典型例题解析_比例线段
线段的比与比例线段
线段比与比例线段的联系
定义关联
线段比描述了两条线段长 度的相对大小,而比例线 段则是基于线段比构建的 一种特殊线段关系。
性质相通
在比例线段中,若两条线 段成比例,则它们的比值 是相等的,这与线段比的 性质是一致的。
应用互补
在解决几何问题时,线段 比和比例线段经常相互补 充,共同构建解题思路。
线段比与比例线段的区别
线段的比与比例 线段
目录
• 线段比的基本概念 • 比例线段的基本概念 • 线段比与比例线段的关系 • 线段比与比例线段的应用 • 典型例题解析
01
线段比的基本概念
定义与性质
定义:对于两条线段a和b(b≠0),线段 a与b的比定义为a/b,记作a:b。
线段比具有对称性,即若a:b=c:d,则 b:a=d:c。
利用平行线分线段成比例定理,可以求解未知线段的长度或证明线段的比例关系。
在复杂图形中,可以通过作平行线构造相似三角形,进而利用相似三角形的性质求 解问题。
在其他几何问题中的应用
在几何变换(如平移、旋转、缩放等) 中,线段之间的比例关系保持不变。
在解析几何中,线段的比和比例关系 可以用于求解方程、证明定理等。
定义与性质
定义
两组线段,若它们的 比值相等,则称这两 组线段为比例线段。
反比性质
若a/b = c/d,则b/a = d/c。
更比性质
若a/b = c/d,则 a+b/b = c+d/d。
合比性质
若a/b = c/d,则 (a+b)/b = (c+d)/d。
等比性质
若a/b = c/d = ... = m/n,则 (a+c+...+m)/(b+d+ ...+n) = a/b。
01相似三角形题型之一比例与比例线段
01相似三角形题型之一比例与比例线段比例与比例线段教学目标:1.了解比例中项的概念。
2.会求已知线段的比例中项。
3.通过实例了解黄金分割。
4.利用黄金分割进行简单的计算和作图. 教学重点、难点:教学重点:黄金分割的概念及其简单应用。
教学难点:例5的作图涉及到线段的倍分关系与和差关系,比较复杂,是本节教学的难点。
1.知识点与方法概述A:比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.B:比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.C:黄金分割:如图,把线段AB分成两条线段AC和BC,所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.推论的逆定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.E:平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况: 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰. 已知:在梯形ACFD中,AD//CF,AB=BC 求证:DE=EF 推论2:经过三角形一边的中点与另一边平行的直线必平分第三边. 已知:在△ACF中,BE//CF,AB=BC 求证:AE=EFF:三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
已知:如图,D、E分别为AB、AC的中点求证:DE//BC,DE?G:梯形的中位线定理梯形的中位线:连结梯形两腰中点的线段叫做梯形的中位线。
学姐笔记-中考数学几何经典题型比例线段
比例线段知识考点:本节知识在历年中考的考题中,主要涉及用比例的性质、平行线分线段成比例定理。
由于比例的性质在应用时有其限制条件,一些中考题又以此为背景设计分类求解题。
精典例题:【例1】已知0543≠==zy x ,那么z y x z y x +++-= 。
分析:此类问题有多种解法,一是善于观察所求式子的特点,灵活运用等比性质求解;二是利用方程的观点求解,将已知条件转化为z x 53=,z y 54=,代入所求式子即可得解;三是设“k ”值法求解,这种方法对于解有关连比的问题十分方便有效,要掌握好这一技巧。
答案:31变式1:已知32===f e d c b a ,若032≠-+-f d b ,则3222-+--+-f d b e c a = 。
变式2:已知3:1:2::=z y x ,求yx zy x 232++-的值。
变式3:已知aac b b c b a c c b a k -+=+-=-+=,则k 的值为 。
答案:(1)32;(2)3;(3)1或-2; 【例2】如图,在△ABC 中,点E 、F 分别在AB 、AC 上,且AE =AF ,EF 的延长线交BC 的延长线于点D 。
求证:CD ∶BD =CF ∶BE 。
分析:在题设中,没有平行的条件,要证明线段成比例,可考虑添加平行线,观察图形,对照结论,需要变换比CF ∶BE ,为了变换比CF ∶BE ,可以过点C 作BE 的平行线交ED 于G ,并设法证明CG =CF 即可获证。
本例为了实现将比CF ∶BE 转换成比CD ∶BD 的目的,还有多种不同的添画平行线的方法,它们的共同特征都是构造平行线截得的线段成比例的基本图形,请你们参考图形,自己去构思证明。
例2图1GFEDCBA 例2图2 GF EDC B A例2图3GFEDC B A变式1:已知如图,D 是△ABC 的边BC 的中点,且31=BE AE ,求FCAF的值。
变式2:如图,BD ∶DC =5∶3,E 为AD 的中点,求BE ∶EF 的值。
求线段比的多种方法(含答案解析)
求线段的比的方法一、利用相似三角形求线段比例题1、 如图,在正三角形ABC 的边BC 、CA 上分别有点E 、F ,且满足BE=CF=a ,)(b a b FA EC >==,当BF 平分AE 时,则ba 的值为(225)(215)(225)(215)(++--D C B A在题目现有的条件中,很难找到等量关系.于是由线段比我们联想到相似三角形的相似比,能否构造相似三角形,利用相似比建立等量关系.那么让我们来添加辅助线.容易知道,题目中的点D 是线段AE 的中点.结合相似三角形的一些基本图形、基本知识,由中点自然想到三角形的中位线.于是过点D 作EC 的平行线交AC 于点M,此时DM 是AEC ∆的中位线.这时图中有两对相似三角形:FBC FDM AEC ADM ∆∆∆∆∽,∽,利用前一对相似三角形很容易得到b a b a a MC FC FM b EC DM 2121)(21,2121-=+-=-===,而在第二对相似三角形中,FCFMBC DM =,代入相关数据整理得到022=--b ab a ,解得215+=b a . 类似地,以AC 为第三边构造相似三角形的中位线:过D 作AC 的平行线交EC 于点M,同样出现两对相似三角形,思路同上.另一方面,也可以构造以线段DF 为中位线的三角形.方法:过点E 作EM//DF 交AC 于点M.这三种添加辅助线的方法共同点是:过某个点作某个线段的平行线,从而出现两对相似三角形,并且在某个三角形中含有中位线,具备特殊的数量关系.猜想:是不是只要过某个顶点作某条线段的平行线,都可以解决这个问题? 考虑到做平行线后要出现两对相似三角形(全等是特殊的相似),而且能够充分利用题目条件表达出等量关系解决问题,经过筛选,最后得到如下作辅助线的方法(都是平行线).方法说明:相对于前七种方法,方法八、九做起来更容易.因为通过构造全等三角形实现了已知长度的线段(AF或BE)的转移,而这条线段正好出现在相似三角形中,这就为表示相似比提供了方便.总结:这九种方法实质上是体现了下面的基本图形、基本数量关系.如图1,三角形ABC,点D是射线BA上的一个动点,过点D作DE//BC交射线CA于点E,则有:(1),∽ABCADE∆∆即BCEDACAEABAD==;(2)特殊地,若点D是AB的中点,则点E是AC的中点,即DE是三角形ABC 的中位线,此时有AD=DB,AE=EC,BC=2DE.(3)若点D在线段BA的延长线上,并且有DA=AB,此时ADEABC∆≅∆.基本图1二、面积法解:(面积法)如图,连接CD.EBDABDSSDEAD∆∆=∴=,abSSSSabFCAFCDFADFBCFABF==∴=∆∆∆∆,由等比性质可得a b S S S S CDF BCF ADF ABF =--∆∆∆∆, 即abS S BCD ABD =∆∆ (1)又b a a S S BCD BDE +=∆∆即.ba a S S BCD ABD +=∆∆ (2) 由(1)(2)可得:整理得:022=--b ab a 结合b a > 解得215+=b a 总结:这种面积法所包含的基本图形、基本数量如下.如图基本图2,三角形ABC ,点D 是BC 边上的一个动点,设BD=b,CD=c.基本图2 则(1)cbS S ACD ABD =∆∆ (2)特殊地,当点D 是BC 的中点时,有ACD ABD S S ∆∆=.练习题:一.选择题(共3小题)1.如图,△ABC 中,D 为BC 中点,E 为AD 的中点,BE 的延长线交AC 于F ,则为( )A . 1:5B . 1:4C . 1:3D . 1:22.如图,已知△ABC ,,,AD 、BE 交于F ,则的值是( )A .B .C .D .ba aa b +=AB3.如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G、F,则BG:GH:HF等于()A.1:2:3 B.3:5:2 C.5:3:2 D.5:3:1二.填空题(共4小题)4.如图,△ABC中,点D在BC上,点E在AD上,连结BE并延长,与边AC相交于点F,且,则=_________.5.已知点D,E,F分别在△ABC的三边BC,CA,AB上,G为BE与CF的交点,并且BD=DC=CA=AF,AE=EC=BF,那么的值等于_________.6.如图,AD是BC边上的中线,F是AD上一点,CF的延长线交AB于点E,若,则=_________;若,则=_________.7.(2011•浙江模拟)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使B与D重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为_________.三.解答题(共23小题)8.(2009•沈阳模拟)△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F.(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.9.(2013•阜宁县一模)在数学学习和研究中经常需要总结运用数学思想方法.如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整.题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则易求的值是_________,的值是_________,从而确定的值是_________.(2)类比延伸如图2,在原题的条件下,若(m>0),则的值是_________.(用含m的代数式表示),写出解答过程.(3)拓展迁移如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若,(a>0,b>0),则的值是_________.(用含a、b的代数式表示)写出解答过程.10.(2011•青浦区一模)如图,在△ABC中,点D是AB上的一点,过点D作DE∥BC交边AC于点E,过点E作EF∥DC交AD于点F.已知AD=2cm,AB=8cm.求:(1)的值;(2)的值.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F.(1)求证:;(2)若,求的值.12.已知△ABC中,D、E分别为AB、AC上的点,且,CD交BE于O,连AO 并延长交BC于F.(1)当时,求的值;(2)当n=1时,求证:BF=CF;(3)当n=_________时,O为AF中点.13.(2011•门头沟区二模)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD的内部,延长BG交DC于点F.若DC=2DF,则=_________;若DC=nDF,则=_________(用含n的式子表示).14.在△ABC中,已知AB>AC,AD平分∠BAC交BC于点D,点E在DC的延长线上,且,过E作EF∥AB交AC的延长线于F.(1)如图1,当k=1时,求证:AF+EF=AB;(2)如图2,当k=2时,直接写出线段AF、EF、AB之间满足的数量关系:_________;(3)如图3,当时,请猜想线段AF、EF、AB之间满足的数量关系(含k),并证明你的结论.15.(1)如图1,ABCD是一个正方形花园,要在边AD、DC的E、H处开两个门,且DE=CH,要修建两条小路BE、AF.那么这两条小路长度和位置各有什么关系?并证明你的结论;(2)如图2,在(1)的图形中,如果要在正方形四边E、H、F、G处各开一个门,并用小路EF、HG连接起来,如果EF⊥GH,求的值;(3)把(2)中的正方形改为矩形,如图3,AB=a,AD=b,其它条件不变,求的值.16.如图,▱ABCD中,E是AB的中点,在AD上截取2AF=FD,EF交AC于G,求的值.17.如图,F是平行四边形ABCD的边AD上一点,CF交BA的延长线于点E,若,AB=4,求AE的长.18.如图,正方形ABCD,P为BC边上一点,以AP为斜边在正方形ABCD内作等腰Rt△APQ,连接AC交PQ于点E,连接DQ.(1)求证:△ACP∽△ADQ;(2)当P为BC的中点时,求的值;(3)在(2)的条件下,求证:EQ=DQ.19.如图,在正方形ABCD中,点P是BC边上一点(不与点B,C重合),连接PA,将线段PA绕点P顺时针旋转90°得到线段PE,PE交边DC于点F,连接CE,AF.(1)求证:△ABP∽△PCF;(2)当的值等于多少时,△APF∽△PCF?请说明理由;(3)当CP=CE时,求cot∠EPC的值.20.2012.惠安县如图,在矩形ABCD中,P是BC边上一点,连接DP并延长,交AB的延长线于点Q,(1)若,求的值.(2)若P为BC边上的任意一点,求证:.21.(2013•浦东新区一模)如图,在平行四边形ABCD中,点E在边BC上,连接AE并延长,交对角线BD于点F、DC的延长线于点G,如果.求的值.22.如图,矩形ABCD中,AD=nAB,E是AB的中点,BF⊥EC于F,连接FD,FG⊥FD 交直线BC于点G.(1)求证:△FBG∽△FCD;(2)当n=1时,求CG:BC的值;(3)当CG:BC=7:8时,求n的值.23.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F(1)求证:.(2)若BD=4,CD=3,求BE•AC的值.24.(2010•武昌区模拟)已知如图,△ABC中,∠ABC=90°,AB=BC,D是BC边上一点,DE⊥AC于E,连BE交AD与F.(1)如果,求的值;(2)如果,求的值;(3)如果,直接写出的值.25.△ABC中,D、E分别为BC、AC边上的动点,BD=mCD,AE=nEC,AD与BE相交于点O.(1)如图1,当m=2,n=1时,=_________,=_________;(2)当m=1.5时,求证:;(3)如图2,若CO的延长线交AGB于点F,当m、n之间满足关系式_________时,AF=2BF.(直接填写结果,不要求证明)26.如图1,D是△ABC的边BC上一点,AH⊥BC于H,S△ABD=BD•AH,S△ADC=DC•AH,则,因此,利用三角形的面积比可以来表示两条线段的比,甚至用三角形面积的比来证明与线段比有关的命题.请解决下列问题:已知:如图2,直线l与△ABC的边AB、AC交于D、F,与BC的延长线交于E,连接BF、AE.(1)求证:;(2)求证:••=1.27.已知,如图1,直角梯形ABCD,AB⊥BC,AB=BC=nAD,AE⊥BD于点E,过E作CE的垂线交直线AB于点F.(1)当n=4时,则=_________,=_________;(2)当n=2时,求证:BF=AF;(3)如图2,F点在AB的延长线上,当n=_________时,B为AF的中点;如图3,将图形1中的线段AD沿AB翻折,其它条件不变,此时F点在AB的反向延长线上,当n= _________时,A为BF的中点.28.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上一动点,BD=nCD,CE⊥AD 于F,交AB于E.(1)若n=1,则=_________.=_________.(2)若n=2,求的值.(3)当n=_________时,=.29.如图,已知点E是矩形ABCD的边CB延长线上一点,且CE=CA,连接AE,过点C 作CF⊥AE,垂足为点F,连接BF、FD.(1)求证:△FBC≌△FAD;(2)连接BD,若,且AC=10,求FC的值.30.在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,AD=CD.(1)如图1,连接AC,求证:AC是∠BCD的角平分线;(2)线段BC上一点E,将△ABE沿AE翻折,点B落到点F处,射线EF与线段CD交于点M.①如图2,当点M与点D重合时,求证:FM=AB;②如图3,当点M不与点D重合时,求证:FM﹣DM=AB.参考答案与试题解析一.选择题(共3小题)1.如图,△ABC中,D为BC中点,E为AD的中点,BE的延长线交AC于F,则为()A.1:5 B.1:4 C.1:3 D.1:2考点:相似三角形的判定与性质.分析:过D作BF的平行线,交AC边于G,即:DG∥BF,又D为BC中点可得出:△CDG∽△CBF,即:==,CG=FC=FG;同理可得:△AEF∽△ADG,AF=AG=FG,所以AF=FG=GC,即:==.解答:解:过D作BF的平行线,交AC边于G,如下图所示:∵D为BC中点,DG∥BF∴∠CGD=∠CFB又∵∠C=∠C∴△CDG∽△CBF∴==,即:CG=CF=FG又E为AD的中点,BE的延长线交AC于F,DG∥BF同理可得:△AEF∽△ADG∴==,即:AF=AG=FG∴AF=FG=GC∴===1:2故选:D.点评:本题主要考查相似三角形的判定与性质,关键在于找出条件判断两个三角形相似,再运用相似三角形的性质求解.2.如图,已知△ABC,,,AD、BE交于F,则的值是()A.B.C.D.考点:平行线分线段成比例;相似三角形的性质.分析:先过E作EG∥BC,交AD于G,再作DH∥AC交BE于H,由平行线分线段成比例定理的推论,再结合已知条件,可分别求出和的值,相乘即可.解答:解:作EG∥BC交AD于G,∵,,∴=,∴=,∴=,∴=.作DH∥AC交BE于H,则DH=CE=AE,∴==,∴=×=.故选C.点评:此题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等,解题时要注意比例式的变形.3.如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G、F,则BG:GH:HF等于()A.1:2:3 B.3:5:2 C.5:3:2 D.5:3:1考点:平行线分线段成比例;三角形中位线定理.