精密超精密加工和特种加工方法
9精密加工与特种加工简介
9.1.2 精密加工和超精密加工的特点
1. 加工方法 目前精密和超精密加工方法根据加工机理可分为四大类: 切削加工:精密切削、微量切削和超精密切削等; 磨削加工:精密磨削、微量磨削和超精密磨削等; 特种加工:电火花加工、电解加工、激光加工、电子束加工、离子束加工等; 复合加工:将几种加工方法复合在一起,如机械化学研磨、超声磨削、电解抛光 等。 在精密和超精密加工中特种加工和复合加工方法应用得越来越多。 2. 加工原则 一般加工时,机床的精度总是高于这被加工零件的精度,这一规律被称为“蜕化” 原则。而对于精密加工和超精密加工时,有时可利用低于工件精度的设备、工具, 通过工艺手段和特殊的工艺装备,加工出精度高于“母机”的工作母机或工件。 这种方法称为进化加工。 3. 加工设备 加工设备的几何精度向亚微米级靠近。关键元件,如主轴、导轨、丝杆等广泛采 用液体静压或空气静压元件。 定位机构中采用电致伸缩、磁致伸缩等微位移结构。 设备广泛采用计算机控制、适应控制、在线检测与误差补偿等技术。
2. 电火花加工的工艺特点 (1) 电火花可加工任何硬、脆、韧、软和高熔点的导电材料,在一定条件下,还 可加工半导体材料和非导电材料。 (2) 加工时无切削力,有利于小孔、薄壁、空槽以及各种复杂截面的型孔、曲线 孔和型腔等零件的加工,也适于精密细微加工。 (3) 当脉冲宽度不大时,对整个工件而言,几乎不受热影响,可提高加工质量, 适于加工热敏感性强的材料。 (4) 脉冲参数可任意调节,能在同一台机床上连续进行粗、半精、精加工。精加 工时精度为0.005mm,表面粗糙度Ra值为1.6~0.8μm,尺寸精度;精微加工时精度可 达0.002mm~0.001mm,表面粗糙度Ra值为0.05~0.01μm。 (5) 直接使用电能加工,易于实现自动化。
精密和超精密加工技术
本章内容
I. 特种加工技术概述 II. 电火花加工 III.电解加工 IV. 高能束加工
特种加工技术概述
➢ 非传统加工又称特种加工,通常被理解为别于传统切 削与磨削加工方法的总称。
➢非传统加工方法 产生于二次大战后。两方面问题传统 机械加工方法难于解决:
1)难加工材料的加工问题。宇航工业等对材料高强度、 高硬度、高韧性、耐高温、耐高压、耐低温等的要求,使 新材料不断涌现。
电火花加工工作要素
➢脉冲宽度与间隔——影响加工速度、表面粗糙 度、电极消耗和表面组织等。脉冲频率高、持 续时间短,则每个脉冲去除金属量少,表面粗 糙度值小,但加工速度低。通常放电持续时间 在2μs至2ms范围内,各个脉冲的能量2mJ到20J (电流为400A时)之间。
电火花加工类型
➢电火花成形加工:主要指孔加工,型腔加工等 ➢电火花线切割
➢ 拓宽现有非传统加工方法的应用领域。
➢ 探索新的加工方法,研究和开发新的元器件。
➢ 优化工艺参数,完善现有的加工工艺。
➢ 向微型化、精密化发展。 ➢ 采用数控、自适应控 2084 制、CAD/CAM、专家系统
等 技 术 , 提 高 加 工 过 程1104
70年代 80年代 90年代
自动化、柔性化程度。
232
424 244 142
441 321 214
353 252 316
激光加工 电火花加工 超声加工 电化学加工 EI 收录文章数比较
几种代表性特种加 工方法
电火花加工的原理示意 图
电火花加工
