初中数学二次函数动点问题

合集下载

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴求二次函数的图象与x轴的交点坐标.需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号.或由二次函数中a,b,c的符号判断图象的位置.要数形结合;⑷二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x轴的一个交点坐标.可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式.二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A 和点B (-.与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M .问在对称轴上是否存在点P .使△CMP 为等腰三角形若存在.请直接写出所有符合条件的点P 的坐标;若不存在.请说明理由.(3) 如图②.若点E 为第二象限抛物线上一动点.连接BE 、CE .求四边形BOCE 面积的最大值.并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时.以C 为圆心CM 为半径画弧.与对称轴交点即为所求点P.②M 为顶点时.以M 为圆心MC 为半径画弧.与对称轴交点即为所求点P.③P 为顶点时.线段MC 的垂直平分线与对称轴交点即为所求点P 。

中考数学中二次函数常考常新的18种命题方式

中考数学中二次函数常考常新的18种命题方式

专题01 二次函数中的动点问题1、如图①,已知抛物线y =ax 2﹣4amx +3am 2(a 、m 为参数,且a >0,m >0)与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C .(1)求点B 的坐标(结果可以含参数m );(2)连接CA 、CB ,若C (0,3m ),求tan ∠ACB 的值;(3)如图①,在(2)的条件下,抛物线的对称轴为直线l :x =2,点P 是抛物线上的一个动点,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P 的坐标,若不存在,请说明理由.【解析】(1)令y =0,则有ax 2﹣4amx +3am 2=0,解得:x 1=m ,x 2=3m , ①m >0,A 在B 的左边,①B (3m ,0); (2)如图1,过点A 作AD ⊥BC ,垂足为点D ,由(1)可知B (3m ,0),则△BOC 为等腰直角三角形,①OC =OB =3m ,①BC =m ,又①∠ABC =45°,①∠DAB =45°,①AD =BD ,①AB =2m ,①AD =,CD =m ,①tan ∠ACB =AD 1CD 2==;(3)①由题意知x =2为对称轴,①2m =2,即m =1, ①在(2)的条件下有(0,3m ),①3m =3am 2,解得m =1a,即a =1,①抛物线的解析式为y =x 2﹣4x +3, ①当P 在对称轴的左边,如图2,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,①△OPF 是等腰直角三角形,且OP =PF ,易得△OMP ≌△PNF ,①OM =PN ,①P (m ,m 2﹣4m +3),则﹣m 2+4m ﹣3=2﹣m ,解得:m①P ); ①当P 在对称轴的右边,如图3,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,①PN =FM ,则﹣m 2+4m ﹣3=m ﹣2,解得:x 35;P 的坐标为(3122+)或(3122);综上所述,点P )或)或)或)2、如图1,在平面直角坐标系xOy 中,抛物线y =−(x −a )(x −4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点.(1)若D 点坐标为(32,254),求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点,且点M 的纵坐标为a ,点N 为抛物线在x 轴上方一点,若以C 、B 、M 、N 为顶点的四边形为平行四边形时,求a 的值;(3)直线y =2x +b 与(1)中的抛物线交于点D 、E (如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D ′,与直线的另一个交点为E ,与x 轴的交点为B ′,在平移的过程中,求D ′E ′的长度;当∠E ′D ′B ′=90°时,求点B ′的坐标.【解析】(1)依题意得:254=−(32−a)(32−4),解得a =−1,①y =-(x +1)(x -4)或y =−x 2+3x +4,①C (0,4) (2)由题意可知A (a,0)、B (4,0)、C (0,−4a ),对称轴为直线x =a+42,则M (a+42,a)①MN//BC ,且MN =BC ,根据点的平移特征可知N (a−42,−3a)则−3a =−(a−42−a)⋅(a−42−4),解得:a =−2±2√13(舍去正值);①当BC 为对角线时,设N (x,y ),根据平行四边形的对角线互相平分可得{a+42+x =4a +y =−4a ,解得{x =4−a2y =−5a , 则−5a =−(4−a 2−a)⋅(4−a 2−4),解得:a =6±2√213,①a 1=−2−2√13,a 2=6−2√213(3)联立{y =2x +134y =−x 2+3x +4 ,解得:{x 1=32y 1=254 (舍去),{x 2=−12y 2=94 则DE =2√5,根据抛物线的平移规律,则平移后的线段D ′E ′始终等于2√5 设平移后的D ′(m,2m +134),则E ′(m −2,2m −34),平移后的抛物线解析式为:y =−(x −m )2+2m +134则D ′B ′:y =−12x +n 过(m,2m +134),①y =−12x +52m +134,则B ′(5m +132,0)抛物线y =−(x −m )2+2m +134过B ′(5m +132,0),解得m 1=−32,m 2=−138①B 1′(−1,0),B 2′(−138,0)(与D ′重合,舍去),①B ′(−1,0)3、如图,抛物线y=x2+bx+c与直线y=12x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PD=|m²+4m|,①PD∥A O,则当PD=O A=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m²+4m|=3,即可求解.【解析】(1)将点A、B的坐标代入抛物线表达式得:16453b cc-+=-⎧⎨=-⎩,解得:923bc⎧=⎪⎨⎪=-⎩,故抛物线的表达式为:y=x2+92x﹣3;(2)存在,理由:同理直线AB的表达式为:y=12x﹣3,设点P(m,m2+92m﹣3),点D(m,12m﹣3)(m<0),则PD=|m2+4m|,①PD∥A O,则当PD=O A=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m2+4m|=3,①当m2+4m=3时,解得:m=﹣(舍去正值),即m2+92m﹣3=1﹣2,故点P(﹣21﹣2),①当m2+4m=﹣3时,解得:m=﹣1或﹣3,同理可得:点P(﹣1,﹣132)或(﹣3,﹣152);综上,点P(﹣2,﹣1﹣2)或(﹣1,﹣132)或(﹣3,﹣152).【小结】本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式、平行四边形性质等,要注意分类讨论思想的运用.4、在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),B (3,0),与y 轴交于点C (0,3),顶点为G .(1)求抛物线和直线AC 的解析式;(2)如图1,设E (m ,0)为x 正半轴上的一个动点,若△CGE 和△CG O 的面积满足S △CGE =43S △CG O ,求点E 的坐标;(3)如图2,设点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向右运动,运动时间为t s ,点M 为射线AC 上一动点,过点M 作MN ∥x 轴交抛物线对称轴右侧部分于点N .试探究点P 在运动过程中,是否存在以P ,M ,N 为顶点的三角形为等腰直角三角形,若存在,求出t 的值;若不存在,请说明理由. 【分析】(1)用待定系数法即能求出抛物线和直线AC 解析式.(2)△CGE 与△CG O 虽然有公共底边CG ,但高不好求,故把△CGE 构造在比较好求的三角形内计算.延长GC 交x 轴于点F ,则△FGE 与△FCE 的差即为△CGE .(3)设M 的坐标(e ,3e +3),分别以M 、N 、P 为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e 表示相关线段并列方程求解,再根据e 与AP 的关系求t 的值. 