分析:作FM∥BC交AE于点M,则根据△BEH∽△FMH,利用BF表示出HF的长度,作DN∥AC交BF于点N,则△BDN∽△BCF且△DNG∽△AFG,依据△BDN∽△BCF 可以用BF表示出BN的长,然后依据△DNG∽△AFG表示出NG的长,则BG,GM,HF都可以利用BF表示出来,则比值即可求解.解答:解:设BC=6a,则BD=DE=EC=2a,作FM∥BC交AE于点M,∵F是AC的中点,∴MF=EC=a,∵FM∥BC,∴△BEH∽△FMH,∴===,则HF=BF,作DN∥AC交BF于点N,设AC=2b,则AF=CF=b,∴△BDN∽△BCF,∴====,∴DN=CF=b,BN=BF,∵DN∥AC,∴△DNG∽△AFG,∴===,∴NG=GF,即NG=NF=(BF﹣BN)=(BF﹣BF)=BF,∴BG=GF+GF=BF,∴GM=BF﹣BG﹣HF=BF﹣BF﹣BF=BF,∴BG:GH:HF=BF:BF:BF=5:3:2.故选C.点评:本题考查了三角形的形似的判定与性质,正确利用相似三角形的性质,利用BF把BG,GM,HF表示出来是关键.二.填空题(共4小题)4.如图,△ABC中,点D在BC上,点E在AD上,连结BE并延长,与边AC相交于点F,且,则=.考点:平行线分线段成比例.分析:先过D作DG∥AC,根据已知得出=,再设EG=x,则EF=2x,GF=3x,再根据=,求出BG和BE的值,即可得出的值.解答:解:过D作DG∥AC交BF于G,∵,∴=,设EG=x,则EF=2x,GF=3x,∵=,∴=,∴BG=1.5x,∴BE=2.5x,∴==;故答案为:.点评:本题主要考查了平行线分线段成比例定理,关键是作出辅助线,表示出BE,EF的长.5.已知点D,E,F分别在△ABC的三边BC,CA,AB上,G为BE与CF的交点,并且BD=DC=CA=AF,AE=EC=BF,那么的值等于.考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.专题:计算题.分析:过E作AB的平行线交CF于M点,则EM是△AFC的中位线,M是中点,利用AAS 求证△BFG≌△EMG然后得EM=BF,所以BG=GE,G是BE的中点,而D是BC 的中点,所以DG是△BEC的中位线,然后即可得出答案.解答:解:过E作AB的平行线交CF于M点,∴EM是△AFC的中位线,M是中点,∴EM=AF=BF,∴△BFG≌△ENG,∴BG=GE,即G是BE的中点,又∵BD=DC,∴DG是△BEC的中位线,∴DG=CE=BD=BC.故答案为:点评:此题主要考查学生对相似三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质的理解和掌握,解得此题的关键是作“过E作AB的平行线交CF于M点”这一辅助线,然后求证出DG是△BEC的中位线,这是此题的突破点.6.如图,AD是BC边上的中线,F是AD上一点,CF的延长线交AB于点E,若,则=1:6;若,则=1:2n.考点:平行线分线段成比例.专题:应用题.分析:可过点D作GD∥EC交AB于G,由中位线定理可得BG=GE,进而可得AE与BE 的比值,当其比值为时,亦可得出结论.解答:解:过点D作GD∥EC交AB于G,∵点D是BC的中点,∴==1,即BG=GE,又∵GD∥EC,∴==,∴=.同理,当,则=.故答案为:,.点评:本题主要考查了平行线分线段成比例的性质问题,能够利用其性质求解一些简单的计算问题.7.(2011•浙江模拟)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使B与D重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为4:3.考点:直角梯形;旋转的性质.专题:证明题.分析:由旋转的性质易得△BEC≌△DFC,可得∠EBC=∠FDC,CE=CF=3,在直角三角形BEC中即可求得BE=4;已知∠BCD=90°,由∠EBC+∠ECB=90°,且∠BCE+∠ECM=90°,即可得∠EBC=∠ECM,则∠ECM=∠FDC;则可证得△CME∽△DMF即可得DM:MC=DF:CE即可得解.解答:解:连接DF,∵△BEC绕C点旋转90°使B与DC重合,得到△DCF,∴△BEC≌△DFC,∴∠EBC=∠FDC①,BE=DF,CE=CF=3,在直角三角形BEC中,BE==4;已知∠BCD=90°,∠BEC=90°,∴∠EBC+∠ECB=90°,∠BCE+∠ECM=90°,∴∠EBC=∠ECM②,∴由①②得∠ECM=∠FDC;又∵∠CME=∠DMF,∴△CME∽△DMF,∴DM:MC=DF:CE=4:3.故答案为:4:3.点评:本题考查了旋转的性质,直角梯形的性质,相似三角形的判定及性质等知识点,是一道综合性的中档题.三.解答题(共23小题)8.(2009•沈阳模拟)△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F.(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.分析:(1)作辅助线:连接AD,利用等腰三角形中的三线合一,即可证得AD=BD=DC=BC,∠ADB=∠ADC=90°,又由同角的余角相等,证得∠5=∠4,则可得△BDE≌△ADF,则AF=BE;(2)由(1)可得AF=BE,AE=CF,又由勾股定理,易得EF2=BE2+FC2;(3)可证得有两角对应相等,所以可得△BDE∽△ADF,利用三角函数即可求得比值.解答:(1)结论:AF=BE.证明:连接AD,∵AB=AC,∠BAC=90°,点D是BC的中点,∴AD=BD=DC=BC,∠ADB=∠ADC=90°,∴∠B=∠C=∠1=∠2=45°.∴∠3+∠5=90°.∵∠3+∠4=90°,∴∠5=∠4,∵BD=AD,∴△BDE≌△ADF.∴BE=AF.(2)根据(1)可得BE=AF,所以AB﹣BE=AC﹣AF,即AE=FC,∵∠BAC=90°,∴EF2=AF2+AE2,∴EF2=BE2+FC2.(3)(1)中的结论BE=AF不成立∵∠B=30°,AD⊥BC于点D,∠BAC=90°,∴∠3+∠5=90°,∠B+∠1=90°.∵∠3+∠4=90°,∠1+∠2=90°∴∠B=∠2,∠5=∠4.∴△BDE∽△ADF.∴.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,直角三角形的性质.此题图形变化很多,而且图形复杂,属于中等难度的题目,解题时要注意数形结合思想的应用.9.(2013•阜宁县一模)在数学学习和研究中经常需要总结运用数学思想方法.如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整.题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则易求的值是3,的值是2,从而确定的值是.(2)类比延伸如图2,在原题的条件下,若(m>0),则的值是.(用含m的代数式表示),写出解答过程.(3)拓展迁移如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若,(a>0,b>0),则的值是ab.(用含a、b的代数式表示)写出解答过程.考点:相似形综合题.分析:(1)过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;(2)先作EH∥AB交BG于点H,得出△EFH∽△AFB,即可得出==m,再根据AB=CD,表示出CD,根据平行线的性质得出△BEH∽△BCG,即可表示出=,从而得出的值;(3)先过点E作EH∥AB交BD的延长线于点H,得出EH∥AB∥CD,根据EH∥CD,得出△BCD∽△BEH,即可求出CD=bEH,再根据,得出AB=aCD=abEH,再进一步证出△ABF∽△EHF,从而得出的值.解答:解:(1)过点E作EH∥AB交BG于点H,则有△ABF∽△HEF,∴=,∴AB=3EH.∵平行四边形ABCD中,EH∥AB,∴EH∥CD,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH,∴===.故答案为:3,2,.(2)作EH∥AB交BG于点H,则△EFH∽△AFB,∴==m,∴AB=mEH.∵AB=CD,∴CD=mEH.∵EH∥AB∥CD,∴△BEH∽△BCG.∴==2,∴CG=2EH.∴==.故答案为:.(3)过点E作EH∥AB交BD的延长线于点H,则有EH∥AB∥CD,∵EH∥CD,∴△BCD∽△BEH,∴==b,∴CD=bEH.又=a,∴AB=aCD=abEH.∵EH∥AB,∴△ABF∽△EHF,∴===ab;故答案为:ab.点评:此题考查了相似性的综合,用到的知识点是相似形的判定与性质、平行四边形的性质、中位线的性质,解题的关键是根据题意画出图形,再根据有关性质和定理求出各线段的比值.10.(2011•青浦区一模)如图,在△ABC中,点D是AB上的一点,过点D作DE∥BC交边AC于点E,过点E作EF∥DC交AD于点F.已知AD=2cm,AB=8cm.求:(1)的值;(2)的值.考点:平行线分线段成比例.分析:(1)根据平行线分线段成比例即可求出的值;(2)根据平行线分线段成比例求出AF=3cm,从而求出的值.解答:解:(1)∵DE∥BC,∴=,∵AD=2cm,AB=8cm,∴=;(2)∵EF∥DC,∴==,解得AF=3cm,∴=.点评:考查了平行线分线段成比例,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F.(1)求证:;(2)若,求的值.考点:相似三角形的判定与性质.分析:(1)根据直角三角形斜边上中线性质求出DE=EC,推出∠EDC=∠ECD,求出∠FDC=∠B,根据∠F=∠F证△FBD∽△FDC,即可;(2)根据已知和三角形面积公式得出,,根据相似三角形面积比等于相似比的平方得出,即可求出.解答:(1)证明:∵CD⊥AB,∴∠ADC=90°,∵E是AC的中点,∴DE=EC,∴∠EDC=∠ECD,∵∠ACB=90°,∠BDC=90°∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,∴∠ECD=∠B,∴∠FDC=∠B,∵∠F=∠F,∴△FBD∽△FDC,∴=.(2)解:∵,∴,∴,∵△FBD∽△FDC,∴,∴=.点评:本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.12.已知△ABC中,D、E分别为AB、AC上的点,且,CD交BE于O,连AO 并延长交BC于F.(1)当时,求的值;(2)当n=1时,求证:BF=CF;(3)当n=时,O为AF中点.考点:平行线分线段成比例.分析:(1)连接DE交AF于K,根据平行线分线段成比例定理,即可证得DE∥BC,继而可得,,根据比例的性质,即可求得的值;(2)由n=1时,AD=BD,AE=CE,可得O是△ABC的重心,继而可得BF=CF;(3)根据(1)的证明方法,即可求得答案.解答:解:(1)连接DE交AF于K,∵,∴DE∥BC,∴,,∴设OK=a,则OF=3a,∴KF=4a,∴AK=2a,∴OA=AK+OK=3a,∴=1;(2)∵n=1时,AD=BD,AE=CE,∴O是△ABC的重心,∴AF是△ABC的中线,∴BF=CF;(3)∵,∴DE∥BC,∴,,∴设OK=a,则OF=3a,∴KF=4a,∴AK=2a,∴OA=AK+OK=3a,∴=1,∴当n=时,O为AF中点.故答案为:.点评:此题考查了平行线分线段成比例定理与比例的性质.此题难度适中,解题的关键是数形结合思想的应用与辅助线的作法.13.(2011•门头沟区二模)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD的内部,延长BG交DC于点F.若DC=2DF,则=;若DC=nDF,则=(用含n的式子表示).考点:翻折变换(折叠问题).专题:综合题;探究型.分析:(1)求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF 即可;可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值;(2)方法同(1).解答:解:(1)连接EF,则根据翻折不变性得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴GF=DF;设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2 x,∴;(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=n•DF,∴BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n﹣1)x]2=[(n+1)x]2∴y=2x,∴.故答案为:;.点评:此题考查了矩形的性质、图形的折叠变换、全等三角形的判定和性质、勾股定理的应用等重要知识,难度适中.14.在△ABC中,已知AB>AC,AD平分∠BAC交BC于点D,点E在DC的延长线上,且,过E作EF∥AB交AC的延长线于F.(1)如图1,当k=1时,求证:AF+EF=AB;(2)如图2,当k=2时,直接写出线段AF、EF、AB之间满足的数量关系:AF+EF=2AB;(3)如图3,当时,请猜想线段AF、EF、AB之间满足的数量关系(含k),并证明你的结论.考点:相似形综合题.分析:(1)延长AD、EF交于点G,当k=1时,DE=BD,再根据∠BDA=∠EDG,BD=ED,证出△ABD≌△GED,得出AB=GE,又因为∠BAD=∠DAC,所以∠FGD=∠DAC,AF=GF,即可证出AF+EF=AB;(2)当k=2时,同(1)可得△ABD∽△GED,根据相似三角形的对应边成比例即可得出结论;(3)当时,同(1)可得△ABD∽△GED,根据相似三角形的对应边成比例即可得出结论.解答:(1)证明:如图1,延长AD、EF交于点G,当k=1时,DE=BD∵EF∥AB,∴∠BAD=∠EGD,在△ABD与△GED中,,∴△ABD≌△GED(AAS),∴AB=GE,又∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠FGD=∠DAC,∴AF=GF,∴AF+EF=AB;(2)解:如图2,延长AD、EF交于点G,当k=2时,∵EF∥AB,∴∠BAD=∠EGD,又∵∠BDA=∠EDG,∴△ABD∽△GED,∴==2,即GE=2AB,又∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠FGD=∠DAC,∴AF=GF,∴AF+EF=2AB;(3)猜想:AE+EF=kAB.证明:如图3,延长AD、EF交于点G,当=k时,∵EF∥AB,∴∠BAD=∠EGD,又∵∠BDA=∠EDG,∴△ABD∽△GED,∴==k,即GE=kAB,又∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠FGD=∠DAC,∴AF=GF,∴AF+EF=kAB.点评:本题考查的是相似三角形综合题,根据题意作出辅助线,构造出相似三角形,再根据相似三角形的性质求解是解答此题的关键.15.(1)如图1,ABCD是一个正方形花园,要在边AD、DC的E、H处开两个门,且DE=CH,要修建两条小路BE、AF.那么这两条小路长度和位置各有什么关系?并证明你的结论;(2)如图2,在(1)的图形中,如果要在正方形四边E、H、F、G处各开一个门,并用小路EF、HG连接起来,如果EF⊥GH,求的值;(3)把(2)中的正方形改为矩形,如图3,AB=a,AD=b,其它条件不变,求的值.考点:正方形的性质;全等三角形的判定与性质;矩形的性质;相似三角形的判定与性质.分析:(1)关键正方形的性质就可以求出AE=DH,进而可以得出△ABE≌△DAH,再由全等三角形的性质就可以得出结论;(2)如图2,作EN⊥BC于N,交GH于点Q,GM⊥CD于M,根据正方形的性质得出△EFN≌△GHM,就可以得出EF=GH,从而得出结论;(3)如图3,作EN⊥BC于N,交GH于点Q,GM⊥CD于M,根据正方形的性质得出△EFN∽△GHM,就可以得出,从而得出结论;解答:解:(1)BE=AH,BE⊥AH理由:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠D=90°.∵DE=CH,∴AD﹣DE=CD﹣CH,即AE=DH.∵在△ABE和△DAH中,∴△ABE≌△DAH(SAS),∴∠AEB=∠AHD.BE=AH,∵∠DAH+∠AHD=90°,∴∠DAH+∠AEB=90°.∴∠AFE=90°∴AH⊥BE.∴BE、AH这两条小路长度和位置分别是BE=AH,BE⊥AH;(2)如图2,作EN⊥BC于N,交GH于点Q,GM⊥CD于M,∴∠GMH=∠ENF=90°,AD=GM,EN=CD∴∠EFN+∠NEF=90°,∠MHG+∠HGM=90°.∵EF⊥GH,∴∠EQH=90°.∴∠EPQ+∠PEQ=90°,∠MGQ+∠EPG=90°,∴∠PEQ=∠MGQ.∵四边形ABCD是正方形,∴AB=CD,∴GM=EN.在△ENF和△GMH中,,∴△ENF≌△GMH,∴EF=GH,∴=1;(3)如图3,作EN⊥BC于N,交GH于点Q,GM⊥CD于M,∴∠GMH=∠ENF=90°,AD=GM,EN=CD∴∠EFN+∠NEF=90°,∠MHG+∠HGM=90°.∵EF⊥GH,∴∠EQH=90°.∴∠EPQ+∠PEQ=90°,∠MGQ+∠EPG=90°,∴∠PEQ=∠MGQ.∴△ENF∽△GMH,∴.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∵EN⊥BC,GM⊥CD,∴EN=AB=a,GM=AD=b,∴.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,相似三角形的判定及性质的运用,本题是一道由特殊到一般的试题,利用相似三角形的性质是关键.16.如图,▱ABCD中,E是AB的中点,在AD上截取2AF=FD,EF交AC于G,求的值.考点:相似三角形的判定与性质;平行四边形的性质.分析:延长FE交CB的延长线于H,如图所示,则再由线段成比例即可证明结论.解答:解:如图所示,延长FE交CB的延长线于H,在△AEF和△BEH中∴△AEF≌△BEH(ASA),∴AF=BH,∵AD∥BC,∴=,又∵2AF=FD,∴=,∴==.点评:本题主要考查了平行四边形的性质,全等三角形的判定及线段的比例问题,应能够熟练掌握.17.如图,F是平行四边形ABCD的边AD上一点,CF交BA的延长线于点E,若,AB=4,求AE的长.考点:平行线分线段成比例;平行四边形的性质.专题:几何综合题.分析:根据已知条件,要求AE的长,结合平行四边形的性质,只需求得AE:CD的值,根据平行线分线段成比例定理,可得AE:CD=AF:DF,从而进行计算.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD∴又∵,AB=4∴∴.