电磁学第二章例题

合集下载

电磁场与电磁波 第2章习题解答

电磁场与电磁波  第2章习题解答

第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。

---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。

(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。

电磁学习题案1-3章

电磁学习题案1-3章

第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。

2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。

3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。

解法一:22020214141aR qπεr q πεE E +=== 21E E E ϖϖϖ+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220max 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E ϖϖϖ+=ϖ+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθaπεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==aπεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。

电磁学新概念物理教程(赵凯华)第二章习题课

电磁学新概念物理教程(赵凯华)第二章习题课

r r × × × × ×a×. ×r o. o r × 1 × × × × r . × . × r r R r P m 0 2
j r 2
× × × × × × × × ×
第二章 习题课
5.如图所示,一半径为R的均匀带电无限长直圆筒, 电荷面密度为s,该筒以角速度w绕其轴匀速旋转。 试求圆筒内部的磁感应强度。 解:ι= s 2p Rw/2p = sRw 取矩形有向闭合环路如图
dl''
dl' a
b
第二章 习题课
[解二]用典型磁场叠加 无限大导体平板视为由无限多的无限长导线组成 y 则 dI = ιdl m 0dI m 0i dl l dl dl
dB = 2πr
2 2
=
2πr
如图由对称性知
Q r = l + y
B =0 y
y cos = = q r y y2 + l2
y q
ò
0
0

ò
R


R
m I r 0
2π R
2 R 2
d + r
ò
2R
R
d r 2 πr
2R
m0I
2R
m0I r m0I m0I m 0I = + lnr = + ln2 2 4 R O 2 p p 4 p 2 p R
第二章 习题课
7.如图所示,一平面塑料圆盘,半径为R,表面带有面密 度为σ的电荷。假定圆盘绕其轴线AA’以角速度w转动, 磁场的方向垂直于转轴AA’。 psw R4B 试证:磁场作用于圆盘的力矩的大小为 L= 4 r 解:取半径为r 宽度为dr 的圆环 B A
3 I 29 = = 28 10 m -3 . \n = -19 -4 - 2 -5 . . evS 16 10 67 10 10 10

【单元练】(必考题)高中物理选修2第二章【电磁感应】经典习题(含答案解析)

【单元练】(必考题)高中物理选修2第二章【电磁感应】经典习题(含答案解析)

一、选择题1.如图所示,两根足够长且平行的金属导轨置于磁感应强度为 B = 3 T 的匀强磁场中,磁场的方向垂直于导轨平面,两导轨间距 L =0.1m ,导轨左端连接一个电阻 R =0.5Ω,其余电阻不计,导轨右端连一个电容器C = 2.5 ⨯1010 pF ,有一根长度为 0.2m 的导体棒 ab ,a 端与导轨下端接 触良好,从图中实线位置开始,绕 a 点以角速度ω = 4 rad/s 顺时针匀速 转动 75°,此过程通过电阻 R 的电荷量为( )A .3 ⨯10-2 CB .23⨯10-3C C .(30 + 23) ⨯10-3 CD .(30 - 23) ⨯10-3 C C解析:C 在导体棒ab 绕a 点以角速度ω = 4 rad/s 顺时针匀速转动75°的过程中,由电磁感应所产生的电荷量Q 1=232BL R RΦ==-2310⨯C 同时还会给电容器C 充电,充电后C 对R 放电的电荷量Q 2=2BL 2Cω=-32310⨯C最终通过电阻R 的电荷量为Q =Q 1+Q 2=3(3023)10-+⨯ C故选C 。

2.如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一闭合电路,当PQ 在外力的作用下运动时,MN 向右运动。

则PQ 所做的运动是( )A .向右加速运动B .向左减速运动C .向右减速运动或向左加速运动D .向右加速运动或向左减速运动C解析:C 根据安培定则可知,MN 处于ab 产生的垂直向里的磁场中,MN 在磁场力作用下向右运动,说明MN 受到的磁场力向右,由左手定则可知电流由M 指向N ,L 1中感应电流的磁场向上,由楞次定律可知,线圈L 2中产生的磁场应该是向上减小,或向下增加;再由右手定则可知PQ 可能是向右减速运动或向左加速运动,故C 正确,ABD 错误。

故选C 。

3.如图所示,竖直平面内有一半径为a ,总电阻为R 的金属环,磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点用金属铰链连接长度为2a 、电阻为2R 的导体棒MN 。

