中考数学 几何模型汇编
中考数学常见几何模型简介精编版
几何问题初中几何常见模型解析(1)等边三角形➢条件:均为等边三角形➢结论:①;②;③平分。
(2)等腰➢条件:均为等腰直角三角形➢结论:①;②;③平分。
(3)任意等腰三角形➢条件:均为等腰三角形➢结论:①;②;③平分。
➢(1)一般情况➢条件:,将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E,必有(2)特殊情况➢条件:,,将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E,必有;③;④;⑤连接AD、BC,必有;⑥(对角线互相垂直的四边形)➢(1)全等型-90°➢条件:①;②OC平分➢结论:①CD=CE; ②;③➢证明提示:①作垂直,如图,证明;②过点C作,如上图(右),证明;➢当的一边交AO的延长线于点D时:以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。
(2)全等型-120°➢条件:①;②平分;➢结论:①;②;③➢证明提示:①可参考“全等型-90°”证法一;②如图:在OB上取一点F,使OF=OC,证明为等边三角形。
➢当的一边交AO的延长线于点D时(如上图右):原结论变成:①;②;③;可参考上述第②种方法进行证明。
(3)全等型-任意角➢条件:①;②;➢结论:①平分;②;③.➢当的一边交AO的延长线于点D时(如右上图):原结论变成:①;②;③;可参考上述第②种方法进行证明。
◇请思考初始条件的变化对模型的影响。
➢如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下:结论:①;②;③.➢对角互补模型总结:①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③两种常见的辅助线作法;④注意下图中平分时,相等是如何推导的?(1)角含半角模型90°-1➢条件:①正方形;②;➢结论:①;②的周长为正方形周长的一半;也可以这样:➢条件:①正方形;②➢结论:(2)角含半角模型90°-2➢条件:①正方形;②;➢结论:➢辅助线如下图所示:(3)角含半角模型90°-3➢条件:①;②;➢结论:若旋转到外部时,结论仍然成立。
中考必会几何模型,31个模型轻松搞定所有中考几何题无答案
中考必会几何模型——31个模型轻松搞定所有中考几何题目录第一章8字模型与飞镖模型 (2)第二章角平分线四大模型 (5)第三章截长补短 (10)第四章手拉手模型 (13)第五章三垂直全等模型 (15)第六章将军饮马 (18)第七章蚂蚁行程 (24)第八章中点四大模型 (27)第九章半角模型 (33)第十章相似模型 (37)第十一章圆中的辅助线 (47)第十二章辅助圆 (54)第一章 8字模型与飞镖模型模型1 角的“8”字模型如图所示,AB 、CD 相交于点O ,连接AD 、BC 。
结论:∠A +∠D =∠B +∠C 。
模型分析8字模型往往在几何综合题目中推导角度时用到。
模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E = ;(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F = 。
热搜精练 1.(1)如图①,求∠CAD +∠B +∠C +∠D +∠E = ; (2)如图②,求∠CAD +∠B +∠ACE +∠D +∠E = 。
2.如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = 。
OD CBA图12图EABCDEFD CBAOO图12图EABC DEDCBA模型2 角的飞镖模型 如图所示,有结论: ∠D =∠A +∠B +∠C 。
模型分析飞镖模型往往在几何综合题目中推导角度时用到。
模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。
探究∠AMC 与∠B 、∠D 间的数量关系。
热搜精练1.如图,求∠A +∠B +∠C +∠D +∠E +∠F = ;2.如图,求∠A +∠B +∠C +∠D = 。
HG EF DCBADCBAMDCBAO135EFDC BA模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC 。
结论:AC +BD >AD +BC 。
中考数学几何模型22个精选专题
中考数学几何模型22个精选专题
•隐圆模型
•圆中的相似和圆切线判定
•圆幂定理
目录
第十八章、隐圆模型
6大隐圆模型
•(1)定点定长(圆的定义)
•(2)直角圆周角(直径对直角)•(3)定长定角(圆周角定理)•(4)对角互补(圆内接四边形对角互补•(5)定角定高(探照灯模型)•(6)米勒定理(最大张角)
6大隐圆模型
例题和练习,感兴趣的可以把做好的发到评论区,或者找我要答案。
例题
练习
练习
第十九章、圆中的相似和圆切线的判定圆中的相似和圆切线的判定
•圆中的相似模型有以下6种
•切线的判定常考的3种
例题
练习
练习
第二十章、圆幂定理
弦切角定理:弦切角等于它所夹的弧对的圆周角。
圆幂定理
•(1)相交弦定理:圆的两条相交弦中,每条弦被交点所分的两条
线段的乘积相等
•(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段的积相等。
•(3)切割线定理:从圆外一点引圆的切线和制线,切线长是这点到割线与圆交点的两条线段的比例中项
例题
练习
圆幂定理在我上学的时候我还记得课本上有这些内容,非常实用。
现在课本上删除了,但往往会以探究的形式让学生发现并证明,务必引起重视。
中考数学几何五大模型
1一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△五大模型1S 2S2图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理")①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
3四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
中考数学复习几何模型总结(学生版)
.
结论:①
;②
.
辅助线:延长 到点 ,使
,连接 、 、 ,证明
突破点:
≌
.
难点:证明
.
为等腰直角三角形.
27/44
20 回答下列问题:
(1) 如图所示,
和
为等腰直角三角形,
的中点,连接 、 ,求证:
,
,连接 , 是
.