原理:利用工具电极与工件电极之间脉冲性火花放电, 产生瞬时高温,工件材料被熔化和气化。同时,该处绝 缘液体也被局部加热,急速气化,体积发生膨胀,随之 产生很高的压力。在这种高压作用下,已经熔化、气化 的材料就从工件的表面迅速被除去
精密和超精密加工复习整理资料
精密和超精密加⼯复习整理资料1.精密和超精密加⼯⽬前包含的三个领域:超精密切削、精密和超精密磨削研磨和精密特种加⼯2.超精密加⼯中超稳定的加⼯环境条件主要指(恒温)、(恒湿)、(防振)和(超净)四个⽅⾯的条件。
3.电⽕花型腔加⼯的⼯艺⽅法有:(单电极平动法)、(多电极更换法)、(分解电极法)、简单电极数控创成法等。
4.超精密加⼯机床的总体布局形式主要有以下⼏种:(T形布局)、(⼗字形布局)、(R-θ布局)、(⽴式结构布局)等。
5.实现超精密加⼯的技术⽀撑条件主要包括:(超精密加⼯机理与⼯艺⽅法)、(超精密加⼯机床设备)、(超精密加⼯⼯具)、(精密测量和误差补偿)、⾼质量的⼯件材料、超稳定的加⼯环境条件等。
6.激光加⼯设备主要包括电源、(激光器)、(光学系统)、(机械系统)、控制系统、冷却系统等部分。
7.精密和超精密加⼯机床主轴轴承的常⽤形式有(液体静压轴承)和(空⽓静压轴承)。
8.⾦刚⽯晶体的激光定向原理是利⽤⾦刚⽯在不同结晶⽅向上(因晶体结构不同⽽对激光反射形成不同的衍射图像)进⾏的。
9.电⽕花加⼯蚀除⾦属材料的微观物理过程可分为(介质电离击穿)、(介质热分解、电极材料熔化、⽓化)、(蚀除物抛出)和(间隙介质消电离)四个阶段。
10.超精密加⼯机床的关键部件主要有:(精密主轴部件)、(导轨部件)和(进给驱动系统)等。
11.三束加⼯是指电⼦束、离⼦束和激光束。
12.所谓空⽓洁净度是指空⽓中含尘埃量多少的程度。
13.⼯业⽣产中常见的噪声主要有空⽓动⼒噪声、机械噪声和电磁噪声。
14.纳⽶级加⼯精度包含:纳⽶级尺⼨精度、纳⽶级⼏何形状精度、纳⽶级表⾯质量。
15.超精密切削时积屑瘤的⽣成规律:1)在低速切削时,h0值⽐较稳定;在中速时值不稳定。
2)在进给量f很⼩时,h0较⼤3)在背吃⼑量a p<25um时,h0变化不⼤;在a p>25um时,h0将随a p的值增⼤⽽增⼤。
16.超精密切削时积屑瘤对切削过程的影响:积屑瘤⾼时切削⼒⼤,积屑瘤⼩时切削⼒⼩。
04精密加工和特种加工
抛光特点:
①方法简便、经济,不用特殊设备;
②容易对曲面进行加工;
③只能提高粗糙度,不能改变零件的尺寸精度、形状精度或位置精度;
④劳动条件差。
抛光应用: 抛光主要用于零件表面的装饰加工,或者利用抛光方法去除前道工序的加工
痕迹,提高零件的疲劳强度。
抛光零件表面的形状可以是平面、外圆、孔、以及各种成形表面等。 五、各种精密加工方法的比较:
用装有细磨粒、低硬度的油石磨头,在一定压力下 对工件表面进行光整加工的方法称为超级光磨 。
• 加工时工件旋转,油石以恒力轻压于工件表面, 在作轴向进给的同时作轴向微小振动,从而达到 对工件微观不平的表面进行光磨的效果。
超级光磨的特点 : ①加工余量极少,一般为3 ~ 10μm; ②生产率较高,一般加工时间只需30~60秒; ③表面质量好,Ra<0.012μm; ④设备简单,操作方便。 但是,超级光磨只能提高表面质量,不能提高尺寸精度和形位精度。
第二节 特种加工
特种加工是相对于传统的切削加工而言,传统的切削加工是用刀具靠机械 能去除工件表面的多余材料。当工件材料的强度、硬度、脆性、韧性过高, 或零件的结构过于复杂,或尺寸太小,或零件的刚度较差时,传统的切削加 工方法就难于实现。特种加工就是为解决这些难题而发展起来的一种新的加 工方法.