电磁学试题库电磁学第二章试题(含答案)复习过程

电磁学试题库电磁学第二章试题(含答案)复习过程

电磁学试题库电磁学第二章试题(含答案)一、填空题1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d Sε2、导体静电平衡必要条件是 ,此时电荷只分布在 。

答案内容:内部电场处处为零,外表面;3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。

在这个过程中,电场能量的增量是 ;答案内容:202U L sr εε4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r qE e ∧=204πε ;5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ;答案内容:d q04πε;6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。

答案内容:⎪⎭⎫ ⎝⎛++-πεb q Q aq r q 0417、导体静电平衡的特征是 ,必要条件是 。

答案内容:电荷宏观运动停止,内部电场处处为零;8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。

答案内容:并联,串联;9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。

答案内容:2014qr πε ;10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。

然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。

答案内容:0W εε; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。

答案内容:/r R ;12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。

电磁学第二章习题课

电磁学第二章习题课
C0
εo S C0 Q C V 1 l ε r 1 d 1 l ε r 1 d εr d εr
0S
d
特例 : 当l d时, C r C 0
S
d
0 SV Q CV l r 1 1 d d r
0 d1
r1 S2 r2 +D 1
B
+
+ S 1 + E1 E 2
d1 d2
S1
S2 D2
q = S
σ d1 d 2 ) E1d1 E2 d 2 ( ) ( 1 2 ε0 ε r 1 ε r 2
d1 d2
q ε r 1 ε r 2 ε0 S εr 1 εr 2 d 0S (3) C C0 VA VB d1 d 2 εr 2d1 εr 1d 2 εr 2d1 εr 1d 2
+Q1 +Q2
可见,若VAB不变,则E1=E2=E,D1<D2,Q1<Q2
(2)电量Q不变
VA + + + + + A 0 E D d 1 VB – – – – – B
–Q +Q
V'A + + + + + A E2 D d V'B – – – – – B
–Q
+Q
Q 由介质中的高斯定量得 D1 D2 D S D2 Q D1 Q E2d , VAB E1d , VAB E1 , E2 S 0 0S
例3、讨论平板电容器两极板间为真空和充满电介质 时的电位移和场强:(1)电势差不变;(2)电量不变。 解:(1)电势差不变:VAB= VA–VB

电磁学答案第二章

电磁学答案第二章

× 由(① — ②)
μ 0σ eω R
2
可得
(a < R ) (a > R )
2 3 μ 0σ eω R B= 3 2 μ 0σ eω R R 3 3 a

μ 0Q ω 6π R B= μ 0Q ω R 3 3 6π R a
(a < R ) (a > R )
若已知 电量Q
#
(a > b > 0 )
(a > b )
( a > b > 0)
dθ ∫ a + b cos θ =
1 a 2 b2
ta n θ
在 0 2π 上 不 连 续
ta n 1 x
π 的 主 值 在 0, 2
)
P. 148, 2-40 【解】:参见右图, ⑴ eυ × B ,向东偏; ⑵
1T=10 4 Gauss ) (
π × (15 × 10
4
3
)
2
⑵ 最大力矩
M max = =
π π
4
nlID2 B ×100 × 30 × 2.0 × 15 ×10
4 = 4.24N m
(
3 2
)
× 4.0
P. 147, 2-33 【解】:参见右图, 左右两半受力均沿x方向 左半边
d F1 x = I 2 d lB1 cos θ
x
h R
x = R R2 h2 = 3mm
⑷ 像素同时向东偏,不影响看电视.
P. 149, 2-47 【证】: 轨道半径 则 频率(转/秒) 即
D mυ = 2 eB eBD υ= 2m
υ f = πD
eB f = 2π m