点评:此题综合运用了平行四边形的性质和平行线分线段成比例定理.18.如图,正方形ABCD,P为BC边上一点,以AP为斜边在正方形ABCD内作等腰Rt△APQ,连接AC交PQ于点E,连接DQ.(1)求证:△ACP∽△ADQ;(2)当P为BC的中点时,求的值;(3)在(2)的条件下,求证:EQ=DQ.考点:相似三角形的判定与性质;等腰直角三角形;正方形的性质.专题:证明题.分析:(1)根据正方形的性质得∠DAQ+∠QAE=45°,=;根据等腰直角三角形的性质得∠PAC+∠QAE=45°,=,所以∠PAC=∠QAD,=,于是可判断△ACP∽△ADQ;(2)设正方形ABCD的边长为2a,则PB=PC=a,AP=a,AC=2a,由∠APE=∠ACP=45°,∠PAE=∠CAP得到△APE∽△ACP,利用相似比可计算出=;(3)由(2)的结论得PE=a,而PQ=AP=a,则EQ=PQ﹣PE=a,再利用(1)的结论得到=,可计算得到DQ=a,然后求EQ与DQ的比值.解答:(1)证明:∵四边形ABCD为正方形,∴∠DAC=45°,即∠DAQ+∠QAE=45°,=,∵△APQ为等腰直角三角形,∴∠QAP=45°,即∠PAC+∠QAE=45°,=,∴∠PAC=∠QAD,=,∴△ACP∽△ADQ;(2)解:设正方形ABCD的边长为2a,则PB=PC=a,∴AP===a,AC=2a,∵∠APE=∠ACP=45°,∠PAE=∠CAP,∴△APE∽△ACP,∴===;(3)证明:∵PC=a,=,∴PE=a,∵PQ=AP=a,∴EQ=PQ﹣PE=a,又∵△ACP∽△ADQ,∴=,即=,∴DQ=a,∴==,∴EQ=DQ.点评:本题考查了相似三角形的判定与性质:有两组对应边的比相等且夹角相等的两个三角形相似;有两组对应角相等的两个三角形相似;相似三角形对应边的比等于相等,都等于相似比.也考查了等腰直角三角形的性质和正方形的性质.19.如图,在正方形ABCD中,点P是BC边上一点(不与点B,C重合),连接PA,将线段PA绕点P顺时针旋转90°得到线段PE,PE交边DC于点F,连接CE,AF.(1)求证:△ABP∽△PCF;(2)当的值等于多少时,△APF∽△PCF?请说明理由;(3)当CP=CE时,求cot∠EPC的值.考点:相似三角形的判定与性质;正方形的性质.分析:(1)根据正方形的性质和已知条件证明∠PAB=∠EPC,即可证明:△ABP∽△PCF;(2)当=,△APF∽△PCF,设正方形ABCD边长为1,则AB=BC=1,PB=PC=,FC=,根据勾股定理计算AP,EP的值,即可得到,△APF∽△PCF;(3)过点E作EG⊥BC交BC的延长线于点G(如图),则∠EGP=∠B=90°,设EG=CG=x.则CP=CE=x,PG=x+x.在Rt△EPG中,即可求出cot∠EPC的值.解答:解:(1)∵四边形ABCD是正方形,∴AB=BC,∠B=∠PCD=90°,∴∠PAB+∠APB=90°.∵∠APE=90°,∴∠EPC+∠APB=90°.∴∠PAB=∠EPC.∴△ABP∽△PCF.(2)。
比例线段-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)
比例线段【知识梳理】一.比例的性质(1)比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(2)常用的性质有:①内项之积等于外项之积.若=,则ad=bc.②合比性质.若=,则=.③分比性质.若=,则=.④合分比性质.若=,则=.⑤等比性质.若==…=(b+d+…+n≠0),则=.二.比例线段(1)对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如ab =cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.(2)判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.三.黄金分割(1)黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC =AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.(2)黄金三角形:黄金三角形是一个等腰三角形,其腰与底的长度比为黄金比值.黄金三角形分两种:①等腰三角形,两个底角为72°,顶角为36°.这样的三角形的底与一腰之长之比为黄金比:;②等腰三角形,两个底角为36°,顶角为108°;这种三角形一腰与底边之长之比为黄金比:.(3)黄金矩形:黄金矩形的宽与长之比确切值为.【考点剖析】一.比例的性质(共15小题)1.(2018秋•浦东新区期中)已知3x=5y(y≠0),则下列比例式成立的是()A.=B.=C.=D.=【分析】直接利用比例的性质得出x,y之间关系进而得出答案.【解答】解:A、=,可以化成:xy=15,故此选项错误;B、=,可以化成:3x=5y,故此选项正确;C、=,可以化成:5x=3y,故此选项错误;D、=,可以化成:5x=3y,故此选项错误.故选:B.【点评】此题主要考查了比例的性质,正确掌握比例的基本性质是解题关键.2.(2023•青浦区一模)已知三个数1、3、4,如果再添上一个数,使它们能组成一个比例式,那么这个数可以是()A.6B.8C.10D.12【分析】根据比例的性质分别判断即可.【解答】解:1:3=4:12,故选:D.【点评】此题主要考查了比例的性质,正确把握比例的性质是解题关键.3.(2023•普陀区一模)已知,x+y=10,那么x﹣y=.【分析】直接利用已知代入求出y的值,即可得出x的值,进而得出答案.【解答】解:∵,x+y=10,∴x=y,则y+y=10,解得:y=4,那么x﹣y=6﹣4=2.故答案为:2.【点评】此题主要考查了比例的性质,正确将已知代入是解题关键.4.(2022秋•奉贤区期中)已知:==,2x﹣3y+4z=33,求代数式3x﹣2y+z的值.【分析】设比值为k,用k表示出x、y、z,然后代入等式求出k,从而得到x、y、z,再代入代数式进行计算即可得解.【解答】解:设===k,则x=2k,y=3k,z=4k,∵2x﹣3y+4z=33,∴4k﹣9k+16k=33,解得k=3,∴x=6,y=9,z=12,∴3x﹣2y+z=3×6﹣2×9+12=18﹣18+12=12.【点评】本题考查了比例的性质,利用“设k法”表示出x、y、z求解更简便.5.(2022秋•金山区校级期末)根据4a=5b,可以组成的比例有()A.B.C.D.【分析】根据比例的性质,进行计算即可解答.【解答】解:A、∵=,∴5a=4b,故A不符合题意;B、∵=,∴5a=4b,故B不符合题意;C、∵=,∴4a=5b,故C符合题意;D、∵=,故D不符合题意.故选:C.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.6.(2022秋•浦东新区期中)已知=,那么的值为()A.B.C.D.﹣【分析】利用比例的性质,进行计算即可解答.【解答】解:∵=,∴=1﹣=1﹣=,故选:B.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.7.(2022秋•嘉定区校级期末)如果2a=3b(a、b都不等于零),那么=.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵2a=3b(a、b都不等于零),∴设a=3x,则b=2x,那么==.故答案为:.【点评】本题考查了比例的性质,掌握正确表示出a,b的值是关键.8.(2022秋•奉贤区期中)已知,且2a﹣3b+c=28,求代数式a+b﹣c的值.【分析】利用设k法,进行计算即可解答.【解答】解:设===k,则a=2k,b=5k,c=7k,∵2a﹣3b+c=28,∴4k﹣15k+7k=28,解得:k=﹣7,∴a=﹣14,b=﹣35,c=﹣49,∴a+b﹣c=﹣14+(﹣35)﹣(﹣49)=﹣49+49=0,∴代数式a+b﹣c的值为0.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.9.(2022秋•上海月考)已知a、b、c分别是△ABC的三条边的边长,且a:b:c=5:7:8,3a﹣2b+c=9,求△ABC的周长.【分析】设a=5k,b=7k,c=8k,再代入等式3a﹣2b+c=9,求出k的值,从而得到a、b、c的值,然后根据三角形周长公式进行计算,即可得解.【解答】解:设a=5k,b=7k,c=8k,代入3a﹣2b+c=9得,15k﹣14k+8k=9,解得:k=1,则a=5,b=7,c=8,所以△ABC的周长是:5+7+8=20.【点评】本题考查了比例的性质以及代数式求值,解决此类题目时利用“设k法”求解更简便.10.(2022秋•虹口区期中)已知:==≠0,且a+b+c=36,求a、b、c的值.【分析】可设===k(k≠0),可得a=3k,b=4k,c=5k,再根据a+b+c=36可得关于k的方程,解方程求出k,进一步求得a、b、c的值.【解答】解:设===k≠0,则a=3k,b=4k,c=5k,∵a+b+c=36,∴3k+4k+5k=36,解得k=3,则a=3k=9,b=4k=12,c=5k=15.【点评】此题考查了比例的性质,设k法得到关于k的方程是解题的关键.11.(2021秋•徐汇区校级月考)已知,求的值.【分析】先设===k,可得x=2k,y=3k,z=4k,再把x、y、z的值都代入所求式子计算即可.【解答】解:设===k,则x=2k,y=3k,z=4k,==11.【点评】本题考查了比例的性质.解题的关键是先假设设===k,可得x=2k,y=3k,z=4k,降低计算难度.12.(2021秋•奉贤区校级期中)已知:a:b:c=3:4:5.(1)求代数式的值;(2)如果3a﹣b+c=10,求a、b、c的值.【分析】设a=3k,b=4k,c=5k,(1)把a=3k,b=4k,c=5k代入代数式中进行分式的混合运算即可;(2)把a=3k,b=4k,c=5k代入3a﹣b+c=10得到关于k的方程,求出k,从而得到a、b、c的值.【解答】解:∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,(1)==;(2)∵3a﹣b+c=10,∴9k﹣4k+5k=10,解得k=1,∴a=3,b=4,c=5.【点评】本题考查了比例的性质:熟练掌握比例的基本性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质等)是解决问题的关键.13.(2022秋•奉贤区期中)已知实数a、b、c满足,且a﹣3b+2c=﹣8.求的值.【分析】设a=3k,b=5k,c=4k,根据a﹣3b+2c=﹣8,得k=2,a=6,b=10,c=8,即可求出答案.【解答】解:∵,∴设a=3k,b=5k,c=4k,∵a﹣3b+2c=﹣8,∴3k﹣15k+8k=﹣8,∴k=2,∴a=6,b=10,c=8,∴==1.【点评】本题考查了比例的基本性质,根据已知条件列方程是关键.14.(2021秋•奉贤区校级期中)已知实数x、y、z满足==,且x﹣2y+3z=﹣2.求:的值.【分析】设===k(k≠0),得出x=3k,y=5k,z=2k,再根据x﹣2y+3z=﹣2,求出k的值,从而得出x、y、z的值,然后代入要求的式子进行计算即可得出答案.【解答】解:∵==,设===k(k≠0),∴x=3k,y=5k,z=2k,∵x﹣2y+3z=﹣2,∴3k﹣10k+6k=﹣2,∴k=2,∴x=6,y=10,z=4,∴==2.【点评】本题考查了比例的性质:熟练掌握比例的基本性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质等)是解决问题的关键.15.(2022秋•嘉定区期中)已知==≠0,且5x+y﹣2z=10,求x、y、z值【分析】首先设x=2a,y=3a,z=4a,然后再代入5x+y﹣2z=10,可得a的值,进而可得答案.【解答】解:设x=2a,y=3a,z=4a,∵5x+y﹣2z=10,∴10a+3a﹣8a=10,5a=10,a=2,∴x=4,y=6,z=8.【点评】此题主要考查了比例的性质,关键是掌握用同一未知数表示各未知数.二.比例线段(共10小题)16.(2021秋•徐汇区校级期中)下列各组的四条线段a,b,c,d是成比例线段的是()A.a=4,b=6,c=5,d=10B.a=1,b=2,c=3,d=4C.,b=3,c=2,D.a=2,,,【分析】根据比例线段的定义即如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对选项一一分析,即可得出答案.【解答】解:A.4×10≠6×5,故不符合题意,B.1×4≠2×3,故不符合题意,C.≠2×3,故不符合题意,D.,故符合题意,故选:D.【点评】此题考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.同时注意单位要统一.17.(2023•长宁区一模)已知线段a、b、c、d是成比例线段,如果a=1,b=2,c=3,那么d的值是()A.8B.6C.4D.1【分析】根据成比例线段的概念可得a:c=c:b,可求d的值.【解答】解:∵线段a、b、c、d是成比例线段,a=1,b=2,c=3,∴a:b=c:d,即1:2=3:d,解得:d=6.故选:B.【点评】此题考查了比例线段,掌握比例线段的定义是解题的关键.18.(2023•宝山区一模)已知线段a、b,如果a:b=2:3,那么下列各式中一定正确的是()A.2a=3b B.a+b=5C.D.【分析】根据比例的性质进行判断即可.【解答】解:A、由a:b=2:3,得3a=2b,故本选项错误,不符合题意;B、当a=4,b=6时,a:b=2:3,但是a+b=10,故本选项错误,不符合题意;C、由a:b=2:3,得=,故本选项正确,符合题意;D、当a=4,b=6时,a:b=2:3,但是=,故本选项错误,不符合题意.故选:C.【点评】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两外项的积等于两内项的积,比较简单.19.(2022秋•嘉定区期中)如果mn=pq,那么下列比例式正确的是()A.B.C.D.【分析】从选项判断,把每一个比例式化成等积式即可解答.【解答】解:A、∵,∴mq=pn,故不符合题意;B、∵,∴qm=pn,故不符合题意;C、∵,∴mn=pq,故符合题意;D、∵,∴pm=qn,故不符合题意,故选:C.【点评】本题考查了比例的性质,把比例式化成等积式是解题的关键.20.(2021秋•金山区期末)在比例尺是1:200000的地图上,两地的距离是6cm,那么这两地的实际距离为()A.1.2km B.12km C.120km D.1200km【分析】设这两地的实际距离为xcm,根据比例尺的定义列出方程,然后求解即可得出答案.【解答】解:设这两地的实际距离为xcm.由题意得:=,解得x=1200000,经检验,x=1200000是分式方程的解,1200000cm=12km,故选:B.【点评】本题考查比例线段,比例尺的定义,解题的关键是熟练掌握比例尺性质,属于中考常考题型.21.(2020秋•静安区期末)已知线段x,y满足=,求的值.【分析】先根据比例的基本性质得到y(2x+y)=x(x﹣y),可得x2﹣3xy﹣y2=0,再把y当作已知数,解关于x的方程即可求得的值.【解答】解:∵=,∴y(2x+y)=x(x﹣y),则x2﹣3xy﹣y2=0,解得x1=y,x2=y(负值舍去).故的值为.【点评】考查了比例线段,关键是熟练掌握比例的基本性质,得到x=y是解题的难点.22.(2023•金山区一模)下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、∵1×4≠2×3,∴四条线段不成比例,不符合题意;B、∵2×5≠3×4C、∵2×6=3×4,∴四条线段成比例,符合题意;D、∵3×9≠4×6,∴四条线段成比例,不符合题意;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.23.(2021秋•黄浦区期末)4和9的比例中项是()A.6B.±6C.D.【分析】根据比例的基本性质:两外项之积等于两内项之积求解.【解答】解:根据比例中项的概念结合比例的基本性质得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,解得x=±6.故选:B.【点评】本题考查了比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.求比例中项根据比例的基本性质进行计算.24.(2021秋•奉贤区校级期中)已知:线段a、b、c,且.(1)求的值;(2)如线段a、b、c满足3a﹣4b+5c=54,求a﹣2b+c的值.【分析】(1)设===k,则a=3k,b=4k,c=5k,代入所求代数式即可;(2)把a=3k,b=4k,c=5k代入3a﹣4b+5c=54求出k,把k值代入所求代数式即可.【解答】解:设===k,则a=3k,b=4k,c=5k,(1)===;(2)∵3a﹣4b+5c=54,∴9k﹣16k+25k=54,解得:k=3,∴a﹣2b+c=3k﹣8k+5k=0.【点评】本题主要考查了比例线段,设===k得到a=3k,b=4k,c=5k是解决问题的关键.25.(2021秋•宝山区校级月考)已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.【分析】(1)设===k,易得a=5k,b=4k,c=6k,然后把它们分别代入中,再进行分式的运算即可;(2)根据三角形周长定义得到5k+4k+6k=90,解关于k的方程求出k,然后计算5k、4k和6k即可.【解答】解:(1)设===k,则a=5k,b=4k,c=6k,所以==;(2)5k+4k+6k=90,解得k=6,所以a=30,b=24,c=36.【点评】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.三.黄金分割(共7小题)26.(2023•长宁区一模)已知P是线段AB的黄金分割点,且AP>BP,那么的值为()A.B.C.D.【分析】利用黄金分割的定义,进行计算即可解答.【解答】解:∵P是线段AB的黄金分割点,且AP>BP,∴=,∴==,∴=﹣1=﹣1==,故选:C.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.27.(2022秋•徐汇区期末)已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)【分析】先由黄金分割的比值求出BP=AQ=5(﹣1),再由PQ=AQ+BP﹣AB进行计算即可.【解答】解:如图,∵点P、Q是线段AB的黄金分割点,AB=10,∴BP=AQ=AB=5(﹣1),∴PQ=AQ+BP﹣AB=10(﹣1)﹣10=10(﹣2),故选:B.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,熟记黄金比是解题的关键.28.