保险精算学4-2作业

合集下载

保险精算第二版习题及答案

保险精算第二版习题及答案

4.某人从 50 岁时起 ,每年年初在银行存入 5000 元 ,共存 10 年 ,自 60 岁起 ,每年年初从银行提出一笔款作为生 活费用 ,拟提取 10 年。年利率为 10%, 计算其每年生活费用。
5000a&&10
10
1
x 1i
a&&10
x 12968.7123
5.年金 A 的给付情况就是 :1~ 10 年 ,每年年末给付 1000 元;11~ 20 年 ,每年年末给付 2000 元 ;21~30 年 ,每年 年末给付 1000 元。年金 B 在 1~ 10 年,每年给付额为 K 元 ;11~20 年给付额为 0;21~ 30 年 ,每年年末给付 K 元,
的利率为 i3 6% ,求该笔投资的原始金额。
A(3) 1000 A(0)(1 i1)(1 i2 )(1 i3) A(0) 794.1
5.确定 10000 元在第 3 年年末的积累值 :
(1) 名义利率为每季度计息一次的年名义利率
6%。
(2) 名义贴现率为每 4 年计息一次的年名义贴现率 6%。
1
10000 a(3) 10000 a(3)
D 、 58
4
P(50 X 60) s 50
s 50 s(60) 10 q50
s(50)
P( X 70) s(70)
20 p50
s 70 s(50)
s(60)
保险精算第二版习题及答案
2、 已知 Pr[ 5< T(60) ≤ 6] =0、 1895,Pr[ T(60) > 5] =0、 92094,求 q60 。
1.1*1.086956522*1.061363551*1.050625
1.333265858

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算教学大纲和习题及答案

保险精算教学大纲和习题及答案

保险精算教学大纲本课程总课时:课程教学周,每周课时第一章:利息理论基础本章课时:一、学习的目的和要求1、要求了解利息的各种度量2、掌握常见利息问题的求解原理二、主要内容第一节:实际利率与实际贴现率一、利息的定义二、实际利率三、单利和复利四、实际贴现率第二节:名义利率和名义贴现率第三节:利息强度第二章年金本章课时:一、学习的目的和要求1、要求了解年金的定义、类别2、掌握年金问题求解的基本原理和常用技巧二、主要内容第一节:期末付年金第二节:期初付年金第三节:任意时刻的年金值一、在首期付款前某时刻的年金值二、在最后一期付款后某时刻的年金积累值三、付款期间某时刻的年金当前值第四节:永续年金第五节:连续年金第三章生命表基础本章课时:一、学习的目的与要求1、理解常用生命表函数的概率意义及彼此之间的函数关系2、了解生存函数与生命表的关系并掌握寿险生命表的特点与构造原理3、掌握各种分数年龄假定下,分数年龄的生命表函数的估计方法二、主要内容第一节生命函数一、分布函数二、生存函数三、剩余寿命四、取整余命五、死亡效力六、生存函数的解析表达式第二节生命表一、生命表的含义二、生命表的内容第四章人寿保险的精算现值本章课时:一、教学目的与要求1、掌握寿险趸缴纯保费的厘定原理2、理解寿险精算现值的意义,掌握寿险精算现值的表达方式及计算技巧3、认识常见的寿险产品并掌握各种产品趸缴纯保费的厘定及寿险精算现值方差的计算4、理解趸缴纯保费的现实意义二、主要内容第一节死亡即付的人寿保险一、精算现值的概念二、n年定期保险的精算现值(趸缴纯保费)三、终身寿险的趸缴纯保费四、延期寿险的趸缴纯保费五、生存保险与两全保险的趸缴纯保费第二节死亡年末给付的人寿保险一、定期寿险的趸缴纯保费二、终身寿险的趸缴纯保费三、两全保险的趸缴纯保费四、延期寿险的趸缴纯保费第三节死亡即刻赔付保险与死亡年末赔付保险的精算现值的关系第四节递增型人寿保险与递减型人寿保险一、递增型寿险二、递减型寿险三、两类精算现值的换算第五章年金的精算现值本章课时:一、学习目的与要求1、理解生存年金的概念2、掌握各种场合计算生存年金现时值的原理和技巧。

