高等数学 函数的极值与最大值、最小值
3-5第五节函数的极值与最大值最小值
教
5 9 2 9 22
3
3
案
5
55
2
34
f( ) 3
5
5 25
为极小值
武 由于x=0是不可导点,它的二阶导数不存在,只好用第一判别法.
汉
科 技
f (x) 3 x 2 2 (x 1) 1 5x 2 0,; x 0, f (x) 0;
学 院
3 3x
3 3x
数
理
系
高
等 数
例5 从一块边长为a的正方形铁皮的四角上剪去同样
学 电
大小的小正方形,然后按虚线把四边折起来,组成无盖的
子 教
盒子.问要去多大的小方块使盒子的容积最大?
案
解: :设剪去小方块
武 汉
的边长为x.
a
科
技
学 院
x
数
理
x
系
高
等 数
V x(a 2x)2 , x (0, x / 2)
学
案
定理2 (第一充分条件) 设函数f(x)在点x0连续,且在x0的某
一空心邻域U0(x0,δ)内可导,x ∈U0
武 汉 科
(1)若x<x0时,f’(x)>0;x>x0时,f’(x)<0,则f(x0)为极大值.
技 学 院
(2)若x<x0时,f’(x) < 0;x>x0时,f’(x) > 0,则f(x0)为极小值.
为0.
武 汉
定理1(必要条件) 若函数f(x)在点x0可导且取得极值f(x0),
科
技 学
则f’(x0)=0,
院
数
理
系
高 等
高等数学-第七版-课件-3-6 函数的极值与最大值最小值
o
x
定义 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果对于去心邻域U0(x0)内的任一x,有 y f(x)<f(x0)(或f(x)>f(x0)) 称f(x0)为函数f(x)的一个极大值(极小值) 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点 注 极值是一个局部的概念
海岸位于A点南侧40km,是一条东西走向的笔直长堤. 演习中部队先从A出发陆上行军到达海堤,再从海堤处乘舰艇 到达海岛B. 已知陆上行军速度为每小时36km,舰艇速度为
每小时12km.问演习部队在海堤的何处乘舰艇才能使登岛用 y 时最少? 分析 陆上行军耗时 o 海上行军耗时 A
(0,40)
? R(x,0) B
x
(140,-60)
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
例4 从边长为a的一张正方形薄铁皮的四角切去 边长为x的四个小正方形,折转四边,作一 个盒子,问x为何值时盒子的容积最大?
例5 某企业以钢材为主要生产材料。设该厂每天的钢材需求量为 R吨,每次订货费为C1元,每天每吨钢材的存贮费为C2元 (其中R、 C1、 C2为常数),并设当存贮量降为零时,能 立即得到补充(在一个订货周期内每天的平均存贮量为订货 量的二分之一)求一个最佳的订货周期,使每天的平均费用 最小? q(t) Q o T C C0
o
x
定义 设函数f(x)在区间I上有定义,如果存在x0∈I,使得对于区间I内 的任一x,有 f(x)≤f(x0)(或f(x)≥f(x0)),则称f(x0)为函数f(x) 在区间I上的最大值(或最小值).
第五节 函数的极值与最大值最小值
第第五五节节 函函数数的的极极值值与与最最大大值值最最小小值值
例例33求求函函数数 ff ((xx)) ||xx22||eexx在在闭闭区区间间[[00,,33]]上上的的最最
大大值值与与最最小小值值..
解
(x 2)ex , f (x) (x 2)eyx ,
f
( x)
(x 1)ex
(x
Step1 求导数 f (x); Step2 求出函数全部驻点与不可导点; Step3 列表,用第一充分条件或第二充分条件判别 在Step2中求出的点处函数是否取得极值。 Step4 求出各极值点的函数值。
第第五五节节函函数数的的极极值与值最与大最值大最值小最值小值
例例1 求求函函数数f f( x( )x ) x 2x( x2 (4 x43x 23 x 32 )的3 )极的值极. 值.
极小 极大
y
y (x 2 4)3 x 2
(3) 极值点可能是驻点或不可导点.
O
x
第五节 函数的极值与最大值最小值
2. 极值存在的条件
定理1(必要条件) 设函数 f (x) 在 x0 处可导,且在
x0 处取得极值,那么 f (x0) = 0 .
y
说明:可导函数的极值点一定是驻点,
y x3
但驻点不一定是极值点. 如 y=x3 在驻点 x = 0 处取不得极值
1)e x
,
,
y
0 x2,
2 x3, 0 f( xx) | x2,2 | e x
2 x 3. O
f (x) | x 2 | ex
x
所以在(0 , 3)内,有唯一驻点 x = 1 . 又 x=2 是不可导点,
由于
O
x
f (0) = 2 , f (1) = e , f (2) = 0 , f (3) = e3 ,
函数的极值与最大值最小值
lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n
则
0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.
