四点探针测试技术剖析
四点探针测试技术44页
整体式微观四点探针测试系统特点
优点
1.结构简单; 1.测试稳定性好; 3.单悬臂式相对于四悬臂式测试稳定性聚焦好;
缺点
探针间距固定,灵活性较差,仅能实现直线式测量;
微观十二点探针:具有探针可调功能
图14.市场化的微观十二点 探针,采用四点测试模式 时最小探针间距1.5μm , Capres A/S制造。
1 测试理论
报告 内容
2 研究进展
3 探针制备
四探针测试仪
最常见四探针测试仪为RTS和RDY系列。
测试探针 被测样品
图1.RTS-8型四探针测试仪(左)、 SDY-5型死探针测试仪(右)
四探针测试仪
图2. RTS-8型四探针电气原理图
发展历史
1865年 汤姆森 首次提出四探针测试原理; 1920年 Schlunberger 第一次实际应用,测量地球电阻
率;
1954年 Valdes 第一次用于半导体电阻率测试; 1980年代 具有Mapping技术的四点探针出现; 2019年 Pertersen 开发出首台微观四点探针
四探针传统应用
图3.四探针技术的传统应用
四探针测试原理
图 5.四探针测试原理图
四根等距探针竖直的排成一排,同 时施加适当的压力使其与被测样品 表面形成欧姆连接,用恒流源给两 个外探针通以小电流I,精准电压表 测量内侧两探针间电压V,根据相 应理论公式计算出样品的薄膜电阻 率
商业化微观四点探针
图12. 瑞士Capres A/S制造的四 点探针,最小探针间距5微米 图11.市场化微观四点探针测试仪
整体式微观四点探针测试系统
基于AFM的整体式微观四点探针系统
四点共线探针测试电路在高电阻率半导体测量中的应用
SMU等实现。 3.2高电阻率半导体样品SMU测量电
路 SMU是一种精确供电设备,它不仅
可以提供测量分辨率小于lmV的电压源, 还可以提供测量分辨率低于luA的电流 源。SMU还提供了远端检测功能并拥有 集成了双极型电压和吸收功率能力的四象 限输出功能。源测量单元(SMU)可以 提高生产效率,完成更全面的特性测试, 并提高测试系统整体性能。使用SMU在 四线模式下测量高电阻如图3所示。
测试架|
键盘 显示
▼
控制 芯片 —
t一放大电路H探针至被测
电源各模块
恒流源
图2四点共线探针测试电路结构图 3四点共线探针测试电路在高电阻 率半导体测量设备中的应用 3.1高电阻率半导体样品测量原理 针对半导体器件中绝缘电阻、体电阻 率、表面电阻等高阻测量,通常需用 静电计、SMU或电压源等,以实现同时 测量非常低的电流和高阻抗电压。 静电计可以用恒压或恒流的方法测量 高电阻,恒流法使用静电计电压表和电流 源。常见的高阻测量一般借助静电计、
4200-SCS型半导体表(下转11页)
科学管理 11
相差甚远。而政府采购常用的评标办法“低价中标”,往往招 到的是价格虽低质量却差的仪器设备。
2.4采购人员业务素质不够 高校是不同于一般政府部门的机构,政府采购工作除政策 性、技术性要求外,还具有与学科建设相结合、专业性非常 强、涉及范围包括法律法规的理解度、市场经济的敏感度、所 购仪器设备的熟悉度之广等特点,对采购人员的业务水平和个 人素质要求更高葺然而,目前高校采购人员存在知识结构单 一,缺乏专业知识与业务技能,采购工作能力不够强、对本职 工作主观努力的缺乏,沟通、协调、组织能力较弱等问题,这 些都不利于政府采购的效益提高和有效运作,使得高校采购工 作效率不高。 3解决高校教学科研仪器设备的政府采购问题的对策 3.1做好预算编制工作,提高采购计划性 科学的预算保证了府采购工作的有序的开展,合理细化的 计划保证了政府采购工作的质量。对此要求申报项目者加强调 研准备工作,多方询价、实地调研、提供准确的技栓数、招 标方案等。编制项目预算时除了仪器设备本身的固定成本,还 需要加上如安装、培训、维修等售后服务的可变成本,优化 “产品胡艮务”采购评价体系。 3.2合规灵活使用采购方式 依规定,集中采购目录内未达到集中采购金额起点的,采 购人可选择"其他采购方式一直接购买”组织采购,采购人应 当做好这部分采购的内部管理。达到政府采购金额起点或限额 标准,但不足公开招标数额标准的项目,可以根据项目的性质 和特点,选择采用公开招标、邀请招标、竞争性谈判、竞争性 磋商、询价、单一来源等采购方式。政府采购项目达到公开招 标数额标准的,应当采用公开招标方式实施政府采购%在实际 操作上可把握以下基本原则:凡集中采购目录项目且在限额标 准以上的通用仪器设备,原则上都采用集中公开招标方式完 成;对于供应商较少的集中采购项目,在征得政府主管部门同 意下,采用邀请招标方式或竞争性谈判方式实施采购;对少数
四点探针测试技术
图18.UHV-MBE-SEMSTM四点探针系统结构 示意图
四点STM探针测试系统研究进展
2006年中国科学院物理研究所纳米物理与器件研究室制 备出超高真空分子束外延(MBE)——四探针STM (Nanoprobe)设备,为世界上第一台可原位制备纳米体 系并研究其表面结构、电子态结构与电子输运性质的综合 系统,
由四个测试电极或一单悬臂四点电极过定于测试系统探 针台上,四电极位置相对固定。目前比较先进的测试系统 为基于原子力显微镜(AFM)的微观四点探针系统。
商业化微观四点探针
图12. 瑞士Capres A/S制造的四 点探针,最小探针间距5微米 图11.市场化微观四点探针测试仪
