2017年天津市部分区高考数学一模试卷(理科) 有答案

合集下载

2017年天津市高考数学试卷及参考答案(理科)

2017年天津市高考数学试卷及参考答案(理科)

A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
5. (5 分)已知双曲线

=1(a>0,b>0)的左焦点为 F,离心率为
.若
经过 F 和 P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为 ( A. ) =1 B. =1 C. =1 D. =1
6. (5 分)已知奇函数 f(x)在 R 上是增函数,g(x)=xf(x) .若 a=g(﹣log25.1) , b=g(20.8) ,c=g(3) ,则 a,b,c 的大小关系为( A.a<b<c B.c<b<a C.b<a<c D.b<c<a 7. (5 分)设函数 f(x)=2sin(ωx+φ) ,x∈R,其中 ω>0,|φ|<π.若 f( =2,f( )=0,且 f(x)的最小正周期大于 2π,则( B.ω= ,φ=﹣ D.ω= ,φ= ) ) )
2017 年天津市高考数学试卷(理科)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. (5 分)设集合 A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B) ∩C=( ) D.{x∈R|﹣1≤x≤5}
A.{2} B.{1,2,4} C.{1,2,4,5}
.已知 A 是抛物线 y2=2px(p>0)的焦点,F 到抛物线的准线 l 的距离为 . (I)求椭圆的方程和抛物线的方程; (II)设 l 上两点 P,Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B(B 异于 A) , 直线 BQ 与 x 轴相交于点 D.若△APD 的面积为 ,求直线 AP 的方程.
2017 年天津市高考数学试卷(理科)
参考答案与试题解析
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. (5 分)设集合 A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B) ∩C=( ) D.{x∈R|﹣1≤x≤5}

2017年天津市河西区高考数学一模试卷(理科) 有答案

2017年天津市河西区高考数学一模试卷(理科) 有答案

2017年天津市河西区高考数学一模试卷(理科)一、选择题1.已知集合M={x|y=ln(1﹣x)},集合N={y|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.∅2.若实数x,y满足条件则z=3x﹣4y的最大值是()A.﹣13 B.﹣3 C.﹣1 D.13.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.64.若q>0,命题甲:“a,b为实数,且|a﹣b|<2q”;命题乙:“a,b为实数,满足|a﹣2|<q,且|b ﹣2|<q”,则甲是乙的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.36.已知双曲线的中心在原点,焦点在x轴上,若其渐近线与圆x2+y2﹣4y+3=0相切,则此双曲线的离心率等于()A.B.﹣2 C.D.﹣7.如图在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是()A.18 B.20 C.22 D.248.已知函数f(x)=,若g(x)=ax﹣|f(x)|的图象与x轴有3个不同的交点,则实数a的取值范围是()A.[,) B.(0,)C.(0,)D.[,)二、填空题(本大题共6小题,每小题5分,共30分)9.设i是虚数单位,若复数z满足z(1+i)=1﹣i,则|z|=.10.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是.11.若(x+)n的二项展开式中前三项的系数成等差数列,则常数n的值为.12.已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值范围是.13.已知f(x)是定义在R上的偶函数,且在区间(0,+∞)上单调递减,若实数a满足f(log2)<f(﹣),则a的取值范围是.14.(坐标系与参数方程选做题)在极坐标系中,已知点A(1,),点P是曲线ρsin2θ=4cosθ上任意一点,设点P到直线ρcosθ+1=0的距离为d,则丨PA丨+d的最小值为.三、解答题(本大题共6小题,共80分)15.已知函数f(x)=2sin(x+)cos(x+)+sin2x﹣1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若将f(x)的图象向左平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值,并求出取得最值时的x值.16.甲乙两个口袋分别装有四张扑克牌,甲口袋内的四张牌分别为红桃A,方片A,黑桃Q与梅花K,乙口袋内的四张牌分别为黑桃A,方片Q,梅花Q与黑桃K,从两个口袋分别任取两张牌.(Ⅰ)求恰好抽到两张A的概率.(Ⅱ)记四张牌中含有黑桃的张数为x,求x的分布列与期望.17.如图,已知四边形ABCD是矩形,AB=2BC=2,三角形PCD是正三角形,且平面ABCD⊥平面PCD.(Ⅰ)若O是CD的中点,证明:BO⊥PA;(Ⅱ)求二面角B﹣PA﹣D的正弦值.(Ⅲ)在线段CP上是否存在点Q,使得直线AQ与平面ABP所成角的正弦值为,若存在,确定点Q的位置,若不存在,请说明理由.18.已知数列{a n}的前n项和为S n(n∈N*),且满足a n+S n=2n+1.(1)求数列{a n}的通项公式;(2)求证:.19.已知椭圆C: +=1(a>b>0)经过点(1,),一个焦点为(,0).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线y=k(x﹣1)(k≠0)与x轴交于点P,与椭圆C交于A,B两点,线段AB的垂直平分线与x 轴交于点Q ,求的取值范围.20.已知函数f (x )=lnx ﹣x 2+x .(I )求函数f (x )的单调递减区间;(Ⅱ)若关于x 的不等式f (x )≤(﹣1)x 2+ax ﹣1恒成立,求整数a 的最小值;(Ⅲ)若正实数x 1,x 2满足f (x 1)+f (x 2)+2(x+x )+x 1x 2=0,证明x 1+x 2≥.2017年天津市河西区高考数学一模试卷(理科)参考答案与试题解析一、选择题1.已知集合M={x|y=ln(1﹣x)},集合N={y|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.∅【考点】对数函数的定义域;交集及其运算.【分析】分别求出M、N的范围,在求交集.【解答】解:∵集合M={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},N={y|y=e x,x∈R(e为自然对数的底数)}={y|y>0},∴M∩N={x|0<x<1},故选C.2.若实数x,y满足条件则z=3x﹣4y的最大值是()A.﹣13 B.﹣3 C.﹣1 D.1【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=3x﹣4y 对应的直线进行平移,观察直线在y轴上的截距变化,可得当x=y=1时,z达到最大值﹣1.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,3),C(1,1),B(3,3).设z=F(x,y)=3x﹣4y,将直线l:z=3x﹣4y进行平移,观察直线在y轴上的截距变化,可得当l经点C时,目标函数z达到最大值,(1,1)=﹣1,∴z最大值=F故选:C3.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a<,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.4.若q>0,命题甲:“a,b为实数,且|a﹣b|<2q”;命题乙:“a,b为实数,满足|a﹣2|<q,且|b ﹣2|<q”,则甲是乙的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及不等式的性质判断即可.【解答】解:若a,b为实数,且|a﹣b|<2q,则﹣2q<a﹣b<2q,故命题甲:﹣2q<a﹣b<2q;若a,b为实数,满足|a﹣2|<q,且|b﹣2|<q,则2﹣q<a<2+q①,2﹣q<b<2+q②,由②得:﹣2﹣q<﹣b<﹣2+q③,①+③得:﹣2q<a﹣b<2q,故命题乙:﹣2q<a﹣b<2q,故甲是乙的充分必要条件,故选:C.5.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.3【考点】正弦定理;余弦定理.【分析】运用正弦定理和两角和的正弦公式和诱导公式,化简可得角C,再由面积公式和余弦定理,计算即可得到c的值.【解答】解:===1,即有2cosC=1,可得C=60°,若S △ABC =2,则absinC=2, 即为ab=8,又a +b=6,由c 2=a 2+b 2﹣2abcosC=(a +b )2﹣2ab ﹣ab=(a +b )2﹣3ab=62﹣3×8=12,解得c=2.故选C .6.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与圆x 2+y 2﹣4y +3=0相切,则此双曲线的离心率等于( )A. B .﹣2 C . D .﹣ 【考点】双曲线的简单性质.【分析】利用双曲线(a >0,b >0)的一条渐近线y=x 与圆x 2+y 2﹣4y +3=0相切⇔圆心(0,2)到渐近线的距离等于半径r ,利用点到直线的距离公式和离心率的计算公式即可得出.【解答】解:取双曲线(a >0,b >0)的一条渐近线y=x ,即bx ﹣ay=0.由圆x 2+y 2﹣4y +3=0化为x 2+(y ﹣2)2=1.圆心(0,2),半径r=1.∵渐近线与圆x 2+y 2﹣4y +3=0相切,∴=1化为3a 2=b 2.∴该双曲线的离心率e===2.故选:D .7.如图在平行四边形ABCD 中,已知AB=8,AD=5, =3, •=2,则•的值是( )A .18B .20C .22D .24【考点】平面向量数量积的运算.【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.8.已知函数f(x)=,若g(x)=ax﹣|f(x)|的图象与x轴有3个不同的交点,则实数a的取值范围是()A.[,) B.(0,)C.(0,)D.[,)【考点】函数的图象;分段函数的应用.【分析】将函数g(x)的零点问题转化为y=|f(x)|与y=ax的图象的交点问题,借助于函数图象来处理.【解答】解:由于函数g(x)=ax﹣|f(x)|有3个零点,则方程|f(x)|﹣ax=0有三个根,故函数y=|f(x)|与y=ax的图象有三个交点.由于函数f(x)=,则其图象如图所示,从图象可知,当直线y=ax位于图中两虚线之间时两函数有三个交点,因为点A能取到,则4个选项中区间的右端点能取到,排除BC,∴只能从AD中选,故只要看看选项AD区间的右端点是选还是选,设图中切点B的坐标为(t,s),则斜率k=a=(lnx)′|x=t=,又(t,s)满足:,解得t=e,∴斜率k=a==,故选:A.二、填空题(本大题共6小题,每小题5分,共30分)9.设i是虚数单位,若复数z满足z(1+i)=1﹣i,则|z|=1.【考点】复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:z(1+i)=(1﹣i),∴z(1+i)(1﹣i)=(1﹣i)(1﹣i),∴2z=﹣2i,z=﹣i.则复数z的模|z|=1.故答案为:1.10.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是.【考点】由三视图求面积、体积.【分析】由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,根据所提供的数据可求出正方体、锥体的体积.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:∴该几何体的体积为23﹣×22×1=8﹣=.故答案为:.11.若(x +)n 的二项展开式中前三项的系数成等差数列,则常数n 的值为 8 .【考点】二项式系数的性质.【分析】根据(x +)n 的二项展开式的通项公式,写出它的前三项系数,利用等差数列求出n 的值.【解答】解:∵(x +)n 的二项展开式的通项公式为T r +1=•x n ﹣r •=••x n ﹣2r ,前三项的系数为1,,,∴n=1+,解得n=8或n=1(不合题意,舍去), ∴常数n 的值为8. 故答案为:8.12.已知x >0,y >0,且,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ﹣4<m <2 .【考点】函数恒成立问题.【分析】先把x +2y 转化为(x +2y )展开后利用基本不等式求得其最小值,然后根据x +2y >m 2+2m 求得m 2+2m <8,进而求得m 的范围.【解答】解:∵,∴x +2y=(x +2y )=4++≥4+2=8∵x +2y >m 2+2m 恒成立, ∴m 2+2m <8,求得﹣4<m <2故答案为:﹣4<m<2.13.已知f(x)是定义在R上的偶函数,且在区间(0,+∞)上单调递减,若实数a满足f(log2)<f(﹣),则a的取值范围是(0,)∪(,+∞).【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系进行转化即可.【解答】解:∵偶函数f(x)是[0,+∞)上单调递减,满足不等式f(log2)<f(﹣),∴不等式等价为f(|log2|)<f(),即|log2|>,即log2>或log2<﹣,即0<a<或a>,故答案为:(0,)∪(,+∞).14.(坐标系与参数方程选做题)在极坐标系中,已知点A(1,),点P是曲线ρsin2θ=4cosθ上任意一点,设点P到直线ρcosθ+1=0的距离为d,则丨PA丨+d的最小值为.【考点】点的极坐标和直角坐标的互化;直线与圆的位置关系.【分析】先利用直角坐标与极坐标间的关系,将点A的极坐标、直线及曲线的极坐标方程化成直角坐标或方程,再利用直角坐标方程的形式,由抛物线的定义可得丨PA丨+d=|PF|+|PA|≥|AF|,当A,P,F三点共线时,其和最小,再求出|AF|的值即可.【解答】解:点A(1,)的直角坐标为A(0,1),曲线曲线ρsin2θ=4cosθ的普通方程为y2=4x,是抛物线.直线ρcosθ+1=0的直角坐标方程为x+1=0,是准线.由抛物线定义,点P到抛物线准线的距离等于它到焦点A(0,1)的距离,所以当A,P,F三点共线时,其和最小,最小为|AF|=,故答案为:.三、解答题(本大题共6小题,共80分)15.已知函数f(x)=2sin(x+)cos(x+)+sin2x﹣1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若将f(x)的图象向左平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值,并求出取得最值时的x值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,求得函数f(x)的单调递增区间;利用y=Asin(ωx+φ)的图象变换可得g(x)的解析式,再利用余弦函数的定义域和值域,求得函数g(x)在区间[0,]上的最大值和最小值,并求出取得最值时的x值.【解答】解:(Ⅰ)函数f(x)=2sin(x+)cos(x+)+sin2x﹣1=sin(2x+)+sin2x﹣1=cos2x +sin2x﹣1=2sin(2x+)﹣1,令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)若将f(x)的图象向左平移个单位,得到函数g(x)=2sin(2x++)﹣1=2cos(2x+)﹣1的图象,在区间[0,]上,2x+∈[,],故当2x+=π时,即x=时,函数取得最小值为﹣2﹣1=﹣3;当2x+=时,即x=0时,函数取得最大值为﹣1.16.甲乙两个口袋分别装有四张扑克牌,甲口袋内的四张牌分别为红桃A,方片A,黑桃Q与梅花K,乙口袋内的四张牌分别为黑桃A,方片Q,梅花Q与黑桃K,从两个口袋分别任取两张牌.(Ⅰ)求恰好抽到两张A的概率.(Ⅱ)记四张牌中含有黑桃的张数为x,求x的分布列与期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)基本事件总数n==36,恰好抽到两张A包含的基本事件个数m==15,由此能求出恰好抽到两张A的概率.(Ⅱ)由题意X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).【解答】解:(Ⅰ)甲乙两个口袋分别装有四张扑克牌,甲口袋内的四张牌分别为红桃A,方片A,黑桃Q与梅花K,乙口袋内的四张牌分别为黑桃A,方片Q,梅花Q与黑桃K,从两个口袋分别任取两张牌.基本事件总数n==36,恰好抽到两张A包含的基本事件个数m==15,∴恰好抽到两张A的概率p==.(Ⅱ)由题意X的可能取值为0,1,2,3,P(X=0)===,P(X=1)===,P(X=2)===,P(X=3)===,∴X的分布列为:E(X)==.17.如图,已知四边形ABCD是矩形,AB=2BC=2,三角形PCD是正三角形,且平面ABCD⊥平面PCD.(Ⅰ)若O是CD的中点,证明:BO⊥PA;(Ⅱ)求二面角B﹣PA﹣D的正弦值.(Ⅲ)在线段CP上是否存在点Q,使得直线AQ与平面ABP所成角的正弦值为,若存在,确定点Q的位置,若不存在,请说明理由.【考点】直线与平面所成的角;空间中直线与直线之间的位置关系;二面角的平面角及求法.【分析】(Ⅰ)通过建立空间直角坐标系,利用异面直线的方向向量的夹角即可证明;(Ⅱ)利用两个平面的法向量的夹角即可得出二面角的大小;(Ⅲ)设出Q的坐标,利用向量方法,即可求解.【解答】(Ⅰ)证明:∵平面ABCD⊥平面PCD,平面ABCD∩平面PCD=CD,四边形ABCD 是矩形.∴AD⊥平面PCD,BC⊥平面PCD,若O是CD 的中点,OP⊥CD.OP=.建立如图所示的空间直角坐标系,AB=2BC=2.则O(0,0,0),B(1,0,1),A(﹣1,0,1),P(0,,0).∴=(1,0,1),=(﹣1,﹣,1).∴•═0,∴⊥,∴BO⊥PA.(Ⅱ)解:由(Ⅰ)可知:=(2,0,0).设平面BPA的法向量为=(x,y,z),由,取y=1,平面BPA的一个法向量为=(0,1,).取=(0,0,1),设平面PAD的法向量为=(a,b,c),则,取b=1,则=(﹣,1,0).∴cos<,>==,由图可以看出:二面角B﹣PA﹣D 是一个钝角,故其余弦值为﹣,正弦值为.(Ⅲ)解:假设存在Q,直线AQ与平面ABP所成角的正弦值为,直线AQ与平面ABP的法向量所成角的余弦值为.设Q(m,(1﹣m),0),则=(m+1,(1﹣m),﹣1),∴=,∴12m2﹣4m+5=0,方程无解,∴在线段CP上不存在点Q,使得直线AQ与平面ABP所成角的正弦值为.18.已知数列{a n}的前n项和为S n(n∈N*),且满足a n+S n=2n+1.(1)求数列{a n}的通项公式;(2)求证:.【考点】数列与不等式的综合;数列递推式.【分析】(1)再写一式,两式相减得2a n﹣a n﹣1=2,整理,即,数列{a n﹣2}是首项为,公比为的等比数列,即可求数列{a n}的通项公式;(2)利用裂项法,即可证明结论.【解答】(1)解:∵a n+S n=2n+1,令n=1,得2a1=3,.∵a n+S n=2n+1,∴a n﹣1+S n﹣1=2(n﹣1)+1,(n≥2,n∈N*)两式相减,得2a n﹣a n﹣1=2,整理,(n≥2)∴数列{a n﹣2}是首项为,公比为的等比数列∴.(2)证明:∵∴==.19.已知椭圆C: +=1(a>b>0)经过点(1,),一个焦点为(,0).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线y=k(x﹣1)(k≠0)与x轴交于点P,与椭圆C交于A,B两点,线段AB的垂直平分线与x轴交于点Q,求的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由椭圆过点(1,),结合给出的焦点坐标积隐含条件a2﹣b2=c2求解a,b的值,则椭圆方程可求;(Ⅱ)联立直线和椭圆方程,利用根与系数关系求出A,B横纵坐标的和与积,进一步求得AB的垂直平分线方程,求得Q的坐标,由两点间的距离公式求得|PQ|,由弦长公式求得|AB|,作比后求得的取值范围.【解答】解:(Ⅰ)由题意得,解得a=2,b=1.∴椭圆C的方程是;(Ⅱ)联立,得(1+4k2)x2﹣8k2x+4k2﹣4=0.设A(x1,y1),B(x2,y2),则有,,.∴线段AB的中点坐标为,∴线段AB的垂直平分线方程为.取y=0,得,于是,线段AB的垂直平分线与x轴的交点Q,又点P(1,0),∴.又=.于是,.∵k≠0,∴.∴的取值范围为.20.已知函数f(x)=lnx﹣x2+x.(I)求函数f(x)的单调递减区间;(Ⅱ)若关于x的不等式f(x)≤(﹣1)x2+ax﹣1恒成立,求整数a的最小值;(Ⅲ)若正实数x1,x2满足f(x1)+f(x2)+2(x+x)+x1x2=0,证明x1+x2≥.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求f′(x),而使f′(x)≤0的x所在区间便为f(x)的单调递减区间;(Ⅱ)构造函数,求g′(x)=,容易判断当a≤0时不合题意;而a>0时,能够求出f(x)的最大值为,可设h(a)=,该函数在(0,+∞)上为减函数,并且h(1)>0,h(2)<0,从而得到整数a最小为2;(Ⅲ)由f(x1)+f(x2)+2(x+x)+x1x2=0便得到,这样令t=x1x2,t>0,容易求得函数t﹣lnt的最小值为1,从而得到,解这个关于x1+x2的一元二次不等式即可得出要证的结论.【解答】解:(Ⅰ)(x>0);∴x≥1时,f′(x)≤0;∴f(x)的单调减区间为[1,+∞);(Ⅱ)令;所以=;(1)当a≤0时,因为x>0,所以g′(x)>0;∴此时g(x)在(0,+∞)上是递增函数;又g(1)=;∴g(x)≤0不能恒成立,即关于x的不等式f(x)≤不能恒成立;∴这种情况不存在;(2)当a>0时,;∴当x时,g′(x)>0;当时,g′(x)<0;∴函数g(x)的最大值为=;令;∵h(1)=,h(2)=,又h(a)在a∈(0,+∞)上是减函数;∴当a≥2时,h(a)<0;所以整数a的最小值为2;(Ⅲ)证明:由f(x1)+f(x2);即;从而;令t=x1x2,则由h(t)=t﹣lnt得,h′(t)=;可知,h(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增;∴h(t)≥h(1)=1;∴,又x1+x2>0;因此成立.。

