《不等式及其解集》教学设计
人教版数学七年级下册《9.1.1不等式及其解集》教学设计
![人教版数学七年级下册《9.1.1不等式及其解集》教学设计](https://img.taocdn.com/s3/m/80e7b783185f312b3169a45177232f60dccce700.png)
人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。
本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。
教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。
但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。
此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会求解不等式的解集,并能解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。
2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。
2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。
3.运用实例分析,让学生体会不等式在实际问题中的应用。
4.注重练习,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。
2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。
3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。
通过讨论,引出不等式的概念。
2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。
通过实例演示,让学生直观地感受不等式的性质。
3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。
初中数学_不等式及其解集教学设计学情分析教材分析课后反思
![初中数学_不等式及其解集教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/890172aa4693daef5ff73d01.png)
9.1.1不等式及其解集教学设计【学习目标】1.知识与能力:感受生活中存在的不等数量关系,了解不等式的意义,通过解决简单的实际问题,使学生自发的寻找不等式的解,会把不等式的解集正确的表示在数轴上。
2.过程与方法:经历由具体事例建立不等模型的过程,经历探究不等式的解与解集的不同意义的过程,渗透数形结合思想。
3.情感态度与价值观:通过对不等式、不等式的解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养合作交流意识。
【自主学习】探究:问题1:一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00刚好驶过A地,车速应满足什么条件?问题2:一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?归纳:不等式:不等式的解:不等式的解集:不等式解集的表示方法:【尝试运用】1、m与3的和小于n2、x与12的差比y的3倍大3、a与b的乘积是正数4、x与y的和的不大于-25、a与b的和的20%至多为156、下列说法正确的是( )A. x=3是2x+1>5的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集7、直接想出不等式的解集:⑴ x+2>6 ⑵ 3x>9 ⑶ x-3>08、数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1【达标检测】1、有下列数学表达式:①-1<0;②3m-2n>0;③x=4;④x≠7;⑤5x+4=x+5;其中是不等式的有()2、下列说法中错误的是()A.不等式x<5的解有无数个B.不等式x<5的正整数解有有限个C.x=-4是不等式-3x>9的一个解D.x>5是不等式x+3>6的解集【巩固提升】说说你的收获和体会学习内容:数学思想:类比、数形结合不等式:不等式的解:不等式的解集:不等式解集的表示方法学情分析生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解。