【解析】(1)将点A (-1,0),B (3,0),点C (0,3)代入抛物线y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,①2y x 2x 3=-++,设直线AC 的解析式为y =kx +n , 将点A (-1,0),点C (0,3)代入得:03k n n -+=⎧⎨=⎩,解得:k =3,n =3,①直线AC 的解析式为:y =3x +3(2)延长GC 交x 轴于点F ,过点G 作GH ⊥x 轴于点H , ①2(1)4y x =--+,①G (1,4),GH =4,①11331222CGOG S OC x =⨯=⨯⨯=, 若S △CGE =43S △CG O ,则S △CGE =43S △CG O =43232⨯=, ①若点E 在x 轴的正半轴,设直线CG 为13y k x =+,将G (1,4)代入得134k +=,①11k =,①直线CG 的解析式为y =x +3,①当y =0时,x =-3,即F (-3,0),又①E (m ,0),①EF =m -(-3)=m +3 ①CGEFGEFCE S SS=-=1122EF GH EF OC ⋅-⋅= 1()2EF GH OC ⋅-=1(3)(43)2m +⋅-=1(3)2m + ①1(3)22m +=,解得:m =1,①E 的坐标为(1,0)①若点E 在x 轴的负半轴上,则点E 到直线CG 的距离与点(1,0)到直线CG 的距离相等, 即点E 到点F 的距离等于点(1,0)到点F 的距离,①EF =-3-m =1-(-3)=4,①m =-7,即E (-7,0) 综上所述,点E 的坐标为:(1,0)或(-7,0)(3)存在以P ,M ,N 为顶点的三角形为等腰直角三角形, 设M (e ,3e +3),e >-1,则33N M y y e ==+,①如图2,若∠MPN =90°,PM =PN ,过点M 作MQ ⊥x 轴于点Q ,过N 作NR ⊥x 轴于点R , ①MN ∥x 轴,①MQ =NR =3e +3①Rt △MQP ≌Rt △NRP (HL ),①PQ =PR ,∠MPQ =∠NPR =45° ①MQ =PQ =PR =NR =3e +3①x N =x M +3e +3+3e +3=7e +6,即N (7e +6,3e +3)①N 在抛物线上,①−(7e +6)2+2(7e +6)+3=3e +3,解得:11e =-(舍去),22449e =- ①AP =t ,O P =t −1,O P +O Q =PQ ,①t −1−e =3e +3,①t =4e +4=10049,①如图3,若∠PMN=90°,PM=MN,①MN=PM=3e+3①x N=x M+3e+3=4e+3,即N(4e+3,3e+3)①−(4e+3)2+2(4e+3)+3=3e+3,解得:e1=−1(舍去),e2=3 16 -,①t=AP=e−(−1)=31311616 -+=,①如图4,若∠PNM=90°,PN=MN,①MN=PN=3e+3,N(4e+3,3e+3),解得:e=3 16 -①t=AP=O A+O P=1+4e+3=13 4综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为10049或1316或134.【小结】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.5、如图,已知直线AB 与抛物线C :y =ax 2+2x +c 相交于点A (﹣1,0)和点B (2,3)两点. (1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,当MAB △的面积最大时,求此时MAB △的面积S 及点M 的坐标.【解析】(1)由题意把点(﹣1,0)、(2,3)代入y =ax 2+2x +c ,得20443a c a c -+=⎧⎨++=⎩,解得1,3,a c =-⎧⎨=⎩,①此抛物线C 函数表达式为:y =﹣x 2+2x +3; (2)如图,过点M 作MH ⊥x 轴于H ,交直线AB 于K ,将点(﹣1,0)、(2,3)代入y =kx +b 中,得023k b k b -+=⎧⎨+=⎩,解得1,1,k b =⎧⎨=⎩,①y AB =x +1,设点M (x ,﹣x 2+2x +3),则K (x ,x +1), 则MK =﹣x 2+2x +3﹣(x +1)=﹣x 2+x +2, ①S △MAB =S △AMK +S △BMK =12MK •(x M ﹣x A )+ 12MK •(x B ﹣x M )=12MK •(x B ﹣x A )=12×(-x 2+x +2)×3 =23127()228x --+, ①302-<,当x =12时,S △MAB 最大=278,此时21115()23224M y =-+⨯+=,①△MAB 的面积最大值是278,M (12,154).6、如图,直线y =34x +a 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =34x 2+bx +c 经过点A ,B .点M(m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线分别交直线AB 及抛物线于点P ,N . (1)填空:点B 的坐标为 ,抛物线的解析式为 ; (2)当点M 在线段OA 上运动时(不与点O ,A 重合), ①当m 为何值时,线段PN 最大值,并求出PN 的最大值; ①求出使△BPN 为直角三角形时m 的值;(3)若抛物线上有且只有三个点N 到直线AB 的距离是h ,请直接写出此时由点O ,B ,N ,P 构成的四边形的面积.【解析】(1)把点A 坐标代入直线表达式y =34x +a ,解得:a =﹣3,则:直线表达式为:y ═34x ﹣3, 令x =0,则:y =﹣3,则点B 坐标为(0,﹣3),将点B 的坐标代入二次函数表达式得:c =﹣3,把点A 的坐标代入二次函数表达式得:34×16+4b ﹣3=0, 解得:b =﹣94,故抛物线的解析式为:y =34x 2﹣94x ﹣3, (2)①①M (m ,0)在线段O A 上,且MN ⊥x 轴, ①点P (m ,34m ﹣3),N (m ,34m 2﹣94m ﹣3),①PN =34m ﹣3﹣(34m 2﹣94m ﹣3)=﹣34(m ﹣2)2+3,①a =﹣34<0,①抛物线开口向下,①当m =2时,PN 有最大值是3, ①当∠BNP =90°时,点N 的纵坐标为﹣3,把y =﹣3代入抛物线的表达式得:﹣3=34m 2﹣94m ﹣3,解得:m =3或0(舍去m =0),①m =3; 当∠NBP =90°时,①BN ⊥AB ,两直线垂直,其k 值相乘为﹣1, 设:直线BN 的表达式为:y =﹣43x +n ,把点B 的坐标代入上式,解得:n =﹣3,则:直线BN 的表达式为:y =﹣43x ﹣3,将上式与抛物线的表达式联立并解得:m =119或0(舍去m =0),当∠BPN =90°时,不合题意舍去,故:使△BPN 为直角三角形时m 的值为3或43;(3)①O A =4,O B =3,在Rt △A O B 中,tan α=43,则:c osα=35,si n α=45, ①PM ∥y 轴,①∠BPN =∠AB O =α,若抛物线上有且只有三个点N 到直线AB 的距离是h ,则只能出现:在AB 直线下方抛物线与过点N 的直线与抛物线有一个交点N ,在直线AB 上方的交点有两个. 当过点N 的直线与抛物线有一个交点N ,点M 的坐标为(m ,0),设:点N 坐标为:(m ,n ),则:n =34m 2﹣94m ﹣3,过点N 作AB 的平行线, 则点N 所在的直线表达式为:y =34x +b ,将点N 坐标代入,解得:过N 点直线表达式为:y =34x +(n ﹣34m ),将抛物线的表达式与上式联立并整理得:3x 2﹣12x ﹣12+3m ﹣4n =0,△=144﹣3×4×(﹣12+3m ﹣4n )=0, 将n =34m 2﹣94m ﹣3代入上式并整理得:m 2﹣4m +4=0,解得:m =2,则点N 的坐标为(2,﹣92), 则:点P 坐标为(2,﹣32),则:PN =3,①O B =3,PN ∥O B ,①四边形O BNP 为平行四边形,则点O 到直线AB 的距离等于点N 到直线AB 的距离, 即:过点O 与AB 平行的直线与抛物线的交点为另外两个N 点,即:N ′、N ″, 直线O N 的表达式为:y =34x ,将该表达式与二次函数表达式联立并整理得:x 2﹣4x ﹣4=0,解得:x =2±2√2,则点N ′、N ″的横坐标分别为2+2√2,2﹣2√2, 作NH ⊥AB 交直线AB 于点H ,则h =NH =NP si n α=125,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠O N ′P ′=α,O N ′=OP ′sinα=54(2+2√2), S 四边形O BPN =BP •h =52×125=6,则:S 四边形O BP ′N ′=S △O P ′N ′+S △O BP ′=6+6√2,同理:S 四边形O BN ″P ″=6√2﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6√2或6√2﹣67、在平面直角坐标系xOy 中,直线1(0)y kx k =+≠经过点23A (,),与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点C m 2(,).(1)求m 的值;(2)求抛物线的顶点坐标;(3)11N x y (,)是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22P x y (,),33Q x y (,)(点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围. 【解析】(1)①()10y kx k =+≠ 经过点23A (,), ①将点A 的坐标代入1y kx =+ ,即321k =+ ,得1k =.①直线1y x =+ 与抛物线2y ax bx a =++ 的对称轴交于点(,2)C m , ①将点(,2)C m 代入1y x =+,得1m = . (2)①抛物线2y ax bx a =++ 的对称轴为1x =, ①12ba-= ,即2b a =-. ①22y ax ax a =-+()21a x =-①抛物线的顶点坐标为()10, . (3)当0a >时,如图,若拋物线过点01B (,) ,则1a = . 结合函数图象可得01a << . 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.8、如图①,在平面直角坐标系中,二次函数y=13-x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段O B上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且△A O M的面积与△A O C的面积相等,求出点M的坐标。