(2021秋•金山区期末)如果点P是线段AB的黄金分割点,且AP<BP,那么的值等于()A.+1B.﹣1C.D.【分析】由黄金分割的定义得=,即可得出答案.【解答】解:∵点P是线段AB的黄金分割点(AP<BP),∴===,故选:D.【点评】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.29.(2022秋•嘉定区期中)已知点A、B、C在一条直线上,AB=1,且AC2=BC•AB,求AC的长.【分析】分三种情况:当点C在线段AB上,当点C在线段AB的延长线时,当点C在线段BA的延长线时,然后分别进行计算即可解答.【解答】解:分三种情况:当点C在线段AB上,如图:∵AC2=BC•AB,∴点C是AB的黄金分割点,∴AC=AB=×1=;当点C在线段AB的延长线时,如图:设AC=x,则BC=AC﹣AB=x﹣1,∵AC2=BC•AB,∴x2=(x﹣1)•1,整理得:x2﹣x+1=0,∴原方程没有实数根;当点C在线段BA的延长线时,如图:设AC=x,则BC=AC+AB=x+1,∵AC2=BC•AB,∴x2=(x+1)•1,整理得:x2﹣x﹣1=0,解得:x1=,x2=(不符合题意,舍去),∴AC的长为;综上所述,AC的长为或.【点评】本题考查了黄金分割,分三种情况讨论是解题的关键.30.(2022秋•宝山区校级月考)已知点C在线段AB上,且满足AC2=AB•BC.(1)若AB=1,求AC的长;(2)若AC比BC大2,求AB的长.【分析】(1)根据已知可得点C是线段AB的黄金分割点,从而可得AC=AB,然后进行计算即可解答;(2)根据已知可设AC=x,则BC=x﹣2,从而可得AB=2x﹣2,然后根据AC2=AB•BC,可得x2=(2x﹣2)(x﹣2),从而进行计算即可解答.【解答】解:(1)∵点C在线段AB上,且满足AC2=AB•BC,∴点C是线段AB的黄金分割点,∴AC=AB=,∴AC的长为;(2)∵AC比BC大2,∴设AC=x,则BC=x﹣2,∴AB=AC+BC=2x﹣2,∵AC2=AB•BC,∴x2=(2x﹣2)(x﹣2),解得:x1=3+,x2=3﹣(舍去),∴AB=2x﹣2=2+4,∴AB的长为2+4.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.31.(2020秋•闵行区期末)古希腊艺术家发现当人的头顶至肚脐的长度(上半身的长度)与肚脐至足底的长度(下半身的长度)的比值为“黄金分割数”时,人体的身材是最优美的.一位女士身高为154cm,她上半身的长度为62cm,为了使自己的身材显得更为优美,计划选择一双合适的高跟鞋,使自己的下半身长度增加.你认为选择鞋跟高为多少厘米的高跟鞋最佳?()A.4cm B.6cm C.8cm D.10cm【分析】她下半身的长度为92cm,设鞋跟高为x厘米时,她身材显得更为优美,利用黄金分割的定义得到≈0.618,然后解方程即可.【解答】解:∵一位女士身高为154cm,她上半身的长度为62cm,∴她下半身的长度为92cm,设鞋跟高为x厘米时,她身材显得更为优美,根据题意得≈0.618,解得x≈8.3(cm).经检验x=8.3为原方程的解,所以选择鞋跟高为8厘米的高跟鞋最佳.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC≈0.618AB,并且线段AB的黄金分割点有两个.也考查了解分式方程.32.(2019秋•嘉定区校级月考)已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.【分析】在直角△ABD中根据勾股定理计算出AD=,则AE=AD﹣DE=﹣1,再利用画法得到AC=AE =﹣1,即AC =AB ,然后根据黄金分割的定义得到点C 就是线段AB 的黄金分割点.【解答】证明:∵AB =2,BD =AB ,∴BD =1.∵BD ⊥AB 于点B ,∴AD ==, ∴AE =AD ﹣DE =﹣1, ∴AC =AE =﹣1,∴AC =AB ,∴点C 就是线段AB 的黄金分割点.【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC =AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.【过关检测】一、单选题【答案】C【分析】能否构成一个比例式,根据“两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段”判断即可.【详解】A .21=,能组成一个比例式,不合题意;B .12=⨯,能组成一个比例式,不合题意;C .1,2 不能组成一个比例式,符合题意;D .12=故选:C【点睛】本题考查了成比例的线段,熟知:两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段. 2.(2022秋·上海浦东新·九年级校考期中)下列各组线段中,成比例线段的组是( )A .0.2cm,0.3cm,4cm,6cmB .1cm,3cm,4cm,8cmC .3cm,4cm,5cm,8cmD .1.5cm,2cm,4cm,6cm 【答案】A【分析】根据比例线段的定义可各选项分别进行判断即可.【详解】解:A 、0.260.34⨯=⨯,是成比例线段,故本选项符合题意;B 、1834⨯≠⨯,不是成比例线段,故本选项不符合题意;C 、3845⨯≠⨯,不是成比例线段,故本选项不符合题意;D 、1.5624⨯≠⨯,不是成比例线段,故本选项不符合题意.故选:A【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ::a b c d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.【答案】B【分析】利用比例中项的平方等于两个外项的积,进行计算即可.【详解】解:由题意,得:24936b ac ==⨯=,∵0b >,∴6b =;故选B .【点睛】本题考查比例选段.熟练掌握比例中项的平方等于两个外项的积,是解题的关键.【答案】B【分析】把各个选项的比例式转化为乘积式,可得结论.【详解】解:A 、由a b c d =推出ad bc =,本选项不符合题意; B 、由a b d c =推出ac bd =,本选项符合题意; C 、由a d cb =推出ab cd =,本选项不符合题意; D 、由a cb d =推出ad bc =,本选项不符合题意. 故选:B .【点睛】本题考查比例线段,比例的性质,解题的关键是掌握比例的性质.【答案】A【分析】设1AB =,BC x =,则1AC x =−,由比例中项得出2BC AC AB =,代入解一元二次方程即可解答.【详解】解:设1AB =,BC x =,则1AC x =−,∵BC 是AC 和AB 的比例中项,∴2BC AC AB =,即21x x =−,∴210x x +−=,解得:1x =2x ,即BC =,∴1AC ==,∴ BC AB=,故A 符合题意;BC AC ==,故B 不符合题意;AC AB =,故C 不符合题意;AC BC =,故D 不符合题意;故选:A .【点睛】本题考查比例中项、线段的比、解一元二次方程,熟知比例中项的定义是解答的关键.【答案】C【分析】根据比例的性质进行判断即可.【详解】解:A 、由:2:3a b =,得32a b =,故本选项错误,不符合题意;B 、当4a =,6b =时,:2:3a b =,但是10a b +=,故本选项错误,不符合题意;C 、由:2:3a b =,得52a b a +=,故本选项正确,符合题意; D 、当4a =,6b =时,:2:3a b =,但是3728a b +=+,故本选项错误,不符合题意.故选:C .【点睛】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两外项的积等于两内项的积,比较简单.二、填空题【答案】3 【分析】由23x y =,设2,3(0)==≠x k y k k ,然后再代入求解即可; 【详解】解:∵23x y =,设2,3(0)==≠x k y k k , ∴235=33x y k k y k ++=,故答案为:53.【点睛】本题考查比例的性质,设2,3(0)==≠x k y k k 是解题关键. 8.(2021秋·上海·九年级校考阶段练习)在比例尺为1:60000的地图上A 、B 两处的距离是4cm ,那么A 、B 两处实际距离是______km .【答案】2.4【分析】设A 、B 两处的实际距离是cm x ,根据比例尺的定义列式计算即可得解,然后再化为千米即可.【详解】解:设A 、B 两处的实际距离是cm x ,根据题意得:4:1:60000x =解得:240000x =,240000cm 2.4km =,故答案为:2.4.【点睛】本题考查了比例,主要利用了比例尺的定义,计算时要注意单位之间的换算.9.(2021秋·上海·九年级校考阶段练习)已知():1:2x y y +=,则:x y 的值为______.【答案】12−/0.5− 【分析】根据比例的基本性质,求得2y x =−,即可得到答案.【详解】解:∵():1:2x y y +=, ∴()2x y y +=, 解得2y x =−,∴1:2x y =−, 故答案为:12−【点睛】此题考查了比例,熟练掌握比例的基本性质是解题的关键.【答案】52/2.5/22【分析】直接利用已知把a ,b 用同一未知数表示,进而计算得出答案;【详解】解:23a b =(a b 、都不等于零),∴设3a x =,则2b x =, 那么32522a b x x bx ++==; 故答案为:52.【点睛】此题主要考查了比例的性质,正确表示出a ,b 的值是解题关键. 11.(2021秋·上海青浦·九年级校考期中)已知线段4a =厘米、9c =厘米,如果线段a 是线段c 和b 的比例中项,那么线段b =______厘米.【答案】169【分析】根据比例中项的定义得到::c a a b =,然后利用比例性质计算即可.【详解】解:∵线段a 是线段c 和b 的比例中项,∴::c a a b =, 即9:44:b =,∴169b =.故答案为: 169.【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如::a b c d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.特别的是若::c a a b =,则a 是c 和b 12.(2023·上海金山·统考一模)如图,已知上海东方明珠电视塔塔尖A 到地面底部B 的距离是468米,第二球体点P 处恰好是整个塔高的一个黄金分割点(点A 、B 、P 在一直线),且BP AP >,那么底部B 到球体P 之间的距离是_________米(结果保留根号)【答案】234)【分析】根据黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值⎝⎭叫做黄金比. 【详解】解:∵点P 是线段AB 上的一个黄金分割点,且468AB =米,BP AP >,∴468234)BP ==米.故答案为:234).【点睛】本题考查了黄金分割的概念,熟记黄金分割的定义是解题的关键. 13.(2023·上海杨浦·统考一模)已知点P 是线段MN的黄金分割点()MP NP >,如果10MN =,那么线段MP =___________.【答案】5/5−+【分析】根据黄金分割点的概念列式求解即可.【详解】解:∵点P 是线段MN 的黄金分割点,>MP PN ,10MN =,∴105PM ===,故答案为:5.【点睛】此题考查了黄金分割点的概念,解题的关键是熟练掌握黄金分割点的概念.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.14.(2023·上海崇明·统考一模)点P 是线段MN 的黄金分割点,如果10cm MN =,那么较长线段MP 的长是__________cm.【答案】()5【分析】根据黄金分割点的定义,得到MP MN=,求解即可.【详解】解:由题意,得:MP MN=,即:10MP =,∴()5cm MP =;故答案为:()5.【点睛】本题考查黄金分割点.熟练掌握黄金分割点的定义,是解题的关键.【答案】1:3【分析】根据32a b =设3,2a k b k ==,代入计算即可.【详解】解:∵32a b =∴设3,2a k b k ==,∴(a ﹣b ):a =(32):31:3k k k −=故答案为:1:3【点睛】本题主要考查了比例的性质,熟练掌握比例的性质是解答本题的关键. 16.(2022秋·九年级单元测试)已知线段AB =2cm ,点C 是线段AB 的黄金分割点,则线段AC 等于__________cm【答案】或【分析】分AC >BC 、AC <BC 两种情况,根据黄金比值计算即可.【详解】当AC >BC 时,AC=21当AC <BC 时,AC=AB-AB=23−=∴线段AC (cm )或cm ).(cm )或cm ).【点睛】本题考查的是黄金分割,掌握黄金比值是解题的关键.【答案】【分析】根据折叠的性质以及矩形的性质可证四边形ABEF 是正方形,可得EF =BE ,进一步即可求出EF 与CE 的比值.【详解】解:根据折叠,可知AB =AF ,BE =FE ,∠BAE =∠FAE ,在矩形ABCD 中,∠BAF =∠B =90°,∴∠BAE =∠FAE =45°,∴∠AEB =45°,∴BA =BE ,∴AB =BE =EF =FA ,又∵∠B =90°,∴四边形ABEF 是正方形,∴EF =BE =AB ,∵矩形ABCD 是黄金矩形,∴A BB C =,∴EF EC ,故答案为:.【点睛】本题考查了黄金分割,矩形的性质,正方形的判定和性质,熟练掌握黄金分割是解题的关键.【答案】5【分析】根据CD 是∠ACB 的平分线,由三角形的面积可得出BD BC AD AC =,可得出AB BC AC DA AC +=①;由CE 是∠ACB 的外角平分线, 得出BE BC AE AC =,进而得出AB BC AC AE AC −=②,两式相加即可得出结论. 【详解】解:∵CD 是∠ACB 的平分线,∴BDC BDC ADC ADC S S BD BC S AD S AC ∆∆∆∆==, ∴BD BC AD AC =∴BD DA BC AC DA AC ++=,即AB BC AC AD AC +=①; ∵CE 是∠ACB 的外角平分线,∴BE BC AE AC = ∴BE AE BC AC AE AC −−=,即AB BC AC AE AC −=②; ①+②,得22 2.55AB AB BC AC BC AC BC AD AE AC AC AC +−+=+==⨯=.故答案为:5.【点睛】此题主要考查了比例的应用,熟练掌握比的性质是解答此题的关键.三、解答题19.(2020秋·九年级校考课时练习)已知线段AB=10cm ,点C 是AB 上的黄金分割点,求AC 的长是多少厘米?【答案】(5)cm 或(15−cm【分析】根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段;则AC =105=或AC =10−(5)=15−【详解】解:根据黄金分割点的概念,应有两种情况,当AC 是较长线段时,AC =105=;当AC 是较短线段时,则AC =10−(5)=15−故答案为:(5)cm 或(15−cm .【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.【答案】11【分析】通过设k 法,设234x y z k ===,则2x k =,3y k =,4z k =,再利用消元的思想代入分式求值.【详解】解:设234x y z k ===,则2x k =,3y k =,4z k =, 552341144234x y z k k k x y z k k k −+⨯−+==−−⨯−−.【点睛】本题主要考查求分式的值,熟练掌握消元的思想是解决本题的关键.【分析】设a=5k ,则b=7k ,c=8k ,代入3a-2b+c=9,即可求出k 的值,从而可求出a 、b 、c 的值,最后由三角形周长的计算公式求解即可.【详解】根据题意可设a=5k ,则b=7k ,c=8k ,代入3a-2b+c=9,得:352789k k k ⨯−⨯+=,解得:1k =,∴578a b c ===,,, ∴△ABC 的周长=a+b+c=5+7+8=20.【点睛】本题主要考查比例的性质.解决此类题目时一般利用“设k 法”更简便.【答案】4【分析】设345x y z k ===,则3,4,5x k y k z k ===,再根据232x y z −+=−求出k 的值,然后得出x ,y ,z 的值,从而得出x y z +−的值. 【详解】解:设345x y z k ===,则3,4,5x k y k z k ===,代入232x y z −+=−,得233452k k k ⋅−⋅+=−,解得2k =,6,8,10x y z ∴===,68104x+y -z ∴=+−=. 【点睛】本题考查了比例的性质,解题的关键是设345x y z k ===,得出k 的值.【答案】(1)证明见解析;(2)=AD BC. 【分析】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .易得EF 为AOD △的中位线,故EF//AD ,根据重心的性质可得12121=2EG FG BG CG =,即EF //12G G ,即可得证; (2)根据点P 为黄金分割点,可得PC BC,再根据中位线的性质即可求解. 【详解】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .因为1G 、2G 为三角形AOB 和三角形COD 的重心,所以点E 、F 为AO 、DO 的中点,所以EF 为AOD △的中位线,所以EF//AD , 又因为12121=2EG FG BG CG =, 所以EF //12G G ,所以12G G //AD .(2)因为点P 为黄金分割点,所以PC BC, 又因为RQ 是中位线,所以RQ//BC ,12RQ BC =,因为AD//PQ ,所以1=2PQ DQ RO BO AD OA OD DO ==,所以AD BC. 【点睛】本题考查重心的定义和性质、三角形中位线的性质、黄金分割,掌握重心的性质是解题的关键.【答案】(1)9y =;(2)3y =. 【分析】(1)由比例的性质对比例式进行变形,然后去括号、移项、合并同类项可得到x=9y ,即可解答;(2)由比例的性质对比例式进行变形从而得到3y 2+2xy-x 2=0,然后分解得(3y-x )(y+x )=0,即可解答. 【详解】解:(1)由332x y x y +=−,得2(3)3()x y x y +=−, 即2633x y x y +=−,解得9y x =,∴9x y =.(2)由3x y x x y y +=−,得(3)()y x y x x y +=−, 即22320y xy x +−=,解得3x y =或x y =−(不合题意,舍去),∴3x y =.【点睛】本题重点考查比例线段,解答本题的关键在于了解比例的性质并且对比例式进行变形. 25.(2020秋·上海宝山·九年级统考阶段练习)如图,点D 、E 分别在ABC ∆的边AB 、AC 上,DE BC ∥. (1)若2ADE S ∆=,7.5BCE S ∆=,求BDE S ∆;(2)若BDE S m ∆=,BCE S n ∆=,求ABC S ∆.(用m ,n 表示)【答案】(1)3BDE S ∆=;(2)2ABC n S n m ∆=−。