天津大学《保险精算导论》在线作业二-04

天津大学《保险精算导论》在线作业二-04
A:对
B:错
参考选项:A
过去法用过去净保费终值减去过去给付的保险金终值计算责任准备金( )。
A:对
B:错
参考选项:A
A:A
B:B
C:C
D:D
参考选项:C
A:A
B:B
C:C
D:D
参考选项:B
试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为按年( )
A:18163.47元
A:对
B:错
参考选项:A
理赔包括理赔调查和辩护费。
A:对
B:错
参考选项:A
责任准备金的作用不包括保证寿险公司的偿付能力( )
A:对
B:错
参考选项:B
保费按缴纳的方式分趸缴(纯/毛)保费和期缴(纯/毛)保费( )
A:对
B:错
参考选项:A
购买一份保额为30000元的全离散型终身寿险。已知:保费百分比费用每年为保费的20%,每千元保额的维持费每年为3元;发生死亡给付时的理赔费用为50元。设年利率为6%,换算函数为:M55=10611.8711,D35=37196.27,求均衡毛保费( )
A:对
B:错
参考选项:B
附加保险费是指支付给保险经纪人的佣金( )
A:对
B:错
参考选项:B
终身年金不属于年金保险( )
A:对
B:错
参考选项:B
连续生存年金是指在保障时期,以被保险人存活为条件,连续支付年金的保险( )
A:对
B:错
参考选项:A
期末付生存年金是指(x)每年1单位元期末给付的以生存为条件的年金( )
A:对
B:错
参考选项:A
责任准备金的作用包括保证合理的释放寿险业务的利润( )

保险精算考试题及答案

保险精算考试题及答案

保险精算考试题及答案1. 保险精算中,用于计算未来现金流的现值的公式是:A. 未来值 = 现值× (1 + 利率)^期数B. 现值 = 未来值÷ (1 + 利率)^期数C. 未来值 = 现值× (1 - 利率)^期数D. 现值 = 未来值× (1 - 利率)^期数答案:B2. 在非寿险精算中,用于计算纯保费的公式是:A. 纯保费 = 预期损失 + 预期费用B. 纯保费 = 预期损失 - 预期费用C. 纯保费 = 预期损失× 预期费用D. 纯保费 = 预期损失÷ 预期费用答案:A3. 以下哪项是寿险精算中的生命表的主要组成部分?A. 死亡率表B. 疾病率表C. 残疾率表D. 以上都是答案:A4. 寿险精算中,计算年金现值的公式是:A. 年金现值 = 年金支付额× 利率× (1 - 1/(1 + 利率)^期数)B. 年金现值 = 年金支付额÷ 利率× (1 - 1/(1 + 利率)^期数)C. 年金现值 = 年金支付额× 利率÷ (1 - 1/(1 + 利率)^期数)D. 年金现值 = 年金支付额÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:A5. 保险精算中,用于评估保险公司财务稳定性的指标是:A. 偿付能力比率B. 资产负债比率C. 投资回报率D. 以上都是答案:A6. 在精算评估中,用于计算保单持有人未来利益的现值的贴现率是:A. 预定利率B. 市场利率C. 法定利率D. 以上都不是答案:A7. 以下哪项是精算师在评估寿险保单的死亡率风险时常用的方法?A. 蒙特卡洛模拟B. 敏感性分析C. 精算表分析D. 以上都是答案:C8. 保险精算中,用于计算保单持有人未来利益的现值的公式是:A. 未来利益现值 = 未来利益× 利率× (1 - 1/(1 + 利率)^期数)B. 未来利益现值 = 未来利益÷ 利率× (1 - 1/(1 + 利率)^期数)C. 未来利益现值 = 未来利益× 利率÷ (1 - 1/(1 + 利率)^期数)D. 未来利益现值 = 未来利益÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:B9. 在保险精算中,用于计算保单的准备金的公式是:A. 准备金 = 未来利益现值 - 已收保费B. 准备金 = 未来利益现值 + 已收保费C. 准备金 = 未来利益现值× 已收保费D. 准备金 = 未来利益现值÷ 已收保费答案:A10. 以下哪项是保险精算中用于评估保单持有人未来利益的不确定性的方法?A. 精算评估B. 风险评估C. 敏感性分析D. 以上都是答案:C。