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

初三复习二次函数动点问题(含答案)

初三复习二次函数动点问题(含答案)

二次函数的动态问题(动点)1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个.(抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.[解] (1)作BF y ⊥轴于F .()()01084A B ,,,,86FB FA ∴==,.10AB ∴=.(2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=,.P Q ∴,两点的运动速度均为每秒1个单位.(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.图①图②GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+,()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭.即231920105S t t =-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时4763311051555GP t OG t ===-=,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(8分)方法二:当5t =时,1637922OG OQ S OG OQ ====,,. 设所求函数关系式为220S at bt =++.抛物线过点()63102852⎛⎫ ⎪⎝⎭,,,,1001020286325520.2a b a b ++=⎧⎪∴⎨++=⎪⎩,31019.5a b ⎧=-⎪⎪∴⎨⎪=⎪⎩,231920105S t t ∴=-++.19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(4)2.[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

中考数学二次函数动点问题解答方法技巧(含例解答案)

中考数学二次函数动点问题解答方法技巧(含例解答案)

中考数学二次函数动点问题解答方法技巧(含例解答案)函数解题思路方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位⑶ 根据图象的位置判断二次函数ax2+bx+c=0中置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a>0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、抛物线上动点5、(湖北十堰市)如图①,已知抛物线y ax2 bx 3(a≠0)与x 轴交于点A(1,0)和点 B (-3,0),与y 轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P,使△ CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)如图②,若点E 为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE 面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标-①C 为顶点时,以 C 为圆心CM 为半径画弧,与对称轴交点即为所求点P,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题类型

二次函数动点问题类型

二次函数动点问题类型一、求解动点坐标问题:1.已知二次函数的图像经过特定点,求该点的坐标。

例如,已知二次函数y=ax^2+bx+c的图像过点(2,5),求a、b、c的值。

解:由于(2,5)是曲线上的一点,所以满足曲线上的点的坐标满足函数的定义关系式,即:y=ax^2+bx+c代入已知点的坐标,得到:5=4a+2b+c再结合二次函数的性质,无论a、b、c取何值,都可以确定一个二次函数,因此需要再提供其他的条件才能完全确定a、b、c的值。

2.已知二次函数的顶点坐标,求顶点坐标与对称轴的方程。

例如,已知二次函数y=ax^2+bx+c的顶点坐标为(2,3),求对称轴的方程和a、b、c的值。

解:根据二次函数的性质,二次函数的顶点坐标位于对称轴上,所以对称轴的方程可以通过已知的顶点坐标得到。

对称轴的方程为x=顶点的横坐标,即x=2然后,再结合二次函数顶点坐标的性质,即顶点坐标(2,3)满足a*(2^2)+b*2+c=3,代入这个关系式,可以求解出a、b、c的值。

3.已知二次函数的零点,求函数的表达式。

例如,已知二次函数y=ax^2+bx+c的零点为x=1和x=3,求函数的表达式。

解:已知x=1和x=3是函数的零点,代入函数的定义关系式,得到a*(1^2)+b*1+c=0和a*(3^2)+b*3+c=0。

进一步整理就可以得到一个由a、b、c构成的方程组,解这个方程组就可以确定a、b、c的值,从而得到二次函数的表达式。

二、研究动点运动规律问题:1.如何通过二次函数的图像研究点的运动规律?二次函数可以表示一个抛物线的图像,通过分析二次函数的各项系数可以得到抛物线的开口方向、顶点坐标等信息,从而研究点的运动规律。

例如,当二次函数的a大于0时,抛物线开口向上,顶点坐标为最低点,点的运动趋势是从下往上;当二次函数的a小于0时,抛物线开口向下,顶点坐标为最高点,点的运动趋势是从上往下。

2.如何通过已知条件研究点的运动规律?已知的条件可以包括点的初始位置、速度、加速度等信息,将这些信息转化成数学问题,从而得到二次函数的各项系数,进而通过研究二次函数的图像研究点的运动规律。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点B (-3.0).与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.(3) 如图②.若点E为第二象限抛物线上一动点.连接BE、CE.求四边形BOCE面积的最大值.并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时.以C为圆心CM为半径画弧.与对称轴交点即为所求点P.②M为顶点时.以M为圆心MC为半径画弧.与对称轴交点即为所求点P.③P为顶点时.线段MC的垂直平分线与对称轴交点即为所求点P。

初中考试数学专题讲解:二次函数动点问题解答方法技巧(含例解答案)

初中考试数学专题讲解:二次函数动点问题解答方法技巧(含例解答案)
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是


解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
设点D的坐标为
∴ ,


=

7.关于 的二次函数 以 轴为对称轴,且与 轴的交点在 轴上方.
(1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;
(2)设 是 轴右侧抛物线上的一个动点,过点 作 垂直于 轴于点 ,再过点 作 轴的平行线交抛物线于点 ,过点 作 垂直于 轴于点 ,得到矩形 .设矩形 的周长为 ,点 的横坐标为 ,试求 关于 的函数关系式;
②同理当点 在 边上运动时,可算得 .
而构成直角时交 轴于 , ,
所以 ,从而 的点 也有1个.
所以当点 沿这两边运动时, 的点 有2个.
6.(本题满分14分)如图 ,直线 与 轴交于点 ,与 轴交于点 ,已知二次函数的图象经过点 、 和点 .
(1)求该二次函数的关系式;
(2)设该二次函数的图象的顶点为 ,求四边形 的面积;