函数的极值与最大值最小值
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.
函数的极值与最值知识点总结
函数的极值与最值知识点总结函数的极值和最值是数学中重要的概念,它们对于函数的图像和性质有着重要的影响。
本文将对函数的极值和最值进行详细总结。
1. 函数的极值函数的极值是指函数在某一区间内取得的最大值或最小值。
在函数图像上就是曲线的顶点或谷底。
1.1 极大值和极小值函数在区间内取得最大值的点称为极大值点,函数在区间内取得最小值的点称为极小值点。
极大值点和极小值点合称为极值点。
1.2 极值的必要条件函数的极值一定是函数的驻点(即函数的导数为0)或者是函数定义域的端点,这是极值的必要条件。
1.3 极值判定的充分条件若函数在某点的导数由正变负,则该点是函数的极大值点;若函数在某点的导数由负变正,则该点是函数的极小值点。
这是极值判定的充分条件。
2. 函数的最值函数的最值是指函数在定义域内取得的最大值或最小值。
2.1 最大值和最小值函数在定义域内取得的最大值称为最大值,函数在定义域内取得的最小值称为最小值。
2.2 最值的存在性当函数在闭区间上连续时,函数一定存在最大值和最小值。
但是当函数在开区间上连续时,函数不一定存在最大值和最小值。
2.3 最值的求解方法求函数的最值主要通过导数的方法进行。
首先求出函数的导数,然后求出导数的零点,即函数的极值点。
从这些极值点中选取函数值最大的点,即为函数的最大值;选取函数值最小的点,即为函数的最小值。
3. 案例分析接下来通过一个具体的案例来说明函数的极值和最值的求解过程。
3.1 求函数 f(x) = x^3 - 3x^2 的极值和最值。
首先求导得到 f'(x) = 3x^2 - 6x,令 f'(x) = 0,解得 x = 0 或 x = 2。
当 x = 0 时,f''(0) = 0,无法判断极值情况;当 x = 2 时,f''(2) = 6 > 0,说明 x = 2 是极小值点。
计算 f(2) = 2^3 - 3(2)^2 = -4,可知函数的极小值为 -4。
函数的极值与最大值最小值
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
函数极值的判定法 由费马引理可知可导函数的极值点一定是驻点 .
注意: 1) 函数的极值是函数的局部性质.
2) 对常见函数, 极值可能出现在驻点或导数 不存在的点.
y
3) 函数的最值是函数的全局性质.
x 1 , x4 为极大点 x 2 , x5 为极小点
提示: 利用 f ( x) 单调增加 , 及
f (1) f (0) f ( ) (0 1)
利用导数求函数的最值是导数的又一重要应用.
若函数f(x)在闭区间[a,b]上连续,则值的方法: (1) 求 f ( x)在 (a , b) 内的极值可疑点
x1 , x2 , , xm
(2) 最大值
M max f ( x1 ) , f ( x2 ) ,, f ( xm ) , f (a) , f (b)
最小值
m min f ( x1 ) , f ( x2 ) , , f ( xm ) , f (a) , f (b)
特别:
• ●当 f ( x) 在 [a , b]内只有一个极值可疑点时, 若在 此点取极大 (小)值 , 则也是最大 (小)值 . • ●当 f ( x) 在 [a , b]上单调时, 最值必在端点处达到.
(证明略)
例如, 容易验证x=0是 y x2 , x ( , ) 的极小 值点. 而 x=0不是 y x , x ( , ) 的极值点.
3
例3 求函数 f ( x) ( x 1) x 的极值 . 2 x 2 1 2 5 解 1) 求导数 f ( x) x 3 ( x 1) x 3 5 3 3 3x 2) 求极值可疑点 2 令 f ( x) 0 , 得 x1 ; 令 f ( x) , 得 x2 0 5 3) 列表判别
函数的极值与最大值最小值
(
)
3
(
检查
x
f
¢
0
)
(
)
2
(
的根
求驻点,即方程
=
¢
x
f
);
(
)
1
(
x
f
¢
求导数
.
)
4
(
求极值
例1
求函数 的极值.
解
得驻点
在
的左右两侧附近,
因此 不是极值.
在
点左侧,当 时,
2.9 函数的极值与最大值最小值
讨论蛋白质含量随积温变化的情况.
解 单位土地面积上黑麦草的蛋白质含量的比例为 此函数导数的计算比较复杂,作近似计算 §2.9 函数的极值与最大值最小值
取
令
得w = 683,是最大值点,
此时收获得到的蛋白质数量最多;
令
得w =493,是增长曲线的拐点,
此时是蛋白质数量增加最快的阶段.
只有一个驻点,而最大值一定存在,此驻点就是最大值点,
即当产量为300件时,总利润最大,为25000元.