整体式微观四点探针测试系统
图917. UHV-SEM-SERM-RHEED四点探针系统结构示意图以俯视图
四点STM探针测试系统研究进展
2005年美国匹兹堡大学研制出UHV-MBE-SEM-STM四点探 针系统,具有多探针STM/SEM室,表面分析和准备室,分子 束外延室,传输室。配备多种标准表面科学分析工具AES 、 XPS、QMS、LEED 等。能够实现薄膜沉积、掺杂或量子点 生 长,并做四点电学表征和其他表面分析。
基于AFM的整体式微观四点探针系统
AFM技术四点探针技术相结合,同时具备表面形貌表 征和表面电导率Mapping功能。2005年日本东北大学开发 第一台AFM四点探针。
图13.AFM四点探针测试系统原理图,AFM四点探针SEM图。
整体式微观四点探针测试系统特点
优点
1.结构简单;
1.测试稳定性好; 3.单悬臂式相对于四悬臂式测试稳定性聚焦好;
图21 圆形和方形小样品局部灵敏度
微观四点探针制备技术
探针在微观四点探针表征系统中是核心精密部件,对 系统的微型化进展起着决定性作用,
四点探针法
7
四探针测试方法
如上图,电流的路径与前幅图相同,但是测量电压使 用的是另外两个接触点。尽管电压计测量的电压也包含了 导线电压和接触电压,但由于电压计的内阻(>1012Ω)很 大,通过电压计的电流非常小,因此,导线电压与接触电 压可以忽略不计,测量的电压值基本上等于电阻器两端的 电压值。这样消除掉了寄生压降,使得测量变得精确了。 之后,四探针法变得十分普及。
R L L L ohms A Wt t W
方块电阻
因此,样品的电阻可以写成:
L R Rsh W ohms
R Rsh(ohms / square) Numberofsquares 5Rshohms
半导体样品方块电阻用来表征离子注入层和扩散层,金 属层等。由方块电阻公式可以看出,掺杂浓度的深度变 化不需要已知,它可以看成是掺杂浓度沿深度的积分, 而不必理会掺杂浓度到底是怎么变化的。下图给出了一 些不同物质的方块电阻随厚度变化图。
如果被测样品不是半无穷大,而是厚度、横向尺寸一定, 进一步的分析表明,在四探针法中只要对公式引入适当的 修正系数F即可,此时:
2 SF V23
I
F可以修正接近样品边缘的探针位置、样品的厚度及直径、探针位移和样品温度, 一般是几个独立修正因子的乘积。
修正因子F:
对于线性排列的探针,并且具有相等的探针间距,F可以 写成三个独立因子的乘积:
四探针测试半导体的电阻率
四探针法测量半导体的电阻率一、实验目的1、了解四探针电阻率测试仪的基本原理;2、了解的四探针电阻率测试仪组成、原理和使用方法;3、能对给定的物质进行实验,并对实验结果进行分析、处理。
二、实验原理1.电阻的测量电性能是材料的重要物理性能之一,材料导电性的测量就是测量试样的电阻或电阻率。
电阻的测量方法很多,若精度要求不高,常用兆欧表、万用表、欧姆表及伏安法等测量;若精度要求比较高或阻值在10-6~102Ω的材料电阻(如金属或合金的阻值)测量时,需采用更精密的测量方法。
常用的几种方法如下:①双臂电桥法:根据被测量与已知量在直流桥式线路上进行比较而得出测量结果,其精确测量电阻范围为10-6~10-3Ω,误差为0.2~0.3%。
缺点:受环境温度影响较大。
②直流电位计测量法:一种比较法测量电动势,通过“串联电路中电压与电阻成正比”计算得出电阻。
其可测量10-7V微小电动势。
优点:导线和引线电阻不影响测试结果。
③直流四探针法:主要用于半导体或超导体等低电阻率的精确测量。
④冲击检流计法:主要用于绝缘体电阻的测量,将待测电阻与电容器串联,用冲击检流计测量电容器极板上的电量。
通过检流计的偏移量来计算待测电阻,可测得绝缘体电阻率高达1015~1016Ω·cm。
2.电阻率的测量电阻率是用来表示各种物质电阻特性的物理量,某种材料制成的长1米、横截面积是1平方毫米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率。
它反映物质对电流阻碍作用。
电阻率是半导体材料的重要电学参数之一,硅单晶的电阻率与半导体器件的性能有密切联系。
因此电阻率的测量是半导体材料常规参数测量项目之一。
测量电阻率的方法很多,如二探针法、扩展电阻法等。
而四探针法则是目前检测半导体电阻率的一种广泛采用的标准方法。
它具有设备简单、操作方便、精度较高、对样品的几何形状无严格要求等优点。
3.直流四探针法测试原理①体电阻率测量:当1、2、3、4根金属探针排成直线时,并以一定的压力压在半导体材料上,在1、4两处探针间通过电流I,则2、3探针间产生电位差V。
四点探针测试技术
1.厚度修正
f 0 ( ) f 0 ( )
和
f 4 ( )
,
f0(a)和f4(a)分别是对应两种原理时 的厚度修正函数,a=w/s
图8.修正f0(a)和f4(a)曲线图
四探针测试的修正
2.边缘修正
计算比较复杂,难以在实际运用,常用 镜像源法,图形变换法和有限元法
四探针测试的修正
3.温度修正
探针制备方法 FIB 光刻 电子束光刻 混合匹配光刻 传统光刻
最小探针间距
基底材料
300 nm
SiO2微悬臂梁 弹性系数3 N/m Ti /Pt 单悬臂梁 电极宽度200nm
350 nm