不等式及其解集教案
![不等式及其解集教案](https://img.taocdn.com/s3/m/27f5e4550640be1e650e52ea551810a6f424c81d.png)
不等式及其解集教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明简单的不等式,如3 > 2,x ≥5 等。
1.2 不等式的基本性质学习不等式的加减乘除性质,掌握如何在不改变不等式解集的情况下进行基本的数学运算。
探究不等式两边同加或同减、同乘或同除一个正数、同乘或同除一个负数时的性质变化。
第二章:一元一次不等式2.1 一元一次不等式的概念引出一元一次不等式,即形如ax + b > c 或ax ≤c 的不等式,其中a, b, c 是已知数,x 是未知数。
解释一元一次不等式的图形表示方法,如数轴上的点表示解集。
2.2 一元一次不等式的解法学习如何解一元一次不等式,包括移项、合并同类项、系数化为1 等步骤。
通过例题演示解一元一次不等式的具体步骤,强调解题关键。
第三章:不等式的组合与多元一次不等式3.1 不等式的组合介绍不等式的组合概念,即考虑两个或多个不等式的解集。
学习如何通过逻辑运算(如“且”、“或”)来表示不等式的组合。
3.2 多元一次不等式的解法探究多元一次不等式的解法,例如两个不等式的交集和并集。
通过实际例题讲解如何求解多元一次不等式,让学生掌握解题技巧。
第四章:不等式的应用4.1 不等式在实际问题中的应用引入实际问题中的不等式应用,如物品折扣、温度变化等。
学习如何将实际问题转化为不等式问题,并求解。
4.2 不等式的优化问题讲解如何利用不等式来解决优化问题,如最大值和最小值问题。
举例说明如何运用不等式找到问题的最优解。
第五章:不等式的综合练习5.1 综合练习题设计一些综合性的不等式练习题,涵盖本章所学的知识点。
让学生通过练习题巩固不等式的概念和解法。
5.2 练习题解答与讲解提供练习题的解答和讲解,帮助学生理解和掌握不等式的解题技巧。
分析学生常见的错误,进行错题讲解,提高学生的解题能力。
(教案编辑专员提供)第六章:不等式的扩展绝对值不等式6.1 绝对值不等式的概念引入绝对值不等式的概念,如|x| > 2 或|x| ≤3。
不等式及其解集教案
![不等式及其解集教案](https://img.taocdn.com/s3/m/d8f45ecfdc88d0d233d4b14e852458fb770b382b.png)
不等式及其解集教案一、教学目标1. 了解不等式的概念及其表达方式。
2. 学会解一元一次不等式。
3. 能够求解不等式的解集。
4. 能够应用不等式解决实际问题。
二、教学重点与难点1. 教学重点:不等式的概念及其表达方式。
一元一次不等式的解法。
不等式解集的求解方法。
2. 教学难点:不等式解集的求解方法。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来掌握不等式的概念和解法。
2. 使用实例和练习题,让学生通过实际操作和练习来加深对不等式的理解和应用能力。
3. 利用图形和图像辅助教学,帮助学生直观地理解不等式的解集。
四、教学准备1. 教学课件和教案。
2. 练习题和答案。
3. 图形和图像的展示工具。
五、教学过程1. 导入:通过引入实际问题,引发学生对不等式的兴趣和思考。
引导学生回顾已学的代数知识,为新知识的学习做好铺垫。
2. 讲解不等式的概念:解释不等式的定义和表达方式。
举例说明不等式的应用场景。
3. 讲解一元一次不等式的解法:引导学生通过移项、合并同类项等步骤解一元一次不等式。
给出解题的步骤和注意事项。
4. 练习题解答:让学生独立解答练习题,巩固所学的解法。
引导学生总结解题经验和技巧。
5. 讲解不等式解集的求解方法:介绍解集的概念和解集的表示方法。
引导学生通过图形和图像来求解不等式的解集。
6. 练习题解答:让学生独立解答练习题,巩固所学的解集求解方法。
引导学生总结解题经验和技巧。
7. 总结与复习:对本节课的内容进行总结和复习。
强调不等式的重要性和应用价值。
8. 布置作业:布置相关的练习题,让学生进一步巩固所学知识。