L(300)=25000,
§2.9 函数的极值与最大值最小值
例6
河北沧州地区种植黑麦草作为饲料,单位土地面积上黑麦草的干物质积累量m是积温w的函数,
而随着植物的生长,干物质中的蛋白质含量 的比例逐渐下降,经验公式为
极值,
定理1
(必要条件)
证明略. (费马引理)
导数等于零的点称为函数的驻点.
§2.9 函数的极值与最大值最小值
例如,
注
① 可导函数的极值点一定是驻点,但反过来驻点不一定是极值点;
② 导数不存在的点也可能是极值点.
《高等数学教学资料》05第五节函数极限与最大值最小值.docx
第五节函数的极值与最大值最小值在讨论函数的单调性时,曾遇到这样的情形,两数先是单调增加(或减少),到达某一点后又变为单调减少(或增加),这一类点实际上就是使函数单调性发生变化的分界点.如在上节例3的图3・4・5中,点兀=1和兀=2就是具有这样性质的点,易见,对兀=1的某个邻域内的任一点兀(2 1),恒有f(x) </(I),即曲线在点(1,/(1))处达到“峰顶”:同样,对“2 的某个邻域内的任一点X(XH2),恒有f(x) > /(2),即曲线在点(2,/(2))处达到“谷底”. 具有这种性质的点在实际应用中有着重耍的意义.由此我们引要入函数极值的概念.分布图示★函数极值的定义★函数极值的求法★例1★例2★例3笫二充分条件★例4★例5★例6最大值最小值的求法★例7★例8★例9★例10★例11★例]2内容小结★课堂练习★习题3・5 ★返回内容要点一、函数的极值极值的必要条件第一充分条件与第二充分条件求函数的极值点和极值的步骤(1)确定函数/(兀)的定义域,并求其导数;(2)解方程f\x) = 0求出于(兀)的全部驻点与不可导点;(3)讨论厂(劝在驻点和不可导点左、右两侧邻近符号变化的情况,确定函数的极值点;(4)求出各极值点的函数值,就得到函数/(兀)的全部极值.二、函数的最大值与最小值在实际应用屮,常常会遇到求最大值和最小值的问题.如用料最省、容暈最大、花钱最少、效率最高、利润最大等.此类问题在数学上往往可归结为求某一函数(通常称为目标函数)的最大值或最小值问题.求函数在创上的最大(小)值的步骤如下:(1)计算函数/(兀)在一切可能极值点的函数值,并将它们与相比较,这些值中最大的就是最大值,最小的就是最小值;(2)对于闭区间[d,b]上的连续函数/(兀),如果在这个区间内只有一个可能的极值点,并且函数在该点确有极值,则这点就是函数在所给区I'可上的最大值(或最小值)点.例题选讲求函数的极值例1 (E01)求出函数/(%) = x3 -3x2 -9x4-5的极值.解f(x) =3X2-6X-9=3(X +1)(X一3),令f(x) = 0,得驻点x1=-l,x2=3.列表讨论如下:X(―-1)-1(-1, 3)3(3, 4- °°)•厂⑴+0——0+f(x)f极大值1极小值t所以,极大值/(-!) = 10,极小值/(3) = -22.例2 (E02)求函数的极值.解⑴ 函数f(兀)在(-oo,+oo)内连续,除x = -l外处处可导,且厂(无)=孝二2;3沿+1(2)令f\x) = 0,得驻点x = l;兀=-1为/*(兀)的不可导点;(3)列表讨论如下:(-00,-1)-1(-1, 1)1(1,+呵/'(X)+不存在—0+/⑴f极大值1极小值t⑷ 极大值为/(-1) = 0,极小值为/⑴=-3^4.3例3求函数y(x) = x-jx2/3的单调增减区间和极值.解求导数= 当"1时八0) = 0,而x = 0时/©)不存在,因此,函数只可能在这两点取得极值.列表如下:X(一8,0)0(0,1)1(1, + °°) f\x)+ 不存在—0+fM/极大值0极小值-丄2/由上表可见:函数/(兀)在区间(_oo,0),(l,+oo)单调增加,在区间(0,1)单调减少.在点x =()处有极大值,在点兀=1处有极小值/(I) = 如图.例4 (E03)求出函数/(x) = x3 + 3x2一24兀- 20的极值.解f(x) = 3x2 +6x-24 = 3(x + 4)(兀—2),令f\x) = 0,得驻点册=-4,勺=2.又/'(x) = 6x + 6, ・・・/"(-4) = —18vO,故极大值于(一4) = 60, /*(2) = 18>0,故极小值/(2) = -4&注意:1./"(必)=0吋,/(X)在点勺处不一定収极值,仍用第一充分条件进行判断.2.函数的不可导点,也可能是函数的极值点.例5 (E04)求函数f(x) =(X2 -厅+ I的极值.解由/,(X)=6X(X2-I)2=0,得驻点可=一1,七=0*3=1. f\x) = 6(x2 -l)(5x2 -1).因f\x) = 6 > 0,故/(x)在x = 0处収得极小值,极小值为/(0) = 0.因厂(-1)=厂⑴=0,故用定理3无法判别.