集合不等式知识点整理(答案)
高一关于集合和不等式的知识点
高一关于集合和不等式的知识点1集合的分类2集合的运算①子集,真子集,非空子集;②A∩B={x|x∈A且x∈B}③A∪B={x|x∈A或x∈B}④A={x|x∈S且xA},其中AS.2、不等式的解法1含有绝对值的不等式的解法①|x|0-a|x|;aa;0x;a,或x;-a.②|fx||fx|;gxfx;gx或fx;-gx。
③|fx|;|gx|[fx]2;[gx]2[fx+gx]?[fx-gx];0.④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值。
如解不等式:|x+3|-|2x-1|;3x+2.3、简易逻辑知识逻辑联结词"或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤。
2复合命题的真值表非p形式复合命题的真假可以用下表表示。
p非p真假假真p且q形式复合命题的真假可以用下表表示。
p或q形式复合命题的真假可以用下表表示。
3四种命题及其相互之间的关系一个命题与它的逆否命题是等价的。
4充分、必要条件的判定①若pq且qp,则p是q的充分不必要条件;②若pq且qp,则p是q的必要不充分条件;③若pq且qp,则p是q的充要条件;④若pq且qp,则p是q的既不充分也不必要条件。
反三角函数的定义:1反正弦:在闭区间上符合条件sinx=a-1≤a≤1的角x,叫做实数a的反正弦,记作arcsina,即x=arcsina,其中x∈,且a=sinx;注意arcsina表示一个角,这个角的正弦值为a,且这个角在内-1≤a≤1。
2反余弦:在闭区间上,符合条件cosx=a-1≤a≤1的角x,叫做实数a的反余弦,记作arccosa,即x=arccosa,其中x∈[0,π],且a=cosx。
3反正切:在开区间内,符合条件tanx=aa为实数的角x,叫做实数a的反正切,记做arctana,即x=arctana,其中x∈,且a=tanx。
集合知识点及题型归纳总结(含答案)
集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。
不等式与不等式组知识点
不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x —a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。
3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。
4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。
6.当x 时,代数式52+x 的值不大于零7。
若x 〈1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x -〉10-a 的解集为x <3,则a10。
若a 〉b 〉c ,则不等式组⎪⎩⎪⎨⎧c x bx a x 的解集是11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x 〈1,则)1)(1(++b a 的值为 12.有解集2<x <3的不等式组是 (写出一个即可)13.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g14。
不等式概念及性质知识点详解与练习
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥”及“≤”等不等号把代数式连接起来,表示不等关系的式子。
a-b>0a>b, a-b=0a=b, a-b<0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>”读作“大于”,它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
(4)常见不等式基本语言的含义:①若x >0,则x 是正数;②若x ﹤0,则x 是负数;③若x ≥0,则x 是非负数;④若x ≤0,则x 是非正数;⑤若x-y >0,则x 大于y ;⑥若x-y ﹤0,则x 小于y ;⑦若x-y ≥0,则x 不小于y ;⑧若x-y ≤0,则x 不大于y ;⑨若xy >0(或yx >0),则x ,y 同号;⑩若xy ﹤0(或yx ﹤0),则x ,y 异号; (5)等式与不等式的关系:等式与不等式都用来表示现实中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
不等式知识点大全
不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
完整版的不等式知识点和基本题型
完整版的不等式知识点和基本题型不等式是数学中一种重要的关系符号,它用来描述数值之间的大小关系。
以下是不等式的基本知识点和常见题型:1. 不等式基本概念- 不等式是指在两个数之间用不同的关系符号来表示大小关系,比如大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
- 不等式的解集是使不等式成立的所有实数的集合。
2. 不等式的性质- 若 a > b,则 b < a。
- 若 a > b 且 b > c,则 a > c。
- 若 a > b 且 a > 0,则 ac > bc(c > 0)。
- 若 a > b 且 c < 0,则 ac < bc(c < 0)。
- 若 a > b 且c ≠ 0,则 ac > bc。
3. 不等式的解法- 在不等式两边同时加(减)相同的数,不等式的方向不变。
- 在不等式两边同时乘(除)正数,不等式的方向不变。
- 在不等式两边同时乘(除)负数,不等式的方向反向。
- 若不等式两边有平方根,应考虑正负情况。
4. 不等式的常见题型4.1. 一元一次不等式- 形如 ax + b > c 或 ax + b < c 的不等式,其中 a、b、c 为常数,x 为变量。