保险精算学4-2

保险精算学4-2

保险精算学4-2简介保险精算学是一门运用数学、统计学和金融理论等知识研究保险业务的学科。

它的主要任务是通过对保险风险进行测量、评估和管理,为保险公司制定保险产品和定价策略提供支持。

保险精算学在保险业的操作中起着重要的作用,它能够帮助保险公司合理地衡量风险,确保保险公司的偿付能力,并为保险产品的设计提供科学依据。

保险精算学的重要性保险精算学在保险业中的重要性不言而喻。

首先,保险精算学可以帮助保险公司合理定价,防止亏损或盈利过多。

保险精算学家通过分析大量的数据和应用统计方法,能够准确地预测未来发生的风险和赔付金额,从而合理地确定保险产品的定价策略。

其次,保险精算学可以帮助保险公司评估风险,制定合理的风险管理策略。

保险精算学家通过对保险风险进行测量和评估,能够为保险公司提供科学合理地风险管理建议,提高保险公司的盈利能力和偿付能力。

第三,保险精算学可以为保险产品的设计和开发提供科学依据。

保险精算学家通过分析市场需求和风险特征,能够为保险公司设计出满足市场需求并能提供保险保障的保险产品。

保险精算学的核心内容保险精算学的核心内容包括风险测度、偿付能力评估、保险定价和风险管理等方面。

首先,风险测度是保险精算学的核心任务之一。

风险测度是指对保险风险进行量化和评估的过程。

保险精算学家通过分析大量的历史数据和应用统计方法,可以准确地测度保险风险的大小和发生的概率。

其次,偿付能力评估是保险精算学的另一个核心内容。

偿付能力评估是指对保险公司偿付能力进行评估的过程,其目的是确保保险公司有足够的资金来支付未来的保险赔付。

保险精算学家通过对保险公司的财务状况和风险承受能力进行评估,可以帮助保险公司制定合理的资本管理策略。

此外,保险定价也是保险精算学的核心内容之一。

保险精算学家通过分析保险风险和市场需求,可以帮助保险公司确定合理的保险产品定价策略。

最后,风险管理也是保险精算学的重要内容。

保险精算学家通过分析风险特征和应用风险管理方法,可以为保险公司提供科学的风险管理建议,帮助保险公司降低风险并提高盈利能力。

保险精算习题

保险精算习题

1.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

2.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

3.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

4. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

5.某银行推出2年期存单,年利率为9%,存款者若提前支取则面临两种可供选择的惩罚方式:变为活期存款,年利率为7%;损失3个月的利息。

某存款人拥有这种存单但要在第18个月末时支取,试问该人该选择哪种惩罚方式?第二章:年金练习题1.证明()n m m n v v i a a -=-。

√2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。

年计息12次的年名义利率为8.7% 。

计算购房首期付款额A 。

√3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

√4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。

年利率为10%,计算其每年生活费用。

√5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。

年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v =,计算K 。

寿险精算作业及答案分解

寿险精算作业及答案分解
寿险精算作业及答案
作业1-1,假定i12分别为12%和6%, 请问在这两种不同的利率场合复利计 息,本金翻倍分别需要多少年?(请 分别用精确法和72法则求解,比较 求解结果)
• 精确法 when i(12) 12%
(11%)12n 2 n ln 2 5.8 12 ln1.01
when i(12) 6%
t m qx q tm x t qx t px tm px t px q m xt
k q0 k p0 1q0k q k 1 0 k q0 k p0 k 1 p0
k
0,
0
q0
1 4
q0
1 q0
1 4
,
p0
1
p0
1
q0
3 4,0p01113
k 1, 1 q0 4 4 1 p0 1q01 4 1q1
• 每年年末支付的利息为:
I Li 100005% 500
• 偿债基金的半年实际利率为:
j (1 j(4) )2 1 1.0152 1 3.02% 4
• 借款人每半年末存入偿债基金的款额为:
D 10000 1545.1 s
6 3.02%
等额偿债基金表
KI D
R
Jk
Ak
NBk
0 -- --
k 0
a 0:4
1 v 1 p0
v2 2 p0 v3 3 p0
3 32 321
1 4 1.06
43 1.062
432 1.063
2.3625
P1 A1 a
x:n
x:n x:n
P1 0.8663 0.3667 0:4 2.3625
趸缴情况:
k
0,
V1
0 0:4