考察一阶导数f\x)在驻点册=-1及勺=1左右邻近的符号:当兀取-1左侧邻近的值时,f(x) < 0;当兀取-1右侧邻近的值吋,f(x) < 0;因厂(兀)的符号没有改变,故/(兀)在x = -l处没有极值.同理,/(兀)在x = l 处也没有极值.如图所示.例6求出函数/W=1-(X-2)2/3的极值.2 --解f'M = -一(兀-2) '("2). x = 2是函数的不可导点.当xv2时,f(x) > 0;当x>2时,.厂(兀)v0. /. /(2) = 1为/(兀)的极大值.例7 (E05)求y = 2疋+ 3兀$ _ 12x + 14的在[-3,4]上的最大值与最小值.解*«*= 6(x + 2)(兀一1),解方程f\x) = 0,得x, =-2,X2 =1.计算/(-3) = 23; /(—2) = 34; /⑴二7; /⑷二142;比较得最大值/⑷=142,最小值/(I) = 7.例8求函数)usin2x-x在-彳冷上的最大值及最小值.解函数y = sin2x- x在-巴工上连f\x) = / = 2cos2x-1, 2 2令)/ = (),得/ = 土牛.故皿¥上最大值为务最小值为号例9 (E06)设工厂4到铁路线的垂直距离为20km,垂足为3.铁路线上距离B为100km 处有一原料供应站C,如图3-5-4.现在要在铁路BC屮间某处D修建一个原料屮转车站,再由车站D 向工厂修一条公路.如果已知每km 的铁路运费与公路运费之比为3:5,那么,D 应 选在何处,才能使原料供应站C 运货到工厂A 所需运费最省?解 BD = x (km), CD = 100 — x (km), AD = ^202 + x 2 ・铁路每公里运费眈公路每公里5R,记那里目标函数(总运费)y 的函数关系式: y = 5kAD + 3k-CD 即y = 5k ・ 7400 +x 2 + 3k(l 00-x) (0<x<100).问题归结为:x 収何值时目标函数y 最小./ \ I求导得y f = k 1 =一3,令y" = 0得x = 15(km).、V400 + x~ ) 由于 y(0) = 400£, y(15) = 380£, y(100) = 100@£. 从而当BD = 15 (kmJB'J-,总运费最省.例10(E07)某房地产公司有50套公寓要出租,当租金定为每月180元时,公寓会全部 租111去.当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20 元的整修维护费.试问房租定为多少可获得最大收入?解 设房租为每月兀元,租出去的房子有50-(犬二型]套,每月总收入为10V =70 一一,解 R\x ) = 0,得兀=350 (唯一驻点). 故每月每套租金为350元时收入最高.最大收入为/?(350) = 10890(元).求函数的最大值最小值例11敌人乘汽车从河的北岸A 处以1米/分钟的速度向正北逃窜,同时我军摩托车从 河的南岸B 处向正东追击,速度为2千米/分钟,问我军摩托车何吋射击最好(相距最近射击 最好)?解(1)建立敌我相距函数关系 设t 为我军从B 处发起追击至射击的事件(分).敌我相距函数5(/)5(f) = J(0.5 + r)2+(4-2r)2⑵求5 = 5(r)的最小值点5/-7.5 7(0.5 + z)2+(4-2r)2令= o,得唯一驻点( = 1.5.故得我军从B 处发起追击后1.5分钟设计最好. 实际问题求最值应注意:(1) 建立目标函数; (2) 求最值;若目标函数只有唯一驻点,则该点的函数值即为所求的最人(或最小)值.R(x) = U - 20) 50- x-180、10 )X = (x-20) 68——,I 10丿 + (“20)卜茁2 2例12求内接于椭圆与+务=1而面积最大的矩形的各边之长. a~ b~ 解 设M(x,y)为椭圆上第一象限内任意一点,则 以点M 为一顶点的内接矩形的面积为S(x) = 2x- 2y = — x^a 1 -x 2,0 <x<a,a且 S(0) = S(d) = 0.Qyla 2-x 2是S(x)的最人值,最大值仏=乎诗卜倍!=切课堂练习1. 下列命题正确吗?若兀()为/(X )的极小值点,则必存在旳的某邻域,在此邻域内,/(兀)在兀()的左侧下降,而 在兀()的右侧上升.2. 若/(d)是/(兀)在[d,切上的最大值或最小值,且广⑺)存在,是否一定有f(a) = 0?4b a 2 -2x 2 万需2“由 S3 = o,求得驻点尤0 =为唯一的极值可疑点.依题意,S(x)存在最大值,故对应的y 值为即当矩形的边长分别为血a, Qb 时面积最大.。
高等数学第三章: 函数的极值与最值
所以f(x)在1处没有极值 同理 f(x)在1处也没有极值
16
运用第一、第二充分条件需要注意:
(1) 若函数有导数不存在的点时, 则可用第一 充分条件来判定有无极值;
(2) 对于只有驻点而没有导数不存在的点, 则 可用第二充分条件判断有无极值.