柔性SiO2 微悬臂梁 Ti/ Au 四平行SiO2悬臂 梁顶端聚焦方向 生长金属镀层碳 纳米管针尖 可100 nm分辨率 扫描测量表面高 度不同的样品 **2
缺点
探针间距固定,灵活性较差,仅能实现直线式测量;
微观十二点探针:具有探针可调功能
图14.市场化的微观十二点 探针,采用四点测试模式 时最小探针间距1.5μm , Capres A/S制造。
微观四点STM探针测试系统
将STM技术与四探针原理相互结合,拥有4个可独立驱动 探针的STM用于四点探针的电学表征。每个探针实现独立 操作,四点探针可以实现各种模式和不同探针间距的测量。 四个探针通过检测隧道电流进行反馈控制,使四探针同时 与样品表面接触。通过压电控制使其以原子级分辨率实现 在样品表面的扫描测量。完成四点探针电学表征。 能够原位、非破坏性进行四点探针测量,而且具有STM 的操纵功能:最小探针间距30nm,已经市场化应用。
图19.四探针SYM-MBE-LEED系统
微观四点STM探针测试系统
优点
四探针测试原理
四探针测试原理四探针测试(Four-point probe),也被称为四探针电阻测量法,是一种用于测量电导率和电阻的常用方法。
通过使用四个细尖探针接触材料表面,可以准确测量材料的电学性质。
本文将介绍四探针测试的原理以及其应用领域。
一、原理四探针测试的原理基于电流和电压之间的关系。
在传统的两探针测试中,只需要两个探针接触样品表面,但这种方法不能准确测量电阻,因为接触电阻会引入误差。
四探针测试则通过使用额外的两个探针来补偿接触电阻的影响,从而提高了测量的准确性。
四个探针分布在一个平面上,形成一个矩形或正方形的排列。
两个外侧的探针被称为“当前探针”,它们提供电流,并通过被测物体的表面传输电流。
两个内侧的探针被称为“电压探针”,它们用于测量在材料上形成的电压差。
在测试过程中,电流探针提供电流,通过被测材料流动,而电压探针则用于测量电压差。
根据欧姆定律,电阻可以通过测量电流和电压之间的比值来计算。
由于电流探针之间的距离相等且小于电压探针之间的距离,四探针测试可以减小接触电阻产生的误差。
因此,四探针测试可以提供更准确的电阻测量。
二、应用领域四探针测试在许多领域中都有重要的应用,特别是在材料科学和半导体领域。
以下是几个常见的应用领域:1. 材料科学:四探针测试可以用于测量材料的电阻率和导电性。
它被广泛用于研究不同材料的电学性质,以及评估材料的品质和一致性。
2. 半导体材料:四探针测试在半导体器件分析中具有重要作用。
它可以用来测量半导体材料的片内电阻和薄膜材料的电阻。
3. 导电薄膜:四探针测试可以测量导电薄膜的电阻率和薄膜的均匀性。
这对于制备导电薄膜和薄膜材料的性能优化至关重要。
4. 纳米材料:由于纳米材料的尺寸小,传统的两探针测试失效。
四探针测试可以在纳米材料的表面进行非破坏性电阻测量。
总结:四探针测试是一种准确测量电导率和电阻的方法。
通过使用四个探针接触材料表面,可以消除接触电阻造成的误差,提高测量的准确性。
开尔文四线检测
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,)连接的欧姆表被测量组件因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(Rwire(R):subject通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
四探针法测量电阻率和薄层电阻
四探针法测量电阻率和薄层电阻一、引言电阻率是半导体材料的重要参数之一。
电阻率的测量方法很多,如三探针法、霍尔效应法、扩展电阻法等。
四探针法则是一种广泛采用的标准方法,其主要优点在于设备简单、操作方便、精确度高、对样品的几何尺寸无严格要求。
不仅能测量大块半导体材料的电阻率,也能测量异形层、扩散层、离子注入层、外延层及薄膜半导体材料的电阻率,因此在科学研究及实际生产中得到广泛利用。
二、实验目的1.掌握四探针法测量半导体材料电阻率和薄层电阻的原理及方法;2. 了解四探针测试仪的结构、原理和使用方法。
三、实验原理1. 体电阻率测量假定一块电阻率ρ均匀的半导体材料,其几何尺寸与测量探针的间距相比较可以看作半无穷大,探针引入的点电流源的电流强度为I 。
那么,对于半无穷大样品上的这个点电流源而言,样品中的等电位面是一个球面,如图1所示。
图1 半无穷大样品点电流源的半球等位面对于离开点电流源半径为r 的半球面上的P 点,其电流密度j 为22I j r π= (1) 式中,I 为点电流源的强度,22r π是半径为r 的半球等位面的面积。
由于P 点的电流密度与该点处的电场强度E 存在以下关系:()E r j ρ= (2)则: 2()()2I dV r E r j r drρρπ⋅=⋅==- (3) 设无限远处电位为零,即()0r V r →∞=,则P 点的电位可以表示为 ()()2rI V r E r dr rρπ∞=-=⎰ (4) 上式就是半无穷大均匀样品上离开点电流源距离为r 的点的电位与探针流过的电流和样品电阻率的关系式,它代表了一个点电流源对距离r 处的点的电势的贡献。