2017年普通高等学校招生全国统一考试(天津卷.理)答案

2017年普通高等学校招生全国统一考试(天津卷.理)答案

2017年普通高等学校招生全国统一考试(天津卷)数学试题(理工类)参考答案1.【答案】B【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-= ,故选B . 2.【答案】D【解析】画出不等式组表示的平面区域(图略),则可行域为四边形ABCD 及其内部,其中A (0,1),B (0,3),C (323,-),D (-3432,),易得直线z x y +-=过点B (0,3)时z=x+y 取最大值为3,故选D 3.【答案】C【解析】初始:24N =,进入循环后N 的值依次为8,7,6,2N N N N ====,输出2N =,故选C .4.【答案】A【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但0θ=时1sin 02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件,故选A .5.【答案】B【解析】由题意得2240,14,10()88x y a b c a b c -==⇒===-=--,故选B . 6.【答案】C【解析】因为)(x f 是奇函数且在R 上是增函数,所以当0>x 时,0)(>x f ,从而)()(x xf x g =是R 上的偶函数,且在[)∞+,0上是增函数,)1.5(log )1.5log (22g g a =-=,228.0<,又81.54<<,则31.5log 22<<,所以31.5log 2028.0<<<,)3()1.5(log )2(28.0g g g <<,所以c a b <<,故选C.7.【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A . 8.【答案】A【解析】不等式a x x f +≥2)(可化为)(*≤+≤-)(2)(x f a xx f , 当1≤x 时,)(*式即32322--≤+≤-+-x x a xx x , 即3233222+-≤≤-+-x x a x x 又16471647413222-≤---=-+-)(x x x (当41=x 时取等号),163916394332322≥+-=+-)(x x x (当43=x 时取等号),所以16391647≤≤-a 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+.又3232()22x x x x --=-+≤-x =,222x x +≥=(当2x =时取等号),所以2a -≤≤. 综上,47216a -≤≤.故选A . 9.【答案】2-【解析】i (i)(2i)(21)(2)i 212i 2i (2i)(2i)555a a a a a a -----+-+===-++-为实数,则20,25a a +==-. 10.【答案】92π【解析】设正方体的边长为a ,则2618a a =⇒=其外接球直径为23R ==,故这个球的体积34π3V R ==4279ππ382⨯=.11.【答案】2【解析】直线为210y ++=,圆为22(1)1x y +-=,因为314d =<,所以有两个交点. 12.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥=,前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时成立,当且仅当2224a b ==时取等号. 13.【答案】311【解析】由题可得1232cos 603,33AB AC AD AB AC ⋅=⨯⨯︒==+,则12()33AD AE AB AC ⋅=+ 2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒= .14.【答案】1080【解析】41345454A C C A 1080+=.15.【解析】(Ⅰ)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =由正弦定理sin sin a b A B =,得sin sin 13a B Ab ==.所以,b sin A . (Ⅱ)由(Ⅰ)及c a <,得13132cos =A , 所以1312cos sin 22sin ==A A A ,135sin 212cos 2-=-=A A 故26274sin2cos 4cos2sin )42sin(=+=+πππA A A 16.【解析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数, 则所求事件的概率为(1)(0,1)(1,0)(0)(1)P Y Z P Y Z P Y Z P Y P Z +====+=====+11111111(1)(0)42424448P Y P Z ===⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148.17.【解析】如图,以A 为原点,分别以AB ,AC ,AP方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)易得)(0,2,0=,),(20,2-= 设)(z y x n ,,=为平面BDE 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅0DE n ,即⎩⎨⎧=-=02202z x y不妨设1=z ,可得)(1,0,1=,又)(1,2,1-=,可得0=⋅ 因为MN ⊄平面BDE ,所以MN//平面BDE. (Ⅱ)易知1(1,0,0)=n 为平面CEM 的一个法向量. 设2(,,)x y z =n 为平面EMN 的法向量,则2200EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =-- ,(1,2,1)MN =- ,所以2020y z x y z --=⎧⎨+-=⎩.不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅<>==n n n n |n n12sin ,<>=n n .所以,二面角C -EM -N. (Ⅲ)依题意,设)40(AH ≤≤=h h,则)(h ,0,0H ,进而可得),,(h 21--=,)(2,2,2-=,由已知,得21732522,cos 2=⨯+-==><h h BE NH 整理得0821102=+-h h ,解得58=h 或21=h 所以,线段AH 的长为58或21 18.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2nn b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(Ⅱ)设数列}b {a 1-2n 2n 的前n 项和为n T ,由262-=n a n ,11242--⨯=n n b ,有n n n n b a 4)13(122⨯-=-故n n n 4)13(484542T 32⨯-++⨯+⨯+⨯= ,14324134)43(4845424T +⨯-+⨯-++⨯+⨯+⨯=n n n n n )(上述两式想减,得84)23(4)13(4414112413434343423T -11132-⨯--=⨯-----⨯=⨯--⨯++⨯+⨯+⨯=+++n n nn n n n n n )()(得384323T 1+⨯-=+n n n所以数列}b {a 1-2n 2n 的前n 项和为3843231+⨯-+n n 19.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12ca =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.(Ⅱ)设直线AP 的方程为1(0)x my m =+≠, 与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-. 将1x my =+与22413yx +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =或2634my m -=+. 由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ的方程为22262342()(1)(1)()03434m m x y m m m m--+-+-+-=++, 令0=y ,解得233222+-=m m x ,故D (0,233222+-m m ),所以23623321AD 2222+=+--=m m m m又因为APD ∆的面积为26,故2622362122=⨯+⨯m m m 整理得026232=+-m m ,解得36=m ,所以36±=m 所以,直线AP 的方程为0363=-+y x 或0363=--y x 20.【解析】(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(,1)-∞-,(,)4+∞,单调递减区间是1(1,)4-. (Ⅱ)由)())(()(0m f x m x g x h --=,得)())(()(0m f x m m g m h --=,)())(()(000m f x m x g x h --=令函数)())(()(H 01x f x x x g x --=,则))((')('H 01x x x g x -=由(Ⅰ)知,当[]2,1∈x 时,0)('>x g ,故当[)01x x ,∈时,0)('H 1<x ,)(H 1x 单调递减;当(]2,0x x ∈时,0)('H 1>x ,)(H 1x 单调递增;因此,当[)(]2,100x x x ,∈时,0)()(H )(H 0011=-=>x f x x ,可得0)(H 1>m ,即0)(>m h令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈ 时,220()()0H x H x <=,可得2()0H m <,即0()0h x <. 所以,0()()0h m h x <.(Ⅲ)对于任意的正整数p ,q ,且00[1)(,],2px x q∈ , 令pm q=,函数0()()()()h g m x x x m f =--. 由(Ⅱ)知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点;当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点,所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=. 由(Ⅰ)知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p pf f p p p q p q pq aq q q x qg x g g q +--+-=≥=. 因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增, 所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q≠,故()0pf q ≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数, 从而432234|2336|1p p q p q pq aq +--+≥,所以041|2|()p x q g q -≥. 所以,只要取()2A g =,就有041||p x q Aq -≥.。

2017年天津市高考数学试卷(理科)(解析版)

2017年天津市高考数学试卷(理科)(解析版)

,设 a∈R,若关于 x 的不等式 f(x)≥| +a|
在 R 上恒成立,则 a 的取值范围是( A.[﹣ ,2] B.[﹣ , ]
) C.[﹣2 ,2] D.[﹣2 , ]
二.填空题:本大题共 6 小题,每小题 5 分,共 30 分. 9. (5 分)已知 a∈R,i 为虚数单位,若 为实数,则 a 的值为 .
4 3 2
20. (14 分)设 a∈Z,已知定义在 R 上的函数 f(x)=2x +3x ﹣3x ﹣6x+a 在区间(1,2) 内有一个零点 x0,g(x)为 f(x)的导函数. (Ⅰ)求 g(x)的单调区间; (Ⅱ)设 m∈[1,x0)∪(x0,2],函数 h(x)=g(x) (m﹣x0)﹣f(m) ,求证:h(m) h(x0)<0; (Ⅲ)求证:存在大于 0 的常数 A,使得对于任意的正整数 p,q,且 ∈[1,x0)∪(x0, 2],满足| ﹣x0|≥ .
2. (5 分)设变量 x,y 满足约束条件
,则目标函数 z=x+y 的最大值为(

A.
B.1
C.
D.3
3. (5 分)阅读右面的程序框图,运行相应的程序,若输入 N 的值为 24,则输出 N 的值为 ( )
A.0
B.1 |<
C.2 ”是“sinθ< ”的( )
D.3
4. (5 分)设 θ∈R,则“|θ﹣ A.充分而不必要条件 C.充要条件 5. (5 分)已知双曲线 ﹣
18. (13 分)已知{an}为等差数列,前 n 项和为 Sn(n∈N ) ,{bn}是首项为 2 的等比数列, 且公比大于 0,b2+b3=12,b3=a4﹣2a1,S11=11b4. (Ⅰ)求{an}和{bn}的通项公式; (Ⅱ)求数列{a2nb2n﹣1}的前 n 项和(n∈N ) . 19. (14 分)设椭圆

2017年高考理数真题天津卷(试题及详细答案解析)

2017年高考理数真题天津卷(试题及详细答案解析)