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算课后习题答案

保险精算课后习题答案

保险精算课后习题答案保险精算学是一门应用数学和统计学原理来评估风险和确定保险费率的学科。

它通常包括概率论、统计学、金融数学和经济学的相关知识。

以下是一些保险精算课后习题的答案示例:1. 问题:某保险公司提供一种寿险产品,保险期限为20年。

假设年利率为4%,保险公司需要为每位投保人准备的总金额为100,000元。

请计算每年需要缴纳的保费。

答案:使用等额年金的公式,我们可以计算出每年需要缴纳的保费。

首先计算现值因子PVIFA,公式为:\[ PVIFA = \frac{1 - (1 + r)^{-n}}{r} \]其中,\( r \) 是年利率,\( n \) 是保险期限。

将给定的数值代入:\[ PVIFA = \frac{1 - (1 + 0.04)^{-20}}{0.04} \]计算得到PVIFA后,用总金额除以PVIFA得到每年需要缴纳的保费:\[ \text{年保费} = \frac{100,000}{PVIFA} \]2. 问题:某保险公司希望评估一个30岁男性的寿险风险。

假设该男性的死亡率为0.0015,保险公司希望在10年内每年支付1,000元的保险金。

请计算保险公司需要收取的保费。

答案:首先,我们需要计算10年内该男性死亡的期望值。

这可以通过以下公式计算:\[ \text{期望死亡次数} = 1 \times (1 - (1 - 0.0015)^{10}) \]然后,将期望死亡次数乘以每次死亡的保险金,得到保险公司需要准备的总金额:\[ \text{总保险金} = 1,000 \times \text{期望死亡次数} \]最后,将总保险金除以生存概率的现值因子,得到每年需要收取的保费:\[ \text{年保费} = \frac{\text{总保险金}}{PVIF} \]3. 问题:考虑一个保险公司提供的年金产品,客户在退休后每年领取10,000元,直到去世。

如果客户现在50岁,预期寿命为85岁,年利率为5%,计算客户需要一次性缴纳的保费。

保险精算习题答案

保险精算习题答案

滤讽⑹®"鑰i 保吝9徐射滋羅從躺验盘里上知陰- 為饵玄创昨看魂脩㈱加良毎妙育¥专1h 岛*》去;・/ $耐 滋陵丄譚一妙童強/凶制多为弘我 _____________________________________ -•血妇匚血僚撐钠 翻 播去 ____________________________・2际M - P 湎二伽严―护 N 伽祐)屮"孑 丄业血二90弧出仇A 虫)即2K 心fg 押 核辑祁AH 51二机0可4 弘 」込碑” • 4 ------ -------必咅, -------------- ---------------------------医占嘗*彳鸟0勺年 h m S 僦 ___________________ ___汕三甌仆山幻主月乙汨十仏力加一 ----------_______ —二总产屁歸一扌讥& ------------ _ 二匸U&i%轴M = S 呦&主创吕5«伽第六章沧二------- --- ■上 LSE^ ------------------------ TT^$、己知纬加止眠融保蜒壮L母僅加山此瞇如过遇;'■'■ 肖4主偲学醫牴fit辅保建人盒授砌材戶遍 2 g _____________________ 孕二顶比畸血⑴____________ _______________ ____________ 打曾二忽r= %解停严心5轴.A R闕十於运(1前和_______ 9二Q、6羽爭_______________二 &____________ I d^jp亍____________ : ____________________ 一,<己fao咄轴耶goT也庖牍:弘匸罄口""3)孙1韦为益芒⑼购乂柚(1肚砲元期«1如朗k即於會*沖我/和也條里菱号耐衲偲轉炷提函柚娅』w r 5円3朮谢戏例建竣均慚掬*札仗逸俺血亂F伦g)_"(炫拓力册——” 嚅人理5如叫型』^冶亦“少"伽严畀淪刃“朋"「加学此河3仲仃㈤汀咧H _忸如阿’ 眄 -一一/卯晶心三伽0 i 翌弩=7 .._/, d ~g 田7 _________bi 阻二 few二东2。