图2 任意位置的四探针对图2所示的情形,四根探针位于样品中央,电流从探针1流入,从探针4流出, 则可将1和4探针认为是点电流源,由(4)式可知,2和3探针的电位2V 、3V 分别为: 2122411()2I V r r ρπ=- (5) 3133411()2I V r r ρπ=- (6) 2、3探针的电位差为: 2323122413341111()2I V V V r r r r ρπ=-=--+ (7) 所以,样品的电阻率为: 1231224133421111()V I r r r r πρ-=--+ (8) 上式就是利用直流四探针法测量电阻率的普遍公式。
四点探针测试技术
3.探针寿命
探针折断:避免操作失误、提高探针控制精度、增强探 针强度;
探针磨损:提高力控制精度、柔性探针、改变探针形状 (three-way flexible M4PP)、基体和导电薄膜加过度粘 结薄
精选课件
38
微观四点探针测试技术面临的问题
5.探针精确定位与力控制问题
高精度SEM 控制系统改进
6.电子束对样品表面电学特性的影响
图8.修正f0(a)和f4(a)曲线图
精选课件
14
四探针测试的修正
2.边缘修正
计算比较复杂,难以在实际运用,常用
镜像源法,图形变换法和有限元法
精选课件
15
四探针测试的修正
3.温度修正
半导体材料的电阻对温度非常敏感,温度也是影响其测试精 度的又一个重要因素,一般情况下半导体电阻率的参考温度 23+0.5.
公式中
RW
为薄层电阻,也成为单位方块电阻【6】
RW:薄层电阻, W:薄层厚度 A:r无穷大时的电势
精选课件
13
四探针测试的修正
实际测试中,要对四探针测试方法进行修正,包括厚度修 正,边缘修正和温度修正。
1.厚度修正 f4 ()
f0 ( )
f0 ( )
和
,
f0(a)和f4(a)分别是对应两种原理时
的厚度修正函数,a=w/s
率;
1954年 Valdes 第一次用于半导体电阻率测试; 1980年代 具有Mapping技术的四点探针出现; 1999年 Pertersen 开发出首台微观四点探针
精选课件
5
四探针传统应用
图3.四探针技术的传统应用
精选课件
6
四探针测试原理
四探针法(shao)课件概要
6.1.1 基本原理 由电场强度和电位梯度以及球面对称关系, 则
取r为无穷远处的电位为零, 则
6.1.1 基本原理
上式就是半无穷大均匀样品上离开点电流源距离为r 的点的电位与探针流过的电流和样品电阻率的关系式,它代 表了一个点电流源对距离r处点的电势的贡献。 对于图2-2 所示的情形,四根探针位于样品中央,电流 从探针1 流入,从探针4 流出,则可将1 和4 探针认为是点电 流源,由(2-6)式可知,2 和3 探针的电位为
6.1.1 基本原理
b/s 1.0 1.25 1.5 1.75 2.0 2.5 3.0 2.2662 2.4575 1.4788 1.7196 1.9454 2.3532 2.7000 圆 长方形 a/b=1 a/b=2 a/b=3 0.9988 1.2467 1.4893 1.7238 1.9475 2.3541 2.7005 a/b≥4 0.9994 1.2248 1.4893 1.7238 1.9475 2.3541 2.7005
∞
4.5324
4.5324
4.5324
4.5324
4.5324
6.1.1 基本原理
说明: 四探针的中心点在样品的中心 6.1.2 实验装置
整个实验装置如图所示,主要为三部分:1、四探针装置,2、 恒电流源,3、电压测量仪器。
6.1.2 实验装置
另外的测试装置也可由四探针头,直流恒流源,电位差 计和检流计等组成。对四探针头的补充要求是:导电性能好, 质硬耐磨,四根探针要固定且等距排列在一条直线上,其间 距通常为1mm,探针与被测样品间的压力一般为20 牛顿。恒 流源的输出电流要稳定且可调,能提供从微安级到几十毫安 的电流。电位差计是采用补偿法测微小电压的仪器,其优点 是当调节平衡后,测量线路和被测线路间都无电流流过。也 可以用输入阻抗很高的多位数字电压表,如5 1/2 数字表测量电 压及取样电流。
四探针法测电阻率实验原理要点
实验 四探针法测电阻率1.实验目的:学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。
2.实验内容① 硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片,改变条件(光照与否),对测量结果进行比较。
② 薄层电阻率的测量:对不同尺寸的单面扩散片和双面扩散片的薄层电阻率进行测量。
改变条件进行测量(与①相同),对结果进行比较。
3. 实验原理:在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。
测量电阻率的方法很多,有两探针法,四探针法,单探针扩展电阻法,范德堡法等,我们这里介绍的是四探针法。
因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。
所谓四探针法,就是用针间距约1毫米的四根金属探针同时压在被测样品的平整表面上如图1a 所示。
利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用高输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根据理论公式计算出样品的电阻率[1]IV C23=ρ 式中,C 为四探针的修正系数,单位为厘米,C 的大小取决于四探针的排列方法和针距,探针的位置和间距确定以后,探针系数C 就是一个常数;V 23为2、3两探针之间的电压,单位为伏特;I 为通过样品的电流,单位为安培。
