x ⎧--+∈-⎪=--=⎨⎪-+--∈-∞-⎩,(也可以不求解析式,依
据奇函数的图象关于原点对称,画出y 轴左侧的图象),画出y =f (x ),y =a (01a <<)的图象,如图
共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则
45123,322
x x x x ++=-=
132332
log (1)log (1)12a x a x a x --+=⇒-=⇒=-,可得x 1+x 2+x 3+x 4+x 5=12a -.
3.已知函数2331()()ln 431x x f x g x x x x x -≤⎧==⎨-+>⎩
,,,,则函数()()y f x g x =-的零点个数为( )
A .1个
B .2个
C .3个
D .4个
【答案】C .
【解析】
由题意得,函数()()y f x g x =-的零点个数即为函数()y f x =与函数()y g x =图象的交点个数,分别作出函数()y f x =与函数()y g x =的图象,如图所示,可得两函数的图象有3个不同的公共点,所以函数()()y f x g x =-的零点个数为3,故选C .。

相关文档
最新文档