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

天大15秋季《保险精算导论》在线作业二 答案

天大15秋季《保险精算导论》在线作业二 答案

《保险精算导论》在线作业二一、单选题(共 15 道试题,共 75 分。

)1. 题目见图片....正确答案:2. 试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为按季度. 18 607.5 元. 19607.5元. 20607.5元21607.5元正确答案:3. 题目见图片....正确答案:4. 有两份寿险保单,一份为(40)购买的保额2 000元、趸缴保费的终身寿险保单,并且其死亡保险金于死亡年末给付;另一份为(40)购买的保额1 500元、年缴保费P的完全离散型终身寿险保单。

已知第一份保单的给付现值随机变量的方差与第二份保单在保单签发时的保险人亏损的方差相等,且利率为6%,求P的值。

. 25.30元. 26.5元. 29.5元. 28.30元正确答案:5. 题目见图片....正确答案:6. 题目见图片....正确答案:7. 题目见图片....正确答案:8. 题目见图片....正确答案:9. 题目见图片....正确答案:10. 题目见图片....正确答案:11. 题目见图片....正确答案:12. 题目见图片....正确答案:13. 很多年龄为23岁的人共同筹集基金,并约定在每年的年初生存者缴纳R元于此项基金,缴付到64岁为止。

到65岁时,生存者将基金均分,使所得金额可购买期初付终身生存年金,每年领取的金额为3 600元。

试求数额R。

. 167.71元. 187.71元. 177.71元. 197.71元正确答案:14. 试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为按年。

. 18 163.47元. 19163.47元. 28163.47元. 29163.47元正确答案:15. 题目见图片....正确答案:《保险精算导论》在线作业二二、判断题(共 5 道试题,共 25 分。

)1. 养老金计划相当于延期生存年金计划. 错误. 正确正确答案:2. 投保人向保险公司支付的保险费实际上是毛保费,它包括纯保险费和附加保险费两部分. 错误. 正确正确答案:3. 团体寿险准备金计算的基本原理与个人寿险准备金计算的基本原理不同. 错误. 正确正确答案:4. 厘定毛保费的基本原则是精算等价原理. 错误. 正确正确答案:5. 根据有关规定,目前我国趸缴保费方式的直接佣金占保费的比例不得超过4%。

保险精算习题答案

保险精算习题答案

保险精算习题答案保险精算习题答案保险精算是保险行业中非常重要的一个领域,它涉及到对保险风险的评估和定价。

保险精算师需要通过解决各种习题来提高自己的技能和能力。

在本文中,我将为大家提供一些保险精算习题的答案,并解释一些解题思路和方法。

1. 问题:某保险公司的汽车保险业务在过去的一年中发生了100起事故,总赔款金额为100万美元。

公司共收到了1000份汽车保险合同,每份合同的保费为1000美元。

请计算该保险公司的事故率和平均赔款金额。

答案:事故率是指发生事故的次数与总保单数之比。

在这个例子中,事故率为100/1000 = 0.1,即10%。

平均赔款金额是指总赔款金额与事故次数之比。

在这个例子中,平均赔款金额为100万美元/100 = 10万美元。

2. 问题:某保险公司的寿险业务在过去的一年中发生了50起身故,总赔款金额为500万美元。

公司共收到了10000份寿险合同,每份合同的保费为1000美元。

请计算该保险公司的死亡率和平均赔款金额。

答案:死亡率是指发生身故的次数与总保单数之比。

在这个例子中,死亡率为50/10000 = 0.005,即0.5%。

平均赔款金额为总赔款金额与死亡次数之比。

在这个例子中,平均赔款金额为500万美元/50 = 100万美元。

3. 问题:某保险公司的医疗保险业务在过去的一年中发生了200起医疗事故,总赔款金额为1000万美元。

公司共收到了5000份医疗保险合同,每份合同的保费为2000美元。

请计算该保险公司的事故率和平均赔款金额。

答案:事故率为发生事故的次数与总保单数之比。

在这个例子中,事故率为200/5000 = 0.04,即4%。

平均赔款金额为总赔款金额与事故次数之比。

在这个例子中,平均赔款金额为1000万美元/200 = 50万美元。

通过以上习题的解答,我们可以看出,事故率和平均赔款金额是评估保险风险和定价的重要指标。

保险公司需要根据历史数据和统计分析来确定合理的保费水平,以保证公司的盈利能力和风险控制能力。

保险精算第二版习题及答案(word文档良心出品)