半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相关,下面我们分两种情况来进行讨论。
⑴ 半无限大样品情形图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻率的装置;(b)为半无穷大样品上探针电流的分布及等势面图形;(c)和(d)分别为正方形排列及直线排列的四探针图形。
因为四探针对半导体表面的接触均为点接触,所以,对图1(b )所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。
因而电流在体内所形成的等位面为图中虚线所示的半球面。
于是,样品电阻率为ρ,半径为r ,间距为dr 的两个半球等位面间的电阻为dr r dR 22πρ=, 它们之间的电位差为 dr rIIdR dV 22πρ==。
实验2 四探针法测量
2.对于一个样品, 分别测试 5 个点, 由此得出单晶硅截面的电阻率不均匀度。
数据如表 2 所示,根据电阻率不均匀度的定义, 对于 0.6mm 厚的高掺杂硅片,电阻率不均匀度为:
E
max min 3.43 - 3.40 100% 0.88% 平均 3.41
对于 0.6mm 厚的低掺杂硅片,电阻率不均匀度为:
E
max - min 0.096 - 0.095 100% 1.05% 平均 0.095
max - min 3.31 - 3.30 100% 0.303% 平均 3.30
对于 0.058mm 厚的高掺杂硅片,电阻率的不均匀度为:
E
3.对样品的同一点测量,改变测试电流并观察电阻率。
若样品电阻率为 ,样品电流为 I,则在离电流源距离为 r 处的电流密度为 J 为:
J
又由于
I 2 π r2
(2.1)
J
I 2 π r2
(2.2)
其中 为 r 处的电场强度,由(2.1) 、 (2.2)式得:
(2.3)
根据电场强度与电势梯度的关系以及球面对称性可知:
以无穷远处电势为零,则有
实验仪器
RTS-9 型双电测四探针测试仪,计算机,硅片
实验内容
1.开机预热 5 分钟,小心取出硅片样品。 2.用自动测量功能分别测试不同厚度、不同掺杂的硅片的方块电阻和电阻率。 3.对一个样品,分别测量 5 个点,由此得出单晶硅截面电阻率的不均匀度。 单晶电阻不均匀率的定义为:
E
100%
自动测量的电阻率为:
自动 3.41 Ω·cm
手动 自动
四探针方法测电阻率
的测量,如电导率、迁移率等,为材料科学和电子学等领域的研究提供
更多有价值的数据。
THANKS
感谢观看
导线
用于连接测试设备和样品,需选用低 阻抗导线。
实验环境与条件
01
02
03
实验室环境
保持实验室温度、湿度和 清洁度等环境因素稳定, 以保证测量结果的准确性。
电源条件
确保电源电压稳定,避免 电压波动对测量结果的影 响。
安全措施
实验操作过程中需注意安 全,遵守实验室安全规定, 确保实验人员和设备的安 全。
07
结论与展望
研究结论
1 2
电阻率测量精ቤተ መጻሕፍቲ ባይዱ高
四探针方法通过四个探针同时接触样品,能够有 效地减小接触电阻和测量误差,从而获得更高的 电阻率测量精度。
适用范围广
四探针方法适用于各种不同类型和规格的样品, 如金属、半导体、陶瓷等,具有较广的适用范围。
3
操作简便
四探针方法不需要对样品进行特殊处理或制备, 只需将探针放置在样品上即可进行测量,操作简 便易行。
随着科技的发展,四探针方法的应用领域不断拓展,不仅局限于半导体和金属材料检测。
在新能源领域,如太阳能电池和燃料电池的生产过程中,四探针方法可用于检测材料的电阻 率,提高电池性能和稳定性。
在环境监测领域,四探针方法可应用于土壤电阻率的测量,为土壤污染治理和土地资源管理 提供依据。此外,在地质勘探、生物医学和食品检测等领域,四探针方法也展现出广阔的应 用前景。
的测量。
四探针的优点与局限性
优点
四探针法具有较高的测量精度和稳定 性,适用于各种形状和尺寸的样品, 且操作简便、快速。
局限性
四探针法需要与被测材料直接接触, 可能会对材料表面造成损伤或污染; 同时对于导电性较差或不均匀的材料 ,测量结果可能存在误差。
【开尔文四线检测】
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,)连接的欧姆表被测量组件因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(Rwire):(Rsubject通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
四探针原理
实验原理
本实验的测试装置主要由四探针头, 可调的直流恒流源, 电位差计和检流 计等组成。
对四探针头的要求是: 导电性能好, 质硬耐磨。针尖的曲率半径25-50μm, 四根探针要固定且等距排列在一条直线上, 其间距通常为1mm, 探针与被测样 品间的压力一般为20牛顿。
恒流源的输出电流要稳定且可调, 能提供从微安级到几十毫安的电流。 电位差计是采用补偿法测微小电压的仪器,其优点是当调节平衡后,测量线 路和被测线路间少子注入,被测表面需粗磨或喷砂