- 解法类似一元一次方程,通过移项和化简来求解。
4.2. 一元一次绝对值不等式- 形如 |ax + b| > c 或 |ax + b| < c 的不等式,其中 a、b、c 为常数,x 为变量。
- 需要根据绝对值的定义来分情况讨论和求解。
4.3. 二元一次不等式- 形如 ax + by > c 或 ax + by < c 的不等式,其中 a、b、c 为常数,x、y 为变量。
- 解法类似于解一元一次不等式,通过移项和化简来求解。
4.4. 二次不等式- 形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的不等式,其中 a、b、c 为常数,x 为变量。
高中数学知识点总结(集合,不等式,函数))
上海教材高中数学知识点总结一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x > 0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a ) 3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:a bx 2-= 顶点:)44,2(2ab ac a b --单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当a b x 2-=,f(x)min ab ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a=log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b nl o g l o g =a bl o g 1=注:性质01log =a 1log =a aN a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值7.同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a s i n :s i n :s i n ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π。
集合,常用逻辑用语与不等式知识点整理
集合,常用逻辑用语与不等式知识点整理一、逻辑用语1.假设2.推断3.因此4.由此可见5.举例说明6.反证法7.反推法8.只如果...才...9.除非...才...10.既然...就...11.与其...不如...12.既不是...也不是...二、不等式知识点1.不等式的定义不等式是数学中一个重要的概念,指的是两个表达式或数之间大小关系的一种表示方法。
不等式通常用符号<(小于)、>(大于)、≤(小于或等于)、≥(大于或等于)等来表示。
2.不等式的性质(1)两个相等数的和(或积)与它们的任一数的和(或积)相等。
即若a=b,则a+c=b+c,a×c=b×c。
(2)两个不等数的和(或积)与它们的任一数的和(或积)的大小关系与原不等式的大小关系相反。
即若a>b,则a+c>b+c,其中a,b,c都是实数。
(3)若a>b,则-a<-b;若a<b,则-a>-b。
(4)若a>0,b>0,则a>b与1/a<1/b之间存在着等价关系。
(5)若a>0,b>0,则a>b与1/a<1/b之间存在着等价关系。
(6)若a>0,则a²>0。
3.不等式的解法不等式的解法与方程式的解法有相似之处,但也有一些独特的地方。
解不等式问题时,需注意以下几个要点:(1)对不等式两边进行相同的变换;(2)如果要乘以负数,记得改变不等式的方向;(3)特殊要点:对分式不等式的解法有所不同,要先确定分母的正负性,并作出讨论。
文章在数学领域,逻辑推理和不等式是两个重要的知识点。
逻辑推理是数学中最基本的推理方法,通过假设、推断、举例等方式进行逻辑推理,以得出正确的结论。
而不等式是数学中表达数之间大小关系的一种重要形式,通过不等式可以描述数的大小关系。
下面我们将通过整理逻辑用语和不等式知识点,来探讨它们在数学中的应用和意义。
集合&不等式知识点
集合&不等式1.集合与元素(1)一般地,我们把研究对象统称为 ,把一些元素组成的总体叫做 . (2)集合中元素的三个特性: 、 、 . (3)集合中元素与集合的关系元素与集合的关系:对于元素a 与集合A ,或者 , 或者 .二者必居其一. (3)常见集合的符号表示数集 自然数集 正整数集 整数集 有理数集 实数集符号(4)集合的表示法: 、 、 .2.集合间的基本关系 关系 定义 记法相等 集合A 与B 的所有元素都 子集 A 中任意一元素均为B 中的元素真子集A 中任意一元素均为B 中的元素,且B 中至少有一个元素 A中的元素注1:空集∅是一个特殊而又重要的集合,它不含任何元素,∅是任何集合的 ,∅是任何非空集合的 ,解题时不可忽视∅.注2:含n 个元素的集合,子集数为 ,真子集数为 ,非空真子集数为 。
3.集合的基本运算(1)交集的性质:=B A ____________,=A A ___________,=∅ A ___________,⊆B A __________,⊆B A _________;(2)并集的性质:=B A _____________,=A A __________,=∅ A ___________, ________B A ⊆,_________B A ⊆;(3)⇔=A B A ________________,⇔=A B A ______________;(4)补集的性质:=A C A u _________,=A C A u __________,=)(A C C u u ____________; (5)摩根定律:B C A C B A C u u u =)(,B C A C B A C u u u =)(; 4、()B A card = 。
1.1.1集合的含义与表示1、集合的定义:由一些确定的、互异的对象构成的一个整体就叫做集合。