电磁学(赵凯华,陈熙谋第三版)第二章 习题及解答

电磁学(赵凯华,陈熙谋第三版)第二章 习题及解答

( $ !" ) & $ ( ) " % #" !’% &"" % ’ " # ) ( $ ) " ) % #" !% ( $ )) )*, * $ &( # $ ( ’ " # ( % " " (* ) + $ #) +"
新概念物理教程・电磁学! ! 第二章! 恒磁场! 习题解答
! ! ! ! "! " 球形线圈由表面绝缘的细导线在半径为 # 的球面上密绕而成, 线圈的中心都在同一直径上, 沿这直径单位长度内的匝数为 $ , 并且各处的 $ 都相同, 通过线圈的电流为 %" 设该直径上一点 & 到球心的距离为 ’, 求下 列各处的磁感应强度 (: (") ’ )# ( 球心) ; ($) ’ )# ( 该直径与球面的交点) ; (%) ’ *# ( 球内该直径上任一点) ; (&) ’ +# ( 球外该直径上任一点) 。 解: ( " ) 一圈电流在 ’ 处产生的磁感应强度 $ !# , % () ! ! ! %.$ , $ ( , $ - ’$ )
新概念物理教程・电磁学# # 第二章# 恒磁场# 习题解答
# # ! ! " " 如本题图, 两无穷大平行平面上都有均匀分 布的面电流, 面电流密度 ( 见上题)分别为 !$ 和 !! , 两电 流平行。 求: ( $ )两面之间的磁感应强度; ( ! )两面之外空间的磁感应强度; ( % ) !$ # !! # ! 时结果如何? ( & )在情形 ( % )中电流反平行, 情形如何? ( ’ )在情形 ( % )中电流方向垂直, 情形如何? 解: ( $ ) 利用习题 ! ! ( 的结果, ") $ # ( !! ! !$ ) ; ! ") # ( ! ) # # # # # # # # # $ # ( !! " !$ ) ; ! # ( % ) 两面之间 $ # ) ,两面外侧 $ # ") !; # ( & ) 两面之间 $ # ") !,两面外侧 $ # ) ; # ( ’ ) 磁感应强度的大小都是 ") ! #!! ,但不同区域 ! 的方向不同。 习题 ! ! "

程稼夫电磁学第二版第二章习题解析

程稼夫电磁学第二版第二章习题解析

程稼夫电磁学篇第二章《恒定电流》因此两球间介质间的电阻:.法二:设总电流为,两球心间距,一球直径对另一球球心的张角利用电流的叠加原理,用张角为的这部分电流计算电势差:后同法一2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.电阻R热平衡:,解得.(2),即在图中作出该直线,交伏安特性曲线于.即.2-5(1)消耗的功率,不变,而随减小而增大,因而时,最大,消耗的功率最大.(2)电路中电流,消耗的功率根据均值不等式得,时,消耗的功率最大.2-6(1)电压按电阻分配.合上开关前,上电压为两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为炉丝上电流由干路均分,所以故,几乎相等.2-8题意应是恰好不能烧开,即100℃时达到热平衡,断电后只下降1℃,可以认为散热功率是不变的:,其中水的比热容为2-9(1)周期,A位置时热平衡:,其中加热时间B位置时热平衡:,其中加热时间两式相除,解得(2)连续加热时热平衡:,解得.2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.电压最小时,,解得.2-12保险丝要保证熔断电流是一定的.在一定的融化温度下,辐射功率P与辐射体表面积S成正比.电流一定时,电功率Q与R成正比.解得,与无关.2-13绝缘层损坏使得相邻的两圈电阻丝接触,相当于损坏处产生的接触电阻与一圈漆包线并联之后,再与剩余九圈漆包线串联.一圈电阻为设绝缘层损坏处产生电阻为,则解得.2-14(1)作直线交A于,交B于故.(2).即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.2-16(1)设流过的电流为,上流过的电流为.所以,故.此时.(2),取最小值(此时)代入得.2-17设流过灯泡电流为,.设图中三个定值电阻从左至右分别为K闭合时,R3与R并联,流过R2的电流于是可列出:K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:.2-20设通过电源1的逆时针电流为,通过电源2顺时针电流为于是在电源1与R1构成的回路可列出:在电源2与R1R2构成的回路中,可列出:代入数据可解得,通过R1的电流为1A,通过R2的电流为0.5A.设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:代入数据,联立可解得:.2-23设R1上电流为,R2上电流为由并联得又由节点电流方程知:,联立解得:.又因为,所以可得即CD上电流大小为1.0A,方向由C流向D.2-24将R替换为导线,用叠加原理计算短路电流等效内阻,等效电源.将R替换为导线,用叠加原理计算短路电流.等效内阻,等效电源.2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:令,电源最少,要使最小代入得是关于x的一元二次方程,该方程要有实数解:将n带回原方程即可解得答案同法一答:至少需要120个电池.此时有20组电池组串联,每组内有6个电池并联.2-26首先,B与B’为同一节点,思考时可视为一点,由(2)可知电路对称,此时容易联想到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:,所以.2-29由分析知,安培表读数由两部分组成.第一部分,R2回路;第二部分,流过R1电流,于是流过R3R3(电流表)的电流:.所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:2-31(1)(2)设流经V1的电流为,流经V2的电流为,则流经V3从左到右的电流为则有2-32设电压表电阻为,电流表电阻为由并联两表电压相等可知由节点方程可知流经并联两表中电压表的电流欧姆定律:得.2-33由每个量程达到满偏时通过电流计的电流相同得:解得:.如用A修复,则在用1mA量程测量1mA电流时流过A的电流为0.195mA<0.2mA.若再串联一个电阻,则分到的电流更少.若并联,则由两个电阻并联变成三个电阻并联,A 在总电流中分到的电流依然会更少.综上:排除A 而B在此时分到的电流为0.57mA>0.5 mA故可以考虑并联一个17 欧的电阻或者串联一个40 欧的电阻。