2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分.参考公式:·如果事件 A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·如果事件 A ,B 相互独立,那么 P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高.·球的体积公式343V R =π.其中R 表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I ( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{|15}x x ∈-≤≤R2.设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为( ) A.23 B.1 C.32D.3 3.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A.0B.1C.2D.34.设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离 心率为2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.22144x y -=B.22188x y -=C.22148x y -=D.22184x y -=6.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( )A.a b c <<B.c b a <<C.b a c <<D.b c a <<7.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( ) A.23ω=,12ϕπ= B.23ω=,12ϕ11π=- C.13ω=,24ϕ11π=- D.13ω=,24ϕ7π= 8.已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( ) A.47[,2]16-B.4739[,]1616-C.[-D.39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二. 填空题:本大题共6小题,每小题5分,共30分.9.已知a ∈R ,i 为虚数单位,若i 2ia -+为实数,则a 的值为 . 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .11.在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 12.若,a b ∈R ,0ab >,则4441a b ab ++的最小值为___________. 13.在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r ,且4AD AE ⋅=-u u u r u u u r ,则λ的值为___________.14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值;。

2017年天津卷(理科数学)含答案

2017年天津卷(理科数学)含答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅰ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh .·球的体积公式.其中S 表示棱柱的底面面积,其中表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则【B 】343V R =πR {1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ()A B C =(A )(B )(C )(D )(2)设变量满足约束条件则目标函数的最大值为【D 】 (A ) (B )1(C ) (D )3(3)阅读右面的程序框图,运行相应的程序,若输入的值为24,则输出的值为【C 】(A )0 (B )1(C )2(D )3(4)设,则“”是“”的【A 】(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线的左焦点为,.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为【B 】(A ) (B )(C )(D )(6)已知奇函数在R 上是增函数,.若,,,则a ,b ,c 的大小关系为【C 】{2}{1,2,4}{1,2,4,6}{|15}x x ∈-≤≤R ,x y 20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩z x y =+2332N N θ∈R ππ||1212θ-<1sin 2θ<22221(0,0)x y a b a b -=>>F F (0,4)P 22144x y -=22188x y -=22148x y -=22184x y -=()f x ()()g x xf x =2(log 5.1)a g =-0.8(2)b g =(3)c g =(A ) (B )(C )(D ) (7)设函数,,其中,.若,,且的最小正周期大于,则【A 】(A ),(B ),(C ),(D ),(8)已知函数设,若关于x 的不等式在R 上恒成立,则a 的取值范围是【A 】(A )(B ) (C )(D )第Ⅰ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年天津市和平区高考数学一模试卷(理科)有答案-(11417)

2017年天津市和平区高考数学一模试卷(理科)有答案-(11417)

2017年天津市和平区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合A={﹣1,1,2},B={a+1,a2﹣2},若A∩B={﹣1,2},则a的值为( )A.﹣2或﹣1B.0或1C.﹣2或1D.0或﹣22.设变量x,y满足约束条件,则目标函数z=3x+2y的取值范围是( )A.[6,22]B.[7,22]C.[8,22]D.[7,23]3.在△ABC中,若AB=4,AC=BC=3,则sinC的值为( )A.B.C.D.4.阅读如图的程序框图,运行相应的程序,则输出的S的值为( )A.B.C.D.5.“|x+1|+|x﹣2|≤5”是“﹣2≤x≤3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知A、B分别为双曲线﹣=1(a>0,b>0)的左、右顶点,P为双曲线上一点,且△ABP为等腰三角形,若双曲线的离心率为,则∠ABP的度数为( )A.30°B.60°C.120°D.30°或120°7.如图,在平行四边形ABCD中,∠BAD=,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足==λ,其中λ∈[0,1],则•的取值范围是( )A.[﹣3,﹣1]B.[﹣3,1]C.[﹣1,1]D.[1,3]8.已知函数f(x)=,若关于x的方程f(x)﹣m=0恰有五个不相等的实数解,则m的取值范围是( )A.[0,4]B.(0,4)C.(4,5)D.(0,5)二、填空题:本大题共6小题,每小题5分,共30分).9.已知复数=a+bi,则a+b= .10.(﹣)8的展开式中x2的系数为 .(用数字作答)11.已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为 cm3.12.在直角坐标系xOy,直线l的参数方程为(t为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C的极坐标方程式ρ=﹣4cosθ,则圆C的圆心到直线l的距离为 .13.已知f(x)=x3+3x2+6x,f(a)=1,f(b)=﹣9,则a+b的值为 .14.若不等式3x2+y2≥mx(x+y)对于∀x,y∈R恒成立,则实数m的取值范围是 .三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为.(Ⅰ)求a的值;(Ⅱ)求f(x)在[0,]上的最大值和最小值.16.理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:学生序号1234567物理成绩65707581858793化学成绩72688085908691规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.17.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E为PC上一点,且PE=PC.(Ⅰ)求PE的长;(Ⅱ)求证:AE⊥平面PBC;(Ⅲ)求二面角B﹣AE﹣D的度数.18.设S n是数列{a n}的前n项和,已知a1=1,a n+1=2S n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若=3n﹣1,求数列{b n}的前n项和T n.19.已知椭圆E:+=1(a>b>0)经过点(2,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等边三角形.(Ⅰ)求椭圆E的方程;(Ⅱ)设P(x,y)是椭圆E上的动点,M(2,0)为一定点,求|PM|的最小值及取得最小值时P点的坐标.20.设函数f(x)=x2+alnx(a<0).(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为,求实数a的值;(2)求f(x)的单调区间;(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.2017年天津市和平区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合A={﹣1,1,2},B={a+1,a2﹣2},若A∩B={﹣1,2},则a的值为( )A.﹣2或﹣1B.0或1C.﹣2或1D.0或﹣2【考点】交集及其运算.【分析】由交集定义得到或,由此能求出a的值.【解答】解:∵集合A={﹣1,1,2},B={a+1,a2﹣2},A∩B={﹣1,2},∴或,解得a=﹣2或a=1.故选:C.2.设变量x,y满足约束条件,则目标函数z=3x+2y的取值范围是( )A.[6,22]B.[7,22]C.[8,22]D.[7,23]【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件,作可行域如图.由z=3x+2y,结合图形可知,当直线分别经过可行域内的点A,B时,目标函数取得最值,由:,可得A(4,5),由可得B(1,2)时,目标函数取得最小值和最大值,分别为z max=3×4+2×5=22,z min=3×1+2×2=7.目标函数的范围:[7,22].故选:B.3.在△ABC中,若AB=4,AC=BC=3,则sinC的值为( )A.B.C.D.【考点】余弦定理.【分析】由已知利用余弦定理可求cosC的值,进而利用同角三角函数基本关系式可求sinC的值.【解答】解:在△ABC中,∵AB=4,AC=BC=3,∴cosC===,∴sinC==.故选:D.4.阅读如图的程序框图,运行相应的程序,则输出的S的值为( )A.B.C.D.【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S、i的值,当i=5时,满足条件i>4,退出循环,输出S的值即可.【解答】解:模拟执行程序框图,可得i=1,S=0,k=1;k=1,不满足条件i>4,S=1,i=2;k=,不满足条件i>4,S=,i=3;k=,不满足条件i>4,S=,i=4;k=,不满足条件i>4,S=,i=5;k=,满足条件i>4,退出循环,输出S=.故选:C.5.“|x+1|+|x﹣2|≤5”是“﹣2≤x≤3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】对x分类讨论,解出不等式|x+1|+|x﹣2|≤5,即可判断出结论.【解答】解:由|x+1|+|x﹣2|≤5,x≥2时,化为2x﹣1≤5,解得2≤x≤3;﹣1≤x<2时,化为x+1﹣(x﹣2)≤5,化为:3≤5,因此﹣1≤x<2;x<﹣1时,化为﹣x﹣1﹣x+2≤5,解得﹣2≤x<﹣1.综上可得:﹣2≤x≤3.∴“|x+1|+|x﹣2|≤5”是“﹣2≤x≤3”的充要条件.故选:C.6.已知A、B分别为双曲线﹣=1(a>0,b>0)的左、右顶点,P为双曲线上一点,且△ABP为等腰三角形,若双曲线的离心率为,则∠ABP的度数为( )A.30°B.60°C.120°D.30°或120°【考点】双曲线的简单性质.【分析】双曲线的离心率为,则a=b,双曲线方程为x2﹣y2=a2,利用△ABP为等腰三角形,分类讨论,即可求出∠ABP的度数.【解答】解:双曲线的离心率为,则a=b,双曲线方程为x2﹣y2=a2,若|AB|=|BP|=2a,设P(m,n),则,∴m=2a,∴∠PBx=60°,∴∠ABP=120°;若|AB|=|AP|=2a,设P(m,n),则,∴m=﹣2a,∴∠PAB=120°,∴∠ABP=30°,故选D.7.如图,在平行四边形ABCD中,∠BAD=,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足==λ,其中λ∈[0,1],则•的取值范围是( )A.[﹣3,﹣1]B.[﹣3,1]C.[﹣1,1]D.[1,3]【考点】平面向量数量积的运算.【分析】画出图形,建立直角坐标系,求出B,A,D的坐标,利用比例关系和向量的运算求出,的坐标,然后通过二次函数的单调性,求出数量积的范围.【解答】解:建立如图所示的以A为原点,AB,AD所在直线为x,y轴的直角坐标系,则B(2,0),A(0,0),D(,).∵满足==λ,λ∈[0,1],=+=+(1﹣λ)=+(1﹣λ)=(,)+(1﹣λ)(2,0)=(﹣2λ,);=+=﹣+(1﹣λ)=(﹣2,0)+(1﹣λ)(,)=(﹣﹣λ,(1﹣λ)),则•=(﹣2λ,)•(﹣﹣λ,(1﹣λ))=(﹣2λ)(﹣﹣λ)+•(1﹣λ)=λ2+λ﹣3=(λ+)2﹣,因为λ∈[0,1],二次函数的对称轴为:λ=﹣,则[0,1]为增区间,故当λ∈[0,1]时,λ2+λ﹣3∈[﹣3,﹣1].故选:A.8.已知函数f(x)=,若关于x的方程f(x)﹣m=0恰有五个不相等的实数解,则m的取值范围是( )A.[0,4]B.(0,4)C.(4,5)D.(0,5)【考点】根的存在性及根的个数判断.【分析】关于x的方程f(x)﹣m=0恰有五个不相等的实数解,则y=f(x)与y=m有五个不同的交点,数形结合可得答案.【解答】解:作出函数的图象,如图所示,关于x的方程f(x)﹣m=0恰有五个不相等的实数解,则y=f(x)与y=m有五个不同的交点,∴0<m<4,故选B.二、填空题:本大题共6小题,每小题5分,共30分).9.已知复数=a+bi,则a+b= 2 .【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简求出a,b的值,则a+b的答案可求.【解答】解:∵=,∴,.则a+b=.故答案为:2.10.(﹣)8的展开式中x2的系数为 70 .(用数字作答)【考点】二项式系数的性质.【分析】利用通项公式即可得出.【解答】解:T r+1==(﹣1)r,令8﹣=2,解得r=4,∴展开式中x2的系数==70.故答案为:70.11.已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为 20 cm3.【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是直三棱柱,切去一个三棱锥,结合图中数据求出它的体积.【解答】解:根据几何体的三视图知,该几何体是直三棱柱,切去一个三棱锥,如图所示;该几何体的体积为V=×3×4×4﹣××2×3×4=20cm3.故答案为:20.12.在直角坐标系xOy,直线l的参数方程为(t为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C的极坐标方程式ρ=﹣4cosθ,则圆C的圆心到直线l的距离为 .【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】直线l的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程,利用点到直线的距离公式,即可得出结论.【解答】解:直线l的参数方程为(t为参数),普通方程为x﹣y+1=0,圆ρ=﹣4cosθ即ρ2=﹣4ρcosθ,即x2+y2+4x=0,即(x+2)2+y2=4,表示以(﹣2,0)为圆心,半径等于2的圆.∴圆C的圆心到直线l的距离为=,故答案为.13.已知f(x)=x3+3x2+6x,f(a)=1,f(b)=﹣9,则a+b的值为 ﹣2 .【考点】函数的值.【分析】推导出函数f(x)的图象关于(﹣1,﹣4)对称,(a,f(a)),(b,f(b))恰好关于(﹣1,﹣4)对称,由此能求出a+b的值.【解答】解:∵f(x)=x3+3x2+6x,f(a)=1,f(b)=﹣9,∴f(x)=(x+1)3﹣3x﹣1+6x=(x+1)3+3x﹣1=(x+1)3+3(x+1)﹣4,∴函数f(x)的图象关于(﹣1,﹣4)对称,∵f(a)=1,f(b)=﹣9,∴(a,f(a)),(b,f(b))恰好关于(﹣1,﹣4)对称,∴a+b=﹣2.故答案为:﹣2.14.若不等式3x2+y2≥mx(x+y)对于∀x,y∈R恒成立,则实数m的取值范围是 [﹣6,2] .【考点】函数恒成立问题.【分析】把y当作常数,得出关于x的一元二次不等式(3﹣m)x2﹣my•x+y2≥0恒成立,根据二次函数的性质列出不等式组解出m的范围.【解答】解:∵3x2+y2≥mx(x+y)恒成立,即(3﹣m)x2﹣my•x+y2≥0恒成立,∴,∴,解得﹣6≤m≤2.故答案为[﹣6,2].三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为.(Ⅰ)求a的值;(Ⅱ)求f(x)在[0,]上的最大值和最小值.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】(Ⅰ)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求a的值.(Ⅱ)x∈[0,]时,求出内层函数的取值范围,结合三角函数的图象和性质求,可求f(x)最大值和最小值.【解答】解:函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),化简可得:f(x)=sin(2ax﹣)+cos(2ax﹣)+1=cos2ax+sin2ax+1=2sin(2ax+)+1∵函数的最小正周期为.即T=由T=,可得a=2.∴a的值为2.故f(x)=2sin(4x+)+1;(Ⅱ)x∈[0,]时,4x+∈[0,].当4x+=时,函数f(x)取得最小值为=1.当4x+=时,函数f(x)取得最大值为2×1+1=3∴f(x)在[0,]上的最大值为3,最小值为1.16.理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:学生序号1234567物理成绩65707581858793化学成绩72688085908691规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)如果按照性别比例分层抽样,则从9名女生、12名男生,从中随机抽取一个容量为7的样本,抽取的女生为3人,男生为4人.利用组合数的意义即可得出.(II)这7名同学中物理和化学成绩均为优秀的人数为3人,抽取的3名同学中物理和化学成绩均为优秀的人数X可能取值为0,1,2,3,可得P(X=k)=,即可得出分布列与数学期望计算公式.【解答】解:(Ⅰ)如果按照性别比例分层抽样,则从9名女生、12名男生,从中随机抽取一个容量为7的样本,抽取的女生为3人,男生为4人.可以得到个不同的样本.(II)这7名同学中物理和化学成绩均为优秀的人数为3人,抽取的3名同学中物理和化学成绩均为优秀的人数X可能取值为0,1,2,3,则P(X=k)=,可得P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.其X分布列为:X0123P数学期望E(X)=0+1×+2×+3×=.17.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E为PC上一点,且PE=PC.(Ⅰ)求PE的长;(Ⅱ)求证:AE⊥平面PBC;(Ⅲ)求二面角B﹣AE﹣D的度数.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)利用勾股定理求出AC长,从而得到PC长,由此能求出PE.(Ⅱ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明AE⊥平面PBC.(Ⅲ)求出平面ABE的法向量和平面ADE的法向量,利用向量法能求出二面角B﹣AE﹣D的度数.【解答】解:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E为PC上一点,且PE=PC,∴AC==,∴PC===,∴PE=PC=.证明:(Ⅱ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),C(1,1,0),P(0,0,2),E(),B(2,0,0),=(),=(2,0,﹣2),=(1,1,﹣2),==0, ==0,∴AE⊥PB,AE⊥PC,又PB∩PC=P,∴AE⊥平面PBC.解:(Ⅲ)D(0,1,0),=(2,0,0),=(0,1,0),=(),设平面ABE的法向量=(x,y,z),则,取y=1,得=(0,1,﹣1),设平面ADE的法向量=(a,b,c),则,取a=1,得=(1,0,﹣1),设二面角B﹣AE﹣D的度数为θ,则cosθ===.∴θ=60°,∴二面角B﹣AE﹣D的度数为60°.18.设S n是数列{a n}的前n项和,已知a1=1,a n+1=2S n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若=3n﹣1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)由条件得a n=2S n﹣1+1(n≥2),与条件式相减可得=3,再验证即可得{a n}为等比数列,从而求出通项公式;(II)化简得b n=(3n﹣1)•3n﹣1,使用错位相减法求和即可.【解答】解:(I)∵a n+1=2S n+1,∴a n=2S n﹣1+1,(n≥2),两式相减得:a n+1﹣a n=2a n,即=3.又n=1时,a2=2a1+1=3,∴,∴{a n}是以1为首项,以3为公比的等比数列.∴a n=3n﹣1.(II)b n=(3n﹣1)a n=(3n﹣1)•3n﹣1,∴T=2•30+5•31+8•32+…+(3n﹣1)•3n﹣1,①∴3T n=2•31+5•32+8•33+…+(3n﹣1)•3n,②∴﹣2T n=2+32+33+34+…+3n﹣(3n﹣1)•3n=﹣1﹣(3n﹣1)•3n=()•3n﹣,∴T n=(﹣)•3n+.19.已知椭圆E:+=1(a>b>0)经过点(2,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等边三角形.(Ⅰ)求椭圆E的方程;(Ⅱ)设P(x,y)是椭圆E上的动点,M(2,0)为一定点,求|PM|的最小值及取得最小值时P点的坐标.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题意求得2b=a,将点(2,1),代入椭圆方程,即可求得a和b的值,求得椭圆方程;(Ⅱ)利用两点之间的距离公式,求得丨PM丨2=(x﹣2)2+y2,由P在椭圆上,则y2=4﹣,代入利用二次函数的性质,即可求得|PM|的最小值及P点坐标.【解答】解:(Ⅰ)由题意可知:2b=a,将(2,1)代入椭圆方程:,解得:b2=4,a2=16,∴椭圆E的方程;(Ⅱ)由丨PM丨2=(x﹣2)2+y2,由P(x,y)在椭圆上,(﹣4≤x≤4)则y2=4﹣,∴丨PM丨2=x2﹣4x+4+4﹣=x﹣4x+8=(x+)+,∴当x=﹣时,丨PM丨取最小值,最小值为,∴当x=﹣,解得:y=±,∴|PM|的最小值,P点的坐标(﹣,±).20.设函数f(x)=x2+alnx(a<0).(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为,求实数a的值;(2)求f(x)的单调区间;(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出f(x)的导数,由题意可得切线的斜率,即有a的方程,解方程可得a的值;(2)求出函数的导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(3)令F(x)=f(x)﹣g(x),问题转化为求函数F(x)的零点个数,通过讨论a的范围,求出函数F(x)的单调性,从而判断函数F(x)的零点个数即f(x),g(x)的交点即可【解答】解:(1)函数f(x)=x2+alnx的导数为f′(x)=x+,由函数f(x)的图象在点(2,f(2))处的切线斜率为,可得2+=,解得a=﹣3;(2)函数f(x)的定义域为(0,+∞),f′(x)=,当a<0时,f′(x)=,当0<x<时,f′(x)<0,函数f(x)单调递减;当x>时,f′(x)>0,函数f(x)单调递增.综上,当a<0时,f(x)的增区间是(,+∞),减区间是(0,);(3)令F(x)=f(x)﹣g(x)=x2+alnx﹣x2+(1﹣a)x=﹣x2+(1﹣a)x+alnx,x>0,问题等价于求函数F(x)的零点个数.当a≤﹣1时,F′(x)=﹣x+1﹣a+=﹣,由a=﹣1时,F′(x)≤0,F(x)递减,由F(3)=﹣+6﹣ln3=﹣ln3>0,F(4)=﹣8+8﹣ln4<0,由零点存在定理可得F(x)在(3,4)内存在一个零点;当a<﹣1时,即﹣a>1时,F(x)在(0,1)递减,(1,﹣a)递增,(﹣a,+∞)递减,由极小值F(1)=﹣+(1﹣a)+aln1=﹣a>0,极大值F(﹣a)=﹣a2+a2﹣a+aln(﹣a)=a2﹣a+aln(﹣a)>0,由x→+∞时,F(x)→﹣∞,可得F(x)存在一个零点.综上可得,当a≤﹣1时,f(x)与g(x)图象交点的个数为1.21。