二次函数动点问题

二次函数动点问题

二次函数动点问题二次函数是数学中的一个重要概念,也有很多实际应用。

在二次函数中,我们经常会遇到一种问题,即动点问题。

该问题要求我们根据给定的二次函数,确定函数图像上某个动点的坐标。

问题描述在二次函数动点问题中,我们通常会给出二次函数的方程和一个动点的初始位置。

我们需要通过计算,确定动点在函数图像上的位置。

具体来说,我们要求解动点的横坐标和纵坐标。

解决方法为了解决二次函数动点问题,我们可以采用以下步骤:1. 首先,我们需要根据二次函数的方程,确定函数的具体形式。

二次函数的一般形式为 $y = ax^2 + bx + c$,其中 $a$、$b$、$c$ 为已知常数。

2. 接下来,我们需要确定动点的初始位置。

动点通常以坐标的形式给出,例如 $(x_0, y_0)$。

我们将动点的初始位置代入二次函数的方程,得到动点的纵坐标 $y_0$。

3. 然后,我们需要计算动点的横坐标。

根据函数图像的对称性,动点的横坐标为二次函数的顶点的横坐标。

顶点的横坐标可以通过以下公式计算:$x_v = -\frac{b}{2a}$。

4. 最后,我们可以得到动点在函数图像上的位置。

动点的横坐标为 $x_v$,纵坐标为 $y_0$。

实例演示以下是一个示例,演示了如何解决二次函数动点问题:已知二次函数的方程为 $y = x^2 + 2x + 1$,动点的初始位置为$(2, y_0)$。

我们可以按照以下步骤求解动点的位置:1. 将动点的横坐标代入二次函数的方程,得到动点的纵坐标:$y_0 = 2^2 + 2 \cdot 2 + 1 = 9$。

2. 计算二次函数的顶点的横坐标:$x_v = -\frac{2}{2 \cdot 1} = -1$。

3. 动点的位置为 $(x_v, y_0) = (-1, 9)$。

通过以上计算,我们得到了动点在函数图像上的位置。

结论二次函数动点问题是一个常见的数学问题。

通过确定二次函数的形式和动点的初始位置,我们可以计算出动点在函数图像上的位置。

中考二次函数动点问题

中考二次函数动点问题

中考二次函数动点问题一、背景介绍二次函数是初中数学的重要内容之一,也是中考数学的重要考点之一。

在中考数学中,二次函数往往与动点问题相结合,形成一种综合性较强的题目。

这种题目不仅需要学生掌握二次函数的性质和图像,还需要学生具备一定的数学思维和解决问题的能力。

因此,研究中考二次函数的动点问题对于提高学生的数学成绩和数学能力具有重要的意义。

二、问题建模1. 定义和公式二次函数的一般形式为y=ax^2+bx+c(a、b、c为常数,且a≠0)。

其中,a、b、c分别是二次项系数、一次项系数和常数项。

二次函数的图像是一个抛物线,其顶点坐标是(-b/2a,(4ac-b^2)/4a)。

2. 动点问题动点问题是指在题目中有一个或多个点在运动,通过运动过程中点的位置变化来解决数学问题。

在二次函数中,动点问题通常涉及到点的坐标、函数的图像和图形的性质等方面。

三、解题思路1. 建立数学模型在解决二次函数动点问题时,首先需要建立数学模型。

通常情况下,建立数学模型的方法是根据题目中的条件和问题,选择适当的数学符号和公式来表示问题。

例如,在解决一个动点问题时,可以先根据题目条件建立方程,然后通过对方程进行分析和求解来解决问题。

2. 图像分析图像分析是解决二次函数动点问题的重要方法之一。

通过对图像进行分析,可以直观地了解点的运动轨迹、函数的增减性等问题。

在进行图像分析时,需要注意以下几点:(1)分析图像的开口方向:开口向上表示函数递增,开口向下表示函数递减。

(2)找出对称轴:对称轴是一条垂直于x轴的直线,它把图像分为两个对称的部分。

(3)找出顶点:顶点是图像的最低点或最高点,它代表着函数的最值。

(4)分析增减性:当x增加时,如果函数值也随之增加,则称函数是递增的;当x增加时,如果函数值随之减小,则称函数是递减的。

3. 分类讨论分类讨论是一种重要的数学思想方法,也是解决二次函数动点问题的重要手段之一。

在进行分类讨论时,需要根据题目条件对各种情况进行分类,然后分别进行讨论和求解。

初中数学二次函数动点问题

初中数学二次函数动点问题

动点问题1:相似三角形问题例1:如图①,在△ABC 中,AB=AC ,BC=acm ,∠B=30°.动点P 以1cm/s 的速度从点B 出发,沿折线B ﹣A ﹣C 运动到点C 时停止运动.设点P 出发x s 时,△PBC 的面积为y cm 2.已知y 与x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1) 试判断△DOE 的形状,并说明理由;(2) 当a 为何值时,△DOE 与△ABC 相似?例2:矩形OABC 在平面直角坐标系中位置如图所示,A 、C 两点的坐标分别为A (6,0),C (0,-3),直线y =-43x 与BC 边相交于D 点. (1) 求点D 的坐标; (2) 若抛物线y =ax 2-49x 经过点A ,试确定此抛物线的表达式; (3) 设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD例3.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标作业1.如图,已知抛物线y =x 2-1与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与△PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.2.如图,已知抛物线y =43x 2+bx +c 与坐标轴交于A 、B 、C 三点,A 点的坐标为(-1,0),过点C 的直线y =t43x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.(1)填空:点C 的坐标是___________,b =_______,c =_______;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t3.已知,如图1,过点B (0,-1)作平行于x 轴的直线l ,抛物线y =41x2上的两点A 、B 的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A 、B 分别作直线l 的垂线,垂足分别为点C 、D ,连接CF 、DF .(1)求点A 、B 、F 的坐标;(2)求证:CF ⊥DF ; (3)点P 是抛物线y =41x 2对称轴右侧图象上的一动点,过点P 作PQ ⊥OP 交x 轴于点Q ,是否存在点P 使得△OPQ 与△CDF 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(备用图)(图1)。

二次函数动点问题解答方法技巧(含例解标准答案)

二次函数动点问题解答方法技巧(含例解标准答案)
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是


解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).