鼓励学生进行自主学习和思考。
教学反思:在教学过程中,要注意关注学生的学习情况,及时进行调整教学方法和节奏。
对于学生的疑问和困惑,要耐心解答和引导,帮助学生理解和掌握不等式的概念和解法。
要注重培养学生的解题能力和思维能力,提高他们解决实际问题的能力。
六、教学拓展1. 引入不等式的性质:讲解不等式的基本性质,如同向相加、同向相乘等。
七年级数学《不等式及其解集》教案
![七年级数学《不等式及其解集》教案](https://img.taocdn.com/s3/m/6b08bc65182e453610661ed9ad51f01dc2815727.png)
《不等式及其解集》案例一、教材背景分析《不等式及其解集》是人教实验版七年级下册所增设的一个全新的模块,学生在小学阶段虽接触过“>””<”符号,但他们大脑中并没有形成不等关系的数学模型。
新课标指出:“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践,自主探究、合作交流应是重要的学习方式”。
实现这一方式的关键是我们的课堂教学,以及课堂教学中师生的融洽与互动,针对新课程要求以及七年级学生的现实基础,本节课主要要让学生建立一种数学模型,并在数学活动中感受数学的魅力。
二、整合思路本着“快乐的学习数学,并在数学中享受到更大的快乐”这一快乐教学宗旨,结合外校赛教师生不熟,融和度低这一现实,本节课通过一系列活动来完成,让学生在一系列的活动中感受数学的现实性,让学生真正觉得学以致用,同时在活动中注意问题的生成与衔接,要让学生浑然天成、不知不觉,轻松愉快的完成本节课的数学要求和目标。
三、教学设计流程图(见附页)四、教学过程设计〈一〉、三维目标A、知识与技能1、了解不等式的概念2、理解不等式的解集3、能正确表示不等式的解集B、过程与方法经历把实际问题抽象为不等式的过程,能够列出不等关系式,初步体会不等式是现实世界中表示不等关系的一种有效的数学模型,培养学生的建模意识。
C、情感态度与价值观通过对不等式及其解集等有关概念的探索、培养学生的数学学习兴趣和建模意识,加强同学的合作与交流。
〈二〉、教学重点不等式解集的表示〈三〉、教学难点不等式的确定〈四〉、教具准备多媒体课件,三角尺布置作业1、必做题P123 9.1 1.22、选做题P128 9.1附教学流程图:【教研心语】校本教研犹如鲜花下一片绿叶,惟有他的陪衬,花朵才会更加娇艳。
——汪延俊。
不等式及其解集教学设计
![不等式及其解集教学设计](https://img.taocdn.com/s3/m/80ed9c744a73f242336c1eb91a37f111f1850dbc.png)
不等式及其解集教学设计1. 不等式的基本概念1.1 什么是不等式?大家好!今天我们来聊聊不等式。
简单来说,不等式就是用来比较两个数学表达式的大小关系的。
比如,我们常看到的“<”表示小于,“>”表示大于,“≤”表示小于等于,“≥”表示大于等于。
就像是你和朋友比谁跑得快一样,不等式就是用来比较两个数学“选手”的。
1.2 不等式的例子想象一下你在超市买东西。
你买了一瓶饮料,价格标的是5元,店里还告诉你现在打折,价格小于等于4元。
这个“价格小于等于4元”就是不等式的实际应用。
这样我们就能知道现在是不是便宜货,心里也会有个数了。
2. 解不等式的步骤2.1 解不等式的基本步骤解决不等式其实跟解方程差不多,只不过不等式解的结果可能会有点“漂浮”,所以我们需要特别留意。
首先,你得把不等式的各项收集整齐,然后用类似解方程的方法来处理。
不过,不等式有个小秘密——在你乘除以负数的时候,记得要把“不等号”翻转过来哦,不然结果会出大事的。
2.2 举个例子假设我们有一个不等式:2x + 3 > 7。
我们要怎么解呢?首先把3从不等式里移走,得到2x > 4。
接着,把2除以不等式的两边,得出x > 2。
这样,我们就搞定啦!要记住,步骤虽然简单,但每一步都要小心,别犯小错误。
3. 不等式的应用3.1 实际生活中的应用不等式的应用无处不在。
比如说,你在计划一次旅行,你的预算是3000元。
你看中了一些酒店,价格在2000元到2500元之间。
这个“价格在2000到2500元之间”就是一个不等式的实际应用。
它告诉你,你的预算是足够的,放心去享受旅行吧!3.2 不等式在数学中的作用在数学里,不等式也很重要。
比如在优化问题中,我们需要找出满足特定条件的最佳解。
不等式帮助我们设定这些条件,让我们找到最优的解决方案。