简称:集。
2、元素:集合里的各个对象叫做这个集合的元素。
不等式知识点总结
不等式知识点总结不等式是数学中的一种重要关系。
它通常用来表示两个数量的大小关系。
在求解不等式时,我们需要运用一些基本的不等式性质与方法。
不等式的符号有三种:大于号(>)、小于号(<)和不等号(≠)。
大于号表示前面的数大于后面的数,小于号表示前面的数小于后面的数,不等号表示前面的数不等于后面的数。
不等式的解集是使得不等式成立的所有实数的集合。
对于不等式来说,我们通常要找到它所有的解集。
在求解不等式时,常用到的性质有:1. 两边加减相同的数或相同的式子,不等号方向不变。
2. 两边乘除同一个正数,不等号方向不变;两边乘除同一个负数,不等号方向反转。
3. 两边乘除同一个变量,需要考虑变量的正负情况。
4. 在不等号两边开平方时,需要考虑平方根的正负情况。
在求解不等式时,我们可以运用以下基本方法:1. 图像法:将不等式对应的两个函数图像画出来,通过比较图像的位置来判断不等式的解集。
2. 列表法:将不等式的解集列出来,逐个判断每个解点是否满足不等式,以确定解集。
3. 化简法:将不等式进行一系列的等价变形,将复杂的不等式化简成简单的形式,以求解不等式。
4. 区间法:根据不等式中的某些条件,将解集缩小到某个区间内,以得到更精确的解。
除了基本的不等式性质与方法外,我们还需要掌握一些常见的不等式类型与求解方法。
常见的不等式类型包括:1. 一元一次不等式:形如ax+b>0的不等式。
其中,a、b为已知数,x为待求解的变量。
2. 一元二次不等式:形如ax^2+bx+c>0的不等式。
其中,a、b、c为已知数,x为待求解的变量。
3. 绝对值不等式:形如|ax+b|<c的不等式。
其中,a、b、c为已知数,x为待求解的变量。
4. 分式不等式:形如f(x)/g(x)>0的不等式。
其中,f(x)、g(x)为多项式函数,x为待求解的变量。
对于以上不等式类型,我们可以运用不等式的基本性质与方法进行求解。
集合不等式知识点总结
集合不等式知识点总结一、集合知识点总结(一)集合的基本概念1. 定义- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
- 例如:集合A = {1,2,3},其中1、2、3是集合A的元素。
2. 集合中元素的特性- 确定性:给定一个集合,任何一个对象是不是这个集合的元素是确定的。
例如,“所有的好人”不能构成集合,因为“好人”的标准不明确;而“所有小于5的自然数”能构成集合{0,1,2,3,4}。
- 互异性:集合中的元素是互不相同的。
例如,集合{1,2,2,3}不符合集合的定义,应写成{1,2,3}。
- 无序性:集合中的元素没有顺序之分。
例如,{1,2,3}和{3,2,1}表示同一个集合。
3. 集合的表示方法- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,A={a,b,c}。
- 描述法:用确定的条件表示某些对象是否属于这个集合的方法。
一般形式为{x|p(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如,{x|x > 0且x∈ R}表示所有大于0的实数组成的集合。
- 图示法(Venn图):用平面上封闭曲线的内部代表集合。
例如,用一个圆表示集合A,圆内的点表示集合A的元素。
(二)集合间的基本关系1. 子集- 定义:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊂eq B(或B⊃eq A)。
- 例如:集合A = {1,2},集合B={1,2,3},则A⊂eq B。
- 性质:- 任何一个集合是它本身的子集,即A⊂eq A。
- 空集varnothing是任何集合的子集,即varnothing⊂eq A。
2. 真子集- 定义:如果A⊂eq B,且存在元素x∈ B,但x∉ A,那么集合A称为集合B 的真子集,记作A⊂neqq B(或B⊃neqq A)。
- 例如:集合A = {1,2},集合B={1,2,3},则A⊂neqq B。
高中数学集合的知识点总结与常考题(附经典例题与解析)
集合的知识点与常考题 【知识点分析】: 一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.如:x 2﹣8x +7≧0。
2.如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理:(1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3) 否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.二、分式不等式的解法类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.0>ab 等价于:0b >•a 0<ab 等价于:0b <•a 如:解011x ≥-+x 等价于:解011x ≥-•+)()(x 三、绝对值不等式的解法利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论:“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解。
如:|1﹣3x |<3,得到﹣3<1﹣3x <3两个绝对值不等式的解法:法一:利用分界点分类讨论,例:解不等式 2|x ﹣3|+|x ﹣4|<2,①若x ≥4,则3x ﹣10<2,x <4,∴舍去.②若3<x <4,则x ﹣2<2,∴3<x <4.③若x ≤3,则10﹣3x <2,∴<x ≤3.综上,不等式的解集为.法二:利用数形结合去掉绝对值符号利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。
不等式的知识点