电磁学答案第2章

电磁学答案第2章

第二章 导体周围的静电场2.1.1 证明:对于两个无限大带电平板导体来说: (1) 反; (2)同; 相向的两面(附图中2和3)上,电荷的面密度总是大小相等而符号相 相背的两面(附图中1和4)上,电荷的面密度总是大小相等而符号相 证: 斯 (1)选一个侧面垂直于带电板,端面分别在 A,B 板内的封闭圆柱形 面 E?dS E 侧?dS E A 内S E B 内 E 侧 dS 侧 E A 内 E R 内 .=E?dS 0 即:3 2 (2)在导体内任取一点 P , E p E p E 1 E 2 E 3 E 4 其中n?是垂直导体板向右的单位矢。

2.1.2两平行金属板分别带有等量的正负电荷 特,两板的面积都是平方厘米,两板相距毫米,略去边缘效应,求两板间的电场强 度和各板上所带的电量(设其中一板接地).解:设A 板带负电,其电量是-q ,B 板带正电,其电量是+q ,且A 板接地。

两板间的电场强度:E V d 160 1.6 105(伏/米) 3 0E 8.85 10 12 105 8.85 10 7(库 /米2) 根据上题结论: ,若两板的电位差为160伏 4; 2 3又由于A 板接地, 1 4 0 A 板所带电量: q 2S 8.85 10 7 3.6 10 4 3.2 10 10(库)2 3 8.85-(d x)(由A 板的电位得) 0 丄X 0 解以上方程组得出: Q(d x) 2 Sd B 板上感应电荷: Q B 2S 冬 d C 板上的感应电荷: Qx d Q c 5S x) Q(d x) Sd Qx Qx 4 Sd 5 Sd i 0 E nQ(d Sd 0 x)r AB Qx ?A C Sd 0 U i 0; U IVQ(dSd 0r)B 板所带电量: q 3S 8.85 10 7 .3.6 10 4 3.2 10 10(库)2.1.3三块平行放置的金属板 A,B,C 其面积均为S,AB 间距离为x,BC 间距离为 d,设d 极小,金属板可视为无限大平面,忽略边缘效应与A 板的厚度,当B,C 接地 (如图),且A 导体所带电荷为Q 时,试求: ⑴B,C 板上的感应电荷; (2)空间的场强及电位分布. 解:(1)根据静电平衡时,导体中的场强为零,又由 B,C 接地: 5 6 0 4)S Q(由A 板的总电量得) (2)场强分布: 电位分布:Q XU 皿 ST (d x r)其中r 是场点到板A 的距离。

电磁场原理习题与解答(第2章)

电磁场原理习题与解答(第2章)
因为,所以静电力沿z负方向,有将液体吸向空气的趋势。升 高液体的重力为

所以: 第二步 单独作用产生的电场强度为,如图(c)所示。
第三步 将和在空洞中产生的场进行叠加,即 注: 2-7半径为 a介电常数为ε的介质球内,已知极化强度 (k为常数)。 试求:(1)极化电荷体密度和面密度 ;
(2)自由电荷体密度 ; (3)介质球内、外的电场强度。 解:(1) ,
(2) 因为是均匀介质,有
的电场与方位角无关,这样处取的元电荷,它产生的电场与点电荷产生
的场相同,为:
z
y
l/2
图2-2长直线电荷周围的电场
l/2
P
其两个分量:
(1)
(2)

所以:
(3)
式(3)分别代入式(1)(2)得:

(4)