可以说,不等式就像是数学里的指南针,让我们在复杂的数学世界里不迷路。
4. 总结不等式不仅是数学里的基础知识,还能在实际生活中帮助我们做决策。
人教版七年级数学下册9.1.1《不等式及其解集》说课稿
![人教版七年级数学下册9.1.1《不等式及其解集》说课稿](https://img.taocdn.com/s3/m/9c011397a0c7aa00b52acfc789eb172ded639986.png)
人教版七年级数学下册9.1.1《不等式及其解集》说课稿一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
在教材中,不等式的概念是通过具体的例子引入的,让学生感受不等式在实际生活中的应用。
不等式的解集是指满足不等式的所有实数的集合,可以用数轴或区间表示。
教材通过例题和练习题的形式,帮助学生理解和掌握不等式及其解集的概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了有理数、一元一次方程等基础知识,对于数学符号和概念有一定的理解。
但学生对于不等式的概念和解集的表示方法可能较为陌生,需要通过具体的例子和练习来逐步理解和掌握。
同时,学生可能对于数轴和区间的表示方法有一定的了解,但需要进一步学习和应用到不等式的解集中。
因此,在教学过程中,教师需要注重概念的引入和学生的实际操作,帮助学生建立起不等式和解集的知识体系。
三. 说教学目标1.知识与技能目标:学生能够理解不等式的概念,掌握不等式的解集及其表示方法。
2.过程与方法目标:学生能够通过具体的例子和练习,培养逻辑思维和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学在实际生活中的应用,激发学习数学的兴趣和积极性。
四. 说教学重难点1.教学重点:不等式的概念及其解集的表示方法。
2.教学难点:理解不等式和解集之间的关系,能够运用解集的表示方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,培养学生的逻辑思维和解决问题的能力。
2.教学手段:利用多媒体课件和黑板,进行图文并茂的讲解和演示,帮助学生直观地理解和掌握不等式及其解集的概念和表示方法。
六. 说教学过程1.导入新课:通过具体的例子,引入不等式的概念,激发学生的兴趣和好奇心。
人教版七年级数学下册教学设计:9.1.1不等式及其解集
![人教版七年级数学下册教学设计:9.1.1不等式及其解集](https://img.taocdn.com/s3/m/305c0ea4fbb069dc5022aaea998fcc22bcd143c1.png)
(2)结合自己的学习体会,谈谈在解决实际问题时,如何将问题转化为不等式模型。
2.不等式的解集
接着,我会详细讲解不等式的解集,以及如何用数轴表示解集。借助图形和数轴,让学生直观地理解解集的内涵。
3.不等式的变形
此外,我还会介绍不等式的简单变形,如加减乘除同一不等式的两边。通过实例和练习,让学生掌握不等式的变形方法。
(三)学生小组讨论
1.设计讨论题目
在此环节,我会给出几个实际问题,让学生分组讨论如何用不等式表示这些问题,并求解。
4.通过合作交流、讨论等形式,培养学生的团队合作意识和交流表达能力,提高学生的问题解决能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情,树立正确的学习态度。
2.引导学生认识到不等式在生活中的重要性,体会数学与现实生活的紧密联系,增强学生的应用意识。
3.通过解决实际问题,培养学生的自信心和成就感,提高学生对数学价值的认识。
2.学生练习
学生在规定时间内完成练习,期间我会巡回指导,解答学生的疑问。
3.评讲练习
在学生完成练习后,我会挑选部分题目进行评讲,分析解题思路,强调注意事项。
(五)总结归纳
1.回顾所学内容
在本节课的最后,我会带领学生回顾本节课所学的不等式概念、性质、解集表示方法等。
2.强调重点和难点
在此过程中,我会强调不等式的定义、性质和求解方法,以及如何将实际问题转化为不等式模型。
3.鼓励学生提问
最后,我会鼓励学生提问,解答他们的疑惑。通过总结归纳,帮助学生巩固所学知识,提高他们的数学素养。
五、作业布置
为了巩固学生对不等式的理解,提高解题能力,特布置以下作业:
《不等式及其解集》数学教案