17
例 证明x 1时, ex 1 1 x
2
y
比较得: 最大值为 3 4 ,
最小值为 3 4 3 3.
1
2 1O 1
2
2
2x
26
求函数 f ( x) | x 2 | ex 在[0,3]上的
最大值与最小值.
解
( x 2)e x
f
(x)
(x
2)e x
f
(
x)
( x 1)e
(x
1)e x
应用. 事实上,当f ( x0 ) 0, f ( x0 ) 0时, f ( x)在点x0处可能有极大值,也可能有极小值, 也可能没有极值. 如, f1( x) x4, f2( x) x4, f3( x) x3 在x 0处分别属于上述三种情况.
仍用第一充分条件
15
例 求函数f(x)(x21)31的极值
一定是驻点或不可导点;此外最值也可能在区间 的端点处取得.
y
y
y
oa
bx o a
bx o a
bx
21
求连续函数 f (x)在闭区间[a, b]上的最大(小) 值的方法: (1) 将闭区间[a, b]内所有驻点和导数不存在的 点(即为极值可疑点)处的函数值和 区间端点的 函数值 f (a), f (b)比较, 其中最大(小)者就是 f (x) 在闭区间[a, b]上的最大(小)值. (2) 当 f (x)在闭区间[a, b]上单调时, 最值必在端 点处达到.
函数的极值与最大值最小值
函数的极值与最大值最小值在数学中,对于一个给定的函数,我们常常关心它的极值以及最大值和最小值。
这些概念在微积分中扮演着重要的角色,不仅在数学理论中有着深刻的意义,也在实际问题中有着广泛的应用。
1. 极值的定义极值是指函数在某个区间内取得的局部最大值或最小值。
具体来说,设函数f(x)在区间I上有定义,若存在$x_0 \\in I$,使得对任意$x\\in I$,有$f(x)\\leqf(x_0)$或者$f(x) \\geq f(x_0)$,则称f(x0)是函数f(x)在区间I上的一个极大值或极小值。
2. 求极值的方法常见求函数极值的方法有:•导数法:通过求函数的导数(一阶导数或高阶导数)来找到函数的驻点,然后通过二阶导数的符号来判断是极大值还是极小值。
•边界法:求出函数在区间端点处的函数值,以及在可能的间断点处的函数值,然后比较这些值来确定最大值和最小值。
•微分中值定理:借助中值定理的思想,将函数f(x)在区间I上的极值归结为函数导数在该区间上的零点问题。
3. 最大值与最小值与极值类似,函数的最大值和最小值是指函数在定义域内取得的最大值和最小值。
最大值可以是有限值,也可以是无穷大;最小值也可以是有限值,也可以是负无穷。
4. 求最大值最小值的方法确定函数的最大值和最小值,主要采用以下方法:•导数法:同样利用导数的性质来判断函数的最大值和最小值,这一点与求极值的方法类似。
•二次型法:当函数为二次函数时,可以通过完全平方的方式将其转化为标准形式,进而求得最值。
•辅助线法:有时候在求最值的过程中,通过引入一条辅助线,并考虑其和原函数之间的关系,来得到最值的情况。
5. 总结函数的极值和最值是微积分中一个重要的概念,通过对函数的极值和最值进行研究,我们可以更好地理解函数的性质,优化问题和实际问题也经常涉及到函数的极值和最值。
因此,熟练掌握求解函数极值和最值的方法是数学学习中的关键一环。
函数的极值与最大(小)值(解析版)
函数的极值与最大(小)值(解析版)函数的极值与最大(小)值(解析版)函数的极值与最大(小)值是数学分析中一个重要的概念和研究内容,它在很多领域具有广泛的应用,如经济学、物理学、工程学等。
本文将介绍函数的极值与最大(小)值的定义、求解方法以及一些实际问题中的应用。
一、函数的极值与最大(小)值的概念函数的极值是指在一个特定的区间内,函数取得的最大值或最小值。
定义域中的极值点可以是局部极大值或局部极小值,也可是全局的最大值或最小值。
二、求解函数的极值与最大(小)值求解函数的极值与最大(小)值通常有以下方法:1. 导数法:根据函数的导数(或导函数),可以找到函数的驻点和拐点,并通过一阶和二阶导数的符号来判断极值点的类型,即极大值或极小值。
其中,一阶导数为零的点即为函数的驻点,二阶导数为零的点即为函数的拐点。
2. 边界法:在给定的区间内,如果函数在区间的端点处取得最大或最小值,则该值也是函数的极值。