(5)
式(5)代入式(4)得:
由于对称性,在z方向 分量互相抵消,故有
(2)建立如图所示的坐标系
应用叠加原理计算电场强度时,要注意是矢量的叠加。
2-4 真空中的两电荷的量值以及它们的位置是已知的,如题图2-4所示, 试写出电位和电场的表达式。 解:为子午面场,对称轴为极轴,因此选球坐标系,由点电荷产生的电 位公式得:
又,
题图2-4
2-5解, (1) 由静电感应的性质和电荷守恒原理,充电到U0后将ቤተ መጻሕፍቲ ባይዱ源拆去,各极 板带电情况如图(1)所示
解:设导电平板的面积为S。两平行板间的间隔为d=1cm。显然, 绝缘导电片的厚度。平板间的电压为。
(1) 忽略边缘效应,未插入绝缘导电片时
插入导电片后
所以,导电片中吸收的能量为
这部分能量使绝缘导电片中的正、负电荷分离,在导电片进入极板间 时,做机械工。

大学物理电磁学第二章静电场

大学物理电磁学第二章静电场

第二章 有导体时的静电场 练习一、选择题1、[ ]当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零.2、[ ]在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. 3、[ ]在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变.4、[ ]半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图所示,设地的电势为零,则球上的感生电荷q '为(A) 0. (B)2q . (C) 2q-. (D)q.5、[ ]选无穷远处为电势零点,半径为R 的导体球带电后,其电势为0U ,则球外离球心距离为r 处的电场强度的大小为(A) 203R U r . (B) 0U R . (C) 02RU r. (D) 0U r . 6、[ ]如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0.(B)2σε.(C)hσε.(D)2hσε.7、[]两个同心薄金属球壳,半径分别为1R和2R(21()R R>,若分别带上电荷1q和2q,则两者的电势分别为1V和2V(选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为:(A)1V. (B)2V. (C)12V V+. (D)121()2V V+.8、[]如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P处的场强大小与电势(设无穷远处为电势零点)分别为:(A) 0,0E V=>. (B) 0,0E V=<. (C) 0,0E V==;(D) 0,0E V><.9、[]一空气平行板电容器,两极板间距为d,充电后板间电压为U。

电磁学试题库电磁学第二章试题(含答案)

电磁学试题库电磁学第二章试题(含答案)

一、填空题1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d的导体板,则其电容为 ;答案内容:;20d Sε2、导体静电平衡必要条件是 ,此时电荷只分布在 。

答案内容:内部电场处处为零,外表面;3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。

在这个过程中,电场能量的增量是 ;答案内容:202ULsr εε4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r qE e ∧=204περ;5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ;答案内容:d q04πε;6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。

答案内容:⎪⎭⎫ ⎝⎛++-πεb q Q a q r q 041 7、导体静电平衡的特征是 ,必要条件是 。

答案内容:电荷宏观运动停止,内部电场处处为零;8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。

答案内容:并联,串联;9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。

答案内容:2014qr πε ;10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。

然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。

答案内容:0W εε; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。

答案内容:/r R ;12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。

电磁学-自测题2

电磁学-自测题2

第二章 静电场与导体一、判断题(正确划“√”错误划“×” )1.由公式0εσ=E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该点场强仅由该点附近的导体面上的面电荷产生的。

( )2. 由于静电感应,在导体表面的不同区域出现异号电荷,因而导体不再是等势体. ( )3.一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。

( )4. 在无电荷的空间里电势不可能有极大值和极小值. ( )5. 若所有导体的电势为零,则导体以外空间的电势处处为零. ( )6.一个接地的导体空腔可以隔离内、外电场的影响。

( )7.静电平衡时,导体表面是等势面,所以导体表面附近的场强大小处处相等.( )8.用一个带电的导体小球于一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。

( )9.带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。

( )10.静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。

( )11.两个带有同种电荷的金属球,一定相斥。

( )12.真空中有一中性的导体球壳,在球中心处置一点电荷q ,则壳外距球心为r 处的场强为204qE r πε=,当点电荷q 偏离中心时,则r 处的场强仍为204r qπε。

( )13.接地的导体腔,腔内、外导体的电荷分布,场强分布和电势分布都不影响。

( )14.凡接地的导体,其表面电荷处处必为零. ( )15.两个半径相同的金属球,其中一个是实心的,一个是空心的,通常空心球比实心球的电容大。

( )16.达到静电平衡时,导体内部不带电,所以导体内部场强必为零。

( )17.用一个带电的小球与一个不带电绝缘大金属球接触,小球上的电荷密度比大球上的电荷密度大( )18.一个接地的导体空腔,使外界电荷产生的电场不能进入空腔内,也使内部电荷产生的电场不能进入腔外。

电磁学(赵凯华)答案[第2章 稳恒磁场]