处理。
2. 对高阻材料及光敏材料,由于光电导及光压效应会严重影响电阻率的测
量,这时测量应在暗室进行。
3. 电流要选择适当, 电流太小影响电压检测精度,电流太大会引起发热或非
平衡载流子注入。
4. 半导体材料的电阻率受温度的影响十分敏感,因此,必须在样品达到热平
上,并且间距相等, 设r12=r23=r34=S,则有:
Xidian University
School of Microelectronics
实验原理
直线型四探针 需要指出的是: 这一公式是在半无限大样品的基础上导出的,实用中必需 满足样品厚度及边缘与探针之间的最近距离大于四倍探针间距, 这样才能使该 式具有足够的精确度。 如果被测样品不是半无穷大,而是厚度,横向尺寸一定,进一步的分析表 明,在四探针法中只要对公式引入适当的修正系数BO即可,此时:
Xidian University
School of Microelectronics
实验原理
☆ 半导体材料的电阻率 在半无穷大样品上的点电流源, 若样品的电阻率ρ均匀, 引入点电流源的 探针其电流强度为I,则所产生的电力线具有球面的对称性, 即等位面为一系列 以点电流为中心的半球面,如图所示。在以r为半径的半球面上,电流密度j的 分布是均匀的:
四点探针仪的工作原理
四点探针仪的工作原理四点探针仪是一种用于表征材料电学特性的实验仪器。
它通常由四个电极组成,其中两个电极用作电流源,另外两个电极用于测量材料的电压响应。
四点探针仪通过测量四个电极之间的电压和电流之间的关系,可以确定材料的电阻率和电导率等电学特性。
四点探针仪的工作原理基于欧姆定律和电流分布规律。
欧姆定律表示电流通过一个导体时与导体两端的电压成正比。
电流分布规律则表示在导电材料中,电流在材料内部的分布不均匀,呈现高电流密度区域和低电流密度区域。
四点探针仪通过将电流注入材料中的两个电极,同时通过另外两个电极测量材料的电压响应,以减小电极导线的电阻对测量结果的影响。
具体的工作原理如下:1. 器件结构:四点探针仪通常由四个相互平行且等间距的电极组成,其中两个电极(A和B)用作电流注入电极,另外两个电极(C和D)用于测量材料的电压响应。
2. 电流注入:在工作时,四点探针仪的电流源会通过电极A和B注入一定大小的电流到被测材料中。
这个注入的电流可以是恒定电流或交流电流,具体取决于实验的要求。
3. 电压测量:通过电极C和D,四点探针仪测量材料上的电压响应。
电极C和D之间的电压差通过电压测量电路进行放大和测量,得到准确的电压数据。
4. 去除电极电阻的影响:为了减小电极导线的电阻对测量结果的影响,四点探针仪会选择相对小的电极间距,通常在毫米至厘米量级,以保持电流仅在被测材料中流动,而不会通过电极导线。
5. 数据处理:通过测量材料上的电压和注入的电流,可以利用欧姆定律计算出材料的电阻率或电导率。
根据电流分布规律,四点探针仪可以准确地测量材料内部的电子传输性质,而不会受到电极电阻的影响。
总结起来,四点探针仪通过将电流注入材料的两个电极,同时测量材料的电压响应,可准确测量材料的电阻率和电导率等电学特性。
通过采用四个独立的电极,四点探针仪能够减小电极电阻对测量结果的影响,从而提高测量结果的准确性。
这使得四点探针仪成为研究半导体、导电薄膜、导体材料等电学性质的重要工具。
【优秀资料】四探针方法测电阻率PPT
量程 A
A
2、 电阻(V/I)测量,用四端测量夹换下回探 针测试架,按下图接好样品,选择合适的电压 电流量程,电流值调到10.00数值,读出数值为 实际测量的电阻值。
谢谢观看
通再过将修 极正性公开式关修拨正至后下,方得(到负:极性),按下电流开,读出测量值,将两次测量值取平均,即为样品在该处的电阻率值。 1、测试量准不备规:则电半源导开体关 电置阻于率断开位置,工作选择置于“短路”,电流开关处于弹出切断位置。 将1、测测试试样准品备放:在电样源品开架关上置,于调断节开高位度置手,轮工,作使选探择针置能于与“其短表路面”保,持电良流好开接关触处。于弹出切断位置。 下面通 考过虑实一验般数情据况验下证的该修修正正:公式的正确性: 2、验电证阻四(探V/针I)法测修量正,公用式四端测量夹换下回探针测试架,按下图接好样品,选择合适的电压电流量程,电流值调到10. 簿优片选样 四品探因针为方其法厚测度电与阻探率针间距比较,不能忽略,测量时要提供样品的厚度形状和测量位置的修正系数。 由关此如可 果得“出±样”品极的性电发阻出率闪为烁:信号,则测量数值已超过此电压量程,应将电压量程开关拨到更高档,读数后 退出电流开关,数字显示恢复到零位. 3退、出极电性流开开关关置,于数上字方显,示工恢作复状到态零选位择. 开关置于“短路”,拨动电流和电压量程开关,置于样品测量所合适的电流、电压量程范围。 簿片样品因为其厚度与探针间距比较,不能忽略,测量时要提供样品的厚度形状和测量位置的修正系数。
这就是我们实验时用到的公式
下面通过实验数据验证该修正公式的正确性:
Hale Waihona Puke <三> 实验步骤
1、测试准备:电源开关置于断开位置,工作 选择置于“短路”,电流开关处于弹出切断 位置。将测试样品放在样品架上,调节高度 手轮,使探针能与其表面保持良好接触。 2、打开电源并预热1小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺点