不等式的知识点不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。
下面就让我们一起来深入了解一下不等式的知识点。
首先,不等式的定义很简单,它是用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个表达式的式子。
例如,2x + 3 > 5 就是一个不等式。
不等式的性质是解决不等式问题的基础。
性质 1:如果 a > b,那么 a + c > b + c 。
也就是说,给不等式两边同时加上或减去同一个数,不等号方向不变。
性质 2:如果 a > b 且 c > 0 ,那么 ac > bc ;如果a >b 且c < 0 ,那么 ac < bc 。
这意味着,不等式两边同时乘以(或除以)同一个正数,不等号方向不变;同时乘以(或除以)同一个负数,不等号方向改变。
在解不等式时,我们通常会运用这些性质将不等式进行变形,最终求出未知数的取值范围。
比如,解不等式 3x 5 < 16 ,我们先将 5 移到右边得到 3x < 21 ,然后两边同时除以 3 ,得到 x < 7 。
一元一次不等式是最简单的不等式类型之一。
它的一般形式是 ax+ b > 0 或 ax + b < 0 (其中a ≠ 0 )。
解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式性质的正确运用。
一元二次不等式则稍微复杂一些。
以 ax²+ bx + c > 0 (a > 0 )为例,我们需要先求出对应的二次方程 ax²+ bx + c = 0 的根,然后根据二次函数的图像来确定不等式的解集。
如果方程有两个不同的根x₁和 x₂(x₁< x₂),那么不等式的解集就是 x < x₁或 x > x₂;如果方程有两个相同的根 x₀,那么不等式的解集就是x ≠ x₀;如果方程没有实数根,那么不等式的解集就是全体实数。
绝对值不等式也是常见的类型。
对于|x| < a (a > 0 ),其解集是 a < x < a ;对于|x| > a (a > 0 ),其解集是 x < a 或 x > a 。
新课标高一数学集合知识点高一数学不等式知识点
新课标高一数学集合知识点高一数学不等式知识点高一数学集合知识点1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(aA和aA,二者必居其一)、互异性(若aA,bA,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N某2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对某∈A都有某∈B,则AB(或AB);2)真子集:AB且存在某0∈B但某0A;记为AB(或,且)3)交集:A∩B={某|某∈A且某∈B}4)并集:A∪B={某|某∈A或某∈B}5)补集:CUA={某|某A但某∈U}注意:①A,若A≠,则A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩=,A∩B=B∩A;②A∪A=A,A∪=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高一数学集合例题【例1】已知集合M={某某=m+,m∈Z},N={某某=,n∈Z},P={某某=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。
高一数学知识点:集合、不等式和简易逻辑
高一数学知识点:集合、不等式和简易逻辑重点知识归纳、总结(1)集合的分类(2)集合的运算①子集,真子集,非空子集;②A∩B={x|x∈A且x∈B}③A∪B={x|x∈A或x∈B}④A={x|x∈S且x A},其中A S.2、不等式的解法(1)含有绝对值的不等式的解法①|x|0) -a|x|0) xa,或x-a.②|f(x)||f(x)|g(x) f(x)g(x)或f(x)-g(x).③|f(x)||g(x)| [f(x)]2[g(x)]2 [f(x)+g(x)]·[f(x)-g(x)]0.④关于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值. 如解不等式:|x+3|-|2x-1|3x+2.3、简易逻辑知识逻辑联结词“或”、“且”、“非”是判定简单合题与复合命题的依据;真值表是由简单命题和真假判定复合命题真假的依据,明白得好四种命题的关系,对判定命题的真假有专门大关心;把握好反证法证明问题的步骤。
(2)复合命题的真值表非p形式复合命题的真假能够用下表表示.p 非p真假假真p且q形式复合命题的真假能够用下表表示.p或q形式复合命题的真假能够用下表表示.(3)四种命题及其相互之间的关系一个命题与它的逆否命题是等价的.(4)充分、必要条件的判定①若p q且q p,则p是q的充分不必要条件;②若p q且q p,则p是q的必要不充分条件;与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。
”因此看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
完整版)不等式知识点归纳大全
完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。
不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。
2.解分式不等式f(x)。
a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。
3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。
4.解含参不等式时,常常需要分类等价转化。
按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。