二次函数动点问题

二次函数动点问题

二次函数动点问题动点问题是中考中的热点也是难点,这类问题的关键在于不要被动点牵着鼻子走,而是要根据图形的特性先确定要求的点的位置再根据几何关系求出点的坐标。

对于涉及函数的动点问题,还应考虑到借助代数的方法,通过建立方程、构建函数模型等方法来求解。

比较典型的动点问题类型一般有:求等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角(或其三角函数)的存在性、求线段或面积的最值等。

类型一:求线段或面积的最值要点:求面积或线段的最值时,关键在于将长度或面积用代数式表示出来,构建一个函数关系式,再利用函数关系式求出最值。

例1 如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示) ① 当t=时,判断点P 是否在直线ME 上,并说明理由;② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.25图2BCOA D EMyxPN· 图1BCO (A )DE Myx类型二:等腰三角形或直角三角形的存在性要点:证明等腰三角形或直角三角形的存在性需要注意分类讨论,即讨论直角顶点或者两腰的情况。

例2 如图,已知抛物线y=ax2+bx+c的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一个动点,从点C沿抛物线向点A 运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标.例3 已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC 在x轴的正半轴上,OA=2,OC=3,过原点O作 AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将△EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在成立,请说明理由.要点:证明相似三角形的存在性时,本质是要注意三角形的内角的变化情况。

二次函数的动点问题(等腰、直角三角形的存在性问题)

二次函数的动点问题(等腰、直角三角形的存在性问题)

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进行判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况△ > 0 与x 轴 交点 方程有 的实数根△ < 0 与x 轴 交点 实数根 △ = 0与x 轴 交点方程有 的实数根3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。

4、 常见考察形式1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

2023年中考数学专题复习:二次函数综合压轴题(动点问题)

2023年中考数学专题复习:二次函数综合压轴题(动点问题)