![《不等式及其解集》数学教案](https://img.taocdn.com/s3/m/66e911a3988fcc22bcd126fff705cc1754275f45.png)
《不等式及其解集》数学教案标题:《不等式及其解集》一、教学目标:1. 知识与技能:- 学生能够理解并掌握不等式的概念及基本性质。
- 学生能够熟练地求解一元一次不等式,并正确表示其解集。
2. 过程与方法:- 通过观察、比较和归纳,培养学生分析问题和解决问题的能力。
- 通过实例探究,引导学生理解不等式的实际意义。
3. 情感态度价值观:- 培养学生的逻辑思维能力和严谨的学习态度。
- 提高学生对数学学习的兴趣,激发他们主动探索知识的热情。
二、教学重点与难点:重点:不等式的概念及其基本性质,一元一次不等式的解法。
难点:理解和掌握不等式的解集。
三、教学过程:1. 导入新课:可以通过生活中的实例引出不等式,例如:小明身高比小红高,那么小明的身高可以用什么符号来表示?从而引入不等式的概念。
2. 新课讲解:(1)不等式的概念:通过实例,让学生理解什么是不等式,然后给出不等式的定义。
(2)不等式的解集:通过具体的例子,让学生理解什么是不等式的解,什么是不等式的解集,如何表示不等式的解集。
(3)一元一次不等式的解法:讲解并示范一元一次不等式的解法,然后让学生自己动手做题,老师进行指导和点评。
3. 巩固练习:设计一些关于不等式的题目,让学生独立完成,然后进行集体批改和讲评。
4. 小结与作业:总结本节课所学的知识,布置相关的作业,要求学生在课后继续复习和巩固。
四、教学反思:在教学过程中,教师应注重引导学生自主学习,鼓励他们提出问题,培养他们的创新精神和实践能力。
同时,教师也应及时反馈学生的学习情况,调整教学策略,提高教学效果。
不等式及其解集教学设计
![不等式及其解集教学设计](https://img.taocdn.com/s3/m/f93d0ac9ac51f01dc281e53a580216fc700a533a.png)
《不等式及其解集》教学设计学情与教材分析一、教材分析本节课是人教版七下第九章<不等式与不等式组>第一节课,主要内容是:不等式、不等式的解、解集。
它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用。
二、学情分析学生对数量的大小的比较有所了解,但对含有未知数的不等式还是第一次接触,本节将对“不等式”等概念进一步明确,使它成为一种有效的数学工具。
学生对不等式的解、不等式的解集两个概念容易混淆。
教学目标【知识与技能】了解不等式概念,理解不等式的解、解集,能够正确表示不等式的解集;【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性。
【情感、态度与价值观】通过对不等式、不等式的解与解集的探究,培养独立思考与合作交流的意识,体会生活中处处有数学,并能将它们应用到生活的各个领域。
教学重点理解不等式、不等式的解和解集,并能正确表示解集。
教学难点理解不等式的解和解集的意义。
三、教法学法教法:根据课标要求、本节课教学内容和七年级学生特点,本节课采用情境导学、观察归纳法;让学生以观察实例为基础,用类比的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程。
学法:根据本节课的特点,采用自主探究、合作交流的探究式学习方。
四、教学过程(一)创设情境,引入新知观看视频:跷跷板游戏。
师:视频中,好玩的跷跷板游戏,要抓紧、坐稳,注意游戏安全,时刻提高安全意识。
思考:同重量的两个小孩同时坐在跷跷板上,两端是什么状态?课抽象为数学中的等式。
跷跷板能一上一下,体现出两端的重量有怎样的关系?生:不等关系。
师:好,今天我们一起学习《不等式及其解集》。
(二)观察归纳,探究新知问题1(比一比):小丽:开学时体检,你们的身高都是多少啊?我的是160cm;小红:我没有你那么高。
不等式及其解集教案
![不等式及其解集教案](https://img.taocdn.com/s3/m/1125641fe55c3b3567ec102de2bd960590c6d9f1.png)
不等式及其解集教案第一章:不等式的概念与基本性质1.1 不等式的定义理解不等式的概念,掌握不等式的基本组成部分:符号“>”、“<”、“≥”、“≤”等。
举例说明实际问题中的不等式,培养学生的实际应用能力。