解比例典型例题及答案
解比例答案典题探究例1.按下面的条件列出比例并解比例.(1)5和8的比等于20和X的比.(2)4和12的比等于8和X的比.(3)等号左端的比是4.5:X,等号右端的比是0.3:4.(4)比的两个外项分别是X和1.5,两个内项分别是2.8和3.考点:解比例.专题:比和比例.分析:(1)根据题意先列出比例式5:8=20:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除5,即可得解;(2)根据题意先列出比例式4:12=8:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除4,即可得解;(3)根据题意先列出比例式4.5:x=0.3:4,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除0.3,即可得解;(4)根据题意先列出比例式x:2.8=3:1.5,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除1.5,即可得解;解答:解:(1)5:8=20:x;5x=20×85x÷5=160÷5x=32;(2)4:12=8:x4x=12×84x÷4=96÷4x=24;(3)4.5:x=0.3:40.3x=4×4.50.3x÷0.3=18÷0.3x=60;(4)x:2.8=3:1.51.5x=3×2.81.5x÷1.5=8.4÷1.5x=5.6.点评:此题考查解比例的方法:根据两内项之积等于两外项之积,把比例式转化为乘积式是解题的关键.例2.求未知数x的值.(1)7:x=0.8:2.4;(2)=;(3)x:=18:.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质可得:0.8x=7×2.4,再利用等式的性质,两边同时除以0.8求解;(2)根据比例的基本性质可得:15x=20×0.8,再利用等式的性质,两边同时除以15求解;(3)根据比例的基本性质可得:x=×18,再利用等式的性质,两边同时除以求解.解答:解:(1)7:x=0.8:2.40.8x=7×2.40.8x÷0.8=16.8÷0.8x=21;(2)=15x=20×0.815x÷15=16÷15x=;(3)x:=18:x=×18x=x=.点评:此题考查了比例的基本性质和等式的性质的计算应用.例3.若自然数A、B满足﹣=,且A:B=4:5.那么A=8,B=10.考点:解比例.专题:简易方程.分析:把﹣=的左边通分成,由A:B=4:5,根据比例的性质,可得5A=4B,推出A=B,把A=B代人=中,即可求得B的数值,进而求得A的数值.解答:解:因为A:B=4:5,所以5A=4B,A=B;﹣=,=,把A=B代人=中,得:=,=,×=,=,B=10;把B=10代入A=B中,A=B=×10=8;故答案为:8,10.点评:用含B的式子表示出A是解答此题的关键,进而代入方程即可得解.例4.只列算式(或方程),不计算.(1)比例的两个内项分别是5和2,两个外项分别是x和3.5.(2考点:解比例;分数除法应用题.专题:压轴题.分析:(1)根据比例的基本性质“两外项之积等于两内项之积”,据此列出方程即可;(2)根据图意,可知把这根绳子的总长看做单位“1”,用去了,还剩下300米;要求单位“1”的量,要先求出还剩下的300米对应的分率是多少列式为:1﹣,进而用具体的数量除以具体的数量对应的分率即可解答.解答:解:(1)x:2=5:3.5;(2)300÷(1﹣).点评:此题考查根据题意或图意,列比例式或算式,解决关键是要分析好题意或图意,灵活的解答即可.演练方阵A档(巩固专练)一.选择题(共7小题)1.在2、3、这三个数中插入第四个数X,使得这四个数能组成比例,那么X最小是()A.B.C.D.考点:解比例;比例的意义和基本性质.专题:比和比例.分析:根据比例的性质:两内项之积等于两外项之积.要使插入的第四个数X最小,即要使两内项之积或两外项之积最小,积最小为:2×,据此解答即可.解答:解:由分析可得:2×=3X,所以X=.故选:C.点评:解答本题的关键是,分析出要使插入的第四个数X最小,即要使两内项之积或两外项之积最小.2.(•静宁县)在比例中,两个外项互为倒数,两个内项()A.成正比例B.成反比例C.不成比例考点:解比例;正比例和反比例的意义.分析:根据倒数的定义结合比例的基本性质,即可得出两个内项的关系.解答:解:因为在比例中,两个外项互为倒数,所以两个内项的积=1,所以两个内项成反比例.故选:B.点评:本题考查了正比例和反比例的意义,得到两个内项的积=1是解题的关键.3.(•厦门)如果a÷=b×(a、b都不等于零),那么()A.a>b B.a=b C.a<b考点:解比例;比与分数、除法的关系.专题:压轴题.分析:可令a÷=b×的值为1,求得a,b,再比较a,b的关系.解答:解:令a÷=b×=1,则a=,b=,则a<b.故选C.点评:考查了比例中的大小比较问题,常用举特例的方法解决这类问题.4.2:x=:,x=()A.40B.4C.0.4D.1考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:x=2×,x=,解得x=1.故选D.点评:本题主要考查了解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.5.在=中,a的值是()A.2B.4C.6D.8考点:解比例.分析:利用比例的基本性质“两内项之积等于两外项之积”由此可求得a,进而选择正确答案.解答:解:根据比例的基本性质可解得:a=4,故选:B.点评:紧扣比例的基本性质即可解决此类问题.6.当:4=x:5时,x的值是()A.B.C.D.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.解答:解::4=x:5,4x=×5,4x=3,x=.故选:B.点评:此题考查比例性质的运用即解比例.7.已知,则x=()A.40B.4C.0.4D.1考点:解比例.分析:解比例的方法:根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,再解简易方程即可.解答:解:,x=2×,x=,x=,x=1.故选:D.点评:此题考查根据比例的性质解比例:把比例式先转化成两外项积等于两内项积的形式,再解方程即可.二.填空题(共10小题)8.(1)如果:5=16%:7,那么=;(2)若(0.5+÷)=,则=.考点:解比例;整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;简易方程.分析:(1)把五角星未知数看作x,根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以7求解,(2)把正方形看作未知数x,依据等式的性质,方程两边同时除以,再同时减0.5,然后同时乘x,最后同时除以求解.解答:解:(1)把原题中五角星未知数看作x,原题化为:x:5=16%:7,7x=5×16%,7x=0.8,7x÷7=0.8÷7,x=,即=,故应填:;(2)把原题中的正方形看作未知数x,原题化为:(0.5+÷x)=,(0.5+÷x)=,0.5+÷x﹣0.5=﹣0.5,x×x=x,x,x=,即=,故应填:.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.9.在X:1=3:4中,X=.考点:解比例.分析:本题按照比例的基本性质两内项之积等于两外项之积来求解.解答:解:X:1=3:4解:4X=×34X=X=;故答案为:.点评:解比例使用比例的基本性质来求解.10.0.8:4=8:x中,x=0.4,×.(判断对错)考点:解比例.专题:比和比例.分析:0.8:4=8:x,根据比例的基本性质得:0.8x=4×8,两边同时除以0.8解出x即可.解答:解:0.8:4=8:x0.8x=4×80.8x=32x=32÷0.8x=40x=40而不是0.4,故这句话是错误的.故答案为:×.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.11.9:6=15:10.考点:解比例.专题:比和比例.分析:根据比的基本性质“两内项之积等于两外项之积”,先求出两內项之积,进而用积除以已知的外项,即可得出未知的外项.解答:解:6×15÷9=90÷9=10;故答案为:10.点评:解决此题也可以根据比的意义,先求出前一个比的比值,进而用后一个比的内项除以比值求解.12.6:1.5=8:2.填上合适的数.4:3=36:2724:80=1.8:6考点:解比例.专题:比和比例.分析:每一道题都设要求的数为x,进而写出比例:(1)根据比例的基本性质,先把比例式转化成等式4x=3×36,再根据等式的性质,在方程两边同时除以4得解;(2)根据比例的基本性质,先把比例式转化成等式1.8x=24×6,再根据等式的性质,在方程两边同时除以1.8得解;(3)根据比例的基本性质,先把比例式转化成等式1.5x=6×2,再根据等式的性质,在方程两边同时除以1.5得解.解答:解:每一道题都设要求的数为x:(1)4:3=36:x,4x=3×36,4x÷4=108÷4,x=27;(2)24:x=1.8:6,1.8x=24×6,1.8x÷1.8=144÷1.8,x=80;(3)6:1.5=x:2,1.5x=6×2,1.5x÷1.5=12÷1.5,x=8.故答案为:27,80,8.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.13.解比例::=X:24X:=:0.6.考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:(1)x=24×,x=9,解得x=10;(2)0.6x=×,0.6x=,解得x=;(3)4x=5.2×6.5,4x=33.8,解得x=8.45;(4)0.6x=1.2×4,0.6x=4.8,解得x=8.点评:本题主要考查解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.14.(•金寨县模拟)甲数比乙数少,甲数和乙数的比是2:9.考点:解比例.分析:甲数=(1﹣)×乙数,依此可求甲数与乙数的比.解答:解:甲数和乙数的比=(1﹣):1=2:9.故答案为:2:9.点评:考查了求比的问题,解题的关键是将乙数看作单位1,依此得到甲数.15.如果x:=0.15:2.5,那么x=0.048.考点:解比例.专题:比和比例.分析:根据比例的基本性质变为:2.5x=×0.15,然后化简,再在方程的两边同时除以2.5求解.解答:解:x:=0.15:2.52.5x=×0.152.5x=0.122.5x÷2.5=0.12÷2.5x=0.048故答案为:0.048.点评:本题考查了利用比例的基本性质解比例.16.能与:组成比例的比是B、CA.2:3B.9:6C.:D.:.考点:解比例.分析:先化简:,再分别计算各选项,与:进行比较,比值相等的即为所求.解答:解::=3:2.A、因为2:3≠3:2,所以不能组成比例,故选项错误;B、因为9:6=3:2,所以能组成比例,故选项正确;C、因为:=3:2,所以能组成比例,故选项正确;D、因为:=2:3≠3:2,所以不能组成比例,故选项错误.故选:B和C.点评:本题考查了比例线段的定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.17.在横线里填上适当的数.5:4=30:241.5:0.18=150:188:15=24:4536:12=9:30.9:0.5=9:5.考点:解比例.专题:比和比例.分析:设未知数为x,列出比例,根据比例的基本性质,两外项之积等于两内项之积,求出未知数即可.解答:解:(1)5:4=x:244x=5×244x÷4=5×24÷4x=30;(2)1.5:0.18=x:180.18x=1.5×180.18x÷0.18=1.5×18÷0.18x=150;(3)8:15=24:x8x=15×248x÷8=15×24÷8x=45;(4)36:12=9:x36x=12×936x÷36=12×9÷36x=3;(5)x:0.5=9:55x=0.5×95x÷5=0.5×9÷5x=0.9.故答案为:30,150,45,3,0.9.点评:此题主要是考查解比例,解比例与解方程类似,要注意书写格式.解比例的依据是比例的基本性质及等式的性质.三.解答题(共11小题)18.计算:4:5=(χ+5):10.考点:解比例.专题:简易方程.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:4:5=(x+5):104×10=5×(x+5)40=5x+255x=40﹣25x=15÷5x=3.点评:掌握比例的基本性质是解题的关键.19.解比例.(1)6:15=x:20(2):x=3:8(3):=:x(4)=(5)x:15=1:2.4(6)8:x=3:1.考点:解比例.专题:比和比例.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:(1)6:15=x:2015x=6×2015x÷15=120÷15x=8(2):x=3:83x=3x÷3=6÷3x=2(3)x=(4)0.75x=0.5×60.75x÷0.75=3÷0.75x=4(5)x:15=1:2.42.4x=1×152.4x÷2.4=15÷2.4x=6.25(6)8:x=3=8×x=3点评:掌握比例的基本性质是解题的关键.20.求未知数x的值.:0.05=1:x x﹣1=x+x+x+x+x.考点:解比例;方程的解和解方程.专题:用字母表示数.分析:(1)根据比例的基本性质转化为x=×,再根据等式的基本性质,方程的两边同除以即可;(2)先计算x+x+x+x+x=x,再根据等式的基本性质,方程的两边同x,再加上1即可.解答:解::0.05=1:x,x=×,x÷=×÷,x=;(2)x﹣1=x+x+x+x+x,x﹣1=x,x﹣1﹣x=x﹣x,x﹣1=0,x﹣1+1=0+1,x=1,x=32.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.21.解方程.X:1.2=3:4=30%X﹣X=.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例的基本性质:两内项之积等于两外项之积可得4x=1.2×3,再利用等式的性质两边同时除以4即可解答;(2)可以写成x:4=3:10,根据比例的基本性质:两内项之积等于两外项之积可,10x=4×3,再利用等式的性质两边同时除以10即可解答;(3)先把左边计算出来得:x=,再利用等式的性质,两边同时乘,即可解答.解答:解:(1)x:1.2=3:4,4x=1.2×3,4x÷4=3.6÷4,x=0.9,(2)=30%,x:4=3:10,10x=4×3,10x÷10=12÷10,x=1.2,(3)x﹣x=,x=,x×=×,x=2.点评:此题考查了利用比例的基本性质解比例和利用等式的性质解方程的方法.22.一个数和的比等于8和1.6的比,求这个数.考点:解比例.分析:根据题意可以设这个数为x,组成比例,解比例即可.解答:解:设这个数为x.x:=8:1.61.6x=×8x=×8÷1.6x=4答:这个数是4.点评:此题主要考查解比例的方法.23.(•河池)求未知数x的值.(1):x=:8(2)1.7x﹣0.4x=3.9.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例基本性质,两内项之积等于两外项之积化简方程,再依据等式的性质,方程两边同时除以求解,(2先化简方程,再依据等式的性质,方程两边同时除以1.3求解.解答:解:(1):x=:8,x=×8,x=,x=4;(2)1.7x﹣0.4x=3.9,1.3x=3.9,1.3x÷1.3=3.9÷1.3,x=3.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解答时注意对齐等号.24.(•东莞市模拟)求x的值.6x﹣0.5×5=9.5:x=:0.75考点:解比例;方程的解和解方程.专题:简易方程.分析:①根据比例的性质变成x=×,再根据等式的性质,方程的两边同时除以即可;②6x﹣0.5×5=9.5,先计算0.5×5=2.5,再根据等式的性质,方程的两边同时加上2.5,再除以6即可;解答:解:①:x=:0.75,x=×,x=,x÷=÷,x=;②6x﹣0.5×5=9.5,6x﹣2.5=9.5,6x﹣2.5+2.5=9.5+2.5,6x=12,6x÷6=12÷6,x=2.点评:此题考查根据等式的性质和比例的性质解比例和解方程的能力,注意等号对齐.25.解比例:8:20=7.6:x.考点:解比例.专题:比和比例.分析:根据比例的基本性质,先把比例式转化成等式8x=20×7.6,再根据等式的性质,在方程两边同时除以2.5得解.解答:解:8:20=7.6:x8x=20×7.68x=1528x÷8=152÷8x=19.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.26.解方程.(1)4.2:x=25(2)3.6x:=3.5(3)x:=(4)x:0.25=4.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质,两内项之积等于两外项之积,方程可化为25x=4.2,再依据等式的性质,两边同除以25即可求解;(2)根据比例的基本性质,两内项之积等于两外项之积,方程可化为3.6x= 3.5,再依据等式的性质,两边同除以3.6即可求解;(3)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=×,化简计算即可;(4)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=0.25×4,化简计算即可;解答:解:(1)4.2:x=2525x=4.225x÷25=4.2÷25x=0.168(2)3.6x:=3.53.6x= 3.53.6x÷3.6=1.75÷3.6x=0.486(3)x:=x=×x=(4)x:0.25=4x=0.25×4x=1点评:本题主要考查运用等式的性质以及比例的基本性质解方程的能力,注意等号对齐.27.解方程或解比例:8x÷(1.8÷3)=1.5.:=:(4﹣x)考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)先化简方程的左边,变成8x÷0.6=1.5,然后方程的两边同时乘上0.6,再同时除以8即可;(2)根据比例的基本性质,把方程变成×(4﹣x)=×,然后方程的两边同时除以,再同加上x,最后同时减去即可.