2023年中考数学专题复习:二次函数综合压轴题(动点问题)1.抛物线2y x bx c =-++与x 轴交于点()10A -,,()30B ,,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为第一象限内抛物线上的一动点,作DE x ⊥轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴、x 轴、y 轴分别交于点G ,N ,H ,设点D 的横坐标为m .①当DF HF +取最大值时,求点F 的坐标;②连接EG ,若45GEH ∠=︒,求m 的值.2.如图,已知抛物线2y x bx c =-++与x 轴交于()1,0A -,()5,0B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上存在一点P ,使得PA PC +的值最小,求此时点P 的坐标;(3)点D 是第一象限内抛物线上的一个动点(不与点C 、B 重合),过点D 作DF x ⊥轴于点F ,交直线BC 于点E ,连接BD ,直线BC 把BDF V 的面积分成两部分,若:3:2BDE BEF S S =V V ,请求出点D 的坐标.3.如图1,对于平面内小于等于90︒的MON ∠,我们给出如下定义:若点P 在MON ∠的内部或边上,作PE OM ⊥于点E ,PF ON ⊥于点F ,则将PE PF +称为点P 与MON ∠的“点角距”,记作(),d MON P ∠.如图2,在平面直角坐标系xOy 中,x 、y 正半轴所组成的角为xOy ∠.(1)已知点()5,0A 、点()3,2B ,则(),d xOy A ∠=______ ,(),d xOy B ∠=______.(2)若点P 为xOy ∠内部或边上的动点,且满足(),5d xOy P ∠=,在图2中画出点P 运动所形成的图形.(3)如图3,在平面直角坐标系xOy 中,抛物线212y x mx n =-++经过()5,0A 与点()3,4D 两点,点Q 是A 、D 两点之间的抛物线上的动点(点Q 可与A 、D 两点重合),求当(),d xOD Q ∠取最大值时点Q 的坐标.4.如图,抛物线2134y ax bx =++与x 轴交于点()30A -,和点B ,点D 是抛物线1y 的顶点,过点D 作x 轴的垂线,垂足为点()10C -,.(1)求抛物线1y 所对应的函数表达式;(2)如图1,点M 是抛物线1y 上一点,且位于x 轴上方,横坐标为m ,连接MC ,若MCB DAC ∠=∠,求m 的值;(3)如图2,将抛物线1y 平移后得到顶点为B 的抛物线2y .点P 为抛物线1y 上的一个动点,过点P 作y 轴的平行线,交抛物线2y 于点Q ,过点Q 作x 轴的平行线,交抛物线2y 于点R .当以点P ,Q ,R 为顶点的三角形与ACD V 全等时,请直接写出点P 的坐标.5.如图,抛物线()20y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点()0,6C ,顶点为D ,且()1,8D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,过点O 作OH OM ⊥交BC 的延长线于H ,且MO HO =,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.6.如图,已知二次函数24y x bx =+-的图像经过点()3,4A -,与x 轴负半轴交于点B ,与y 轴交于点C ,连接AB ,BC .(1)填空:b =______;(2)点P 是直线AB 下方抛物线上一个动点,过点P 作PT x ⊥轴,垂足为T ,PT 交AB 于点Q ,求线段PQ 的最大值;(3)点D 是y 轴正半轴上一点,若∠=∠BDC ABC ,求点D 的坐标.7.如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =(1)求该抛物线的解析式;(2)点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q ,求CPQ V 面积的最大值,并求此时P 点坐标;(3)如图,设抛物线与y 轴交于点D ,平行于BD 的直线MN 交抛物线于点M ,N ,作直线MB ND 、交于点G ,问点G 是否在某一定直线上运动,若在求此直线的解析式,若不在说明理由.8.如图,已知抛物线23y ax bx =+-的图象与x 轴交于点A ()10,和B ()30,,与y 轴交于点C ,D 是抛物线的顶点,对称轴与x 轴交于E .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE 上求作一点M ,使A M C V 的周长最小,M 的坐标__________周长的最小值______.(3)如图2,点P 是x 轴上的动点,过P 点作x 轴的垂线分别交抛物线和直线BC 于F 、G .设点P 的横坐标为m .是否存在点P ,使FG 最长?若存在,求出m 的值;若不存在,请说明理由.9.如图1,抛物线()230y ax bx a =+->交x 轴于点A ,B (点A 在点B 左侧),交y 轴于点C ,且3O B O C O A ==,点D 为抛物线上第四象限的动点.(1)求抛物线的解析式.(2)如图1,直线AD 交BC 于点P ,连接AC BD ,,若ACP △和BDP △的面积分别为1S 和2S ,当12S S -的值最小时,求直线AD 的解析式.(3)如图2,直线BD 交抛物线的对称轴于点N ,过点B 作AD 的平行线交抛物线的对称轴于点M ,当点D 运动时,线段MN 的长度是否会改变?若不变,求出其值;若变化,求出其变化的范围.10.已知抛物线23y ax bx =++(0a ≠)交x 轴于()0A 1,和()30B -,,交y 轴于C .(1)求抛物线的解析式;(2)若M 为抛物线上第二象限内一点,求使MBC V 面积最大时点M 的坐标;(3)若F 是对称轴上一动点,Q 是抛物线上一动点,是否存在F 、Q ,使以B 、C 、F 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标.11.如图,在平面直角坐标系中,二次函数的图象交坐标轴于()20A -,,()40B ,,()08C ,三点,点P 是直线BC 上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC V 的面积最大,求此时P 点坐标及PBC V 面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC V 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.12.如图,抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段BC 上的一个动点,平行于y 轴的直线EF 交抛物线于点F ,求FBC V 面积的最大值;(3)设点P 是(1)中抛物线上的一个动点,是否存在满足6PAB S =△的点P ?如果存在,请求出点P 的坐标;若不存在,请说明理由.13.如图,抛物线2y ax bx =+经过()()3,0,2,10A B -两点.(1)求抛物线的解析式;(2)点P 是直线AB 下方抛物线上的一个动点,求PAB V 面积的最大值;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,设点M 的横坐标为m ,若线段MN 与抛物线只有一个公共点,请直接写出m 的取值范围.14.