2017年普通高等学校招生全国统一考试理科数学(天津卷)

2017年普通高等学校招生全国统一考试理科数学(天津卷)

2017年普通高等学校招生全国统一考试(天津)理科数学1.(2017·天津,理1)设集合A={1,2,6},B={2,4},C={x ∈R |-1≤x ≤5},则(A ∪B )∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{x ∈R |-1≤x ≤5}A={1,2,6},B={2,4},∴A ∪B={1,2,4,6}.∵C={x ∈R |-1≤x ≤5},∴(A∪B )∩C={1,2,4}.故选B . 2.(2017·天津,理2)设变量x ,y 满足约束条件{2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z=x+y 的最大值为( )A.23B.1C.32D.3.目标函数z=x+y 可化为y=-x+z.作直线l 0:y=-x ,平行移动直线y=-x ,当直线过点A (0,3)时,z 取得最大值,最大值为3.故选D .3.(2017·天津,理3)阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A.0B.1C.2D.3,当输入N 的值为24时,24能被3整除,所以N=8.因为8≤3不成立,且8不能被3整除,所以N=7. 因为7≤3不成立,且7不能被3整除,所以N=6. 因为6≤3不成立,且6能被3整除,所以N=2. 因为2≤3,所以输出N=2.故选C .4.(2017·天津,理4)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件|θ-π12|<π12时,0<θ<π6,∴0<sin θ<12. ∴“|θ-π12|<π12”是“sin θ<12”的充分条件.当θ=-π6时,sin θ=-12<12,但不满足|θ-π12|<π12.∴“|θ-π12|<π12”不是“sin θ<12”的必要条件.∴“|θ-π12|<π12”是“sin θ<12”的充分而不必要条件.故选A.5.(2017·天津,理5)已知双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点为F,离心率为√2,若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.x 24−y24=1 B.x28−y28=1C.x 24−y28=1 D.x28−y24=1c(c>0),则双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点F的坐标为(-c,0),渐近线方程为y=±bax.∵点P的坐标为(0,4),∴直线PF的斜率为k=4c.由题意得4c =ba.①∵双曲线的离心率为√2,∴ca=√2.②在双曲线中,a2+b2=c2,③联立①②③解得a=b=2√2,c=4.∴所求双曲线的方程为x 28−y28=1.故选B.6.(2017·天津,理6)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<af (x )是R 上的奇函数,∴g (x )=xf (x )是R 上的偶函数.∴g (-log 25.1)=g (log 25.1). ∵奇函数f (x )在R 上是增函数, ∴当x>0时,f (x )>0,f'(x )>0.∴当x>0时,g'(x )=f (x )+xf'(x )>0恒成立, ∴g (x )在(0,+∞)上是增函数.∵2<log 25.1<3,1<20.8<2,∴20.8<log 25.1<3. 结合函数g (x )的性质得b<a<c.故选C .7.(2017·天津,理7)设函数f (x )=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<π,若f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24,2πω>2π,11π8−5π8≥14·2πω, 所以23≤ω<1.所以排除C,D .当ω=23时,f (5π8)=2sin (5π8×23+φ)=2sin (5π12+φ)=2, 所以sin (5π12+φ)=1.所以5π12+φ=π2+2k π,即φ=π12+2k π(k ∈Z ). 因为|φ|<π,所以φ=π12.故选A .8.(2017·天津,理8)已知函数f (x )={x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是( )A.[-4716,2] B.[-4716,3916] C.[-2√3,2]D.[-2√3,3916]f (x )={x 2-x +3,x ≤1,x +2x,x >1易知f (x )>0恒成立. ∵关于x 的不等式f (x )≥|x2+a|在R 上恒成立, ∴关于x 的不等式-f (x )≤x2+a ≤f (x )在R 上恒成立, 即关于x 的不等式-f (x )-x2≤a ≤f (x )-x2在R 上恒成立.设p (x )=f (x )-x2,则p (x )={x 2-32x +3,x ≤1,x 2+2x,x >1.当x ≤1时,p (x )=x 2-32x+3=(x -34)2+3916, ∴当x ≤1时,p (x )min =3916.当x>1时,p (x )=x 2+2x ≥2√x 2·2x =2,当且仅当x 2=2x ,即x=2时,取等号, ∴当x>1时,p (x )min =2.∵3916>2,∴p (x )min =2. 设q (x )=-f (x )-x 2,则q (x )={-x 2+x 2-3,x ≤1,-3x 2-2x ,x >1.当x ≤1时,q (x )=-x 2+x2-3=-(x -14)2−4716,∴当x ≤1时,q (x )max =-4716.当x>1时,q (x )=-3x 2−2x =-(3x 2+2x )≤-2√3,当且仅当3x 2=2x ,即x=2√33时,取等号. ∴当x>1时,q (x )max =-2√3. ∵-4716>-2√3,∴q (x )max =-4716.∵关于x 的不等式-f (x )-x2≤a ≤f (x )-x2在R 上恒成立,∴-4716≤a ≤2.故选A .9.(2017·天津,理9)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为 .∵a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15−a+25i 为实数,∴-a+25=0,即a=-2.210.(2017·天津,理10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .a ,外接球的半径为R ,则2R=√3a.∵正方体的表面积为18,∴6a 2=18.∴a=√3,R=32.∴该球的体积为V=43πR 3=4π3×278=9π2.11.(2017·天津,理11)在极坐标系中,直线4ρcos (θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为 .4ρcos (θ-π6)+1=0,展开得2√3ρcos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2√3x+2y+1=0. ∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆的直角坐标方程为x 2+y 2-2y=0,圆心为(0,1),半径r=1. ∴圆心到直线的距离d=√3×0+2×1+1√(2√3)+2=34<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.12.(2017·天津,理12)若a ,b ∈R ,ab>0,则a 4+4b 4+1ab 的最小值为.a ,b ∈R ,且ab>0,∴a 4+4b 4+1ab≥4a 2b 2+1ab =4ab+1ab≥4(当且仅当{a 2=2b 2,4ab =1ab ,即{a 2=√22,b 2=√24时取等号).13.(2017·天津,理13)在△ABC 中,∠A=60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R ),且AD ⃗⃗⃗⃗⃗ ·AE⃗⃗⃗⃗⃗ =-4,则λ的值为 .BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ . 又AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,∠A=60°,AB=3,AC=2,AD ⃗⃗⃗⃗⃗ ·AE⃗⃗⃗⃗⃗ =-4. ∴AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =3×2×12=3,(23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-4, 即2λ3AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ 2+(λ3-23)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗=-4,∴2λ3×4-13×9+(λ3-23)×3=-4,即113λ-5=-4,解得λ=311.14.(2017·天津,理14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)没有一个数字是偶数的四位数有A 54=120个;②有且只有一个数字是偶数的四位数有C 41C 53A 44=960个.所以至多有一个数字是偶数的四位数有120+960=1 080个.15.(2017·天津,理15)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a>b ,a=5,c=6,sin B=35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.在△ABC 中,因为a>b ,故由sin B=35,可得cos B=45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B=13, 所以b=√13.由正弦定理asinA =bsinB ,得sin A=asinB b=3√1313. 所以,b 的值为√13,sin A 的值为3√1313. (2)由(1)及a<c ,得cos A=2√1313,所以sin 2A=2sin A cos A=1213,cos 2A=1-2sin 2A=-513.故sin (2A +π4)=sin 2A cos π4+cos 2A sin π4=7√226.16.(2017·天津,理16)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.随机变量X 的所有可能取值为0,1,2,3.P (X=0)=(1-12)×(1-13)×(1-14)=14, P (X=1)=12×(1-13)×(1-14)+(1-12)×13×(1-14)+(1-12)×(1-13)×14=1124,P (X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14,P (X=3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312. (2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数, 则所求事件的概率为P (Y+Z=1)=P (Y=0,Z=1)+P (Y=1,Z=0) =P (Y=0)P (Z=1)+P (Y=1)P (Z=0) =14×1124+1124×14=1148. 所以,这2辆车共遇到1个红灯的概率为1148.17.(2017·天津,理17)如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,∠BAC=90°,点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2. (1)求证:MN ∥平面BDE ; (2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为√721,求线段AH 的长.,以A 为原点,分别以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系. 依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ⃗⃗⃗⃗⃗ =(0,2,0),DB⃗⃗⃗⃗⃗⃗ =(2,0,-2), 设n =(x ,y ,z )为平面BDE 的法向量,则{n ·DE ⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗⃗ =0,即{2y =0,2x -2z =0. 不妨设z=1,可得n =(1,0,1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE.(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x ,y ,z )为平面EMN 的法向量,则{n 2·EM ⃗⃗⃗⃗⃗⃗ =0,n 2·MN⃗⃗⃗⃗⃗⃗⃗ =0. 因为EM ⃗⃗⃗⃗⃗⃗ =(0,-2,-1),MN⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1), 所以{-2y -z =0,x +2y -z =0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-√21,于是sin <n 1,n 2>=√10521.所以,二面角C-EM-N 的正弦值为√10521.(3)依题意,设AH=h (0≤h ≤4),则H (0,0,h ),进而可得NH ⃗⃗⃗⃗⃗⃗ =(-1,-2,h ),BE⃗⃗⃗⃗⃗ =(-2,2,2). 由已知,得|cos <NH ⃗⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ >|=|NH ⃗⃗⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗⃗ ||NH ⃗⃗⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗⃗ |=√ℎ+5×2√3=√721, 整理得10h 2-21h+8=0,解得h=85或h=12. 所以,线段AH 的长为85或12.18.(2017·天津,理18)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2.所以,b n =2n .由b 3=a 4-2a 1,可得3d-a 1=8.① 由S 11=11b 4,可得a 1+5d=16,② 联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n ,故T n =2×4+5×42+8×43+…+(3n-1)×4n ,4T n =2×42+5×43+8×44+…+(3n-4)×4n +(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1 =-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 19.(2017·天津,理19)设椭圆x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,右顶点为A ,离心率为12,已知A 是抛物线y 2=2px (p>0)的焦点,F 到抛物线的准线l 的距离为12. (1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D.若△APD 的面积为√62,求直线AP 的方程.设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a-c=12,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34.所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x. (2)设直线AP 的方程为x=my+1(m ≠0),与直线l 的方程x=-1联立,可得点P (-1,-2m), 故Q (-1,2m ).将x=my+1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0,解得y=0或y=-6m 3m 2+4. 由点B 异于点A ,可得点B (-3m 2+43m 2+4,-6m 3m 2+4).由Q (-1,2m ),可得直线BQ 的方程为(-6m 3m 2+4-2m )(x+1)-(-3m 2+43m 2+4+1)(y -2m )=0,令y=0,解得x=2-3m 23m 2+2,故D (2-3m 23m 2+2,0).所以|AD|=1-2-3m 23m 2+2=6m 23m 2+2. 又因为△APD 的面积为√62, 故12×6m 23m 2+2×2|m |=√62,整理得3m 2-2√6|m|+2=0,解得|m|=√63,所以m=±√63. 所以,直线AP 的方程为3x+√6y-3=0或3x-√6y-3=0.20.(2017·天津,理20)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m-x 0)-f (m ),求证:h (m )h (x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足|p q -x 0|≥1Aq 4.f (x )=2x 4+3x 3-3x 2-6x+a ,可得g (x )=f'(x )=8x 3+9x 2-6x-6,进而可得g'(x )=24x 2+18x-6.令g'(x )=0,解得x=-1或x=14. 当x 变化时,g'(x ),g (x )的变化情况如下表:所以,g (x )的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1,14).h (x )=g (x )(m-x 0)-f (m ),得h (m )=g (m )(m-x 0)-f (m ),h (x 0)=g (x 0)(m-x 0)-f (m ).令函数H 1(x )=g (x )(x-x 0)-f (x ),则H'1(x )=g'(x )(x-x 0).由(1)知,当x ∈[1,2]时,g'(x )>0,故当x ∈[1,x 0)时,H'1(x )<0,H 1(x )单调递减;当x ∈(x 0,2]时,H'1(x )>0,H 1(x )单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=-f (x 0)=0,可得H 1(m )>0,即h (m )>0. 令函数H 2(x )=g (x 0)(x-x 0)-f (x ),则H'2(x )=g (x 0)-g (x ).由(1)知g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H'2(x )>0,H 2(x )单调递增;当x ∈(x 0,2]时,H'2(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )<H 2(x 0)=0,可得H 2(m )<0,即h (x 0)<0.所以,h (m )h (x 0)<0.p ,q ,且p q ∈[1,x 0)∪(x 0,2],令m=p q ,函数h (x )=g (x )(m-x 0)-f (m ).由(2)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g (x 1)(p q -x 0)-f (p q)=0. 由(1)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2).于是|p q -x 0|=|f (p q )g (x 1)|≥|f (p q)|g (2) =|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|g (2)q 4. 因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点, 而p q ≠x 0,故f (p q)≠0. 又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1.所以|p q -x 0|≥1g (2)q 4.所以,只要取A=g (2),就有|p q -x 0|≥1Aq 4.。