通过比较函数在边界点和内部点的取值,可以确定函数的最大(小)值。
3. 高阶导数法:对于一些特殊的函数,可以通过多阶导数的方法求解极值。
通过计算函数的高阶导数,可以得到函数的极值点。
4. 参数方程法:对于参数方程给出的函数,可以通过求解参数方程中的参数值,得到函数的极值。
这种方法在实际问题中应用较多。
三、实际问题中的应用函数的极值与最大(小)值在各个领域中都有广泛的应用,例如:1. 经济学中,通过对供需函数的极值分析,可以确定市场的均衡价格和数量,从而指导市场调节和政策制定。
2. 物理学中,通过对物体运动轨迹方程的极值分析,可以确定物体在运动过程中最大(小)值速度、加速度等相关参数。
3. 工程学中,通过对成本、效益、材料使用等函数的极值分析,可以优化设计方案,提高工程效率和经济性。
4. 生物学中,通过对生态系统中的种群数量变化函数的极值分析,可以研究种群的稳定性和生态系统的平衡状态。
总之,函数的极值与最大(小)值是数学分析中的重要内容,它不仅具有理论意义,还在实际应用中发挥着重要的作用。
函数的极值与最大值最小值
∴ f (x) 在 x = ±1处没有极值. 说明 极值的判别法 (定理2 ~ 定理4) 都是充分的. 当这些充分条件不满足时,不能说明极值不存在. 无极值的判断 ① 无可疑极值点的函数必无极值;
② 单调函数无极值; ③ 无定义的点一定不是极值点.
2 x2 的极值. 例5 求函数 f ( x) 2 (1 x)
① 求出 f (x) 在 (a , b) 内的驻点 x1 , x2 , 及不可导点 xm1 , xm2 ,
, xn ;
, xm
② 计算 f ( xi ) (i 1,2, , n) 及 f (a) , f (b) ; ③ 比较大小.
最大值:
M max f ( x1 ), f ( x2 ), , f ( xn ), f (a), f (b) , f ( xn ), f (a), f (b)
所以,极大值为 f (1) 10 , 极小值为 f (3) 22 .
例4 求函数 f ( x) ( x 2 1)3 1 的极值. 解
f ( x) 6 x ( x 2 1) 2 , f ( x) 6( x 2 1)(5 x 2 1)
令 f ( x) 0, 得驻点 x1 0, x2 1, x3 1
L( x ) R ( x ) C ( x ) ,
ቤተ መጻሕፍቲ ባይዱ
那么生产多少件产品时,利润函数 L(x) 最大? 解题思路
① 根据题意建立数学模型,即写出利润函数;
② 对利润函数求最值.
例7 已知某厂生产 x 件产品的成本为 1 2 C ( x) 25000 200 x x (元). 40 若产品以每件 500 元售出,要使利润最大,应生产 多少件产品?
1 2 解 利润函数为 L( x) 25000 300 x x 40
函数的极值与最大值最小值
在闭区间 因此也可通过
例4. 铁路上 AB 段的距离为100 km , 工厂C 距 A 处
20
km , AC⊥ AB ,
要在 AB 线上选定一点 D 向工厂修一条
公路, 已知铁路与公路每公里货运
价之比为3:5 ,
为使货物从B 运到工
20
厂C 的运费最省,
问D点应如何取?
解: 设
则
总运费
( k 为某常数 )
例7. 一张 1.4 m 高的图片挂在墙上 , 它的底边高
于
观察者的眼睛1.8 m ,
问观察者在距墙多远处看图才最
清楚(视角 最大) ?
解: 设观察者与墙的距离为 x m ,
则
令
得驻点
根据问题的实际意义, 观察者最佳站位存在 ,
唯一, 因此观察者站在距离墙 2.4 m 处看图最清楚 .
驻点又
例8. 设某工厂生产某产品 x 千件的成本是
即
成本函数 收入函数
即边际收入=边际成本 (见右图)
亏损最大 收益最大
内容小结
1. 连续函数的极值 (1) 极值可疑点 : (2) 第一充分条件
过 过
使导数为0 或不存在的点
由正变负 由负变正
(3) 第二充分条件
(4) 判别法的推广
定理3
为极大值 为极小值
为极大值 为极小值
定理3
2. 连续函数的最值
定理2 (极值第二判别法)
二阶导数 , 且 则 在点 取极大值 ; 则 在点 取极小值 .
证: (1) 存在
由第一判别法知 (2) 类似可证 .
例2. 求函数
解: 1) 求导数
的极值 .