二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。
2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。
三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。
2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。
四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。
2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。
(完整版)不等式知识点归纳大全
《不等式》知识点归纳一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.二、 利用重要不等式ab b a 2≥+ 以及变式2()2a b ab +≤等求函数的最值时,务必注意a ,b +∈R (或a ,b 非负),且“等号成立”时的条件是积ab 或和a +b 其中之一应是定值(一正二定三等四同时).三、.2211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号)四、含立方的几个重要不等式(a 、b 、c 为正数):(,);五、最值定理(积定和最小) ①,则当时和有最小值(和定积最大)②若和,则当是积有最大值. 【推广】:③已知,,,,+∈R y x b a 若1=+by ax ,则有则y x 11+的最小值为:3333a b c abc++≥0ab c ++>等式即可成立时取等或0=++==c b a c b a 3a b c ++⇒3()3a b c abc ++≤3333a b c ++≤,0,x y x y >+≥由()xy P =定值x y =x y +,0,x y x y >+≥由()x y S +=定值x y =xy 214s 21111()()by ax ax by a b a b xy x y x y +=++=+++++=+≥④等式到不等式的转化:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 4)2()2(82)2(822y x y x y x y x xy +≤+-=⋅⇒+-=即0)42)(82(08)2(4)2(2≥-+++⇒≥-+++y x y x y x y x 解得4282≥+-≤+y x y x (舍)或故x +2y 的最小值是4 如果求xy 的最大值,则xy xy y x y x xy 22282)2(82≥-=+⇒+-=, 然后解关于xy 的一元二次不等式,求xy 的范围,进而得到xy 的最大值六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响).七、含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.八、不等式中的函数思想不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
高一上数学必修一第二章《2.2.2不等式的解集》知识点梳理
高一上必修一第二章《等式与不等式》知识点梳理2.2.2不等式的解集 学习目标: 1.理解不等式解集的概念,会用集合表示不等式(组)的解集; 2.掌握绝对值不等式的解法; 3.理解绝对值的几何意义,并利用几何意义推导数轴上两点间距离公式和中点坐标公式; 4.体会化归与转化、数形结合的思想方法,发展数学运算、直观想象和逻辑推理等数学素养,培养回归概念寻找解决问题方法的解题习惯.【重点】1、掌握不等式组解集的方法.2、理解绝对值的定义,借助数轴解决简单绝对值不等式.3、掌握并理解数轴上两点之间的距离公式和数轴上的中点坐标公式.4. 学会如何求绝对值不等式【难点】1、正确用数轴来理解绝对值不等式2、求解复杂绝对值不等式.3、一、不等式的解集与不等式组的解集从初中数学中我们已经知道,能够使不等式成的未知数的值称为不等式的解,解不等式的过程中要不断地使用不等式的性质。
一般地,不等式的所有解组成的集合称为不等式的解集.对于由若干个不等式联立得到的不等式组来说,这些不等式的解集的交集称为不等式组的解集.【典型例题】例1 求不等式组2x+1≥-9,①21②的解集.解 ①式两边同时加上一1,得2x≥-10,这个不等式两边同时乘以 ,得x≥-5,因此①的解集为[-5,+oo ).类似地,可得②的解集为(-oo ,-3).又因为[-5,+oo )∩(-oo ,-3)=[-5,-3),所以原不等式组的解集为[-5,-3).二、绝对值不等式我们知道,数轴上表示数a 的点与原点的距离称为数a 的绝对值,记作|a|.而且:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.一般地,含有绝对值的不等式称为绝对值不等式。
例如,|x|>3,|x-1|≤2都是绝对值不等式.【尝试与发现】根据绝对值的定义可知,|x|>3等价于x≥0, x <0, x >3 或-x >3,即x>3或x<-3,因此|x|>3的解集为(-oo ,-3)∪(3,+oo ).不等式|x|>3的解集也可由绝对值的几何意义得到:因为|x|是数轴上表示数x 的点与原点的距离,所以数轴上与原点的距离大于3的点对应的所有数组成的集合就是|x|>3的解集,从而由下图可知所求解集为(-oo ,-3)∪(3,+oo ).用类似方法可知,当m>0时,关于x 的不等式|x|>m 的解为x>m 或x<-m ,因此解集为(-oo ,-m )∪(m ,+oo );关于x 的不等式|x|≤m 的解为-m≤x≤m,因此解集为[-m ,m]【尝试与发现】如果将a-1当成一个整体,比如令x=a-1,则|a-1|≤2|x|≤2,因此|a-1|≤2的解集可以通过求解|x|≤2得到,请读者自行尝试。
中职数学第一抡复习讲义第01章 集合与不等式
答案(1)1.