2017年高考理数真题天津卷(试题及详细答案解析)

2017年高考理数真题天津卷(试题及详细答案解析)

2
2
2
5

x2
x 2
3
x
1 4
2
47 16
47 16
(当
x
1 4
时等号成立),
x2
3 2
x
3
x
3 4
2
39 16
39 16
(当
x
3 4
时等号成立),
∴ 47 a 39 ,
16
16
当 x 1 时,①式可化为 x 2 x a x 2 ,∴ 3x 2 a x 2 ,
x2
1 3
,
24
D.
1 3
,
24
8.已知函数
f
(x)
x
2
x
x
2 x
,
x
3, x 1, 1.

aR
,若关于
x
的不等式
f
(x)
|
x 2
a
|

R
上恒成立,
则 a 的取值范围是( )
A. [ 47 , 2] 16
B. [ 47 , 39] 16 16
C. [2 3, 2]
D. [2 3, 39] 16
b
13
∴ b 13 , sin A 3 13 . 13
(Ⅱ)由(Ⅰ)及 a c 得 cos A 2 13 , 13
∴ sin 2 A 2sin Acos A 12 , cos 2 A 1 2sin 2 A 5 ,
13
13

sin
2
A
4
sin
2 Acos
E,N 分别为棱 PA,PC,BC 的中点,M 是线段 AD 的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面 BDE; (Ⅱ)求二面角 C-EM-N 的正弦值;

2017年天津市部分区高考数学一模试卷(理科) --有答案

2017年天津市部分区高考数学一模试卷(理科) --有答案

2017年天津市部分区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1 B.0 C.1 D.23.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4 B.6 C.8 D.104.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3 B.2C.4D.125.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1 B.=1C.=1 D.=17.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=.10.(﹣)7的展开式中,x﹣1的系数是.(用数字填写答案)11.某三棱锥的三视图如图所示,则该几何体的体积为.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[,]时,求函数f(x)的最大值和最小值.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:(Ⅱ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅱ)求二面角P﹣AB﹣C的余弦值;(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n项和T n.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.2017年天津市部分区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)【考点】交、并、补集的混合运算.【分析】先分别求出集合A和B,从而得到C R A,由此能求出集合A∩(∁R B).【解答】解:∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≤﹣3或x≥3},∴C R A={x|﹣3<x<3},集合A∩(∁R B)={1,2}.故选:A.2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1 B.0 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,3),化目标函数z=x﹣y为y=x﹣z.由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为0.故选:B.3.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4 B.6 C.8 D.10【考点】程序框图.【分析】利用循环结构可知道需要循环4次,根据条件求出i的值即可.【解答】解:第一次循环,s=﹣2<5,s=﹣1,i=2,第二次循环,s=﹣1<7,s=1,i=4,第三次循环,s=1<9,s=5,i=6,第四次循环,s=5<11,s=13,i=8,第五次循环,s=13≥13,此时输出i=8,故选:C.4.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3 B.2C.4D.12【考点】正弦定理.【分析】由已知及正弦定理可得:c=,进而利用余弦定理即可求得a的值.【解答】解:∵sinA﹣2sinC=0,∴由正弦定理可得:c=,∵B=,b=6,∴由余弦定理b2=a2+c2﹣2accosB,可得:62=a2+(a)2﹣2a,整理可得:a=4,或﹣4(舍去).故选:C.5.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】解不等式,求出关于p的x的范围,根据函数的性质求出关于q的x的范围,根据集合的包含关系判断充分必要条件即可.【解答】解:由x2﹣4x+3≤0,解得:1≤x≤3,故命题p:1≤x≤3;f(x)==x+,x>0时,f(x)有最小值2,x<0时,f(x)有最大值﹣2,故命题q:x≠0,故命题p是命题q的充分不必要条件,故选:A.6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1 B.=1C.=1 D.=1【考点】圆锥曲线的综合.【分析】确定抛物线y2=20x的焦点坐标、双曲线﹣=1(a>0,b>0)的一条渐近线的方程,利用抛物线的焦点到双曲线渐近线的距离为4,求出b,a,即可求出双曲线的方程.【解答】解:抛物线y2=20x的焦点坐标为(5,0),双曲线﹣=1(a>0,b>0)的一条渐近线的方程为bx+ay=0,∵抛物线的焦点到双曲线渐近线的距离为4,∴=4,即b=4,∵c=5,∴a=3,∴双曲线方程为:=1.故选:D.7.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣【考点】向量在几何中的应用.【分析】利用已知条件,建立直角坐标系,求出相关点的坐标,然后求解向量的数量积.【解答】解:建立如图所示的直角坐标系:在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则A(0,0),B(1,0),C(﹣1,),O(0,),M(0,),=(1,﹣),=(﹣1,)=﹣1﹣=﹣.故选:D.8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)【考点】根的存在性及根的个数判断.【分析】由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,判断x≤0,与x>0交点的情况,列出关于a的不等式,解之可得答案.【解答】解:g(x)=f(x)+2x﹣a=,函数g(x)=f(x)+2x﹣a有三个零点,可知:函数图象的左半部分为单调递增指数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=﹣a﹣1,最多两个零点,如上图,要满足题意,函数y=2x+2x是增函数,x≤0一定与x相交,过(0,1),g(x)=2x+2x ﹣a,与x轴相交,1﹣a≥0,可得a≤1.还需保证x>0时,抛物线与x轴由两个交点,可得:﹣a﹣1>0,△=4(a+1)2﹣4(1﹣a)>0,解得a<﹣3,综合可得a<﹣3,故选:C.二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=4.【考点】复数代数形式的乘除运算.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,再根据两个复数相等的充要条件求得a、b的值,可得a+b的值.【解答】解:=ai,则===ai,∴2﹣b=0,2+b=2a,∴b=2,a=2,∴a+b=4,故答案为:410.(﹣)7的展开式中,x﹣1的系数是﹣280.(用数字填写答案)【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于﹣1,求出r的值,即可求得x﹣1的系数.=•(﹣2)r•,令=﹣1,求【解答】解:∵(﹣)7的展开式的通项公式为T r+1得r=3,可得x﹣1的系数为•(﹣8)=﹣280,故答案为:﹣280.11.某三棱锥的三视图如图所示,则该几何体的体积为2.【考点】由三视图求面积、体积.【分析】根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,求出它的体积.【解答】解:根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,计算三棱锥的体积为V=××2×2×3=2.故答案为:2.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为1.【考点】定积分.【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】1解:先根据题意画出图形,得到积分上限为1,积分下限为0,曲线y=4x3与直线y=4x在第一象限所围成的图形的面积是∫01(4x﹣4x3)dx,而∫01(4x﹣4x3)dx=(2x2﹣x4)|01=2×1﹣1=1∴曲边梯形的面积是1,故答案为:1.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为x+y﹣4=0.【考点】直线的参数方程.【分析】普通方程为y﹣1=a(x﹣3),过定点P(3,1),当弦长|AB|最短时,CP⊥AB,求出CP的斜率,可得AB的斜率,即可得出结论.【解答】解:直线l的参数方程为,普通方程为y﹣1=a(x﹣3),过定点P(3,1)曲线C的参数方程为(α为参数),普通方程为(x﹣2)2+y2=4,当弦长|AB|最短时,CP⊥AB,∵k CP==1,k AB=﹣1∴直线l的普通方程为x+y﹣4=0,故答案为:x+y﹣4=0.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】利用函数是偶函数得到不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),即|log2|x+1||<1∴﹣1<log2|x+1|<1,解得x的取值范围是.故答案为.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[,]时,求函数f(x)的最大值和最小值.【考点】三角函数的周期性及其求法;三角函数的最值.【分析】(Ⅰ)利用和与差公式打开,根据二倍角公式和辅助角公式化解为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,(Ⅱ)当x∈[,]时,求出内层函数的取值范围,结合三角函数的图象和性质,可求出f (x)的最大值和最小值.【解答】解:(Ⅰ)==,∴函数f(x)的最小正周期.(Ⅱ)由(Ⅰ)知,∵,∴,∴,故当时,函数f(x)的最大值为.当时,函数f(x)的最小值为.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:(Ⅱ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为,由此能求出这2名学生不属于同一班级的概率.(Ⅱ)X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(本小题满分13分)解:(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为…设2名学生不属于同一班级的事件为A所以.…(Ⅱ)X可能的取值为0,1,2,3,,,,.…所以X的分布列为所以.…17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅱ)求二面角P﹣AB﹣C的余弦值;(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取PD的中点F,连接EF,CF,证明BE∥CF即可;(Ⅱ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,求出法向量即可;(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,求出法向量即可;(Ⅲ)建系同(II)利用向量求解.【解答】解:(Ⅰ)证明:取PD的中点F,连接EF,CF∵E,F分别是PA,PD的中点,∴EF∥AD且;…∵,BC∥AD,∴EF∥BC且EF=BC;∴BE∥CF.…又BE⊄平面PCD,CF⊂平面PCD,∴BE∥平面PCD.…(Ⅱ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,,.…设平面PAB的一个法向量为n=(x,y,z),则从而令x=2,得n=(2,0,﹣1).…同理可求平面ABD的一个法向量为.….平面ABD和平面ABC为同一个平面,所以二面角P﹣AB﹣C的余弦值为.…(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,C(0,0,1),B(1,0,1),,…设平面PAB的一个法向量为=(x,y,z),则,,令,得x=z=1,即.…易求平面ABC的一个法向量为.….所以二面角P﹣AB﹣C的余弦值为.…(Ⅲ)(方法一)建系同(II)(方法一),设Q(0,x,0),由(II)知平面ABCD的一个法向量为,;…若BQ与平面ABCD所成的角为,则==sin解得,所以Q(0,,0),,.…(方法二)建系同(II)(方法二),设,则,,由(II)知平面ABCD的一个法向量为.…若BQ与平面ABCD所成的角为,则.解得,则,从而…18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n项和T n.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,可得{a n}为等差数列.再利用等差数列的通项公式与求和公式即可得出.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1),lgb1+lgb2+…+lgb n ﹣1=lg(2n﹣1),作差可得b n=,(n≥2).c n==,再利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,所以{a n}为等差数列.由a6=11,前9项和为81,得a1+5d=11,d=81,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1)…①,lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1)…②①﹣②,得,∴b n=,(n≥2).b1=3满足上式,因此b n=,(n≥2).c n==,∴数列{c n}的前n项和T n=+…++,又2T n=+…+,以上两式作差,得T n=+2﹣,,因此,T n=﹣.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意,得,然后求解离心率即可.(Ⅱ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.求出椭圆方程,直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y,设A(x1,y1),B(x2,y),利用韦达定理求出AB的中点,推出﹣,且m≠0,利2用弦长公式以及三角形的面积,推出结果即可.【解答】(本小题满分13分)解:(Ⅰ)由题意,得,…则,结合b2=a2﹣c2,得,即2c2﹣3ac+a2=0,…亦即2e2﹣3e+1=0,结合0<e<1,解得.所以椭圆C的离心率为.…(Ⅱ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.所以椭圆方程为.…易得直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y得(3+4k2)x2+8kmx+4m2﹣12=0,所以△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)>0.设A(x1,y1),B(x2,y2),则,.…由,得AB的中点,因为N在直线上,所以,解得k=﹣.…所以△=48(12﹣m2)>0,得﹣,且m≠0,|AB|=|x2﹣x1|===.又原点O到直线l的距离d=,…所以.当且仅当12﹣m2=m2,m=时等号成立,符合﹣,且m≠0.所以△OAB面积的最大值为:.…20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围判断函数的单调性即可;(Ⅲ)根据函数的极值的个数求出a的范围,求出4f(x1)﹣2f(x2)的解析式,根据函数的单调性证明即可.【解答】解:(Ⅰ)当a=1时,f(x)=﹣x2+x﹣lnx,f′(x)=﹣x+1﹣,则f(1)=,f'(1)=﹣1,所以所求切线方程为y﹣=﹣(x﹣1),即2x+2y﹣3=0.(Ⅱ)由f(x)=﹣x2+ax﹣lnx,得f′(x)=﹣x+a﹣=﹣.令g(x)=x2﹣ax+1,则f′(x)=﹣,①当△=a2﹣4<0,即﹣2<a<2时,g(x)>0恒成立,则f′(x)<0,所以f)x)在(0,+∞)上是减函数.②当△=0,即a=±2时,g(x)=x2±2x+1=(x±1)2≥0,则f′(x)≤0,所以f(x)在(0,+∞)上是减函数.③当△=a2﹣4>0,即a<﹣2或a>2.(i)当a<﹣2时,g(x)=x2﹣ax+1是开口向上且过点(0,1)的抛物线,对称轴方程为x=(<﹣1),则g(x)>0恒成立,从而f′(x)<0,所以f(x)在(0,+∞)上是减函数.(ii)当a>2时,g(x)是开口向上且过点(0,1)的抛物线,对称轴方程为x=(>1),则函数g(x)有两个零点:,列表如下:当a>2时,f(x)的增区间是,减区间是,.(Ⅲ)证明:根据(Ⅱ),当a>2时,f(x)有两个极值点x1,x2,(x1<x2),则x1,x2是方程g(x)=0的两个根,从而.由韦达定理,得x1x2=1,x1+x2=a.又a﹣2>0,所以0<x1<1<x2====.令,h(t)=﹣t+3lnt+2,(t>1),则.当1<t<2时,h'(t)>0;当t>2时,h′(t)<0,则h(t)在(1,2)上是增函数,在(2,+∞)上是减函数,从而h(t)max=h(2)=3ln2+1,于是4f(x1)﹣2f(x2)≤1+3ln2.。