解答:解:(1)8x÷(1.8÷3)=1.58x÷0.6=1.58x÷0.6×0.6=1.5×0.68x=0.98x÷8=0.9÷8x=0.1125;(2):=:(4﹣x)×(4﹣x)=××(4﹣x)÷=÷4﹣x=4﹣x+x=+xx+﹣=4﹣x=3.点评:本题考查了根据比例的基本性质以及等式的性质解方程的方法,计算时要细心,注意把等号对齐.28.求未知数x(1)6.5:x=314:4(2)8(x﹣2)=2(x+7)考点:解比例;方程的解和解方程.专题:简易方程;比和比例.分析:(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以314即可;(2)先化简方程,再根据等式的性质,在方程两边同时减2x,加16,再同时除以6求解.解答:解:(1)6.5:x=314:4314x=6.5×4314x÷314=26÷314x=;(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16+16﹣2x=2x+14﹣2x+166x=306x÷6=30÷6x=5.点评:此题考查了根据等式的性质解方程,即等式两边同时加、减、乘同一个数或除以同一个不为0的数,等式的左右两边仍相等;注意等号上下要对齐.B档(提升精练)一.选择题(共14小题)1.当x=()时,的比值恰好是最小的质数.A.B.C.考点:解比例.专题:比和比例.分析:最小的质数是2,所以可得的一个等式:=2,根据比与除法的关系即比的前项相当于除法的被除数,比的后项相当于除法的除数,比值相当于除法的商,然后再进行计算得到答案.解答:解;=2x=÷2,x=,答:当x=时,的比值恰好是最小的质数.故选:C.点评:解答此题的关键是确定比与除法之间的关系,然后再进行计算即可.2.解比例是根据()A.比的基本性质B.比例的基本性质C.比例的意义.考点:解比例.专题:比和比例.分析:解比例是求比例的解的过程,即先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以根据的是比例的基本性质.据此即可判断.解答:解:解比例是先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以解比例是根据比例的基本性质.故选:B.点评:本题考查了解比例的依据,明确解比例的定义是关键.3.如果3:5=x:2,那么x应该是()A.B.C.D.考点:解比例.专题:比和比例.分析:根据比例的性质,可得5x=3×2,再利用等式的性质两边同时除以5,即可得出x=,据此即可选择.解答:解:3:5=x:2,5x=3×2,5x÷5=6÷5,x=.故选:A.点评:熟练运用比例的基本性质,掌握比例式和等式的转化.4.解比例:=2:1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.解答:解:=2:1x:3=2:1x=6.故选:A.点评:此题考查了比例的基本性质和等式的性质的应用.5.解比例的根据是()A.比的基本性质B.比例的基本性质C.分数的基本性质考点:解比例.分析:首先要知道什么是解比例,然后分析每个选项,看哪一个最适合用来作为解比例的根据.解答:解:因为求比例的解的过程,叫做解比例.所以选项A:比的基本性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变.”不能作为解比例的根据.选项B:比例的基本性质“两外项之积等于两内项之积”可以作为解比例的根据.选项C:分数的基本性质“分子和分母同时扩大或缩小相同的倍数,分数值不变.”也不能作为解比例的根据.故选B.点评:做这道题的关键是分清比、分数和比例的基本性质.6.(X﹣0.1):0.4=0.6:1.2 则X=()A.X=0.3B.X=0.9C.X=0.8考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质求解.解答:解:(X﹣0.1):0.4=0.6:1.2,(X﹣0.1)×1.2=0.6×0.4,(X﹣0.1)×1.2÷1.2=0.24÷1.2,X﹣0.1=0.2,X﹣0.1+0.1=0.2+0.1,X=0.3.故选:A.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号.7.x=是比例()的解.A.2.6:x=1:8B.3:6=x:8C.:x=考点:解比例.专题:比和比例.分析:根据比例的基本性质,把x=代入各选项即可判断.解答:解:A、把x=代入2.6:x=2.6:=52:25,52:25≠1:8,所以把x=不是2.6:x=1:8的解;B、把x=代入x:8=:8=5:32,3:6≠5:32,所以把x=不是3:6=x:8的解;C、把x=代入:x=:=2:1,:=2:1,所以把x=是:x=:的解.故选:C.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力.8.(•荔波县模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A.成反比例B.成正比例C.不成比例考点:解比例.专题:压轴题.分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解答:解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.9.已知:x=0.2:0.3,则x的值为()A.B.C.3考点:解比例.专题:比和比例.分析:先根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.2求解.解答:解::x=0.2:0.3,0.2x=0.3×,0.2x=0.15,0.2x÷0.2=0.15÷0.2,x=,故选:A.点评:解答本题的关键是依据比例基本性质求解.解答时注意对齐等号.10.用4,0.8,5和x组成比例,并解比例,x有()种不同的解.A.1B.2C.3D.4考点:解比例.专题:比和比例.分析:根据比例的基本性质,4,0.8,5和x,组成比例的情况有12种,两内项之积等于两外项之积,这四个数可写成三个等式.据此解答.解答:解:根据分析知,4,0.8,5和x组成比例的情况有12种:(1)5:0.8=x:4,0.8:5=4:x,0.8:5=4:x,4:0.8=x:5,它们变形后都能写成0.8x=5×4,解相同.同理也有四个比例式变形后写成5x=4×0.8,和4x=5×0.8.故选:C.点评:本题考查了学生根据比例的基本性质解答问题的能力.11.解比例30:x=2:0.1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以2求解.解答:解:30:x=2:0.1,2x=30×0.1,2x÷2=3÷2,x=1.5,故应选:B.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.12.x=1.25是哪个比例的解?()A.2.6:x=6:3B.3:6=x:8C.:x=:考点:解比例.专题:简易方程.分析:把三个选项中的比例式,依据等式的性质,以及比例的基本性质,求出方程的解,再与x=1.25比较即可解答.解答:解:在选项A中:2.6:x=6:36x=2.6×36x÷6=7.8÷6x=1.3;在选项B中:3:6=x:86x=3×86x÷6=24÷6x=4;在选项C中::x=:x=x=x=1.25故选:C.点评:依据等式的性质,以及比例的基本性质,求出选项中各方程的解,是解答本题的关键.13.若已知2:3=(5﹣x):x,那么x等于()A.2B.3C.4D.6考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时加3x,最后同时除以5求解.解答:解:2:3=(5﹣x):x,15﹣3x=2x,15﹣3x+3x=2x+3x,15÷5=5x÷5,x=3.故选:B.点评:本题考查知识点:依据等式的性质,以及比例基本性质解方程.14.如果和相等,则m等于()A.B.C.D.考点:解比例.专题:比和比例.分析:依据题意可列比例式:=,先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以18即可求解.解答:解:=,18m=11×12,18m÷18=132÷18,m=,m=7.故答案为:A.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.二.填空题(共14小题)15.(•新干县)若a与b互为倒数,且=,那么x=.√.(判断对错)考点:解比例.专题:比和比例.分析:若a与b互为倒数,且=,根据比例的基本性质可得:5x=ab=1,那么x=.解答:解:=,根据比例的基本性质可得:5x=ab=1,那么x=;故答案为:√.点评:此题考查了比例的基本性质的运用.16.(•东莞模拟)如果ҳ:=:,那么ҳ=.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项.解答:解:ҳ:=:,X=×,X=,X=.故答案为:.点评:此题考查比例性质的运用即解比例.17.(•铁山港区模拟)下面表格中,如果x与y成正比例,“?”是32:如果x和y成反比例,“?”是8X16?y4896考点:解比例.专题:比和比例.分析:(1)如果x与y成正比例,由正比例的意义可得16:48=?:96,把?看作未知数,根据比例的基本性质进行解比例即可;(2)如果x和y成反比例,由反比例的意义可得96?=16×48,把?看作未知数,根据等式的性质进行解方程即可.解答:解:根据题意可得:(1)16:48=?:96,48?=16×96,48?=1536,48?÷48=1536÷48,?=32;所以,如果x与y成正比例,“?”是32;(2)96?=16×48,96?=768,96?÷96=768÷96,?=8;所以,如果x和y成反比例,“?”是8.故答案为:32,8.点评:本题主要考查正反比例的意义,然后根据题意列出比例或方程再进一步解答即可.18.(•沿河县模拟)根据比例关系填表:x43918152y601024考点:解比例.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为24×15=360(一定)所以xy成反比例关系.360÷4=90,360÷3=120,360÷60=6,360÷9=40,360÷10=36,360÷18=20,360÷2=180.x43693618152y901206040102024180点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.(•靖江市)如果x与y成正比例,那么表中的△是 4.5;如果x与y成反比例,那么△是2.x3△y120180考点:解比例.专题:比和比例.分析:(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两个比的比值相等列比例,并解比例即可;(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两个比的乘积相等列方程,并解方程即可.解答:解:(1)3:120=x:180,120x=3×180,120x÷120=540÷120,x=4.5;(2)180x=3×120,180x=360,180x÷180=360÷180,x=2;故答案为:4.5,2.点评:此题考查根据正、反比例的意义,解答时要根据已知两种相关联的量,看比值一定还是积一定.20.(•广州模拟)0.4:x=1:10.考点:解比例.分析:根据比例的基本性质,把原式转化为x=0.4×10,再根据等式的性质,在方程两边同时乘上求解,解答:解:0.4:x=1:10,x=0.4×10,x×=4×,x=.点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力.21.(•广州模拟)6:2.8=2.4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为6x=2.8×2.4,再根据等式的性质,在方程两边同时除以6求解.解答:解:6:2.8=2.4:x,6x=2.8×2.4,6x÷6=6.72÷6,x=1.12.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.22.(•江宁区模拟)如果A与B成正比例,那么“?”是 3.2;如果A与B成反比例,那么“?”是5.A4?B200160考点:解比例.分析:这一题可由正比例的意义和反比例的意义解答即可.解答:解:(1)A与B成正比例,△,x=3.2;(2)A与B成反比例,160x=4×200,x=5;故答案为:3.2,5.点评:此题考查了对正比例与反比例意义的理解以及应用的能力,要灵活掌握正反比例的公式.23.(•广州模拟):=4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时乘上求解.解答:解::=4:x,,,x=.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.。
比例线段解题方法解题技巧经典例题与练习题
比 例 线 段◆比例线段1.相似形:在数学上,具有相同形状的图形称为相似形2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段3. 比例的项:已知四条线段a 、b 、c 、d ,如果a ∶b =c ∶d ,那么a 、b 、c 、d 叫做组成比例的项,线段a 、d 叫做比例的外项,线段b 、c 叫做比例的内项,线段d 叫做a 、b 、c 的第四比例项;比例中项:如果比例内项是两条相同的线段a ∶b =b ∶c ,即,那么线段b 叫做线段a 和c 的比例中项。
4. 比例的性质(1)基本性质:bc ad dc b a =⇔=, a ∶b =b ∶c ⇔b 2=ac 例1:6∶x = (5 +x )∶2 中的x = ;2∶3 = ( 5x -)∶x 中的x = 例2:若,则=________(2)合、分比性质:dd c b b a d c b a d d c b b a d c b a -=-⇒=+=+⇒=或 注意:此性质是分子加(减)分母比分母,不变的是分母.想想是否可以拓展呢?即分母加(减)分子,不变的是分子例1:若43=-b b a ,则ba =_________ 例2:如果,则=________(3)等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则ba n f db m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 例1:若9810z y x ==, 则 ______=+++z y z y x 例2:已知:,则=________;如果,那么=________例3:若a b+c =b c+a =c a+b=k ,求k 的值.(4)比例中项:若c a b c a b cb b a ,,2是则即⋅==的比例中项. 例1:已知:线段,若线段b 是线段a,c 的比例中项,则c =________例2: 2:)3(-a = )3(-a :8,则a =【练一练】1、 若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , ___________,____,===c b a ;2、 已知x ∶y ∶z = 3∶4∶5 , 且12=++z y x , 那么_________,____,===z y x ;3、已知dc b a ==f e =2 (b +d +f ≠0),求:(1)f d be c a ++++;(2)f d b e c a +-+-; (3)f d b ec a 3232+-+-;(4)f b ea 55--.4、 已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② )(y x +∶____)(=+z y ;5、 若322=-y y x , 则_____=yx ; 6、若345x y z ==,则x y z z ++= .若x:y:z=2:3:4,则=+-+y x z y x 232 .7、如果 ,则 ,。
有关比例尺的全部题型及解析
例11:下面四幅地图中。比例尺最大的一幅是( )
【解题思路】方法一:取1厘米线段,测量一下四幅图。在1厘米线段内 跨纬度多少(在同一条经线上1°纬度地上距离为111千米)少者为大比例 尺,多者为小比例尺。A图跨纬度和经度最少,所以比例尺最大。B、 C、D三幅图跨纬度都多,不能选。 方法二:取图上1°的经度和纬度,比较一下它们的图上距离,图上距离 大的比例尺大,图上距离小的比例尺小。通过比较发现A图的图上距离 最大,故A图的比例尺最大。 【答案】A 题型二 知比例尺,求其他 一、知比例尺,求地图上所表示的实际范围大小、表示的内容详略、精 确度高低。
【解题思路】根据例11的判断方法判断出,甲图的比例尺大于乙图的比 例尺,然后依据例12得出结果。 【答案】CD
高三地理考点:巧用数轴解地方时和区时试题 例1[04年全国文综卷] 我国沿海某省一个课外小组某日测得当地日出、日落时间为6:40和 16:40,回答: 1该地的经度为: A 1200E B 1250E C 1150E D 1100E
以两地的纬度差等于100。又因为在同一条经线上10纬度地上距离为111 千米,所以可以计算出甲乙两地的实际距离是111千米/10×100=1110千 米=111000000厘米。最后根据公式:比例尺=图上距离/实际距离,可以 求出该地图的比例尺是11.1厘米/111000000厘米=1/10000000。 【答案】D 例4.在北半球的一幅天气分析图上,A高气压1020HPa中心位于 (60°N,92°E),B高气压1030HPa中心位于(50°N,92°E),两地图 上距离为11.1厘米,则该天气分析图的比例尺是( ) A.1:500000 B.1:10000000 C.1:1500000 D.1:2000000 【解题思路】该题与上题有相同之处,都是直接给出了图上距离,间接
比例线段及有关定理
多么美丽的图形啊! 虽然完全无法理解
黄金比例何谓其“黄金”
这个数字在自然界和人们生活中到处可见:它在 但这就是人们的审美方式………… 造型艺术中具有美学价值,在工艺美术和日用品的比 例设计中,采用这一比值能够引起人们的美感。 建筑物中某些线段的比就科学采用了黄金分割, 无论是古埃及的金字塔,还是巴黎圣母院,或者是近 世纪的法国埃菲尔铁塔,都有与0.618有关的数据。 就连植物界也有采用黄金分割的地方,如果从一 棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割 的规律排列着的。 在很多科学实验中,选取方案常用一种0.618法, 即优选法,它可以使我们合理地安排较少的试验次数 找到合理的配方和合适的工艺条件。。
“永远吃不完”的巧克力
一块成黄金比例的巧克力经过多次黄金分割和 位移得到一个等比例的黄金比例图形。这块小的巧 克力再进行分割,无穷无尽啊。
咋会这样?障眼法么?