电磁学(赵凯华)答案[第2章 稳恒磁场]

1.一边长为2a的载流正方形线圈,通有电流I。

试求:(1)轴线上距正方形中心为r0处的磁感应强度;(2) 当a=1.0cm , I=5.0A , r0=0 或10cm时,B等于多少特斯拉?解(1)沿轴向取坐标轴OX,如图所示。

利用一段载流直导线产生磁场的结果,正方形载流线圈每边在点P产生的磁感应强度的大小均为:,式中:由分析可知,4条边在点P的磁感应强度矢量的方向并不相同,其中AB边在P点的B1方向如图所示。

由对称性可知,点P上午B应沿X轴,其大小等于B1在X轴投影的4倍。

设B1与X轴夹角为α则:把r0=10cm , a=1.0cm ,I=5.0A 带入上式,得B=3.9×10-7(T)。

把r0=0cm , a=1.0cm ,I=5.0A 带入上式,得B=2.8×10-7(T)。

可见,正方形载流线圈中心的B要比轴线上的一点大的多。

2. 将一根导线折成正n边形,其外接圆半径为a,设导线栽有电流为I,如图所示。

试求:(1)外接圆中心处磁感应强度B0;(2) 当n→∞时,上述结果如何?解: (1)设正n边形线圈的边长为b,应用有限长载流直导线产生磁场的公式,可知各边在圆心处的感应强度大小相等,方向相同,即:所以,n边形线圈在O点产生的磁感应强度为:因为2θ=2π/n,θ=π/n,故有:由右手法则,B0方向垂直于纸面向外。

(2)当n→∞时,θ变的很小,tanθ≈θ,所以:代入上述结果中,得:此结果相当于一半径为a,载流为I的圆线圈在中心O点产生磁感应强度的结果,这一点在n→∞时,是不难想象的。

3. 如图所示,载流等边三角形线圈ACD,边长为2a,通有电流I。

试求轴线上距中心为r0处的磁感应强度。

解:由图可知,要求场点P的合场强B,先分别求出等边三角形载流线圈三条边P点产生的磁感应强度Bi ,再将三者进行矢量叠加。

由有限长载流导线的磁场公式可知,AC边在P点产生的磁感应强度BAC的大小为:由于⊿ACP为等腰三角形,且PC垂直AC,即:代入上述结果中,得:由右手螺旋定则可知,BAC的方向垂直于ACP平面向外,如图所示。

第二章 电磁感应习题1—人教版(2019)高中物理选择性必修第二册课件

第二章 电磁感应习题1—人教版(2019)高中物理选择性必修第二册课件

A:重力对AC做的功WG B: WG-AC动能的增量EK-ARC
回路内的电能E C: WG- EK D: WG – AC克服安培力做的
功WF - EK
R
A
C
B
内能 电能
动 能
安培力做功 (部分)
即:
R
EP(=WG) E电 EK
电流做功
Q
A
C
B
参考答案:C
在此能量转化过程中:
参考答案:AD
3、如图所示,在磁感强度为B的匀强磁场 中,有半径为r的光滑半圆形导体框架,OC 为一能绕O在框架上滑动的导体棒,OC之间 连一个电阻R,导体框架与导体电阻均不计, 若要使OC能以角速度ω匀速转动,则外力做 功的功率是( )C
A.B2ω2r4/R B.B2ω2r4/2R C.B2ω2r4/4R D.B2ω2r4/8R
A.金属棒所受各力的合力所做的功等于零 B.金属棒所受各力的合力所做的功等于mgh
和电阻R产生的焦耳热之和 C.恒力F与重力的合力所做的功等于
棒克服安培力所做的功与电阻R上 产生的焦耳热之和 D.恒力F和重力的合力所做的功等于 电阻R上产生的焦耳热
点拨:电磁感应过程中,通过克服安培力做功, 将其他形式的能转化为电能,再通过电阻转化成 内能(焦耳热),故W安与电热Q不能重复考虑, 这一点务须引起足够的注意.
AC克服安培力做功功率 PB=BILv AC为电源获得的电功率 Pe=EI=BLVI
感应电流对电阻做功功率 PI=IE
在电阻R上发热功率 由此可得PI=PR=Pe
PR=I2R=IE
即电流通过R做功把AC获得的电能转化为R 上产生的热量。
所以电阻R上产生的热量应为WG-EK
1、如图所示,质量为m高为h的矩形导