特种加工是直接利用电能、光能、声能、热能、化学能或多种能量复合形 式进行加工的方法。常用的特种加工有电火花加工、电解加工、超声波加工、 激光加工、电子束加工和离子束加工等。
精度为3~O.3 μm,粗糙度为O.3~O·03μm的叫精密加工;
精度为0.3~0.03 μm,粗糙度为0.03~0.005 μm的叫超精密加工,或亚微米 加工;
精度为0.03 μm(30纳米),粗糙度优于0.005 μm以上的则称为纳米(nm)加工。
精密加工和特种加工简介
二. 相关知识
(一)精密加工 1、概述
精密加工中,精度高于0.1μm ,表面粗糙度Ra 值小于0.1μm的加工方法称为超精密加工。 常用的超精密加工方法有镜面车削、虹面车削, 超精密磨削、镜面磨削等。
(1)机床设备条件
精密加工必须在精密机床上进行。机床应具有 高的运动精度、刚度和转速,以及小的进给量。
用硬质合金精密车刀进行精密车削时,一般采用高 的切削速度:车铝合金材料vcmax=350m/min,车青铜等 铜合金材料vcmax=400m/min;车镁合金材料vcmax = 1000m/min。切削速度越高,获得的表面粗糙度值越小,
但刀具磨损及振动也随之加剧,所以应根据实际情况来
合理选择。一般取进给量ƒ=0.02~0.04 mm/r;背吃刀 量一般取aP =0· 2~0.3 mm。
(二) 特种加工 1.概述
(1)特种加工 特种加工是指除常规切削加工以 外的新的加工方法,这种加工方法利用电、磁、 声、光、化学等能量或其各种组合作用在工件的 被加工部位上,实现对材料的去除、变形、改变 性能和镀覆,从而达到加工目的。
(2)特种加工特点
1)不是主要依靠机械能,而是主要用其他能量(如 电、热、光、化学、声等)去除金属材料,这些能量的瞬 时能量密度很高,所以可加工任何高硬度的材料。 2)工具硬度可以低于被加工材料的硬度。 3)加工过程中,因工具与工件基本不接触,加工时 不存在显著的机械切削力。 4)加工机理不同于一般金属切削原理,不产生宏观切
超精加工的磨具为油石,选用细粒度, 以较低的压力和切削速度对工件表面进行 加工,加工时有三种运动,即工件的低速 回转、磨具的轴向进给运动和油石的高速 往复振动。油石振动的频率为10~25 Hz, 振幅为1~5mm,油石对工件表面的压力 Pa=15×104 Pa。
江苏自考02213 精密加工与特种加工
2213 精密加工与特种加工第一章概论 P1领会: 精密与特种加工技术基本概念,对材料可加工性和结构工艺性等的影响1.精密与特种加工技术基本概念精密加工含:微细加工、光整加工、精整加工特种加工(NTM):利用机、光、电、声、热、化学、磁、原子能的能源进行加工的非传统加工方法。
2.精密与特种加工对材料可加工性和结构工艺性的影响1)提高了材料的可加工性2)改变了零件的典型工艺路线3)大大缩短新产品试制周期4)对零件结构的设计产生很大的影响5)对传统的结构工艺性好与坏的衡量标准产生重要影响掌握: 精密与特种加工技术分类、应用特点1.按加工成形原理特点分类:1)去除加工(从工件上去除多余材料),分散流;2)结合加工(利用理化方法将不同材料结合在一起,分为附着<电镀、气相沉积>、注入<表面渗碳、离子注入>、连接 <焊接、粘接>),汇合流;3)变形加工——流动加工(利用力、热、分子运动等手段使工件产生变形改变其尺寸、形状、性能<锻造、锻造,液晶定向>),直通流。
2.按加工方法机理分类:传统加工(使用刀具进行切削加工)、非传统加工(利用机、电、声、热、化学、磁、原子能等能源进行加工)、复合加工(采用多种加工方法)3.技术特点:1)不主要依靠机械能,而主要依靠其他能量去除工件材料2)工具的硬度可低于被加工工件材料的硬度,有些不需要工具;3)加工过程中,工具与工件之间没有显著的机械切削力,适合精密加工低刚度零件;4.特种加工技术的应用:1)难切削材料的加工;2)特殊复杂型面的加工;3)各种超精密、光整零件的加工;4)特殊要求零件的加工。