一、What is it
※如何用尺规作出黄金分割点:
(1)作出线段BA的中点C (2)过A作线段BA的垂线,在垂线上截取线段AD, 使AD=AC (3)联结BD,在BD上截取DE=DA,在线段AB上 截取BF=BE,则点F为线段BA的黄金分割点
2 三角形一边的平行线的判定定理: 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段 成比例,那么这条直线平行于三角形的第三边. A
A D E
l1 l2 l3
B m
E A
D
l1 l2
D E
B
C n
C n
l3
B
F
C
3 预备定理:
m
平行于三角形的一边,并且和其他两边相交的直线,所截得的三角 形的三边与原三角形三边对应成比例. AD DE AE DE // BC,则 = = . 若
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。
比例线段及黄金分割点压轴题型全攻略(解析版)
比例线段及黄金分割点压轴题型全攻略【考点导航】1.目录【典型例题】1【考点一比例线段的识别】【考点二比例线段的计算】【考点三黄金分割点的定义】【考点四黄金分割点的应用】【考点五黄金分割点的拓展提高】【过关检测】4【典型例题】【考点一比例线段的识别】1【若a:b=2:3,则下列各式中正确的式子是( )A.2a=3bB.3a=2bC.ba =23D.a-bb=13【分析】根据比例的性质,对选项一一分析,选择正确答案.【答案】B.【详解】A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、ba =23⇒b:a=2:3,故选项错误;D、a-bb =13⇒a:b=3:2,故选项错误.故选B.【点睛】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.1.已知ab=52,那么下列等式中,不一定正确的是( ).A.2a=5bB.a5=b2C.a+b=7D.a+bb=72【答案】C.2.由5a=6b(a≠0),可得比例式()A.b6 =5aB.b5 =6aC.ab =56D.a-bb=15【答案】D .【解析】A 、b 6 =5a⇒ab =30,故选项错误;B 、b 5 =6a ⇒ab =30,故选项错误;C 、a b =56⇒6a =5b ,故选项错误;D 、a -b b=15⇒5(a -b )=b ,即5a =6b ,故选项正确.故选D .【考点二比例线段的计算】1设x 2=y 3=z4,求2x 2-3yz +z 2x 2-2xy -z 2的值.【分析】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简.【详解】设x 2=y 3=z4=k则x =2k ,y =3k ,z =4k 原式=2×2k 2-3×3k ×4k +4k 22k 2-2×2k ×3k -4k2=-12k 2-24k 2=12【点睛】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去.1.若x -y 13=y 7,则x +yy=( ).A.137B .207C . 277D . 无法确定【答案】C .2.已知x 2=y 3=z4,(1)求x -2y z 的值;(2)如果x +3=y -z ,求x 的值.(1)令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,再代入代数式进行计算即可;(2)把x =2k ,y =3k ,z =4k 代入x +3=y -z ,求出k 的值即可.【解析】解:(1)∵x 2=y 3=z4,∴令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,∴x -2y z =2k -6k 4k =-4k 4k=-1;(2)∵x =2k ,y =3k ,z =4k ,x +3=y -z ,∴x +3=(y -z )2,即2k +3=(3k -4k )2,解得k =-1或k =3(舍去),∴x =-2.【点睛】本题考查的是比例的性质,根据题意得出x =2k ,y =3k ,z =4k 是解答此题的关键.举一反三:3.已知:a b +c =b a +c =ca +b=k .求k 值.【答案】可分a+b+c=0和a+b+c≠0两种情况代入求值和利用等比性质求解.【答案与解析】①当a+b+c=0时,b+c=-a,c+a=-b,a+b=-c,∴k为其中任何一个比值,即k=a-a=-1;②a+b+c≠0时,k=a+b+cb+c+c+a+a+b =a+b+c2(a+b+c)=12.∴k=-1或12.【点睛】考查比例性质的应用;分两种情况探讨此题是解决本题的易错点.【考点三黄金分割点的定义】1已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为( ).A.5-12B.3-52C.1+52D.3-54【答案】B.【详解】根据题意得AP=5-12AB,所以PB=AB-AP=3-52AB,所以PB:AB=3-5 2.1.已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为cm;【答案】根据黄金分割点的定义,知AC是较短线段,由黄金分割的公式:较短的线段=原线段的3-5 2倍,可得AC=10×3-52,计算即可;【解析】∵线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,∴AC=10×3-52=15-55(cm);【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的3-52倍,较长的线段=原线段的5-12倍.2.已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A.5-12B. 3-52C.5-12或3-52D. 以上都不对【答案】C.【解析】∵线段AB=1,C是线段AB的黄金分割点,当AC>BC,∴AC=5-12AB=5-12;当AC<BC,∴BC=5-12AB=5-12,∴AC=AB-BC=1-5-12=3-52.【考点四黄金分割点的应用】2美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ).A.4cmB.6cmC.8cmD.10cm【答案】C.【详解】根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:99+y165+y=0.618,解得:y≈8cm.故选C.1.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm(结果精确到0.1cm).【答案】6.2或3.8【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)或AC=10-6.2=3.8.故答案为:6.2或3.8.2.如图,△ABC顶角是36°的等腰三角形(底与腰的比为5-12的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=.【答案】6-25.【解析】根据题意可知,BC=5-12AB,∵△ABC顶角是36°的等腰三角形,∴AB=AC,∠ABC=∠C=72°,又∵△BDC也是黄金三角形,∴∠CBD=36°,BC=BD,∴∠ABD=∠ABC-∠CBD=36°=∠A,∴BD=AD,同理可证DE=DC,∴DE=DC=AC-AD=AB-BC=AB-5-12AB=6-25.故答案为:6-25.【考点五黄金分割点的拓展提高】3是黄金矩形(即ABBC=5-12≈0.618),如果在其内作正方形CDEF,得到一个小矩形ABFE,试问矩形ABFE是否也是黄金矩形?【分析】(1)矩形的宽与长之比值为5-12,则这种矩形叫做黄金矩形.(2)要说明ABFE是不是黄金矩形只要证明AEAB =5-12即可.【答案与详解】矩形ABFE是黄金矩形.理由如下:因为AEAB=AD-EDAB=ADAB-EDAB=25-1-1=25+15-15+1-1=5+12-1=5-12所以矩形ABFE也是黄金矩形.【点睛】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.1.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为( ).A.144°B. 135°C. 136°D. 108°【答案】B.【解析】由扇子的圆心角为x°,余下扇形的圆心角为y°,黄金比为0.6,根据题意得:x:y=0.6=3:5,又∵x+y=360,则x=360×38=135【总结升华】此题考查了黄金分割,以及比例的性质,解题的关键是根据题意列出x与y的关系式.2.图1是一张宽与长之比为5-12:1的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.矩形EFDC是黄金矩形,【解析】证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵ABAD=5-12,∴AF AD =5-12,即点F是线段AD的黄金分割点.∴FD AF =AFAD=5-12,∴FD DC =5-12,3.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD的边长是2,P是AB中点,∴AD=AB=2,AP=1,∠BAD=90°,∴PD=AP2+AD2=5。
六年级数学下册典型例题系列之第四单元比例尺部分(解析版)人教版
2021-2022学年六年级数学下册典型例题系列之第四单元比例尺部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第四单元比例尺部分。
本部分内容主要考察比例尺的认识及应用,考点和题型相对简单,建议作为本章重点内容进行讲解,一共划分为十一个考点,欢迎使用。
【考点一】比例尺的意义。
【方法点拨】1.比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺,一般用文字描述为图上1厘米表示实际距离多么厘米。
【典型例题】一幅地图的比例尺是1∶10000,图上1cm 的距离,表示实际( )m 。
解析:100【对应练习】比例尺1∶6000000表示图上1cm 的线段相当于实际距离( )km ;比例尺10∶1表示图上1cm 长的线段相当于实际( )mm 。
解析:60;1【考点二】比例尺的改写。
【方法点拨】1.比例尺主要有两种分类,即线段比例尺和数值比例尺。
2.比例尺三种形式的写法:①比的形式:比例尺是图上距离与实际距离的最简整数比,可以写成带比号的形式;②分数形式:也可以写成分数形式,即比例尺1∶2500也可以写成25001; ③线段形式: 注意:实际上,通常图上距离的单位是厘米,实际距离的单位是千米,因此计算时一定要进行单位换算。
【典型例题】地图上的线段比例尺是千米,把这个线段比例尺改成数值比例尺( )。
解析:1∶3000000这是一个( )比例尺,用数值比例尺表示是( )。
解析:线段;1∶4000000【对应练习2】是( )比例尺,把它改成数值比例尺是( )。
解析: 线段;1∶3000000【对应练习3】把改写成数值比例尺是( )。
4.1成比例线段二
探究新知
已知,a,b,c,d,e,f六个数。
(2)如果 a c e (b d f 0), bd f
那么 a c e a 成立吗?为什么? bd f b
比例基本性质
如果 a c ,那么a b c d .
bd
bd
如果 a b
c d
m (b d n
n
0),
那么
a b
c d
m n
a. b
例题解析:
(1)、已知 a 2 ,求 a b 与 a - b; b3 b b
(2)、在ABC与DEF中,若 AB BC CA 3 , DE EF FD 4
且ABC的周长为18cm,求DEF的周长。
随堂练习
1、已知 a c 2 (b d 0), a c 的值。
bd 3
bd
2、小明认为:
(1)、如果 a c(a b 0,c d 0).那么 a c
bd
ba dc
(2)、如果 a b c d .那么 a c .
b
d
bd
这两个结论正确吗?为什么?
巩固提高:
1、若 x y 17 ,则 x _____ y 9y
2、若 a 1 ,则 3a b 的值为____ b 4 2b
探究新知
已知,a,b,c,d,e,f六个数。
(1)如果 a c ,那么a b c d 和
bd
bd
a b c d 成立吗?为什么? bd
探究新知
(2)
如图,AB
HE
,
BC EF
,
CD , FG
AD HG
的值相等吗?AB
HE
BC EF
CD FG
AD HG
的值又是多少?在求解过程中,你有什么发现?
四条线段成比例问题1
D.a=9,b= ,c=3,d=
“已知线段a=2,b=4,c=6,则d=?时,它们是成比例线段。”此问题很显然是第一种类型。按顺序性只能确定一种答案。
(3)已知1, ,2,x成比例线段,则x值为( )
(4)已知:a=3,b=4,c=5,请再添加一条线段,使这四条线段成比例线段.
2.没指出具体哪四条线段成比例(未确定顺序),一般考虑多种情况。
如:(1)已知三条线段的长分别是4cm,5cm和10cm,则再加一条( 或8或2cm)的线段,才能使这四条线段成比例.
(2)已知三条线段的长度为1,2, ,请你再添一条线段,使它们能构成一个比例式. , , .
3.判断已知四条线段是否成比例或是否成比例线段,方法是:一般把四个数大小排列,判断前后两组比是否相等;或看两个极值的积是否等于另两个数的积来判断。
如:(1)已知四条线段a、b、c、d的长度,试判断它们是否成比例?
关于四条线段成比例问题
关于四条线段成比例,个人认为有以下几种情况,供大家参考。
1.具体指出哪四条线段成比例,根据比例线段的顺序性,一般只有一种情况:
如:(1)已知四条线段a、b、c、d成比例,且a=2,b=3,c=4.则d= 66.
(2)线段a、b,c,d是成比例线段,若a=10、c=8、d=12,则b= 1515.
(1)a=1ห้องสมุดไป่ตู้cmb=8cmc=5cmd=10cm
(2)a=8cmb=5cmc=6cmd=10cm.
解:(1)∵8×10=80,16×5=80,∴能够成比例;
(2)∵8×6=48,10×5=50,∴不能够成比例.