1.2 不等式的基本性质学习不等式的基本性质,如:同向相加、反向相减、乘除性质等。
通过例题讲解和练习,使学生熟练掌握不等式的基本性质,提高解题能力。
第二章:一元一次不等式2.1 一元一次不等式的定义与解法理解一元一次不等式的概念,掌握一元一次不等式的解法步骤。
学习如何将实际问题转化为一元一次不等式,培养学生的建模能力。
2.2 一元一次不等式的应用通过例题讲解和练习,使学生掌握一元一次不等式的解法,能够解决实际问题。
强调解题过程中的注意事项,如:符号的正确性、解集的表示方法等。
第三章:不等式的组合与复杂不等式3.1 不等式的组合学习不等式的组合规则,如:同向相加、反向相减等。
举例讲解不等式组合的解法,使学生熟练掌握不等式组合的解题技巧。
3.2 复杂不等式及其解法学习含有多项式、分式、绝对值等复杂不等式的解法。
通过例题讲解和练习,使学生能够解决实际问题中的复杂不等式。
第四章:不等式的应用4.1 不等式在实际问题中的应用学习如何将实际问题转化为不等式,培养学生的建模能力。
举例讲解不等式在实际问题中的应用,使学生理解不等式的重要性。
4.2 线性规划与不等式引入线性规划的基本概念,使学生了解不等式在优化问题中的应用。
通过例题讲解和练习,使学生掌握线性规划的基本解法。
第五章:不等式的进一步拓展5.1 不等式的绝对值与解集学习绝对值不等式的解法,理解绝对值不等式的性质。
举例讲解绝对值不等式的解法,使学生熟练掌握绝对值不等式的解题技巧。
5.2 不等式的周期性与解集学习不等式的周期性,了解周期性在解不等式中的应用。
通过例题讲解和练习,使学生能够解决实际问题中的周期性不等式。
第六章:不等式的图像与解集6.1 不等式与函数的关系学习如何将不等式转化为函数图像,理解不等式与函数之间的关系。
不等式及其解集数学教案及反思
![不等式及其解集数学教案及反思](https://img.taocdn.com/s3/m/a8214638cdbff121dd36a32d7375a417866fc1f5.png)
不等式及其解集数学教案及反思现实生活中存在大量的相等关系,也存在大量的不等关系,不等式的教学在初中数学中十分重要,下面店铺为大家带来不等式及其解集数学教案及反思,希望对你有所帮助。
不等式及其解集数学教案一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)1.从时间方面虑:<2.从行程方面:>50 3.从速度方面考虑:x>50÷设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:<,>50,x>50÷都是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75 说明x任意取一个大于75的数都是不等式<,>50的解.3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y ②+ 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③ 正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.3.填空下列说法正确的有_____________①x=5是不等式 x -2>0的解②不等式 x - 2>0 的解为 x =5③不等式 x - 2 > 0的解集为 x =5④不等式 x - 2 > 0的解集为 x> 2设计意图:进一步让学生正确理解不等式的解与解集的区别与联系,并且理解数学中的从属关系与包涵关系.4.选择下列不等式的解集在数轴上表示正确的是:()A. x>-3B. x≥2C. x≤5D. 0≤x≤10设计意图:进一步培养学生数形结合能力,理解空心圆圈与实心圆点的意义,并且能正确确定方向.不等式及其解集教学反思本节课在教学中重要突出知识之间的内在联系.不等式与方程一样,都是反映客观事物变化规律及其关系的模型.在教学中,类比已经学过的方程知识,引导学生自己去探索、发现,从而得出不等式、一元一次不等式、不等式的解与解集的意义.教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程.通过类比方法,在整体上把握知识,发展辩证思维能力,通过从事观察、猜测、验证、交流等活动,提高学习学习的兴趣,体会不等式是刻画现实世界中不等关系的一种有效地数学模型。
不等式及其解集教学教案