(2)-3.
.
.
第二节 集合与集合的关系
知识清单
(一)集合的关系
1.子集
(1)定义:对于两个集合A与B,如果集合A中所有元素都
在集合B中,则称集合A为集合B的子集,记作
A⊆ B (或B⊇A).
(2)性质:
①A ⊆ A.
②Φ ⊆ A.(空集是任何集合的子集)
C. = 2 + 1, ∈ D. = 2 − 1, ∈
答案 D
【点评】N表示自然数,Z表示正数,奇数为不能
被2整除的整数.
知识点3:集合的表示方法(描述法)
6.(1)若2∈ 2 + > 0 ,则实数m的取值范围是___.
(2)若4 ∉ 2 + > 0 ,则实数m的取值范围是
中职数学知识点通关秘籍
第一章 集合与不等式
第一节 集合的表示
第二节 集合的关系及运算
第三节 充要条件
第四节 不等式的性质及区间
第五节 一元二次不等式的解法
第六节 含绝对值的不等式的解法
第一节 集合的表示
知识清单
1.
(1)定义:由某些确定的对象组成的总体称为集合,常用
大写英文字母A,B,C,…表示.其中,组成集
③若A ⊆ B,B ⊆ C,则A ⊆ C.
④含有n个元素的集合子集的个数为 个,其中真子集的个
数为 -1个.非空真子集个数为 -2个。
2.相等集合
如果Aቤተ መጻሕፍቲ ባይዱ⊇B,且B ⊇A,则称集合A与B相等,记作 = .
注意:若两个集合相等,则两个集合所含元素相同.
3.真子集
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合不等式知识点整理
一. 集合及其表示法
1、我们把_能确切指定的一些对象的全体_叫做集合。
集合中各个对象叫做__元素_,他们的特征是:①__确定性__②__互异性__③__无序性__.
2、数的集合简称数集,我们把常用的数集用特定的字母表示:
全体自然数的集合,记作_N _,不包括零的自然数组成的集合,记作_*
N _; 全体整数组成的集合,记作_Z _; 全体有理数组成的集合,记作_Q _;
全体实数组成的集合,记作_R _. 正整数集,负整数集,正有理数集,负有理数集,正实数集,负实数集分别表示为_,,,,,Z Z Q Q R R +-+-+-_
3、我们把含有有限个数的集合叫做__有限集_,含有无限个元素的集合叫做_无限集_. 我们引进空集,规定空集_不含有任何元素_,记作__ φ __.
4、集合的表示方法有:_列举法、描述法、文氏图_.
5、元素与集合之间应用__,∈∉_
二. 集合之间的关系 1、对于两个集合A 和B ,如果__A 中的任意元素也都是B 中的元素___,那么集合A 叫做集合B 的子集,记作_A B ⊆_,数学的表达式是_,x A x B ∀∈∈__.
2、如果__A 是B 的子集,B 也是A 的子集__,
那么叫做集合A 和集合B 相等,记作__A B =_【用来证明两个集合相等的方法】
3、对于两个集合,如果__A 是B 的子集且B 中至少有一个元素不属于A _,那么集合A 叫做集合B 的真子集,记作 A B ⊂ ,数学的表达式是_,x A x B ∀∈∈且,b B b A ∃∈∉_.
4、 数集*,,,,N N R Q Z 之间的关系是_*
N N Z Q R ⊂⊂⊂⊂_.
5、空集是任何集合的_子集__,是任何非空集合的_真子集__.【任何涉及到子集和真子集问题,要考虑空集!】
6、若集合是有限集,元素有n 个,则这个集合的子集有___2n _个,真子集有__21n -___个,非空真子集有___22n -__个.