再如:(2)下列四条线段为成比例线段的是(B)
A.a=10,b=5,c=4,d=7
比例的性质及成比例线段(知识讲解)九年级数学下册基础知识专项讲练(人教版)
专题27.1 比例的性质及成比例线段(知识讲解)【学习目标】1.了解两条线段的比和比例线段的概念;2.能根据条件写出比例线段;3.会运用比例线段解决简单的实际问题.【要点梳理】线段的比:如果选用同一长度单位量得两条线段a 、b 长度分别是m 、n ,那么就说这两条线段的比是a :b=m :n ,或写成a mb n=. 注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关.(3)表示方式与数字的比表示类同,但它也可以表示为AB :CD .成比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段.比例的基本性质:;a cad bc b d=⇔=(1)2;a bb ac b c=⇔=(2)几个重要的比例定理:a c a bb dc d=⇔=更比定理:a cb db d a c=⇔=反比定理:a c abc db d b d++=⇔=合比定理:--a c a b c db d b d=⇔=分比定理:...=...==(b d ...+f 0)...a c e a c eb d f b d f +++=++≠++等比定理:=a c a mcb d b md ±=±等比定理:【典型例题】 类型一、线段的比1.如图所示,有矩形ABCD 和矩形A B C D '''',AB =8cm ,BC =12cm ,A B ''=4cm ,B C ''=6cm .(1)求A B AB ''和B C BC''; (2)线段A B '',AB ,B C '',BC 是成比例线段吗?【答案】(1)12,12(2)线段A B '',AB ,B C '',BC 是成比例线段. 【分析】(1)根据已知条件,代入A B AB ''和B C BC'',即可求得结果; (2)根据A B AB ''和B C BC''的值相等,即可判断线段A ′B ′,AB ,B ′C ′,BC 是成比例线段. 解:(1)∵AB =8cm ,BC =12cm ,A ′B ′=4cm ,B ′C ′=6cm .∵A B AB ''=48=12 ,B C BC ''=612=12 (2)由(1)知A B AB ''=48=12 ,B C BC ''=612=12;∵A B AB ''=B C BC'', ∵线段A′B′,AB ,B ′C ′,BC 是成比例线段.【点拨】本题考查了比例线段,知道成比例线段的条件是解题的关键. 【变式1】(1)若x y =115,求代数式2x yy -的值;(2)已知2a =3b =5c ≠0,求代数式23a b ca b c -+-+的值.【答案】(1) 15 (2) 14【分析】(1)先把原式化为115x y =,进而可得出结论; (2)直接利用已知得出2,3,5a k b k c k ===,进而代入原式求解. 解:(1)∵x y =115, ∵115x y =, ∵1122155y yx y y y --==;(2)设2a =3b =5c=k ,则2,3,5a k b k c k ===,∵23a b ca b c -+-+=2354122335164k k k k k k k k -+==⨯-+⨯. 【点拨】本题考查了比例式的性质,解题的关键是正确用k 表示a 、b 、c . 【变式2】在ABC 中,90,10cm B AB BC ∠=︒==;在DEF 中,12cm,8cm ED EF DF ===,求AB 与EF 之比,AC 与DF 之比.【答案】56AB EF =,52AC DF , 【分析】在直角△ABC 中,利用勾股定理求得AC 的值,然后根据在同一长度单位下,两条线段的长度的比叫做这两条线段的比求解即可.解:如图,在Rt △ABC 中,根据勾股定理知,AC 22AB BC =+=2cm , 则105126AB EF ==, 10252ACDF ==【点拨】本题考查了勾股定理的应用.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了两条线段的比的求法.类型二、比例的性质2.已知a b c +=b c a +=c ab+=x ,求x 的值.【答案】1-或2【分析】分两种情况讨论:当a +b +c =0,当a +b +c ≠0,再进行计算即可. 解:若a +b +c =0,则a +b =-c ,b +c =-a ,c +a =-b ,此时,x =-1, 若a +b +c ≠0,则2a b b c c a a b b c c axc a b a b c,综上所述,x 的值为-1或2.【点拨】本题考查的是比例的基本性质,掌握“比例的等比性质”是解本题的关键. 【变式1】已知a :b :2c =:3:4,且23215a b c +-=,求23a b c -+的值. 【答案】24【分析】由已知条件设a =2k ,则b =3k ,c =4k ,根据等式得到关于k 的方程,解方程求得k ,即求得a 、b 、c 的值,从而可求得代数式的值.解:∵a :b :c =2:3:4,∵设a =2k ,则b =3k ,c =4k . ∵2a +3b -2c =15, ∵4k +9k -8k =15, 解得:k =3, ∵a =6,b =9,c =12, ∵a -2b +3c =6-18+36=24.【点拨】本题考查了比例关系,解方程及求代数式的值,由比例关系设a =2k ,则b =3k ,c =4k 是关键.【变式2】已知3a b =4b c +=5c a +,求a b cc a b ---+的值.【答案】-1 【分析】设3a b =4b c +=5c a+=k ,则a +b =3k ,b +c =4k ,c +a =5k ,把三式相加得到a +b +c =6k ,再利用加减消元法可计算出a =2k ,b =k ,c =3k ,然后把a =2k ,b =k ,c =3k代入a b cc a b---+中进行分式的化简求值即可.解:设3a b =4b c +=5c a+=k , 则a +b =3k ,b +c =4k ,c +a =5k , 三式相加得a +b +c =6k ∵用∵式分别减去上述三个式子,可得出 解得a =2k ,b =k ,c =3k , 所以a b c c a b ---+=2332k k kk k k---+=-1.【点拨】本题考查了比例的性质,掌握设比法求值是解题关键.类型三、比例中项3.已知线段a 、b 满足a :b =3:2,且a +2b =28 (1)求a 、b 的值.(2)若线段x 是线段a 、b 的比例中项,求x 的值. 【答案】(1)a =12,b =8;(2)x =6. 【分析】(1)利用:3:2a b =,可设3a k =,2b k =,则3428k k +=,然后解出k 的值即可得到a 、b 的值;(2)根据比例中项的定义得到2x ab =,即296x =,然后根据算术平方根的定义求解. 解:(1):3:2a b =∴设3a k =,2b k =,228a b +=,3428k k ∴+=,4k ∴=,12a ∴=,8b =;(2)x 是:a b 的比例中项,296x ab ∴==, x 是线段,0x >,46x ∴=【点拨】本题考查了比例线段,解题的关键是掌握对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如::a b c d =(即)ad bc =,我们就说这四条线段是成比例线段,简称比例线段.注意利用代数的方法解决较为简便.【变式1】已知a ,b ,c 是△ABC 的三边,满足438324a b c +++==,且12a b c ++=. (1)求a ,b ,c 的值.(2)若线段x 是线段a 、b 的比例中项,求x . 【答案】(1)5a =,3b =,4c =;(2)15x =【分析】 (1)根据438324a b c +++==,且12a b c ++=,根据比例的性质可得a ,b ,c 的值; (2)根据比例中项的性质求解即可. 解:(1)∵438324a b c +++==,且12a b c ++=, ∵438438151215332432499a b c ab c a b c ,∵433a +=,332b ,834c ,∵5a =,3b =,4c =,(2)∵线段x 是线段a 、b 的比例中项,∵25315x ab,∵15x =【点拨】本题考查了比例的性质和比例中项,熟悉相关性质是解题的关键.【变式2】已知线段a =4cm ,线段b =7cm ,线段c 是线段a ,b 的比例中项,求线段c 的长.【答案】线段c 的长为7cm .【分析】根据比例中项的定义,成比例线段,构建方程即可解决问题. 解:∵线段c 是线段a ,b 的比例中项,∵ab =c 2,∵a =4cm ,b =7cm ,c >0, ∵24728c =⨯=, ∵c 7cm .故线段c 的长为7cm .【点拨】本题考查比例中项的定义,解题的关键是熟练掌握基本知识,利用成比例线段性质列出等式,属于中考常考题型.类型四、成比例线段4.已知三条线段长分别为1cm ,2cm ,2cm ,请你求出一条线段,使得它的长与前面三条线段能够组成比例线段.2cm 2cm 、2 【分析】根据添加的线段长度,进行分情况讨论. 解:设这条线段长xcm ,∵若四条线段的长度大小为:x ,122时,212x =2x =; ∵若四条线段的长度大小为: 1,x 22212x =⨯,解得:2x ∵若四条线段的长度大小为: 12x ,2212x =⨯,解得:2x ∵若四条线段的长度大小为: 12,2 ,x 时,122x ⨯=22x = 2cm 2或2. 【点拨】本题考查成比例线段的求法,分类讨论是关键.【变式1】如图,在ABC 中,12cm,6cm,5cm AB AE EC ===,且AD AEDB EC=,求AD 的长.【答案】72cm 11AD =. 【分析】利用比例线段得到6125AD AD =-,然后根据比例性质求AD .解:AD AE BD EC=,即AD AEAB AD EC =-,∴6125AD AD =-,7211AD ∴=cm . 【点拨】本题考查了比例线段、比例的性质,解题的关键是掌握对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如::a b c d =(即)ad bc =,我们就说这四条线段是成比例线段,简称比例线段.【变式2】若P 在线段AB 上,点Q 在AB 的延长线上,10AB =,且32AP AQ PB BQ ==,求PQ 的长.【答案】24 【分析】根据AP AQ BP BQ ==32,分别求出BP ,BQ 的长,两者相加即可求出PQ 的长. 解:设AP =3x ,BP =2x ,∵AB =10,∵AB =AP +BP =3x +2x =5x ,即5x =10, ∵x =1,∵AP =6,BP =4. ∵AQ BQ =32,∵可设BQ =y ,则AQ =AB +BQ =10+y , ∵1032y y +=, 解得y =20,∵PQ =PB +BQ =4+20=24.【点拨】本题考查了比例线段、两点间的距离等知识,运用好线段之间的比例关系是解答本题的关键.。
比例线段与黄金分割典型例题讲解与练习
⽐例线段与黄⾦分割典型例题讲解与练习个性化辅导讲义(2012 ~ 2013 学年第 1 学期)任教科⽬:数学授课题⽬:相似图形1年级:⼋年级任课教师:教导主任签名:__________⽇期:2013、4、28⼀.知识的回顾⽐例定义:表⽰两个⽐相等的式⼦叫⽐例.1、如果a与b的⽐值和c与d的⽐值相等,那么a c=b d或a∶b=c∶d,这时组成⽐例的四个数a,b,c,d叫做⽐例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 2、如果选⽤同⼀个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的⽐AB∶CD=m∶n,或写成AB m=CD n,其中,线段AB、CD分别叫做这两个线段⽐的前项和后项.3、如果把mn表⽰成⽐值k,则AB=CDk或AB=k?CD.4、四条线段a,b,c,d中,如果a与b的⽐等于c与d的⽐,即a c=b d,那么这四条线段a,b,c,d叫做成⽐例线段,简称⽐例线段.5、黄⾦分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果AC BC那么称线段AB被点C黄⾦分割(golden section),点C叫做线段AB的黄⾦分割点,AC与AB的⽐叫做黄⾦⽐.其中AC∶AB≈0.618.6、引理:平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例.相似三⾓形:三⾓对应相等,三边对应成⽐例的两个三⾓形叫做相似三⾓形.相似多边形:各⾓对应相等、各边对应成⽐例的两个多边形叫做相似多边形。
相似⽐:相似多边形对应边的⽐叫做相似⽐.⼆、⽐例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么a c=b d。
如果a c=b d(b,d都不为0),那么ad=bc.2、合⽐性质:如果a c=b d,那么a b c b=b d±±。
3、等⽐性质:如果a c m==b d n(b+d++n≠0),那么a+b+=b+d+bm an4、更⽐性质:若a c=b d,那么a b=c d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题解析:比例线段
例题1. 已知四条线段a 、b 、c 、d 的长度,试判断它们是否是成比例线段? (1)cm 10,cm 5,cm 8,cm 16====d c b a ;
(2)cm 10,m 6.0,cm 5.0,cm 8====d d c b a .
例题2. 如图,)()()(2,3,1,2,2,0C B A --.
(1)求出AB 、BC 、AC 的长.
(2)把上述三个点的横坐标、纵坐标都乘以2,得到C B A '''、、的坐标,求出C A C B B A '''''',,的长.
(3)这些线段成比例吗?
例题3.已知
811=+x y x ,求y x
例题4.已知
432z y x ==,求y x z y x -+-33的值
例题5.若
3753=+b b a ,则b
a 的值是__________
例题6.设
k y x z x z y z y x =+=+=+,求k 的值
例题7.如果
0432≠==c b a ,求:b
c a c b a 24235-++-的值 例题8.线段x ,y 满足1:4:)4(22=+xy y x ,求y x :的值
例题9.如图,已知,在ABC ∆中,D 、E 分别是AB 、AC 上的点,并且 23
===AE AC
DE BC
AD AB
,
ABC ∆的周长为12cm ,求:ADE ∆的周长
参考答案
例题1 分析 观察四条线段是否成比例时,首先要把四条线段的单位都化成一致的单位,再把它们按从小到大的顺序排列,由比例线段的基本性质知bc ab =,即如果第一、四两个数的积等于第二四两个数的积,则四条线段成比例,否则不成比例.
解答 (1)cm 16,cm 10,cm 8,cm 5====a d b c ,
ac bd c a d b ==⨯=⨯,80,80 , ∴d
c a b =, ∴四条线段成比例.
(2)10cm 8cm,6cm,0.6dm cm,5.0=====d a c b ,
ca bd ca bd ≠==,48,5,
∴这四条线段不成比例.
例题2 分析 利用勾股定理可以求出这些线段的长.
解答 (1)133222=+=AB ,543,26152222=+==+=AC BC .
(2))4,6(),2,4(),4,0(C B A '-'-',
132134526422=⨯==+=''B A ,
26226410421022=⨯==+=''C B ,
108622=+=''C A .
(3)21,21,2113213=''=''==''C A AC C B BC B A AB
, ∴C A AC C B BC B A AB '
'=''='', 这些线段成比例.
例题3.解答:由比例的基本性质得x y x 11)(8=+
∴y x 83=
∴3
8=y x 说明 本题考查比例的基本性质,易错点是由y x 83=化成比例式时错成8
3=y x ,解题关键是运用比例的基本性质,本题还可以运用合比性质求解。
例题4.解答:设k z
y
x
===432,则k x 2=,k y 3=,k z 4= ∴311
323433233=-⨯⨯+-=-+-k k k k k y x z y x
说明 本题考查比例的性质,解题关键是设k z
y
x
===432,将x 、y 、
z 统
一成k 。
例题5.解法1:3753=+b b a ,157553=+b b a ,1515
75553-=-+b b b a , ∴158
53-=b a ∴98
-=b a
解法2:设k b a
=,则bk a = 由37
53=+b b
a , 得37
53=+b b bk ∴37
53=+k ∴98
-=k
解法3
37
53=+b b
a ,
b b a 7)53(3=+
∴b a 89-= ∴98
-=b a
说明 本题考查比例的性质,解题关键是灵活运用比例的性质
例题6.错解:2
1)(2)()()(=++++=+++++++=z y x z y x y x x z z y z y x k 正解:当0≠++z y x 时,21)(2=++++=
z y x z y x k 当0=++z y x 时,
x z y -=+ ∴1-=-=+=
x x z y x k ∴2
1=k 或-1 说明 错解中忽视了0=++z y x 的情形 例题7.分析 可设04
32≠===k c b a ,则a 、b 、c 均可用k 来表示,把它代入欲求值的代数式中,就可以求出它的值
解答 设k c b a ===4
32, 则k a 2=,k b 3=,k c 4=, ∴b c a c b a 24235-++-236932424423325==⨯-+⨯⨯+⨯-⨯=k k k k k k k k 说明 设比例式的比值为k 的(比例系数),这是解比例式常用的有效方法,要注意掌握。
例题8.分析 要直接求出y x :比较困难,我们不妨先利用比例的基本性质,求得x 与y 的关系式,再求x 与y 的比值
解答 1:4:)4(22=+xy y x ,
∴xy y x 4422=+
∴0)2(2=-y x
∴y x 2= ∴2=y
x
例题9.分析 ADE ∆的周长DE AE AD ++=,则由给出的比例式,DE AE AD ++可以用AC BC AB ++表示
解答
2
3===AE AC DE BC AD AB , ∴2
3=++++AE DE AD AC BC AB ∴)(32AC BC AB AE DE AD ++=++cm 81232=⨯= 即ADE ∆的周长等于8cm。