![不等式及其解集教学教案](https://img.taocdn.com/s3/m/8ec7ab80a98271fe900ef9b3.png)
不等式及其解集教学教案不等式及其解集精选教学教案尊敬的各位老师,你们好,今天我说课的题目是人教版数学七年级下册第九章第一节《不等式及其解集》,下面我将从说教材,说教法,说学法以及教学过程等几个方面对本课的设计进行说明。
一、说教材1、本节教材的地位和作用本节课是学生学习了等式,方程,方程组的概念,重点研究了解方程及方程组之后面临的一个新问题,不等式从某种程度上讲是等式的延伸,而在此之后,我们所要学的很多知识,比如,不等式的性质,一元一次不等式组,甚至以后的高等数学中所涉及到的优化问题都要用到本节课的内容,因此,本节课的内容在整个中学数学乃至整个数学领域都起着承前启后的作用,通过本节课的学习可以使学生思维变得更开阔,也对以后更好的学习各种科学知识有很大的帮助。
2、教学目标新课标下的教学活动必须建立在学生已有的认知发展水平及知识经验的基础上,新课程理念下的数学教学必须体现三维目标,因此根据本课内容的特点以及学生知识水平和认知水平,我确定了以下教学目标:(1)、知识与技能:使学生掌握不等式的概念,理解不等式解集的意义,会用不等式表示简单的数量关系和不等式解集的表示法。
培养学生独立思考,分析及归纳能力。
(2)、过程与方法:经历由具体实例建立不等式模型的过程,通过解决简单的实际问题,使学生自发的寻找不等式的解(3)、精感态度与价值观:引导学生在独立思考的基础上,积极参与不等式类数学问题的讨论,逐步培养他们合作交流意识,让学生充分体会到数学在实际生活中的广泛存在,并能将他们应用到生活的各个领域,让学生感受到学习数学的乐趣。
二、说教法数学教学活动必须建立在学生的认知水平和已有的知识经验基础上,教师应激发学生的学习积极性,给学生提供参与数学活动的机会,多让学生交流合作。
引导学生动脑筋思考,协助学生归纳总结知识重点,最终达到教学相长。
因此,本节课我主要采用了以下教学方法:以启发式教学为主,讨论、交流合作等方法为辅。
七年级下册数学不等式及其解集教案
![七年级下册数学不等式及其解集教案](https://img.taocdn.com/s3/m/a358b901ae45b307e87101f69e3143323968f500.png)
七年级下册数学不等式及其解集教案七年级下册数学不等式及其解集教案「篇一」一、创设情景,导入新课1、很多人在自己的童年生活中,都做过跷跷板的游戏,当一个大人和一个小孩同时坐上等臂长的跷跷板的两边时会发生什么现象呢?这是什么原因呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00到达A 地,车速应该具备什么条件?如果要在12:00之前驶过A车速又应该满足什么条件?问题一:汽车能在12:00准时到达A地问题二:汽车能在12:00之前到达A地(意图:从实际问题引入不等式,同时从等式自然的过度到不等式)二、探究新知(一)不等式的概念上面的两组式子有什么不同点.在学生对比的基础,师生共同归纳得出,用不等符号连接表示不等关系的式子叫不等式练习1:下列式子是否是不等式?(1)-2<5(2)x+3>2x(3)4x-2y<0(4)a-2b(5)x2-2x+1<0(6)a+b≠c(7)5m+3=8(8)x≤-4练习2:用不等式表示:(1)a与1的和是正数;(2)a是非负数;(3)a与b的和不小于7;(4)a与2的差大于-1;(5)a的4倍不大于8;(6)a的一半小于3.(二)不等式的解、不等式的解集x+37中x=5满足不等式吗?我们把x=5带入不等式发现,左边=8右边=77成立,所以5是不等式x+37的解,不等式x+37还有其它的解吗?什么是不等式的解?学生总结:1、不等式的解就是能使不等式成立的未知数的值;2、不等式的解不止一个;师生归纳:一般的,一个含有未知数的不等式的所有的解组成这个不等式的解集.求不等式的解集的过程叫解不等式练习3.下列说法正确的是()A.x=3是2x1的解B.x=3是2x1的唯一解C.x=3不是2x1的解D.x=3是2x1的解集4.下列数值哪些是不等式x+36的解?你能确定它的解集七年级下册数学不等式及其解集教案「篇二」教学目标1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,学会从实际问题中抽象出数学模型.3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.教学重点能够根据实际问题中的数量关系,列出一元一次不等式(组)解决实际问题教学难点审题,根据实际问题列出不等式.例题甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。