可以加工任何硬度、强度、韧性、脆性的金属、非金属、复合材料,适合于加工复杂、微细表面、低刚度的零件,有些还进行超精密加工、镜面加工、光整加工及纳米级加工。
第二章金刚石刀具精密切削加工 P11领会:精密切削加工方法、种类及其实现条件,超精密机床组成及其关键部件1.超精密加工方法1)按加工方式分为:切削加工、磨料加工<固结磨料、游离磨料>、特种加工、复合加工;2)按机理分类:去除加工、结合加工、变形加工,还可分为传统加工(指利用刀具切削加工、固结磨料和游离磨料加工)、非传统加工(指利用电、磁、声、光、化学、核等能量对材料进行加工处理)、复合加工(多种加工方法结合),目前以切削、磨削、研磨的传统方法占主导。
2.3精密和超精密加工技术
现代制造技术
2. 非机械超精密加工技术——特种精密加工方法
包括精密电火花加工、精密电解加工、精密超声加工、
电子束加工、离子束加工、激光束加工等一些非传统加工方 法;
3. 复合超精密加工方法
传统加工方法的复合 特种加工方法的复合 传统加工方法和特种加工方法的复合
(例如机械化学抛光、精密电解磨削、精密超声珩磨等)。
1~0.1 0.1~ 0.001 0.1~ 0.01 1~0.1 1~0.1 5 5 1~0.1
0.025~ 0.008 0.025~ 0.008 0.025~ 0.008 0.01 0.01 0.01 0.01~ 0.02 0.01~ 0.008
黑色金属、铝合金 黑色金属、非金属 材料 黑色金属、非金属 材料、有色金属 黑色金属、非金属 材料 黑色金属、非金 属材料、有色金属 黑色金属等 黑色金属等 黑色金属、非金属 材料、有色金属
发展:超精密磨削应用比较成熟的首推金刚石微粉砂轮 超精密磨削。
现代制造技术 1)金刚石微粉砂轮 采用粒度为F240~F1000的金刚石微粉作为磨料,树脂、 陶瓷、金属为结合剂烧结而成;也可采用电铸法和气相沉积 法制作。 用筛选法分级,粒度号以磨粒通过的筛网上每英寸长度 内的孔眼数来表示。如60 # 的磨粒表示其大小刚好能通过每 英寸长度上有60孔眼的筛网。对于颗粒尺寸小于40 μ m的磨 料,称为微粉。 • 用显微测量法分级,用W和后面的数字表示粒度号,其W后 的数值代表微粉的实际尺寸。如W20表示微粉的实际尺寸为 20 μ m
• 精密加工是指加工精度达到1~0.1μm,表面粗
糙度Ra在0.1~0.01μm的加工工艺。
• 超精加工则是指加工尺寸精度高于0.1μm,表 面粗糙度Ra小于0.025μm的精密加工方法。
精密加工和特种加工
薄膜作为成形材料。 69. SLS(选择性激光粉末烧结成形)工艺是利用粉末材料(金属粉末或非金属粉末)在激 光照射下烧结的原理,在计算机控制下逐层堆积成形。 70. SL(液相光敏树脂固化成形)工艺的成形材料称为光固化树脂(或称光敏树脂) 。 71. 磨料硬度愈高,加工速度愈快;磨料粒度愈粗,加工速度愈快,但精度和表面粗糙度则 变差。 72. 超声加工时并不是整个变幅杆和工具都是在作上下高频振动,它和低频或工频振动的概 念完全不一样;超声波在金属棒杆内主要以纵波形式传播。 73. 为了使弹性杆处于最大振幅共振状态,应将弹性杆设计成半波长的整数倍;而固定弹性 杆的支持点,应该选在振动过程中的波节处,这一点不振动。 74. 当频率超过 16000Hz 超出一般人耳听觉范围,就称为超声波。 75. 离子刻蚀是从工件上去除材料,是一个撞击溅射过程。 76. 目前用于改变零件尺寸和表面物理力学性能的离子束加工有:用于从工件上去除加工的 离子刻蚀加工; 用于给工件表面涂覆的离子镀膜加工; 用于表面改性的离子注入加工等。 77. 离子束加工是所有特种加工方法中最精密、 最微细的加工方法, 是当代纳米加工的基础。 78. 