2017年高考理科数学天津卷(含答案解析)

2017年高考理科数学天津卷(含答案解析)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷参考公式:·如果事件,A B 互斥,那么()()()P AB P A P B =+.·如果事件,A B 相互独立,那么()()()P AB P A P B =.·棱柱的体积公式V Sh =.其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式343V R π=.其中R 表示球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,2,6A =,{}2,4B =,{}|15C x R x =∈-≤≤,则()A B C =A .{}2B .{124},,C .16}2{4,,, D .{}1|5x R x ∈-≤≤2.设变量x ,y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为A .23B .1C .32D .33.阅读右边所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的 A .0B .1C .2D .34.设θ∈R ,则“ππ121||2θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.已知双曲线()222210,0x y a b a b-=>>的左焦点为F.若经过F 和()0,4P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144y x -= B .22188y x -= C .22148y x -= D .22184y x -=6.已知奇函数f x ()在R 上是增函数,g x xf x =()().若25.1a g log =-(),0.82b g =(),3c g =(),则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<7.设函数2sin f x x ωϕ=+()(),x ∈R ,其中0ω>,πϕ<.若5π28f ⎛⎫=⎪⎝⎭,11π08f ⎛⎫= ⎪⎝⎭,且f x ()的最小正周期大于2π,则 A .2π,312ωϕ== B .211π,312ωϕ==-C .111π,324ωϕ==-D .17π,324ωϕ==8.已知函数()23,1,2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()2f x a x ≥+在R 上恒成立,则a 的取值范围是毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)A .47,216⎡⎤⎢⎥⎣⎦-B .4739,1616-⎡⎤⎢⎥⎣⎦C.2-⎡⎤⎣⎦D.3916-⎡⎤⎢⎥⎣⎦第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 10.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .11.在极坐标系中,直线π4cos 106ρθ⎛⎫-+= ⎪⎝⎭与圆2sin ρθ=的公共点的个数为 .12.若a ,b ∈R ,0ab >,则4441a b ab++的最小值为 .13.在ABC ∆中,60A ∠=︒,3AB =,2AC =.若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为 .14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (1)求b 和sin A 的值; (2)求π24sin A +()的值. 16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(本小题满分13分)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证:MN ∥平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为21,求线段AH 的长.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n S n ∈Ν(),{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和*n ∈N ().19.(本小题满分14分)设椭圆222210x y a ba b +=>>()的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线()220y px p =>的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD ∆AP 的方程.20.(本小题满分14分)设a Z ∈,已知定义在R 上的函数()4322336f x x x x x a =+--+在区间()12,内有一个零点0x ,()g x 为()f x 的导函数. (1)求()g x 的单调区间;(2)设0012[]m x x ∈,)(,,函数()()()()0h x g x m x f m =--,求证:()()00h m h x <;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且00[]12qx x p∈,)(,,满足041p x q Aq -≥.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2017年普通高等学校招生全国统一考试(天津卷)数学答案解析1.【答案】B 【解析】{}(){}1,2,4,6,1,2,4AB A BC ==,选项B 符合.【提示】解题时应根据集合的运算法则,以及集合元素的三大特征,借助数轴或图示求解.【考点】集合的运算 2.【答案】D【解析】作出约束条件所表示的可行域如图中阴影部分所示,由z x y =+得y x z =-+,作出直线y x =-,平移使之经过可行域,观察可知,最优解在()03B,处取得,故max 033z =+=,选项D 符合.【提示】常常需画出约束条件所表示的可行域,画图时一定要注意边界是实线还是虚线,求解时要注意z 的几何意义。

2017天津高考真题数学理(含解析)

2017天津高考真题数学理(含解析)

2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)第I卷一、选择题(共8小题,每小题5分,共40分):在每小题给出的四个选项中,只有一项符合题目要求. (1)已知全集,集合,集合,则集合(A)(B)(C)(D)(2)设变量、满足约束条件,则目标函数的最大值为(A)(B)(C)(D)(3)阅读右边的程序框图,运行相应的程序,则输出的值为(A)(B)(C)(D)(4)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(5)如图,在圆中,、是弦的三等分点,弦、分别经过点、.若,,,则线段的长为(A)(B)(C)(D)(6)已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线的准线上,则双曲线的方程为(A)(B)(C)(D)(7)已知定义在上的函数(为实数)为偶函数,记,,,则、、的大小关系为(A)(B)(C)(D)(8)已知函数函数,其中,若函数恰有4个零点,则的取值范围是(A)(B)(C)(D)第II卷二、填空题(本大题共6小题,每小题5分,共30分).(9)是虚数单位,若复数是纯虚数,则实数的值为.(10)一个几何体的三视图如图所示(单位:),则该几何体的体积为.(11)曲线与直线所围成的封闭图形的面积为.(12)在的展开式中,的系数为.(13)在中,内角、、所对的边分别为、、,已知的面积为,,则的值为.(14)在等腰梯形中,已知,,,,动点和分别在线段和上,且,,则的最小值为.三、解答题(本大题共6小题,共80分),解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数,(I)求最小正周期;(II)求在区间上的最大值和最小值.16.(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.(I)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;(II)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.17.(本小题满分13分)如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点.(I)求证:平面;(II)求二面角的正弦值;(III)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长18.(本小题满分13分)已知数列满足(为实数,且),,,,且,,成等差数列.(I)求的值和的通项公式;(II)设(),求数列的前项和.19.(本小题满分14分)已知椭圆的左焦点为,离心率为,点在椭圆上且位于第一象限,直线被圆截得的线段的长为,.(I)求直线的斜率;(II)求椭圆的方程;(III)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.20.(本小题满分14分)已知函数(),其中,.(I)讨论的单调性;(II)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(III)若关于的方程(为实数)有两个正实根、,求证:.2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)第I卷一、选择题(满分40分)题号 1 2 3 4 5 6 7 8答案 A C B A A D C D二、填空题(满分30分)9.10.11.12.13.14.三、解答题(满分80分)15.(本小题满分13分)解:(Ⅰ)由题意可知所以.(Ⅱ)因为,所以,,所以的最小值为,最大值为.16.(本小题满分13分)解:(Ⅰ)设事件:“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”.由题意可知,.(Ⅱ)由题意,的可能取值为,,,.由题意可知,,,,.所以的分布列为:所以.17.(本小题满分14分)证明:(Ⅰ)在,且与交于点,由题意可知四棱柱中,所以,又因为为的中点,所以,,又因为为的中点,所以,.所以四边形是平行四边形.所以.平面因为平面,所以平面.(Ⅱ)以为轴,为轴,为轴建立空间直角坐标系,如图:则,,,,,,平面的法向量为,为,,,令得,.设平面的法向量为,、为,,,令得,.所以,因为二面角为锐角,所以二面角的正弦值为.(Ⅲ)设,,,.所以.平面的法向量为,由已知得,,解得,所以,线段的长为.18.(本小题满分13分)解:(I)依题意,,.因为,,成等差数列,所以,所以,或者(舍)当时,;当时,。

天津市部分区2017届高三质量调查理科数学试题(一)含答案(1)

天津市部分区2017届高三质量调查理科数学试题(一)含答案(1)
2017 届山西省三区(县)八校联合高考模拟
数学试题(文科)
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分 . 在每个小题给出的四个选项中,有 且只有一项符合题目要求 .
1. 在 ABC 中,角 A,B,C 的对边分别为 a,b,c , 则“ a b ”是“ sin A sin B ”的
.
17. (本题满分 12 分)
已知函数 f x
3 sin 2x
cos2 x
1 ,x
R.
2
2
( 1 )求函数 f x 的最小值和最小正周期; ( 2 )设 ABC 的内角 A,B,C 的对边分别为 a,b,c ,且满足 c 3, f C 0,sin B 2sin A ,求 a,b 的值 .
18. (本题满分 12 分) 山西某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(本科学历)的
直线 y
5 上找到一点 P, 在椭圆 C 上找到一点 Q, 满足 PM
NQ ?若存在,求出直线 l 的
3
方程;若不存在,说明理由 .
21. (本题满分 12 分)
已知函数 f x ln x ax2 bx (其中 a, b 为常数,且 a 0)在 x 1 处取得极值 . ( 1 )当 a 1时,求 f x 的单调区间; ( 2 )若 f x 在 0,e 上的最大值为 1,求 a 的值 .
5 的概率为 ,求 x, y 的值 .
39
19. (本题满分 12 分) 如图,已知多面体 EABCDF 的底面 ABCD 是边长为 2 的正方形, EA
1 且 FD EA 1.
2
( 1 )求多面体 EABCDF 的体积; ( 2 )求直线 EB 与平面 ECF 所成角的正弦值; ( 3 )记线段 BC 的中点为 K, 在平面 ABCD 内过点 K 作一 条直线与平面 ECF 平行,要求保留作图的痕迹, 但不要求证明 .