三. 集合的运算
1、一般的,由集合A 和集合B 的所有公共元素组成的集合叫做__交集_,记作_A B ⋂_.用描述法表示_{},A B x x A x B ⋂=∈∈_.用文氏图表示:
2、由所有属于集合A 或者属于集合B 的元素组成的集合叫做 __并集_,记作_A B ⋃_.用描述法表示_{}
A B x x A x B ⋃=∈∈或_.用文氏图表示:
3、设U 为全集,A 是U 的子集,则有U 中所有不属于A 的元素组成的集合叫做__补集__,记作_U C A _.用文氏图表示:
4、交换律:A B ⋂=__B A ⋂_;A B ⋃=_B A ⋃_;
分配律:()A B C ⋂⋃=_()()A B A C ⋂⋃⋂_;()A B C ⋃⋂=_()()A B A C ⋃⋂⋃_; 狄摩根原理:()U C A B ⋃=_U U C A C B ⋂_;()U C A B ⋂=_U U C A C B ⋃_.
四. 命题的形式及等价关系 1、四种命题形式:原命题 逆命题
否命题 逆否命题
原命题:如果α,那么β;逆命题:__如果β,那么α_;否命题:_如果α,那么β__; 逆否命题:_如果β,那么α_.
___原命题__与_逆否命题_,__否命题__与___逆命题__是等价命题(同真同假),所以命题的四种形式是真命题的个数是_偶数__个.
2、否定词:是≠__不是_,都是≠_不都是__,至少有一个≠_一个也没有__,至多有一个≠_至少有两个_,大于≠_小于等于_,任意≠__存在__.
五. 充分条件,必要条件
1、 一般的,用,αβ分别表示两个命题,如果命题α成立可以推出β也成立,那么α叫做β
的_充分条件_,β叫做α的_必要条件_.如果αβ⇒且βα⇒,则α是β的_充要条件_.
2、 判断充分必要,首先弄清_谁是条件谁是结论_,其次再看他们之间的推出关系.
六. 子集与推出关系
设A ,B 是非空集合,{}A a a α=具有性质,{}
B b b β=具有性质,
若α是β的充分条件,则_A B ⊆__;若A B =,则__B α⇔__.
不等式知识点整理
一. 不等式的基本性质 传递性:__,a b b c a c >>⇒>__.
加法性质:_a b a c b c >⇒+>+_;
乘法性质:_,0;,0a b c ac bc a b c ac bc >>⇒>><⇒<_.
同号可加性:_,a b c d a c b d >>⇒+>+__;
同号可乘性:__,a b c d a c b d >>⇒+>+_.
倒数可倒性:_110,ab a b a b >>⇒
<_. 开方保号性:
_0a b >>⇒
>;乘方保号性:_0n n a b a b >>⇒>_.
二. 不等式的解法
1、 解形如20ax bx c ++>(0≤)的方程
(1)判断_a 是否等于0_(2)若0a <,则_两边同乘以-1_(3)当0a >,看∆,求对应方程的两个根【若带有字母,一般情况可分解因式,若不会,用求根公式求出两根!】(4)比较两根的大小关系【通常用_作差,作商__来比较】
2、 解分式不等式【核心是_化成整式__】
(1) ()()
0f x g x >⇔()()0f x g x > (2) ()()0f x g x ≤⇔()()()
00f x g x g x ≤⎧⎪⎨≠⎪⎩ 3、 解绝对值不等式【核心是_去绝对值_】
(1)()f x a >⇔()()f x a f x a ><-或
(2)()()f x g x >⇔()()()()f x g x f x g x ><-或
(3)()()f x g x >⇔()()22f x g x >
(4)()()f x g x a +>⇔分类讨论
4、 解简单的高次不等式
方法是:_穿针引线___口诀是:_从右到左,从上到下,奇穿偶不穿_.
5、基本不等式及其应用
22a b + ab
a b +
使用基本不等式,首先要_判断是否满足条件(正数)__,其次要_检验=能否成立_. 运用基本不等式一般不连用几次,如果真要用,必须_检验=是否同时取到_. 基本不等式最常用的方法是_1的代换_.
6、不等式的证明
1)直接法 ⑴比较法 ①作差法
②作商法
⑵综合法
⑶分析法
2)反证法
反证法是假设_结论不成立作为条件_,与已知条件或者定理公理得出_矛盾__.。