2) 求驻点 令
函数的极值与最大值最小值
r 1 R 2 2
L
O
h
r
R
O
高为
h
R r
2
2
R
若记 , 则有 r (1 ) R , h R 2 2 , 2
2
2
这样就可以得到以 为自变量的目标函数
V
r h
2
R3
y
f (1) 01Βιβλιοθήκη 所以不是极值点 .O
1
x
说明: 极值的判别法( 定理2 ~ 定理4 ) 都是充分的. 当这些充分条件不满足时, 不等于极值不存在 . 例如:
f (0) 2 为极大值 , 但不满足定理2
~ 定理4 的条件.
高等数学(上)
第三章 微分中值定理与导数的应用
第五节 函数的极值与最大值最小值
第五节 函数的极值与最大值最小值
定理4 (判别法的推广) 数,且 则: 1) 当 n为偶数时,
f
( n)
( x0 ) 0 ,
为极值点 , 且
是极小点 ; 是极大点 .
2) 当 n为奇数时,
证 利用 在
不是极值点 .
点的泰勒公式 , 可得
f
(n)
f ( x) f ( x0 ) f ( x0 )( x x0 )
二、最大值与最小值问题
则其最值只能
在极值点或端点处达到 . 求函数最值的方法: (1) 求 在 内的极值可疑点 (2) 最大值 M max 最小值
f (a) , f (b)
内只有一个极值可疑点时, 若在此点取极大(小) 值 , 则也是最大(小) 值 . •当 在 上单调时, 最值必在端点处达到.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)设平均成本为 y ,则 y = 25000 + 200 + x
x
40
由
y′
=
−
25000 x2
+
1 40
=
0
,得
x1
= 1000
,
x2
=
−1000
(舍去)
因为 y′′ |x=1000 = 5×10−5 > 0 ,所以当 x = 1000 时, y 取极小值,
也即最小值,因此,要使平均成本最小,应生产 1000 件产品。
2009年7月3日星期五
21
目录
上页
下页
返回
(2) 利润函数为
L(x)
=
500x
−
⎛ ⎜⎝
问 x = a 是为 f (x) 的极值点?如果是极值点, f (x) 在
x = a 取得极大值还是极小值?(课本 例 3)
解题思路:
(1) f ′(x) 在点 x = a 处连续
lim f ′(x) = f ′(a)
x→a
(2) f ′(a) = lim f ′(x) = lim f ′(x) × (x − a) = (−1) × 0 = 0
又因为 f ′′(x) = − 1 < 0 , 25
所以当 x = 1800 时, f (x) 取得最大值,
即房租定为 1800 元时,可获得最大收入。
2009年7月3日星期五
17
目录
上页
下页
返回
例8
证明
1 2 p−1
≤
xp
+
(1 −
x) p
≤1
(0 ≤ x ≤ 1, p > 1) .
(课本习题 3-5 第 5 题(1))
2009年7月3日星期五
2
目录
上页
下页
返回
由费马引理知,驻点(Stagnation Point),即导数为 零的点是函数可能的极值点。
除驻点外函数还有没有其他的点是可能的极值点? 在可能的极值点中究竟哪些点是极值点? 是极值点时,是极大值点还是极小值点呢?
研究极值到底有什么用?……
为此,这节课我们就来研究函数极值点的两个充分 条件,并在此基础上讨论最值问题!
2009年7月3日星期五
14
目录
上页
下页
返回
(2)若 f (x) 在区间[ a,b ](或 (a,b) 或 (−∞, +∞) 等)上 连续且可导,在 (a,b) 内有唯一驻点 x0 ,且 f (x0 ) 为极大 (小)值,则 f (x0 ) 必为 f (x) 在[ a,b ]上的最大(小)值;
(3)在实际问题中,若目标函数 f (x) 在[ a,b ]上连续,
将函数在驻点和导数不存在的点的函数值同端点函数
值进行比较,其中最大者为 f (x) 在[ a,b ]上的最大值, 最小者为 f (x) 在[ a,b ]上的最小值.
2009年7月3日星期五
13
目录
上页
下页
返回
例 5 求函数 f (x) = x4 − 4x3 − 8x2 + 1 在 [−2, 2] 上的最大 值和最小值. (课本 例 5)
x→a
x→a x − a
(3) f ′′(a) = lim f ′(x) − f ′(a) = lim f ′(x) = −1 < 0
x→a
x−a
x→a x − a
2009年7月3日星期五
11
目录
上页
下页
返回
四、最值问题(Extreme Problems)
在很多学科领域与实际问题中,经常遇到在一定条件下 如何用料最省、成本最低、时间最短、效益最高等问题, 这类问题我们称为最优化问题. 在数学上,它们常归结为 求某一个函数(称为目标函数)在某个范围内的最大值、 最小值问题(简称为最值问题).