2017天津和平区高三一模【理】数学真题卷

2017天津和平区高三一模【理】数学真题卷

2017年天津市和平区高考数学一模试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.设集合{}1,1,2A =-,{}21,2B a a =+-,若{}1,2A B =- ,则a 的值为().A .2-或1B .0或1C .2-或1-D .0或2-【答案】A【解析】∵集合{}1,1,2A =-,{}21,2B a a =+-,{}1,2A B =- ,∴21122a a +=-⎧⎨-=⎩或21221a a +=⎧⎨-=-⎩,解得2a =-或1a =.故选A .2.设变量x ,y 满足约束条件3010230x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,则目标函数32z x y =+的取值范围是().A .[6,22]B .[7,22]C .[8,22]D .[7,23]【答案】B【解析】由约束条件3010230x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,作可行域如图.由32z x y =+,结合图形可知,当直线分别经过可行域内的点A ,B 时,目标函数取得最值, 由:10230x y x y -+=⎧⎨--=⎩,可得(4,5)A ,由103x y x y -+=⎧⎨+=⎩可得(1,2)B 时,目标函数取得最小值和最大值,分别为max 342522z =⨯+⨯=,min 31227z =⨯+⨯=. 目标函数的范围:[7,22]. 故选B .3.在ABC △中,若4AB =,3AC BC ==,则sin C 的值为().A .23B .19CD【答案】D【解析】在ABC △中, ∵4AB =,3AC BC ==,∴2222223341cos 22339AC BC AB C AC BC +-+-===⋅⨯⨯,∴sin C = 故选D .4.阅读如图的程序框图,运行相应的程序,则输出的S 的值为().A .32B .53C .4124D .10360【答案】C 【解析】模拟执行程序框图,可得 1i =,0S =,1k =;1k =,不满足条件4i >,1S =,2i =;12k =,不满足条件4i >,32S =,3i =;16k =,不满足条件4i >,53S =,4i =;124k =,不满足条件4i >,4124S =,5i =;1120k =,满足条件4i >,退出循环,输出4124S =. 故选C .5.“||1|25|x x ++-≤”是“23x -≤≤”的(). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由||1|25|x x ++-≤,2x ≥时,化为215x -≤,解得23x ≤≤;12x -<≤时,化为1(2)5x x +--≤,化为:35≤,因此12x -<≤;1x <-时,化为125x x ---+≤,解得21x -<-≤. 综上可得:23x -≤≤.∴“||1|25|x x ++-≤”是“23x -≤≤”的充要条件. 故选C .6.已知A 、B 分别为双曲线22221(0,0)x y a b a b-=>>的左、右顶点,P 为双曲线上一点,且ABP △ABP ∠的度数为(). A .30︒ B .60︒ C .120︒ D .30︒或120︒ 【答案】Da b =,双曲线方程为222x y a -=,若||||2AB BP a ==,设(,)P m n ,则222222()4m n am a n a ⎧-=⎪⎨-+=⎪⎩, ∴2m a =,∴60PBx ∠=︒, ∴120ABP ∠=︒,若||||2AB AP a ==,设(,)P m n ,则222222()4m n am a n a ⎧-=⎪⎨++=⎪⎩, ∴2m a =-,∴120PAB ∠=︒, ∴30ABP ∠=︒, 故选D .7.如图,在平行四边形ABCD 中,π3BAD ∠=,2AB =,1AD =,若M 、N 分别是边AD 、CD 上的点,且满足MD NCAD DCλ==,其中1[]0,λ∈,则AN BN ⋅ 的取值范围是().A .[]3,1﹣B .[3,1]--C .[]1,1-D .[1,3]【答案】B【解析】建立如图所示的以A 为原点,AAB ,AD 所在直线为x ,y 轴的直角坐标系,则(2,0)B ,(0,0)A,12D ⎛ ⎝⎭.∵满足MD NCAD DCλ==,1[]0,λ∈, (1)(1)AN AD DN AD DC AD AB λλ=+=+-=+-1(1)(2,0)2λ⎛=+- ⎝⎭522λ⎛=- ⎝⎭, (1)BM BA AM AB AD λ=+=-+-131(2,0)(1))222λλλ⎛⎛⎫=-+-=--- ⎪ ⎪⎝⎭⎝⎭,则5312)222AN BM λλλ⎛⎛⎫⋅=-⋅--- ⎪ ⎪⎝⎭⎝⎭5312)222λλλ⎛⎫⎛⎫=---- ⎪⎪⎝⎭⎝⎭22113324λλλ⎛⎫=+-=+- ⎪⎝⎭,因为1[]0,λ∈,二次函数的对称轴为:12λ=-,则[0,1]为增区间,故当1[]0,λ∈时,2[3,]31λλ-+-∈-. 故选B .8.已知函数22|23|,2()213,2x x x f x x x x ⎧+-<⎪⎨--+⎪⎩≥,若关于x 的方程()0f x m -=恰有五个不相等的实数解,则m 的取值范围是().A .[0,4]B .(0,4)C .(4,5)D .(0,5)【答案】B【解析】作出函数的图像,如图所示,关于x 的方程()0f x m -=恰有五个不相等的实数解,则()y f x =与y m =有五个不同的交点, ∴04m <<, 故选B .二、填空题 9.(5分)已知复数12ii 1ia b +=++,则a b +=__________. 【答案】2【解析】∵i (12i)(1i)3i i=+i 1i (1i)(1i)1231222a b +===++-+++-, ∴32a =,12b =,则31222a b +=+=,故答案为2.10.(5分)8x y ⎛ ⎝的展开式中2x 的系数为__________.(用数字作答) 【答案】70【解析】8382188C (1)C rrr r r r r x T x y --+⎛⎫⎛==- ⎪ ⎝⎝⎭,令3822r -=,解得4r =, ∴展开式中2x 的系数48C 70==. 故答案为70.11.(5分)已知一个几何体的三视图如图所示(单位:cm ),则该几何体的体积为__________3cm .【答案】20【解析】根据几何体的三视图知,该几何体是直三棱柱, 切去一个三棱锥,如图所示;该几何体的体积为311134423420cm 232V =⨯⨯⨯-⨯⨯⨯⨯=.故答案为20.12.(5分)在直角坐标系xOy ,直线l的参数方程为112x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C 的极坐标方程式4cos ρθ=-,则圆C 的圆心到直线l 的距离为__________. 【答案】12. 【解析】直线l的参数方程为112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),普通方程为10x +=,圆4cos ρθ=-即24cos ρρθ=-,即2240x y x ++=,即22(2)4x y ++=, 表示以(2,0)-为圆心,半径等于2的圆. ∴圆C 的圆心到直线l12=,正视图侧视图俯视图C 1B 1A 1CBA故答案为12.13.(5分)已知32()36f x x x x =++,()1f a =,()9f b =-,则a b +的值为__________. 【答案】2-【解析】∵32()36f x x x x =++,()1f a =,()9f b =-, ∴3()(1)316f x x x x +--=+ 3(1)31x x =++- 3(1)3(1)4x x =+++-,∴函数()f x 的图像于(1,4)--对称, ∵()1f a =,()9f b =-,∴(,())a f a ,(,())b f b 恰好关于(1,4)--对称, ∴2a b +=-. 故答案为2-.14.(5分)若不等式223()x y mx x y ++≥对于x ∀,y ∈R 恒成立,则实数m 的取值范围是__________. 【答案】[]6,2-【解析】∵223()x y mx x y ++≥恒成立,即22(3)0m x my x y ⋅+--≥恒成立, ∴222304(3)0m m y m y ->⎧⎨--⎩≤, ∴2304120m m m ->⎧⎨+-⎩≤,解得62m -≤≤.故答案为[]6,2-.三、解答题15.(13分)已知函数2πππ()cos 2cos (0)444f x ax ax ax a ⎛⎫⎛⎫⎛⎫=--+-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且函数的最小正周期为π2. (1)求a 的值. (2)求()f x 在π0,4⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)2.(2)最大值3和最小值1.【解析】(1)函数2πππ()cos 2cos (0)444f x ax ax ax a ⎛⎫⎛⎫⎛⎫=--+-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简可得:ππ()2cos 2122f x ax ax ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭sin21ax ax =++π2sin 213ax ⎛⎫=-+ ⎪⎝⎭,∵函数的最小正周期为π2.即π2T =, 由2π2T a=,可得2a =, ∴a 的值为2.故π()2sin 413f x x ⎛⎫=-+ ⎪⎝⎭.(2)π0,4x ⎡⎤∈⎢⎥⎣⎦时,π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,当π403x +=时,函数()f x 取得最小值为1, 当ππ432x +=时,函数()f x 取得最大值为2113⨯+=,∴()f x 在π0,4⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为1.16.(13分)理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可) (2)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:规定85分以上3名同学中物理和化学成绩均为优秀的人数为X ,求随机变量X 的分布列和数学期望.【答案】(1)34912C C .(2)9()7E X =. 【解析】(1)如果按照性别比例分层抽样,则从9名女生、12名男生,从中随机抽取一个容量为7的样本,抽取的女生为3人,男生为4人.可以得到34912C C 个不同的样本.(2)这7名同学中物理和化学成绩均为优秀的人数为3人,抽取的3名同学中物理和化学成绩均为优秀的人数X 可能取值为0,1,2,3,则33437()C C C k k P X k -==,可得4(0)35P X ==,18(1)35P X ==,12(2)35P X ==,1(3)35P X ==. 其X 分布列为:数学期望18()01233535357E X =+⨯+⨯+⨯=.17.(13分)如图,四棱锥PABCD -中,PA ⊥底面ABCD ,AB DC ∥,DA AB ⊥,2AB AP ==,1DA DC ==,E 为PC 上一点,且23PE PC =.(1)求PE 的长.(2)求证:AE ⊥平面PBC . (3)求二面角B AE D --的度数.【答案】 (1. (2)见解析. (3)120︒.【解析】(1)解:∵四棱锥P ABCD -中,PA ⊥底面ABCD ,AB DC ∥,DA AB ⊥, 2AB AP ==,1DA DC ==,E 为PC 上一点,AE CBPDAE CBPD且23PE PC =,∴AC∴6PC ,∴23PE PC == (2)证明:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 则(0,0,0)A ,(1,1,0)C ,(0,0,2)P ,222,,333E ⎛⎫⎪⎝⎭,(2,0,0)B ,222,,333AE ⎛⎫= ⎪⎝⎭ ,(2,0,2)PB =- ,(1,1,2)PC =-,44033AE PB ⋅=-= ,2240333AE PC ⋅=+-= ,∴AE PB ⊥,AE PC ⊥, 又PB PC P = ,∴AE ⊥平面PBC .(3)解:(0,1,0)D ,(2,0,0)AB = ,(0,1,0)AD =,222,,333AE ⎛⎫= ⎪⎝⎭, 设平面ABE 的法向量(,,)n x y z =,则202220333n AB x n AE x y z ⎧⎪⋅=⎨⎪=⋅=+=⎩+,取1y =,得(0,1,1)n =- , 设平面ADE 的法向量(,,)m a b c =,则0222333m AD b m AE a b c ⎧⋅==⎪⎨⋅=++=⎪⎩,取1a =,得(1,0,1)m =- , 设二面角B AE D --的度数为θ,则||1cos(π)cos ,2||||m n m n m n θ⋅-=<>==⋅. ∴120θ=︒,∴二面角B AE D --的度数为120︒.18.(13分)设n S 是数列{}n a 的前n 项和,已知11a =,121()*n n a S n +=+∈N . (1)求数列{}n a 的通项公式.(2)若31n nb n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)13n n a -=.(2)3553244n n ⎛⎫-⋅+ ⎪⎝⎭. 【解析】(1)∵121n n a S +=+,∴121n n a S -=+,(2)n ≥,两式相减得:12n n n a a a +=-,即13n na a +=. 又1n =时,21213a a =+=, ∴213a a =, ∴{}n a 是以1为首项,以3为公比的等比数列,∴13n n a -=.(2)1(31)(31)3n n n b n a n -=-=-⋅,∴0121235383(31)3n n T n -=⋅+⋅+⋅++-⋅ ①,∴1233235383(31)3n n T n =⋅+⋅+⋅++-⋅ ②,∴23422333331)3(n n n T n -=++++--+⋅3(13)551(31)3331322n n n n n -⎛⎫=---⋅=-⋅- ⎪-⎝⎭, ∴3553244n n n T ⎛⎫=-⋅+ ⎪⎝⎭.19.(14分)已知椭圆2222:=1(0)x y E a b a b+>>经过点,且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等边三角形.(1)求椭圆E 的方程.(2)设(,)P x y 是椭圆E 上的动点,(2,0)M 为一定点,求||PM 的最小值及取得最小值时P 点的坐标.【答案】(1)221164x y +=. (2)8,3⎛- ⎝⎭.【解析】(1)由题意可知:2b a =,将代入椭圆方程:222214x y b b+=, 解得:24b =,216a =,∴椭圆E 的方程221164x y +=. (2)由222||(2)PM x y =-+,由(,)P x y 在椭圆上,(44)x -≤≤则2244x y =-, ∴2223388||4444844433x PM x x x x x ⎛⎫=++-=-+=++ ⎪⎭-⎝, ∴当83x =-时,||PM, ∴当83x =-,解得:y =, ∴||PM,P点的坐标8,3⎛- ⎝⎭.20.(14分)设函数21()ln 2f x x a x =+,(0)a <. (1)若函数()f x 的图像在点(2,(2))f 处的切线斜率为12,求实数a 的值. (2)求()f x 的单调区间.(3)设2(()1)g x x a x =-,当1a -≤时,讨论()f x 与()g x 图像交点的个数.【答案】(1)3-.(2)当0a <时,()f x 的增区间是)+∞,减区间是. (3)1.【解析】(1)函数21()ln 2f x x a x =+的导数为()a f x x x'=+, 由函数()f x 的图像在点(2,(2))f 处的切线斜率为12, 可得1222a +=,解得3a =-. (2)函数()f x 的定义域为(0,)+∞,2()x a f x x+'=,当0a <时,()f x '=当0x <<()0f x '<,函数()f x 单调递减,当x >时,()0f x '>,函数()f x 单调递增.综上,当0a <时,()f x 的增区间是)+∞,减区间是.(3)令221()()()ln (1)2F x f x g x x a x x a x =-=+-+- 21(1)ln 2x a x a x =-+-+,0x >, 问题等价于求函数()F x 的零点个数.当1a -≤时,(1)()()1a x x a F x x a x x-+'=-+-+=-, ①当1a =-时,()0F x '≤,()F x 递减, 由93(3)6ln3ln3022F =-+-=->,(4)88ln 40F =-+-<, 由零点存在定理可得()F x 在(3,4)内存在一个零点;②当1a -时,即1a ->时,()F x 在(0,1)递减,(1,)a -递增,(,)a -+∞递减, 由极小值11(1)(1)ln1022F a a a =+-+=->, 极大值22211()ln()ln()022F a a a a a a a a a a -=-++-=+-->-, 由x →+∞时,()F x →-∞, 可得()F x 存在一个零点.综上可得,当1a -≤时,()f x 与()g x 图像交点的个数为1.。

2017年天津市高考数学试卷真题及答案(理科)

2017年天津市高考数学试卷真题及答案(理科)

2017年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|﹣1≤x≤5}2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.33.(5分)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1 C.2 D.34.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=16.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2,2] D.[﹣2,]二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为.10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为.12.(5分)若a,b∈R,ab>0,则的最小值为.13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.14.(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.16.(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(13分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).19.(14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.20.(14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.2017年天津市高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•天津)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|﹣1≤x≤5}【分析】由并集概念求得A∪B,再由交集概念得答案.【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|﹣1≤x≤5},∴(A∪B)∩C={1,2,4}.故选:B.【点评】本题考查交、并、补集的混合运算,是基础题.2.(5分)(2017•天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3.故选:D.【点评】本题考查线性规划的简单应用,考查计算能力以及数形结合思想的应用.3.(5分)(2017•天津)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1 C.2 D.3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次N=24,能被3整除,N=≤3不成立,第二次N=8,8不能被3整除,N=8﹣1=7,N=7≤3不成立,第三次N=7,不能被3整除,N=7﹣1=6,N==2≤3成立,输出N=2,故选:C【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.4.(5分)(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊂[﹣+2kπ,+2kπ],k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.5.(5分)(2017•天津)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=1【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.【解答】解:设双曲线的左焦点F(﹣c,0),离心率e==,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过F和P(0,4)两点的直线的斜率k==,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B.【点评】本题考查双曲线的简单几何性质,等轴双曲线的应用,属于中档题.6.(5分)(2017•天津)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,即可求得b<a<c【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.7.(5分)(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【分析】由题意求得,再由周期公式求得ω,最后由若f()=2求得φ值.【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题.8.(5分)(2017•天津)已知函数f(x)=,设a∈R,若关于x 的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2,2] D.[﹣2,]【分析】讨论当x≤1时,运用绝对值不等式的解法和分离参数,可得﹣x2+x ﹣3≤a≤x2﹣x+3,再由二次函数的最值求法,可得a的范围;讨论当x>1时,同样可得﹣(x+)≤a≤+,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围.【解答】解:当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值,则﹣≤a≤①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2②由①②可得,﹣≤a≤2.故选:A.【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2017•天津)已知a∈R,i为虚数单位,若为实数,则a的值为﹣2.【分析】运用复数的除法法则,结合共轭复数,化简,再由复数为实数的条件:虚部为0,解方程即可得到所求值.【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.10.(5分)(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键.11.(5分)(2017•天津)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2.【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,与半径比较即可得出位置关系.【解答】解:直线4ρcos(θ﹣)+1=0展开为:4ρ+1=0,化为:2x+2y+1=0.圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y﹣1)2=1.∴圆心C(0,1)到直线的距离d==<1=R.∴直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2.故答案为:2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2017•天津)若a,b∈R,ab>0,则的最小值为4.【分析】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【解答】解:a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.13.(5分)(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.14.(5分)(2017•天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)【分析】根据题意,要求四位数中至多有一个数字是偶数,分2种情况讨论:①、四位数中没有一个偶数数字,②、四位数中只有一个偶数数字,分别求出每种情况下四位数的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个,组成一共四位数即可,有A54=120种情况,即有120个没有一个偶数数字四位数;②、四位数中只有一个偶数数字,在1、3、5、7、9种选出3个,在2、4、6、8中选出1个,有C53•C41=40种取法,将取出的4个数字全排列,有A44=24种顺序,则有40×24=960个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080个;故答案为:1080.【点评】本题考查排列、组合的综合应用,注意要分类讨论.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA;(Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A,cos2A,展开两角和的正弦得答案.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.【点评】本题考查正弦定理和余弦定理在解三角形中的应用,考查倍角公式的应用,是中档题.16.(13分)(2017•天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.【解答】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X的分布列为X0123P随机变量X的数学期望为E(X)=0×+1×+2×+3×=;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)=×+×=;所以,这2辆车共遇到1个红灯的概率为.【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.(13分)(2017•天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE 所成角的余弦值为列式求得线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.18.(13分)(2017•天津)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{a n}和{b n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查计算能力.19.(14分)(2017•天津)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.【分析】(I)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(II)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.【解答】(Ⅰ)解:设F的坐标为(﹣c,0).依题意可得,解得a=1,c=,p=2,于是b2=a2﹣c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),联立方程组,解得点P(﹣1,﹣),故Q(﹣1,).联立方程组,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x=,故D(,0).∴|AD|=1﹣=.又∵△APD的面积为,∴×=,整理得3m2﹣2|m|+2=0,解得|m|=,∴m=±.∴直线AP的方程为3x+y﹣3=0,或3x﹣y﹣3=0.【点评】本题考查了椭圆与抛物线的定义与性质,直线与椭圆的位置关系,属于中档题.20.(14分)(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f (m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h (x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【点评】本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目.。

2017高考数学天津卷理(附参考答案及详解)

2017高考数学天津卷理(附参考答案及详解)

第卷
二 填 空 题本大题共&小题每 小 题 " 分共 (# 分!把 答 案 填 在
题中横线上
3!已
知+(#7为




#若+07为 $/7


#则
+



!
!
!
!
!
!#!已知一个正方体的所有顶点在 一 个 球 面 上#若 这 个 正 方 体 的 表
面 积 为 !.#则 这 个 球 的 体 积 为 ! ! ! ! !
'$'#'&#



.