探针间距固定,灵活性较差,仅能实现直线式测量;
微观十二点探针:具有探针可调功能
图14.市场化的微观十二点 探针,采用四点测试模式 时最小探针间距1.5μm , Capres A/S制造。
微观四点STM探针测试系统
将STM技术与四探针原理相互结合,拥有4个可独立驱动 探针的STM用于四点探针的电学表征。每个探针实现独立 操作,四点探针可以实现各种模式和不同探针间距的测量。 四个探针通过检测隧道电流进行反馈控制,使四探针同时 与样品表面接触。通过压电控制使其以原子级分辨率实现 在样品表面的扫描测量。完成四点探针电学表征。 能够原位、非破坏性进行四点探针测量,而且具有STM 的操纵功能:最小探针间距30nm,已经市场化应用。
微观四点探针测试技术面临的问题
5.探针精确定位与力控制问题
高精度SEM 控制系统改进
6.电子束对样品表面电学特性的影响
SEM RHEED
结论与展望
综述了四探针测试原理,应用,分类。并报告了当今世 界上最为先进的微观四点探针测试系统,包括测试原理以 及最新应用,并将其划分为两大类型,详细介绍分析了每 一类系统的器件结构、工作原理、探针制备,而且做了一 定的对比。指出微观四点探针系统所面临的主要问题。
图 5.四探针测试原理图
3.操作方便
四探针测试方法分类
图4.四探针测试方法分类
四探针测试方法
最为常用的测试方法为直线(常规)四探针法和双电测 四探针法。
1.双电测四探针法:
图6 双电测四探针法探针组合形式
A:pertoff法
B: Rymaszewski法
四探针测试方法
2.双电测四探针法特点:
1.克服探针间距不等及针尖纵向位移带来的影响 2.对小尺寸样品不用做几何测量和边缘修正 3.不能消除横向位移对测试结果的影响,探针间距 不能过小
微观四点探针制备技术
整体式微观四点探针制备
金属镀层 悬臂梁制备 导电电极制备
பைடு நூலகம்
图23.整体式微观四点探针的一般制备步骤
基底材料: 单晶硅、多晶硅、氮硅化合物(Si3N4)
常用工艺:
FIB 光刻 、电子束光刻 、传统光刻 、混合匹配光刻 等
微观四点探针制备技术
(a)KOH蚀刻V型槽 (b)氧化硅生长 (c) LPCVD法沉积SiN层 (d )光致抗蚀掩模
1.系统的分类
整体式微观四点探针系统 :最小探针间距300nm 微观四点STM探针系统: 最小探针间距30nm
2.系统的组成
机械系统:底座、真空室、样品台; 探针系统:探针、探针台; 信号控制与传输系统:测试仪表、电路、PC机;
成像系统:SEM、RHEED;
辅助装置:真空泵、其他表面科学分析工具
整体式微观四点探针测试系统
微观四点探针测试技术的研究涉及到半导体物理、表面 科学、机械、仪表自动化、电化学加工等学科,切入点很 多,是一项具有挑战性的热点研究。结合我们的知识和 以上综述,对未来微观四点探针测试技术给出以下建议:
1.一个超高真空环境对于四点电学表征越来越重要,而 且对于微观领域的测量时必不可少的。
结论与展望
瑞士洛桑理工学院 日本大阪大学
日本东北大学
中国科学院物理研究所纳米物理与纳米器件研究室 韩国国立全南大学 日本NTT公司 丹麦Capres A/S公司 zvyex公司
微观四点探针的新型应用
1.表面敏感电导率以及表面电荷迁移 2.导电聚合物薄膜电导率 3.纳米管,纳米线等纳米材料电导测量 4.判断新型生物材料未知物理性质 5.霍尔效应测定以判断硅和锗的超浅结处的载流子迁移 率
通过无限大理论的薄层原理和厚块原理推导出的二维无限 模型和三维半无限模型。直线式等距排列的四点探针电
阻薄层和厚块计算公式分别为
如果接触点半径相对于探针间距较小 ,则用下式
微观四点探针理论研究
Petersen等人用微观四点探针对多种形状小样品电阻
率进行了数学模拟,对电荷的局部输运特性进行了研 究。有了诸多发现。 1.双电测四点测量内侧两探针灵敏度大于外侧两探针, 2.对称线上由于对称电流泄漏灵敏度较低
四探针计算模型
1.厚块原理(3D模型)
假设被测样品为半无限大,探针与样品表面为点接触,形成以 此点为球心的等位面。根据拉普拉斯方程(1):
r 时V 0及j E
可得到距点电流源r处的电势为:
图 7. 点电流源的半球形等位面
四探针法计算模型
电阻率公式为:
探针等距:
C为探针系数,只要针距一定,它就是常数
图21 圆形和方形小样品局部灵敏度
微观四点探针制备技术
探针在微观四点探针表征系统中是核心精密部件,对 系统的微型化进展起着决定性作用,
1.微观四点STM探针制备
通常会采用钨丝作为测试探针,或采用金属镀层探针, 可以采用有金属镀层碳纳米管(CNT)作为探针。
图22. PtIr- CNT四点探针 对CoSi2纳米线电导率测 量,最小探针间距30nm (日本东北大学)
微观四点探针测试原理
微观四点探针技术是微观领域的四探针测试技术,原理与宏 观四探针类似, 表面层
电流 渠道
空间电荷层(界面层) 基体
图 10.宏观和微观四点探针在测量 电导率时,电流流经半导体样品示 意图
能适用于尺寸较小样品的测量
测试精度和分辨率增加
消除样品表面缺陷对测量的影响 样品表面损伤减小
微观四点探针测试系统
半导体材料的电阻对温度非常敏感,温度也是影响其测试精 度的又一个重要因素,一般情况下半导体电阻率的参考温度 23+0.5.