保险精算第二版习题及答案(word文档良心出品)

保险精算(第二版)第一章:利息的基本概念练习题1. 已知a U^at 2 b ,如果在o 时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

a(0)二 b =1 a(5) =25a b =1.8252. (1)假设 A(t)=100+10t,试确定 i 1.i3.i 5n⑵假设A(n )=100車1.1),试确定 HA3 .已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资 800元在5年后的积累值。

500a (3) =500(1 3iJ =620= h =0.08 .800a(5) =800(1 5iJ =1120500a(3) =500(1 i 2)3 =620= h =0.0743363 800a(5) =800(1 i s )5 =1144.974 •已知某笔投资在 3年后的积累值为1000元,第1年的利率为 h =10%,第2年的利率为i 2 =8% , 第3年的利率为i 3 =6%,求该笔投资的原始金额。

A(3)=1000 = A(0)(1 “(1 i 2)(1 i 3)二 A(0) =794.15 .确定10000元在第3年年末的积累值:(1) 名义利率为每季度计息一次的年名义利率6%。

(2) 名义贴现率为每4年计息一次的年名义贴现率6%。

300*100* 180a(5) =300300*100 180 a(8) =300*100180(64a b) = 508 A(1)-A(0) A(0)= 0.1,i 3A(3) - A(2) A(2)= 0.0833,5A(5) - A(4) A ⑷= 0.0714i 1A(1)-A(0) A(0)= 0.1,i 3A(3) - A(2) A(2)=0.1,i5A(5) - A(4) A ⑷-0.1•⑷i 12 10000a(3) =10000(1) =11956.1846•设m > 1,按从大到小的次序排列d ::: d (m) ::: —:i (m) ::: i 。

保险精算学4-2

保险精算学4-2

趸缴纯保费递推公式

公式一:
Ax vqx vpx Ax1
理解(x)的单位金额终身寿险在第一年末的价值等于 (x)在第一年死亡的情况下1单位的赔付额,或生存满 一年的情况下净趸缴保费 Ax1 。
1 Ax A1 A A x : x:m m x m
例:

给定 A76 0.800,vp76 0.9, i 0.03
1
1 A30:10 A30:10 A30:10 0.422 1 0.0185 (2) Var ( zt ) 2 v 10 p30 A 30:10 20 1 Var ( zt )3 Var ( zt )1 Var ( zt ) 2 A30:10 A30:10 0.0431 1
k 0
k qx v k 1 k 0
2


2
Ax k qx v 2( k 1)
k 0


所以方差等价为
Var ( zt ) 2 Ax ( Ax )2
趸缴纯保费的厘定

符号: A x 厘定:
Ax E ( zt ) zt fT (t )dt
第四节 n年定期两全保险

定义

被保险人投保后如果在n年期内发生保险责任范围内的死亡, 保险人即刻给付保险金;如果被保险人生存至n年期满,保险 人在第n年末支付保险金的保险。它等价于n年生存保险加上n 年定期寿险的组合。


( x )岁的人,保额1元,n年定期两全保险 假定: 基本函数关系 v t , t n t vt n v , tn v , t n zt bt vt n v , t n bt 1 , t 0

寿险精算习题及答案教学文案

寿险精算习题及答案教学文案

习题第一章人寿保险一、n 年定期寿险【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。

I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。

解:I表4–1 死亡赔付现值计算表根据上表可知100张保单未来赔付支出现值为:48.13468)03.1503.1403.1303.1203.11(100054321=⨯+⨯+⨯+⨯+⨯⨯-----(元)则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。

解:II表4–2 死亡赔付现值计算表根据上表可知100张保单未来赔付支出现值为:86.9124)03.103.103.103.103.1(1000540|4440|3340|2240|11402=⨯+⨯+⨯+⨯+⨯⨯-----q q q q q (元)则每张保单未来赔付的精算现值为91.25元,同时也是投保人应缴的趸缴纯保费。