第二章电磁感应习题2—(最新)人教版(2019)高中物理选择性必修第二册教学课件

第二章电磁感应习题2—(最新)人教版(2019)高中物理选择性必修第二册教学课件
解得:v=FR/B2L2
1、如图,光滑导轨在竖直平面内,匀强磁场的 方向垂直于导轨平面,磁感应强度B=0.5T。电 源的电动势为1.5V,内阻不计,当电键K拨向a 时,导体棒PQ恰能静止。当K拨向b后,金属 棒PQ在1s内扫过的最大面积为多少?
a K
b
答案:3m2
P
Q
2、如图,两根光滑的平行金属导轨与水平面成 角放置。导轨间距为L,导线上端接有阻值为 R的电阻(导轨电阻不计),整个导轨处在方 向竖直向上的磁感应强度为B的匀强磁场中。 将一根质量为m电阻也为R的金属杆MN垂直于
F向右拉导体杆ef时,导体杆最后匀速滑动,求杆
匀速滑动时的速度。
e
b
a
F
c
d
f
解析:ef棒向右运动切割磁感线在闭合回路中产生感 应电流,感应电流又使ef棒在磁场中受安培力作用, 当安培力与恒力F平衡时,棒匀速运动。
由法拉第电磁感应定律:E=BLv 由闭合电路欧姆定律:I=E/R 由安培力定义:F安=BIL 由共点力平衡条件: F安=F
棒ab所受的安培力为:f=BIL= FR1 方向水平向右. R2
5、如图所示,水平面内的金属导轨上接有电容器 C,金属ab无摩擦地在导轨上以速度v匀速运动, 运动一段距离后突然停止,停止后ab不再受任何 系统外物体的作用,则停止后ab的运动情况是 A.向右作初速为零的匀加速运动 B.先向右匀速后改作减速运动 C.在某位置附近来回振动 D.向右作变加速运动后改作匀速运动
解析:(1)当ab所受安培力f与外力F相等时,ab速度最
大,设为 BImL=F
v
m,此时最大电流I
m
为:I
m=
BLv m R1
所以ab的最大速度为vm=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理与电子工程学院注:教案按授课章数填写,每一章均应填写一份。

重复班授课可不另填写教案。

教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。

A 、场强方向(表面附近的点)由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。

而场强大小与面密度的关系,由高斯定理推出。

B 、场强大小如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面的外法线方向单位矢n ˆ,则P 点场强可表示为n E E n P ˆ= (n E 为P E在n ˆ方向的投影,n E 可正可负)。

过P 点取一小圆形面元1S ∆,以1S ∆为底作一圆柱形高斯面,圆柱面的另一底2S ∆在导体内部。

由高斯定理有:11/)0(ˆ1121εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S nS SS S ∆=∆=⊥=⋅=⋅=⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∆∆∆∆导体表面附近导体内侧(导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为为均匀的很小,视,且因σσ11S S ∆∆)∴⎩⎨⎧<>=⎩⎨⎧<<>>=反向,,同向,,即,,nE n E nE E E E n n n ˆ0ˆ0ˆ00000σσεσσσεσ可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。

C 、0εσ=E n ˆ中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ∆σ的贡献。

这一点是由高斯定理得来的。

P45-46D 、一般不谈导体表面上的点的场强。

导体内部0=E,表面外附近0εσ=E n ˆ;没提表面上的。

在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。

但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。

补充例:习题2.1.1(不讲)Rd θ解:利用上面的结果,球面上某面元所受的力:n dS F d ˆ202εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向:右半球所受的力:i d d R i dS i dS F ˆsin cos 2ˆcos 2ˆcos 223020302002ϕθθθεσθεσθεσ⎰⎰⎰⎰⎰⎰===右 =⎰⎰=2002203200220ˆ4ˆsin cos 2ππεπσθθθϕεσi R i d d R i R F ˆ40220επσ-=左补充例:P53 例1的前半部分。