离子束加工的原理:粒子束加工的原理和电子束加工基本类似,也是在真空条件下,将 离子源产生的离子束经过加速聚焦,使之撞击到工件表面。不同的是离子带正电荷,其 质量比电子大数千、数万倍,如氩离子的质量是电子的 7.2 万倍,所以一旦离子加速到 较高速度时离子束比电子束具有更大的撞击功能,它是靠微观的机械撞击能量,而不是 靠动能转化为热能来加工的。 79. 电子束加工按其功率密度和能量注入时间的不同,可用于高速打孔、加工型孔及特殊表 面、刻蚀、焊接、热处理、电子束光刻。 80. 电子束加工的基本组成:电子枪、真空系统、控制系统和电源等部分组成。 81. 电子束加工是在真空条件下。 82. 一般激光的实际焦点在工作的表面或略微低于工件表面为宜。 83. 利用激光几乎可在任何材料上打微型小孔。 84. 激光加工机的组成部分:激光器、激光器电源、光学系统、机械系统。 85. 光既有波动性,又有微粒性,即光具有波粒二象性。 86. 电解加工工艺:深孔扩孔加工,型孔加工,型腔加工,套料加工。 87. 电解液的净化方法很多,用得比较广泛的是自然沉淀法;介质过滤法也是常用的方法之 一。 88. 点解加工的基本设备包括直流电源,机床及电解液系统三大部分。 89. 电解液可分为中性盐溶液,酸性溶液与碱性溶液。最常用的有 NaCL、NaNO3、 NaClO3 三种电解液。 90. 电解加工的主要缺点和局限性: (1) 不易达到较高的加工精度和加工稳定性; (2) 电极工具的设计和修正比较麻烦,因而很难适用于单件生产;(3)点解加工的附属设 备较多,占地面积大,机床要有足够的刚性和防腐性能,造价较高;(4)点解产物需 要进行妥善的处理,否则将污染环境。 91. 电解加工与其他加工方法相比较,具有下述特点:(1)加工范围广;(2)点解 加工的生产率较高; (3)可以达到较好的表面粗糙度; (4)不会引起残余应力和变形, 没有飞边毛刺;(5)点解加工过程中阴极工具在理论上不会耗损,可长期使用。 92.电解加工是利用金属在电解液中的电化学阳极溶解,将工件加工成形的。 93.电化学加工的分类:第一类是利用电化学阳极溶解来进行加工;第二类是利用电化学阴
精密与特种加工
第一章1、精密加工:加工精度在0.1~1μm、表面粗糙度在0.02~0.1μm之间的加工方法。
超精密加工:加工精度高于0.1μm、表面粗糙度小于0.01μm的加工方法。
2、现代制造技术的前沿:精密工程、微细工程、纳米技术。
3、现代机械工业致力于提过加工精度的原因:提高制造精度可以提高产品的性能和质量,提高其稳定性和可靠性;可以促进产品的小型化;增强零件的互换性,促进自动化装配。
4、精密和超精密加工的三个领域:超精密切削;精密和超精密磨削、研磨;精密特种加工。
5、超精密加工是一个系统工程:需要超精密的机床设备和刀具;需要超稳定的环境条件;还需要运用计算机技术进行实时检测,反馈补偿。
6、超精密机床设备的构成:主轴采用空气轴承、液体静压轴承,刚度高、动态性能好;采用精密数字伺服方式,内置CNC控制装置和激光干涉测长仪,实现随机测量定位;采用压电式微位移机构实现刀具的微量进给;采用恒温油淋浴系统,消除热变形;采用压电晶体误差补偿技术。
7、金刚石刀具的两个主要问题:晶面选择——各向异性,对刀具使用性能有重要关系;刀具研磨质量——切削刃钝圆半径r n,它关系到切削变形和最小切削厚度。
8、超精密加工时,金刚石刀具的性能、切削刃钝圆半径、最小切削厚度、积屑瘤等对提高切削表面质量、减少变质层和减少表面残留应力有直接关系。
9、工件材料对超精密切削有重要影响的主要原因:表面有不纯物;结晶的晶界出现阶梯;加工工件有残留应力和变形;对金刚石刀具的亲合性,产生粘结现象;晶体材料的各向异性,影响切削变形和表面质量。
10、检测:需要比加工精度高一个数量级的测量精度;采用激光干涉、非接触式测量。