线

准 线/

距离

! $
!
!求 椭 圆 的 方 程 和 抛 物 线 的 方 程 !
$设/上两点6C 关 于# 轴 对 称直 线 "6 与 椭 圆 相 交 于 点
$点 $ 异于点"直 线 $C 与# 轴 相 交 于 点 &!若 /"6& 的


为槡&求 $
XB +"',#
,*".+"';"#
,2-.
¯
=$#%'/$#%0
# "
#
Q
#-!
R
#=$#%'#"
0#.(0
# "
'#"
0("#.(
$ % '
#0
( +
".!(3;#

(完整版)2017年天津理数高考试题文档版(含答案)

(完整版)2017年天津理数高考试题文档版(含答案)

绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A ,B 互斥,那么 ·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·棱锥的体积公式13V Sh =. 其中S 表示棱柱的底面面积,其中S 表示棱锥的底面面积,h 表示棱锥的高.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1(C )32(D )3(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,学 科&2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16-(B )4739[,]1616-(C )[- (D )39[]16-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年天津市部分区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1 B.0 C.1 D.23.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4 B.6 C.8 D.104.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3 B.2C.4D.125.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A . =1B . =1C .=1 D .=17.在△ABC 中,AC=2AB=2,∠BAC=120°,O 是BC 的中点,M 是AO 上一点,且=3,则的值是( )A .﹣B .﹣C .﹣D .﹣8.已知函数f (x )=,若函数g (x )=f (x )+2x ﹣a 有三个零点,则实数a 的取值范围是( )A .(0,+∞)B .(﹣∞,﹣1)C .(﹣∞,﹣3)D .(0,﹣3)二、填空题:本大题共6小题,每小题5分,共30分).9.已知a ,b ∈R ,i 是虚数单位,若复数=ai ,则a +b= .10.(﹣)7的展开式中,x ﹣1的系数是 .(用数字填写答案)11.某三棱锥的三视图如图所示,则该几何体的体积为 .12.直线y=4x 与曲线y=4x 3在第一象限内围成的封闭图形的面积为 .13.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数,a ∈R ),曲线C 的参数方程为(α为参数),设直线l 与曲线C 交于A 、B 两点,当弦长|AB |最短时,直线l 的普通方程为 .14.已知f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数x 满足f (log |x +1|)<f (﹣1),则x 的取值范围是 .三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[,]时,求函数f(x)的最大值和最小值.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:(Ⅱ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅱ)求二面角P﹣AB﹣C的余弦值;(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n项和T n.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.2017年天津市部分区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)【考点】交、并、补集的混合运算.【分析】先分别求出集合A和B,从而得到C R A,由此能求出集合A∩(∁R B).【解答】解:∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≤﹣3或x≥3},∴C R A={x|﹣3<x<3},集合A∩(∁R B)={1,2}.故选:A.2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1 B.0 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,3),化目标函数z=x﹣y为y=x﹣z.由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为0.故选:B.3.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4 B.6 C.8 D.10【考点】程序框图.【分析】利用循环结构可知道需要循环4次,根据条件求出i的值即可.【解答】解:第一次循环,s=﹣2<5,s=﹣1,i=2,第二次循环,s=﹣1<7,s=1,i=4,第三次循环,s=1<9,s=5,i=6,第四次循环,s=5<11,s=13,i=8,第五次循环,s=13≥13,此时输出i=8,故选:C.4.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3 B.2C.4D.12【考点】正弦定理.【分析】由已知及正弦定理可得:c=,进而利用余弦定理即可求得a的值.【解答】解:∵sinA﹣2sinC=0,∴由正弦定理可得:c=,∵B=,b=6,∴由余弦定理b2=a2+c2﹣2accosB,可得:62=a2+(a)2﹣2a,整理可得:a=4,或﹣4(舍去).故选:C.5.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】解不等式,求出关于p的x的范围,根据函数的性质求出关于q的x的范围,根据集合的包含关系判断充分必要条件即可.【解答】解:由x2﹣4x+3≤0,解得:1≤x≤3,故命题p:1≤x≤3;f(x)==x+,x>0时,f(x)有最小值2,x<0时,f(x)有最大值﹣2,故命题q:x≠0,故命题p是命题q的充分不必要条件,故选:A.6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1 B.=1C.=1 D.=1【考点】圆锥曲线的综合.【分析】确定抛物线y2=20x的焦点坐标、双曲线﹣=1(a>0,b>0)的一条渐近线的方程,利用抛物线的焦点到双曲线渐近线的距离为4,求出b,a,即可求出双曲线的方程.【解答】解:抛物线y2=20x的焦点坐标为(5,0),双曲线﹣=1(a>0,b>0)的一条渐近线的方程为bx+ay=0,∵抛物线的焦点到双曲线渐近线的距离为4,∴=4,即b=4,∵c=5,∴a=3,∴双曲线方程为:=1.故选:D.7.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣【考点】向量在几何中的应用.【分析】利用已知条件,建立直角坐标系,求出相关点的坐标,然后求解向量的数量积.【解答】解:建立如图所示的直角坐标系:在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则A(0,0),B(1,0),C(﹣1,),O(0,),M(0,),=(1,﹣),=(﹣1,)=﹣1﹣=﹣.故选:D.8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)【考点】根的存在性及根的个数判断.【分析】由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,判断x ≤0,与x>0交点的情况,列出关于a的不等式,解之可得答案.【解答】解:g(x)=f(x)+2x﹣a=,函数g(x)=f(x)+2x﹣a有三个零点,可知:函数图象的左半部分为单调递增指数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=﹣a﹣1,最多两个零点,如上图,要满足题意,函数y=2x+2x是增函数,x≤0一定与x相交,过(0,1),g(x)=2x+2x﹣a,与x轴相交,1﹣a≥0,可得a≤1.还需保证x>0时,抛物线与x轴由两个交点,可得:﹣a﹣1>0,△=4(a+1)2﹣4(1﹣a)>0,解得a<﹣3,综合可得a<﹣3,故选:C.二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=4.【考点】复数代数形式的乘除运算.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,再根据两个复数相等的充要条件求得a、b的值,可得a+b的值.【解答】解:=ai,则===ai,∴2﹣b=0,2+b=2a,∴b=2,a=2,∴a+b=4,故答案为:410.(﹣)7的展开式中,x﹣1的系数是﹣280.(用数字填写答案)【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于﹣1,求出r的值,即可求得x﹣1的系数.=•(﹣2)r•,令=﹣1,求得r=3,【解答】解:∵(﹣)7的展开式的通项公式为T r+1可得x﹣1的系数为•(﹣8)=﹣280,故答案为:﹣280.11.某三棱锥的三视图如图所示,则该几何体的体积为2.【考点】由三视图求面积、体积.【分析】根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,求出它的体积.【解答】解:根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,计算三棱锥的体积为V=××2×2×3=2.故答案为:2.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为1.【考点】定积分.【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】1解:先根据题意画出图形,得到积分上限为1,积分下限为0,曲线y=4x3与直线y=4x在第一象限所围成的图形的面积是∫01(4x﹣4x3)dx,而∫01(4x﹣4x3)dx=(2x2﹣x4)|01=2×1﹣1=1∴曲边梯形的面积是1,故答案为:1.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为x+y﹣4=0.【考点】直线的参数方程.【分析】普通方程为y﹣1=a(x﹣3),过定点P(3,1),当弦长|AB|最短时,CP⊥AB,求出CP的斜率,可得AB的斜率,即可得出结论.【解答】解:直线l的参数方程为,普通方程为y﹣1=a(x﹣3),过定点P(3,1)曲线C的参数方程为(α为参数),普通方程为(x﹣2)2+y2=4,当弦长|AB|最短时,CP⊥AB,∵k CP==1,k AB=﹣1∴直线l的普通方程为x+y﹣4=0,故答案为:x+y﹣4=0.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】利用函数是偶函数得到不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),即|log2|x+1||<1∴﹣1<log2|x+1|<1,解得x的取值范围是.故答案为.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[,]时,求函数f(x)的最大值和最小值.【考点】三角函数的周期性及其求法;三角函数的最值.【分析】(Ⅰ)利用和与差公式打开,根据二倍角公式和辅助角公式化解为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,(Ⅱ)当x∈[,]时,求出内层函数的取值范围,结合三角函数的图象和性质,可求出f(x)的最大值和最小值.【解答】解:(Ⅰ)==,∴函数f(x)的最小正周期.(Ⅱ)由(Ⅰ)知,∵,∴,∴,故当时,函数f(x)的最大值为.当时,函数f(x)的最小值为.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:(Ⅱ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为,由此能求出这2名学生不属于同一班级的概率.(Ⅱ)X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(本小题满分13分)解:(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为…设2名学生不属于同一班级的事件为A所以.…(Ⅱ)X可能的取值为0,1,2,3,,,,.…所以X的分布列为所以.…17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅱ)求二面角P﹣AB﹣C的余弦值;(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取PD的中点F,连接EF,CF,证明BE∥CF即可;(Ⅱ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,求出法向量即可;(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,求出法向量即可;(Ⅲ)建系同(II)利用向量求解.【解答】解:(Ⅰ)证明:取PD的中点F,连接EF,CF∵E,F分别是PA,PD的中点,∴EF∥AD且;…∵,BC∥AD,∴EF∥BC且EF=BC;∴BE∥CF.…又BE⊄平面PCD,CF⊂平面PCD,∴BE∥平面PCD.…(Ⅱ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,,.…设平面PAB的一个法向量为n=(x,y,z),则从而令x=2,得n=(2,0,﹣1).…同理可求平面ABD的一个法向量为.….平面ABD和平面ABC为同一个平面,所以二面角P﹣AB﹣C的余弦值为.…(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,C(0,0,1),B(1,0,1),,…设平面PAB的一个法向量为=(x,y,z),则,,令,得x=z=1,即.…易求平面ABC的一个法向量为.….所以二面角P﹣AB﹣C的余弦值为.…(Ⅲ)(方法一)建系同(II)(方法一),设Q(0,x,0),由(II)知平面ABCD的一个法向量为,;…若BQ与平面ABCD所成的角为,则==sin解得,所以Q(0,,0),,.…(方法二)建系同(II)(方法二),设,则,,由(II)知平面ABCD的一个法向量为.…若BQ与平面ABCD所成的角为,则.解得,则,从而…18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n项和T n.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,可得{a n}为等差数列.再利用等差数列的通项公式与求和公式即可得出.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1),lgb1+lgb2+…+lgb n﹣1=lg (2n﹣1),作差可得b n=,(n≥2).c n==,再利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,所以{a n}为等差数列.由a6=11,前9项和为81,得a1+5d=11,d=81,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1)…①,lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1)…②①﹣②,得,∴b n=,(n≥2).b1=3满足上式,因此b n=,(n≥2).c n==,∴数列{c n}的前n项和T n=+…++,又2T n=+…+,以上两式作差,得T n=+2﹣,,因此,T n=﹣.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意,得,然后求解离心率即可.(Ⅱ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.求出椭圆方程,直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y,设A(x1,y1),B(x2,y2),利用韦达定理求出AB的中点,推出﹣,且m≠0,利用弦长公式以及三角形的面积,推出结果即可.【解答】(本小题满分13分)解:(Ⅰ)由题意,得,…则,结合b2=a2﹣c2,得,即2c2﹣3ac+a2=0,…亦即2e2﹣3e+1=0,结合0<e<1,解得.所以椭圆C的离心率为.…(Ⅱ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.所以椭圆方程为.…易得直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y得(3+4k2)x2+8kmx+4m2﹣12=0,所以△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)>0.设A(x1,y1),B(x2,y2),则,.…由,得AB的中点,因为N在直线上,所以,解得k=﹣.…所以△=48(12﹣m2)>0,得﹣,且m≠0,|AB|=|x2﹣x1|===.又原点O到直线l的距离d=,…所以.当且仅当12﹣m2=m2,m=时等号成立,符合﹣,且m≠0.所以△OAB面积的最大值为:.…20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围判断函数的单调性即可;(Ⅲ)根据函数的极值的个数求出a的范围,求出4f(x1)﹣2f(x2)的解析式,根据函数的单调性证明即可.【解答】解:(Ⅰ)当a=1时,f (x )=﹣x 2+x ﹣lnx ,f′(x )=﹣x +1﹣, 则f (1)=,f'(1)=﹣1,所以所求切线方程为y﹣=﹣(x ﹣1),即2x +2y ﹣3=0. (Ⅱ)由f (x )=﹣x 2+ax ﹣lnx ,得f′(x )=﹣x +a﹣=﹣.令g (x )=x 2﹣ax +1,则f′(x )=﹣,①当△=a 2﹣4<0,即﹣2<a <2时,g (x )>0恒成立,则f′(x )<0, 所以f )x )在(0,+∞)上是减函数.②当△=0,即a=±2时,g (x )=x 2±2x +1=(x ±1)2≥0,则f′(x )≤0, 所以f (x )在(0,+∞)上是减函数. ③当△=a 2﹣4>0,即a <﹣2或a >2.(i )当a <﹣2时,g (x )=x 2﹣ax +1是开口向上且过点(0,1)的抛物线, 对称轴方程为x=(<﹣1),则g (x )>0恒成立,从而f′(x )<0, 所以f (x )在(0,+∞)上是减函数.(ii )当a >2时,g (x )是开口向上且过点(0,1)的抛物线, 对称轴方程为x=(>1),则函数g (x )有两个零点:,列表如下:当a >2时,f (x )的增区间是,减区间是,.(Ⅲ)证明:根据(Ⅱ),当a >2时,f (x )有两个极值点x 1,x 2,(x 1<x 2), 则x 1,x 2是方程g (x )=0的两个根, 从而.由韦达定理,得x 1x 2=1,x 1+x 2=a . 又a ﹣2>0,所以0<x 1<1<x 2====.令,h(t)=﹣t+3lnt+2,(t>1),则.当1<t<2时,h'(t)>0;当t>2时,h′(t)<0,则h(t)在(1,2)上是增函数,在(2,+∞)上是减函数,从而h(t)max=h(2)=3ln2+1,于是4f(x1)﹣2f(x2)≤1+3ln2.。

相关文档
最新文档