【例4.2】某人在40岁时投保了10000元3年期定期寿险,死亡赔付在死亡年年末,利率为5%。

根据93男女混合表计算:I 、单位趸缴纯保费;II 、单位赔付现值期望的方差;III 、(总)趸缴纯保费; 解:I 、单位趸缴纯保费为,)()(424023414024040|2340|1240240|11|3:40q p v q p v vq q v q v vq q v Ak k k ++=++=⨯=∑=+]05.1001993.0)001812.01()00165.01(05.1001812.0)00165.01(05.100165.0[32⨯-⨯-+⨯-+=00492793.0=(元)。

II 、单位赔付现值期望的方差为,00444265.0)()()()(21|3:4040|2640|1440221|3:40240|)1(221|3:401|3:402=-++=-⨯=-∑=+A q v q v q v A q v AAk k k III 、趸缴纯保费为,28.49100001|3:40=⨯A (元) 【例4.3】某人在50岁时投保了100000元30年期定期寿险,利率为8%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、30岁的人购买两年期定期保险,保险金在被保险人死亡的年末给付,保单年度t的保额为b t,已知条件为:q30=0.1,b2=10
-b1,q31=0.6,i=0,Z表示给付现值随机变量,则求使得Var(Z)最小的b1的值。

2、50岁的人投保保额为1的终身死亡保险,设年利息力为常数0.06,死亡服从De Moivre假设,ω=100,求保额在保单生效时的精算现值。

3、已知:l x=100-x,0≤x≤100,i=0.06。


4、
5、(25)有一份终身寿险,提供如下保障:
(1)死亡保险金在死亡发生的年末支付,并且在65岁之前为20000元,在其后为10000元;
(2)若其在65岁时仍然活着,则退回趸缴纯保费(不带利息); (3)A25=0.10,A65=0.2,40p25=0.8,v40=0.2。

求该保险的趸缴纯保费。

6、
7、一份保险若(80)在第k+1年死亡,k=0,1,2,…,则在其死亡年末支付k+1。

假设v=0.925;且若q80=0.1,则该保险的趸缴纯保费为4。

那么当q80=0.2时,求该保险的趸缴纯保费。

8、对于(60)购买的20年期递减的定期寿险,已知i=0.06,当q60=0.3
时,该险种的趸缴保费为13元;当q60=0.2时,设该险种的趸缴保费
为P。

且除60岁外,其余年龄的生存状况没有任何改变。

求P。

9、小张为现年60岁的母亲购买了一份终身寿险保单,保单利益为:若被保险人在保险期第一年内死亡,则在年末给付保险金7000元;若在第二年内死亡,则在年末给付保险金7100元,即在以后,死亡时间每推迟一年,保险金额增加100元。

已知
i=2%,M60=184.857509,D60=274.336777,R60=3538.387666。

求这种寿险的趸缴纯保费。

10、考虑一终身寿险,保险金额b在死亡时刻给付,Z为未来给付的随机变量的现值,已知δ=0.04,μx+t=0.02,t≥0,E(Z)=Var(Z)。

求b
11、设(x)的未来寿命T=T(x)的密度函数为:
利率力为δ=0.06,保额为一个单位的终身寿险的现值随机变量
为Z,求满足Pr(Z≤ζ0.9)=0.9的分位数ζ0.9的值。

12、30岁的人购买保额为1000元的特殊的35年期两全保险,已知在其购买保险时,其两个孩子的年龄分别是3岁和6岁,保单特殊约定为:如果被保险人死亡时两个孩子的年龄都小于11岁,那么给付额为3000元,如果被保险人死亡时只有一个孩子的年龄小于11岁,那么给付额为2000元。

在被保险人死亡时立即给付保险金,且μ30+t=0.04,t≥0,
δ=0.06,35E30=0.0302。

则求此保单的趸缴纯保费。

13、设Z1是(x)岁的人投保死亡即刻赔付1的n年定期寿险的现值变量,Z2是(x)岁的人投保死亡即刻赔付1的n年定期两全保险的现值变量。

已知:v n=0.200,n p x=0.450,E[Z2]=0.350,Var[Z2]=0.060,求Var(Z1)。

相关文档
最新文档