微观四点探针的发展
1.发展原因
1.电子元器件的不断微型化和纳米器件的出现
2.新型生物材料的出现 3.表面科学研究的不断深入 4.显微镜技术和MENS技术的发展
2.主要研究单位
· 丹麦科技大学
1.探针间距受限因素
探针间电子电迁移 热效应 探针几何参数和强度
2.对样品表面的损伤
采用柔性探针 改变测试夹角 采用尖锐探针
3.探针寿命
探针折断:避免操作失误、提高探针控制精度、增强探 针强度; 探针磨损:提高力控制精度、柔性探针、改变探针形状 (three-way flexible M4PP)、基体和导电薄膜加过度粘 结薄
500 nm
SiO2微悬臂梁 0.5 N/m TiW 单悬臂梁 12点探针
1500 nm
SiO2 微悬臂梁
金属镀层 结构特征
Ti/ Au 四平行悬臂梁
测试性能
与样品表面接触良 好,探针高度相同
碳针尖对样品表 面有自调心功能 ,且探针间距可 调 【*B】
样品损伤很小,
参考文献
【*4】
**1
微观四点探针测试技术面临的问题
四点探针测试技术
Four Point Probe Technology
王永
东北大学真空与流体工程研究中心
导师:李建昌
四点探针(四探针)是半导体行业,薄膜和表面科学 领域最为常用的电学表征工具。用四根探针代替两个探 针对样品的电阻率或电导率进行测量,能够消除探针接 触电阻对测量结果的影响,具有很高的精度。
2.整体式微观四点探针的探针间距有很大的减小空间,有望 达到几十个纳米 ; 3.整体式微观四点探针的应优先考虑FIB光刻,还可以尝试 选用不同的混合工艺以获得较小探针间距,同时减小加工 成本; 4.选用弹性系数较大的材料作探针基体材料,能够降低样品 表面损伤; 5.为防止导电金属镀层脱落,增强探针抗磨损能力,金属薄 膜的制备和厚度至关重要,可以采用中间粘结层的方法增 强金属薄膜和基底的连接。 6.由于导电薄膜容易氧化,应注意探针的氧化问题,在测试 前应考虑清洗;
图917. UHV-SEM-SERM-RHEED四点探针系统结构示意图以俯视图
四点STM探针测试系统研究进展
2005年美国匹兹堡大学研制出UHV-MBE-SEM-STM四点探 针系统,具有多探针STM/SEM室,表面分析和准备室,分子 束外延室,传输室。配备多种标准表面科学分析工具AES 、 XPS、QMS、LEED 等。能够实现薄膜沉积、掺杂或量子点 生 长,并做四点电学表征和其他表面分析。
基于AFM的整体式微观四点探针系统
AFM技术四点探针技术相结合,同时具备表面形貌表 征和表面电导率Mapping功能。2005年日本东北大学开发 第一台AFM四点探针。
图13.AFM四点探针测试系统原理图,AFM四点探针SEM图。
整体式微观四点探针测试系统特点
优点
1.结构简单;
1.测试稳定性好; 3.单悬臂式相对于四悬臂式测试稳定性聚焦好;
1
测试理论
2
报告 内容
3
研究进展
探针制备
四探针测试仪
最常见四探针测试仪为RTS和RDY系列。
测试探针
图1.RTS-8型四探针测试仪(左)、 SDY-5型死探针测试仪(右)
被测样品
四探针测试仪
图2. RTS-8型四探针电气原理图
发展历史
1865年 汤姆森 首次提出四探针测试原理;
1920年 Schlunberger 第一次实际应用,测量地球电阻
(e)悬臂和顶端的SiN蚀刻
( f ) 阴阳键合法玻璃粘结 (g) 去Si (h) 镀铜 图24 AFM悬臂梁制备工艺
微观四点探针制备技术
图25.最近亚指出的整体式四点探针
微观四点探针制备技术
图26.最近亚指出的整体式四点探针
微观四点探针制备技术
表1.一些常用方法制备出的整体式四点探针最小探针间距
图15.市场化四点STM探针 左:对大规模集成电路测量 右: 移动纳米线
微观四点STM探针测试系统
系统原理
图16.微观四点STM探针系统原理示意图
四点STM探针测试系统研究进展