9.1.1不等式及其解集教学案
![9.1.1不等式及其解集教学案](https://img.taocdn.com/s3/m/22990129102de2bd97058874.png)
(1) a+ b=b+a (2)—3>—5 (3) l(4) x 十3>6 (5) 2m v n ( 6) 2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。
注意:像(1 )中分母含有未知数的不等式不是一元一次不等式,这一点与一兀一次方程类似。
(投影)判断下列数中哪些能使不等式2/3x > 50成立:76, 73, 79, 80, 74. 9, 75.1, 90, 6076, 79, 80, 75.1, 90 能使不等式2/3x > 50 成立。
我们把能使不等式成立的未知数的值,叫不等式的解•我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
如所有大于75的数组成不等式2/3x > 50的解集,与作x >7 5,这个解集可以用数轴来表示。
------ 1 ---------- b--------------------------- k0 75求不等式的解集的过程叫做解不等式.((投影)在数轴上表示下列不等式的解集:(1)x>-1;(2)x > -1;(3)x v -1;(4)x w -1解:------- b----- ■ --------- *■ ------- i ------- 1- --------- 4'1 0 -1 0(1) (2)------ i ------------------ > ------ 1----- 1---------- >0”1Q ( 4)(3)( 4)注意:1.实心点表示包括这个点,空心点表示不包括这个点;2。
步骤:画数轴,定界点,走方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式及其解集》教学设计
授课教师:广州市晓园中学数学科胡海宁
一、教学目标
1.知识与技能:
了解不等式及一元一次不等式概念。
理解不等式的解、解集,能正确表示不等式的解集。
2.过程与方法:
(1)通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。
(2)经历把实际问题抽象为不等式的过程,能够列出不等关系式。
初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。
3.情感态度与价值观:
通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。
二、教学重点、难点
1.重点:不等式、不等式的解、解集的概念、不等式解集的表示。
2.难点:不等式解集的理解与表示。
、
(三)不等式的解集表示方法:
第一种:用数学式子表示如x< 10
第二种:用数轴表示
例1:在数轴上表示下列不等式的解集:(导P85 5)
⑴x≥3; (2)x< -1;
(1)
(2)
注意:1.实心点表示包括这个点,空心点表示不包括这个点;2、步骤:画数轴,定界点,定方向。
巩固新知
1、在数轴上表示下列不等式的解集:(1) x>3 (2) x<2
(3) y≥-1 (4) y≤0
2、写出下列数轴所表示的不等式的解集(导P85 10)
(1)(2)
(3)(4)
1、x的3倍与2的差不大于0,列出不等式是
()
A.3x-2≤0
B.3x-2≥0
C.3x-2<0
D.3x-2>0
2、不等式2x<15的正整数解有
3、下列-3,-1,0,1.5,3,5,7各数中
(1) 是不等式x+2>5的解;
(2)不是不等式x+2>5的解;
4、用数学式子表示下列数量关系:
(1)x与3的和等于6 ;
(2)x与3的和大于2 ;
(3)x与-2的积小于10 ;
(4)x的3倍与1的和小于x的2倍与5的
差;
5、写出下列数轴上表示的解集:
(1)
(2)
6、在数轴上表示下列不等式的解集:
(1)x<-3;
(2)x≥3;。