如图,在平面直角坐标系中,直线122y x =-与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A ,C 两点,与x 轴的另一交点为点B ,点P 为抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当ACP △的面积与ABC V 的面积相等时,求点P 的坐标;(3)是否存在点P ,使得ACP ABC BAC ∠=∠-∠,若存在,请直接写出点P 的横坐标;若不存在,请说明理由.15.如图,已知拋物线2y ax bx c =++与x 轴交于点()1,0A ,()3,0B -,与y 轴交于点()0,3C -.点P 是抛物线上一动点,且在直线BC 的下方,过点P 作PD x ⊥轴,垂足为D ,交直线BC 于点E .(1)求抛物线的函数解析式;(2)连接CP ,若45CPD ∠=︒,求点P 的坐标;(3)连接BP ,求四边形OBPC 面积的最大值.16.如图,在平面直角坐标系中,抛物线28y x bx =-++与x 轴交于点A ,B ,与y 轴交于点C ,直线y x t =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的解析式;(2)当MDB △的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以Q ,M ,N ,D 为顶点的四边形是平行四边形,若存在,求出点Q 的坐标;若不存在;说明理由17.如图,抛物线21262y x x =--与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)若点P 是抛物线BC 段上的一点,当PBC V 的面积最大时求出点P 的坐标,并求出PBC V 面积的最大值.(3)点F 是抛物线上的动点,作FE AC ∥交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,抛物线21=2y x bx c ++经过点()4,0A -,点M 为抛物线的顶点,点B 在y 轴上,直线AB 与抛物线在第一象限交于点()2,6C .(1)求抛物线的解析式;(2)连接OC ,点Q 是直线AC 上不与A 、B 重合的点,若2OAQ OAC S S =V V ,请求出点Q 的坐标;(3)在x 轴上有一动点H ,平面内是否存在一点N ,使以点A 、H 、C 、N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标,若不存在,请说明理由.参考答案:1.(1)223y x x =-++(2)①点F 的坐标为⎝⎭;②1或952.(1)245y x x =-++(2)()2,3P (3)335,24D ⎛⎫ ⎪⎝⎭3.(1)5,5 (3)54,2⎛⎫ ⎪⎝⎭4.(1)21113424y x x =--+(2)2-(3)304⎛⎫ ⎪⎝⎭,或524⎛⎫- ⎪⎝⎭,5.(1)2246y x x =-++ (2)126,55⎛⎫ ⎪⎝⎭(3)(1,8或(1,8或271,4⎛⎫ ⎪⎝⎭6.(1)3-(2)PQ 的最大值是4 (3)50,3⎛⎫ ⎪⎝⎭7.(1)223y x x =+-(2)CPQ V 面积的最大值为2,此时P 点坐标为()1,0-(3)在,3y x =--8.(1)2=+43y x x --(2)()21-,(3)存在,m 的值为329.(1)2=23y x x --(2)22y x =--(3)不变,值为810.(1)223y x x =--+ (2)31524⎛⎫- ⎪⎝⎭, (3)存在,点Q 的坐标为()23-,或()45-,-或()25,-11.(1)228y x x =-++(2)当P 点坐标为()28,时,PBC V 的最大面积为8; (3)存在,点Q 的坐标为()016,或()016-,或()01,或()01-,.12.(1)2=23y x x -- (2)278(3)存在,点P 的坐标为()1或()1或()0,3-或()2,3-13.(1)23y x x =-(2)PAB S V 最大值为1258(3)23m -≤<或34m <<或338m =14.(1)抛物线的函数表达式为213222y x x =-- (2)点P 的坐标为(5,3)P(3)存在,点P 的横坐标为2911或7.15.(1)223y x x =+- (2)(14)--, (3)63816.(1)278y x x =-++(2)()3,0(3)存在,()0,17Q 或()0,33-17.(1)()2,0A -,()6,0B ,()0,6C - (2)点P 的坐标为153,2⎛⎫- ⎪⎝⎭时,PBC S V 有最大值272(3)存在,点F 的坐标为()4,6-或()2+或()2-18.(1)21=22y x x + (2)()8,12或()16,12--(3)()2N +或()2N -或()2,6N -或()4,6-。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数性问题专题—动点问题
函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题)
一、因动点而产生的面积问题
例1:如图10,已知抛物线P :y =ax 2
+bx +c (a ≠0 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上,与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:
(1 求A 、B 、C 三点的坐标;
(2 若点D 的坐标为(m ,0 ,矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;
(3 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM
=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.
若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2、(3小题换为下列问题解答(已知条件及第(1小题与上相同,完全正确解答只能得到5分:
(2 若点D 的坐标为(1,0 ,求矩形DEFG 的面积
.
例2:如图1,已知直线
12
y x =-与抛物线2
164
y x =-
+交于A B ,两点.
(1)求A B ,两点的坐标;
(2)求线段A B 的垂直平分线的解析式;
(3)如图2,取与线段A B 端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 动点P 将与A B ,构成无数个三角形,这些三角求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.图2
图1
图10
第-2-页共4页
例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边
AB=4,BC=4
(1求矩形ODEF 的面积;
(2)将图l 中的矩形ODEF 绕点O 逆时针旋转 900,若旋转过程中OF 与OA 的夹角(图2中的∠FOA )的正切的值为x ,两个矩形重叠部分的面积为y ,求 y 与 x 的函数关系式;
(3将图1中的矩形ODEF 绕点O 逆时针旋转一周,连结EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由。