证明:对于两个无限大带电平板导体来说:(1)相向的两面上,电荷面密度总是大小相等符号相反;(2)相背的两面上,电荷面密度总是大小相等符号相同。

证明:(1)由前面静电场中导体的性质知:电荷分布于表面,0=内E,导体表面为等势面,导体表面外一点0εσ=E 。

Sσ2• P''nσ4平板导体所带电荷分布于表面,因为无限大,所以均匀分布,设1、2、3、4面分别带电荷面密度为4321σσσσ、、、。

利用上述性质,选取如图的高斯面,有(由高斯高理):S S S ES ESES ES ∆⋅+=+=++=0320231221εσσεσσφφφφ侧∵ 0=内E∴ 021==ES ES φφ又 侧侧S E⊥ ∴侧ES φ=0 即0=ES φ故32320σσσσ-==+(2)在导体内任取一点P (任意的)∵ 004321=+++⇒=E E E E E P内即0ˆ2ˆ2ˆ2ˆ204010203=-++n n n n εσεσεσεσ 32σσ-= ∴41σσ=如果P 点在导体外,如图中的P ′点,则;023εσεσ=='P E (由四板场强迭加得到或由静电平衡时导体表面外一点的场强得到)如果P 点在导体外,如图中的P ''点,则0104εσεσ==''P E 。

三、综合本节内容,得到两个结论:P58—59P58: 1、封闭导体壳(不论接地与否)内部静电场不受壳外电荷的影响;接地封闭导体壳外部静电场不受壳内电荷的影响。

P58-59:2、设导体壳内电荷为Q 1,壳内表面电荷为Q 2(=-Q 1),壳外表面电荷为Q 3,壳外空间电荷为Q 4,则无论导体壳是否接地,壳内电荷Q 1和导体壳内表面上的电荷Q 2,在导体壳内表面之外任一点激发的合场强为零;壳外表面上电荷Q 3和壳外电荷Q 4,在导体壳外表面之内任一点激发的合场强为零。

例(补充):习题2、2、3 P793A B解:根据高斯定理及电荷守恒定律可得出以下结论: (1) Q S1=Q A Q S2=-Q A Q S3=Q A +Q B(2) BBA B R Q Q V 04πε+=⎪⎪⎭⎫⎝⎛+=+=⎰A AB B R R A B A R Q R Q dr r Q V V BA 020414πεπε (3)B 球接地Q S1=Q A Q S2=-Q A Q S3=0 V B =0⎪⎪⎭⎫⎝⎛-=B A A A R R Q V 1140πε (4)A 球接地:接地导体球A 外还有带电导体球壳B ,所以A 球表面电荷面密度不为零。

设A 球所带电荷为A Q ',则0114400=⎪⎪⎭⎫ ⎝⎛-'-'+=A B AB A B A R R Q R Q Q V πεπε (电势迭加)()()20032144BB A BB AB B BB A B B B AB A B S B BAA SB B AA SB B AA R Q R R R Q Q V R Q R R Q R R Q Q Q Q Q R R Q Q Q R R Q Q Q R R Q πεπε-='+=-=-='+=='-=-='=-='∴(5)在B 外再罩一个同心且很薄中性金属壳C 后5()CB AC S B A S B A S A S A S R Q Q V Q Q Q Q Q Q Q Q Q Q Q 0543214,,,πε+=-=+-=+=-==∴⎪⎪⎭⎫ ⎝⎛+=+=A AB B A BBA B R Q R Q V R Q Q V 00414πεπε 例1(补充):习题2、3、3, P80外球B内球A地球R 2R 1R证明:如果内球未接地,此时的球形电容器的电容为:12如果内球A 接地,这时除内外球可视为一个电容器外,外球表面与地面也形成一个电容器。

此时的总电容可看成是两个电容器的并联电容。

而RR R R RR C B 114420220-=-=πεπε地又 R >>R 2∴ 204R C B πε=地(是孤立球形导体的电容) ∴ 122202012120444R R R R R R R R C C C B AB -=+-=+=πεπεπε地 证毕。

例2(补充): 习题2、3、4 P80等效图1等效图2解:(1)此时可将电容器等效成:dSC dS C AB KB002εε==,0AK KBAK KB K AK KB S C C C C C C C dε==+、串联:∴ AB ABK C dS C C C 220==+=ε总即电容器电容变为原来的两倍。

(2)此时的等效图为(B 与K 相连接) (AB 之间的电压其实就是AK 之间的电压)dSC dS C AB AK002εε==AB ABAK C dS C C C 330==+=ε即电容器电容变为原来的三倍。

例3(补充): 2、1、4 P78σσ2σσ4dAB解:利用静电平衡条件列方程得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-==043213241σσσσσσσσS q A (无限大平行金属板)解得:4212σσσ===S q ASq A 23=σ∴Sdq d d E l d E V A0022εεσ===⋅=⎰内内将B 板接地:(σ4=0)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-===S q A 2132410σσσσσσ∴ Sq A=-=32σσSdq d d E l d E V A0022εεσ===⋅=⎰内内。

相关文档
最新文档