11、超精密加工中的测量,包括机床超精密部件运动精度的检测(三点检测主轴回转误差、激光测量工作台运动精度)和加工精度的直接检测。
12、超稳定的加工环境条件:恒温、恒湿、防振、超净。
热变形产生的误差占全部误差的50%以上。
防振方法:防振沟、大底基、空气弹簧隔振。
精密与特种加工课件
微纳制造
在微纳制造领域,精密与特种加工技术用于制造微型机械、微型传感器等,广泛应用于 医疗、环保等领域。
新材料领域应用实例
高温合金加工
在高温合金加工中,精密与特种加工技 术用于制造高性能涡轮叶片、燃烧室等 高温部件,提高了航空发动机的工作温 度和效率。
分类
根据加工原理和应用领域,精密与特 种加工可分为电火花加工、激光加工 、离子束加工、超声波加工等多种类 型。
特点与优势
特点
高精度、高效率、高表面质量、 低成本等。
优势
精密与特种加工能够解决传统机 械加工难以解决的问题,尤其在 难加工材料、复杂结构和高精度 零件的加工方面具有显著优势。
应用领域与发展趋势
02 03
激光加工
激光加工是指利用激光束的高能量密度,对材料进行切割、打孔、焊接 等加工。由于激光束的聚焦光斑小、能量密度高,可以获得高精度、高 效率的加工效果。
电子束加工
电子束加工是指利用电子束的高能量密度,对材料进行切割、打孔、焊 接等加工。由于电子束的能量密度比激光束更高,可以获得更高的加工 精度和更小的热影响区。
特种加工工艺
特种加工工艺概述
特种加工工艺是指不同于传统机 械加工方法的工艺方法,具有加
工范围广、适应性强的特点。
电化学加工
电化学加工是指利用电解反应对 材料进行溶解和成型加工的工艺 方法。该方法适用于各种金属材 料的加工,具有高精度、高效率
的特点。
超声波加工
超声波加工是指利用超声波振动 对材料进行研磨、打孔、切割等 加工的工艺方法。该方法适用于 各种硬脆材料的加工,具有高精
精密加工和特种加工
精密加工和特种加工一、精密和光整加工精密加工是指在精加工之后从零件上切除很薄的材料层,以提高零件精度和减小表面粗糙度为目的的加工方法。
光整加工是指不切除或从零件上切除极薄材料层,以减小零件表面粗糙度为目的的加工方法。
1.研磨研磨是用研磨工具和研磨剂,从零件上研去一层极薄表面层的精加工方法。
研磨外圆尺寸精度可达公差等级IT6~IT5以上,表面粗糙度可达R a为0.1μm ~0.08μm。
研磨的设备结构简单,制造方便,故研磨应用在高精度和精密配合的零件加工中。
研磨方法分手工研磨和机械研磨两种。
手工研磨是人手持研磨具或零件进行研磨的方法,如图7-56所示,手工研磨生产率低,只适用于单件小批量生产。
机械研磨是在研磨机上进行,生产率高,适合大批大量生产。
图7-56 手工研磨外圆实用文档研磨具有加工简单、不需要复杂设备,研磨质量高(加工后表面的尺寸误差和形状误差可以小到0.1μm ~0.3μm,表面粗糙度R a值可达0.025μm以下),生产率较低(上道工序为研磨留的余量一般不超过0.01mm~0.03 mm的微量切削)等特点。
研磨应用很广,可研磨加工钢件、铸铁件、铜、铝等有色金属件和高硬度的淬火钢件、硬质合金及半导体元件、陶瓷元件等。
常见的表面如平面、圆柱面、圆锥面、螺纹表面、齿轮齿面等,都可以用研磨进行精整加工。
精密配合偶件如柱塞泵的柱塞与泵体、阀芯与阀套等,往往要经过多个配合件的配研才能达到要求。
2.珩磨珩磨是利用带有磨条(由几条粒度很细的磨条组成)的珩磨头对孔进行精整加工的方法。
如图7-57所示为珩磨加工示意图,珩磨精度可达IT7~IT5以上,表面粗糙度R a 值为0.1μm ~0.008μm。
在大批量生产中,珩磨在专门的珩磨机上进行。
在单件小批生产中,常将立式钻床或卧式车床进行适当改装,来完成珩磨加工。
珩磨具有生产率较高(珩磨余量比研磨大,一般珩磨铸铁时为0.02 mm ~0.15mm,珩磨钢件时为0.005 mm ~0.08mm),精度高,珩磨表面耐磨损,珩磨头结构较复杂等特点。