且在 x = 0 处导数不存在。 (2) 根据驻点与导数不存在点左右两端的 符号确定是否极值点。
答案:有 ( x1, f (x1)) 和 (0, f (0)) 两个极大值点; 有 ( x2 , f (x2 )) 和 ( x3 , f (x3 )) 两个极小值点。
2009年7月3日星期五
8
目录
上页
下页
在( a,b )内可导,且有唯一驻点 x0 .如果能根据实际 问题的性质可以断定 f (x) 确有最大(小)值,而且一
定在区间内部取得,那么 f (x0 ) 必为最大(小)值.
2009年7月3日星期五
15
目录
上页
下页
返回
例 6 讨论函数 y = xx (x > 0) 的最值问题.
解题思路:
(1) y′ = xx (1 + ln x) (x > 0) ,得驻点为 x = 1
3. 最值问题 (1)学会解最值问题 (2)学会利用函数的最值证明不等式
2009年7月3日星期五
19
目录
上页
下页
返回
课后练习
(1)自学课本 例7、例8和例9 (2)习题3-5 1(偶数题);4(2);5;10
思考练习
1.下列说法是否正确? (1)驻点就是极值点,极值点就是驻点 (2)驻点一定是 极值点
f (x) ≤ f (x0 ) 或 f (x) ≥ f (x0 ) , 则称 f (x0 ) 是函数 f (x) 的一个极大值(或极小值),点 x0 是 f (x) 的一个极大值点(或极小值点),函数的极大值、
极小值统称为极值.极大值点与极小值点统称为极值点.
2.费马(Femat)引理 如果函数 f (x)在 点 x0 可导, 而且在点 x0 取到极值,则 f ′(x0 ) = 0.
2009年7月3日星期五
3
目录
上页
下页
返回
二、第一充分条件(The First Sufficient Condition)
定理 1(第一充分条件) 设函数 f (x) 在点 x0 的某个邻
o
域U (x0 ,δ ) 内连续,在去心邻域U (x0 ,δ ) 内可导.
(1)若 x ∈ (x0 − δ , x0 ) 时, f ′(x) > 0 ,( f ′( x) < 0) 而 x ∈ (x0 , x0 + δ ) 时, f ′(x) < 0 ,( f ′( x) > 0)
第三章
第五节 函数的极值与最大值、最小值
(Extremum & Extremes of Function)
一、复习引入 二、极值的第一充分条件 三、极值的第二充分条件 四、最值问题 五、小结与思考练习
2009年7月3日星期五
1
目录
上页
下页
返回
一、复习引入(Introduction)
1.极值定义 设函数 f (x) 在区间 (a,b) 内有定义,x0 是 (a,b) 内的一点,如果存在 x0 的一个邻域U (x0 ) ,对于 U (x0 ) 内的任何点 x ,有
= 1,
f
(0)
= 1,
f
⎛ ⎜⎝
1 2
⎞ ⎟⎠
=
1 2 p−1
为最小值,故 ∀x ∈[0,1] ,原不等式
1 2 p−1
≤
xp
+
(1 −
x) p
≤1
成立。
2009年7月3日星期五
18
目录
上页
下页
返回
内容小结
1. 复习了函数极值的概念(理解) 特别注意: 最值是整体概念而极值是局部概念.
2. 介绍了判断极值点的两个充分条件(注意使用条件) 学会利用这两个充分条件判断是否极值点
例 1 求函数 f (x) = 3 6x2 − x3 的极值.(老师讲解)
2009年7月3日星期五
7
目录
上页
下页
返回
例 2 设函数 f (x) 在 (−∞, +∞) 内 连续,其导函数的图形如右图所 示,试确定函数 f (x) 的极大值和 极小值点的个数.(课本例 4)
提示:(1)从图形可以看出, f ′(x1) = f ′(x2 ) = f ′(x3 ) = 0
2009年7月3日星期五
16
目录
上页
下页
返回
解:设房租为 x 元,获得的收入设为 f (x) ,
则租出去的公寓数为:
50 − x −1000 = 3500 − x
由题意知:
50
50
f (x) = (x −100) ⋅ 3500 − x = −x2 + 3600x − 35000
50
50
令 f ′(x) = −2x + 3600 = 0 , 得: x = 1800 。 50
则函数 f (x) 在点 x0 处取得极大值;(极小值)
o
(2)若 x ∈U (x0 ,δ ) 时, f ′(x) 的符号保持不变,
则点 x0 不是 f (x) 的极值点.
2009年7月3日星期五
4
目录
上页
下页
返回
y
+−
o
x0
x
y
−
+ox0x(是极值点情形)y
+
y−
+
o
x0
x
−
o
x0
x
(不是极值点情
(2)通过导数的符号判定
x
=
1
e 是唯一的极值点
e
例 7 一房地产公司有 50 套公寓要出租.当月租金为 1 000 元时,公寓会全部租出去.当月租金每增加 50 元 时,就会多一套公寓租不出去,而租出去的公寓每月 需花费100 元的维修费.试问房租定为多少可获得最 大收入?(课本习题 3-5 11) (解答见下页)