二、因动点而产生的等腰三角形问题
例4:如图,抛物线254y ax ax =-+经过A B C △的
三个顶点,已知B C x ∥轴,点A 在x 轴上,点C 在y 轴上,且A C B C =
(1)求抛物线的对称轴;
(2)写出A B C ,,三点的坐标并求抛物线的解析式;
(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在P A B △是等腰三角形.若存在,求出所有符合条件的点P
坐标;不存在,请说明理由.
三、因动点而产生的直角三角形问题
例5:如图12,四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作N P 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .
(1)点(填M 或N )能到达终点;
(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的
取值范围,当t 为何值时,S 的值最大;
(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的
图12
第-3-页共4页
坐标,若不存在,说明理由.
四、因动点而产生的相似形问题
例6:设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0 、B(m,0 ,与y 轴交于点C . 且∠ACB=90°. (1求m 的值和抛物线的解析式;
(2已知点D(1,n 在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以
点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标. (3在(2的条件下,△BDP 的外接圆半径等于________________..
五、因动点而产生的平行四边问题
例7:如图,已知抛物线1C 与坐标轴的交点依次是(40 A -,,
(20 B -,,(08 E ,.
(1)求抛物线1C 关于原点对称的抛物线2C 的解析式;(2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形
M D N A 的面积为S .若点A ,点D 同时以每秒1个单位的
速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形M D N A 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形M D N A 的面积S 有最大值,并求出此最大值;
(4)在运动过程中,四边形M D N A 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.
例8、如图,抛物线2
23y x x =--与x 轴交A 、B 两点(A
点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中 C 点的横坐标为2.
(1)求A 、B 两点的坐标及直线AC 的函数表达式;
(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线
于E 点,求线段PE 长度的最大值;
(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.
第-4-页共4页
六、因动点而产生的梯形问题
例9:已知,在Rt △OAB 中,∠OAB =900,∠BOA =300,AB =2。

若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内。

将Rt △
OAB 沿OB 折叠后,点A 落在第一象限内的点C 处。

(1)求点C 的坐标;
(2)若抛物线bx ax y +=2
(a ≠0)经过C 、A 两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一点,过P 作y 轴的平行线,交抛物线于点M 。

问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由。

七、因动点而产生的线段和(差)问题
例10:如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点
A 、
B .已知抛物线2
16
y x bx c
=++过点A 和B ,与y 轴交于点C .
(1)求点C 的坐标,并画出抛物线的大致图象.(2)点Q (8,m )在抛物线2
16
y x bx c =
++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最
小值.
(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.
例11、已知抛物线y =ax 2
+bx +c 与y 轴交于点
A (0,3 ,与x 轴分别交于
B (1
,0 、C (5,0 两点。

(1)求此抛物线的解析式;
(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;
(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ,再到达抛物线的对称轴上
某点(设为点F ,最后运动到点A 。

求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长。

例12:抛物线y=ax2
+bx+c交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴为
x=1,B(3,0,C(0,-3, (1求二次函数的解析式;
(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;
(3)平行于x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径。

相关文档
最新文档