E A
C
(2) 如图所示, 为等腰直角
的斜边 上任一点,
为 的中点,求证: 、 、 构成等腰直角三角形.
的大小是否变化?请证明你的猜想.
图
图
图
图
8/44
2. 角平分线常作辅助线
6 如图, 是
的角平分线,若
的面积是 ,且
,
,则点 到 的距
离是
.
9/44
四、模型四:手拉手模型——旋转型全等
1. 等边三角形
条件:
、
均为等边三角形
结论:①
≌
;②
;③ 平分
.
7 如图,等边三角形 .
与等边三角形
共点于 ,连接 , 交于点 .则
图
22/44
3. 角含半角模型90度
条件:①
;②
.
结论:
.
若
旋转到
外部时,结论
仍然成立.
16 如图,在等腰直角
中,
,
,将一块三角板中含 角的顶点放在 上,
三角板的直角边从 边开始绕点 顺时针时针旋转一个角 ,其中三角板斜边所在的直线交直线
于点 ,直角边所在的直线交直线 于点 .
(1) 当
时,证明:
3. 最短路径模型3
条件:⊙ 上一动点 与⊙ 外一点 的连线段. 求:动点 运动到什么位置时, 线段长最小、最大?
中考数学必学几何模型大全(含解析)
中考数学必学几何模型大全(含解析)模型一:截长补短模型如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法。
截长法:如图①,在EF上截取EG=AB,再证明GF=CD即可。
补短法:如图①,延长AB至H点,使BH=CD,再证明AH=EF即可。
模型分析截长补短的方法适用于求证线段的和差倍分关系。
截长,指在长线段中截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。
该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程。
例题精讲1、如图,AC平分①BAD,CE①AB于点E,①B+①D=180°,求证:AE=AD+BE.解析:如图,在EA上取点F,使EF=BE,连接CF,①CE①AB,①CF=CB,①CFB=①B①①AFC+①CFB=180°,①D+①B=180°,①①D=①AFC①AC平分①BAD,即①DAC=①F AC在①ACD和①ACF中,①D=①AFC,①DAC=①F AC,AC=AC①ACD①①ACF(AAS),①AD=AF,①AE=AF+EF=AD+BE2、如图,已知在①ABC中,①C=2①B,①1=①2,求证:AB=AC+CD解析:在AB上取一点E,使AE=AC,连接DE,①AE=AC,①1=①2,AD=AD,①①ACD①①AED,①CD=DE,①C=①3①①C=2①B,①①3=2①B=①4+①B,①①4=①B,①DE=BE,CD=BE①AB=AE+BE,①AB=AC+CD3、如图,在五边形ABCDE中,AB=AE,BC+DE=CD,①B+①E=180°,求证:AD平分①CDE.解析:延长CB至点F,使BF=DE,连接BF=DE,连接AF,AC①①1+①2=180°,①E+①1=180°,①①2=①E①AB=AE,①2=①E,BF=DE,①①ABF①①AED,①F=①4,AF=AD①BC+BF=CD,即FC=CD又①AC=AC,①①ACF①①ACD,①①F=①3①①F=①4,①①3=①4,①AD平分①CDE.4、已知四边形ABCD中,①ABC+①ADC=180°,AB=BC,如图,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,①ADC求证:①PBQ=90°-12解析:如图,延长DC,在上面找一点K,使得CK=AP,连接BK,①①ABC+①ADC=180°,①①BAD+①BCD=180°①①BCD+①BCK=180°,①①BAD=①BCK在①BAP和①BKC中AP =CK ,①BAP =①BCK ,AB =BC ,①①BP A ①①BKC (SAS ),①①ABP =①CBK ,BP =BK①PQ =AP +CQ ,①PQ =QK①在①BPQ 和①BKQ 中,BP =BK ,BQ =BQ ,PQ =KQ①①BPQ ①①BKQ (SSS ),①①PBQ =①KBQ ,①①PBQ =12①ABC ①①ABC +①ADC =180°,①①ABC =180°-①ADC①12①ABC =90°-12①ADC ,①①PBQ =90°-12①ADC5、如图,在①ABC 中,①B =60°,①ABC 的角平分线AD 、CE 相交于点O ,求证:AE +CD =AC .解析:由题意可得①AOC =120°①①AOE =①DOC =180°-①AOC =180°-120°=60°在AC 上截取AF =AE ,连接OF ,如图在①AOE 和①AOF 中,AE =AF ,①OAE =①OAF ,OA =OA①①AOE ①①AOF (SAS ),①①AOE =①AOF ,①①AOF =60°,①①COF =①AOC -①AOF =60°又①COD =60°,①①COD =①COF同理可得:①COD ①①COF (ASA ),①CD =CF又①AF =AE ,①AC =AF +CF =AE +CD ,即AE +CD =AC6、如图所示,AB ①CD ,BE ,CE 分别是①ABC ,①BCD 的平分线,点E 在AD 上,求证:BC =AB +CD .解析:在BC 上取点F ,使BF =AB①BE ,CE 分别是①ABC ,①BCD 的平分线,①①ABE =①FBE ,①BCE =①DCE①AB ①CD ,①①A +①D =180°在①ABE和①FBE中,AB=FB,①ABE=①FBE,BE=BE①①ABE①①FBE(SAS),①①A=①BFE,①①BFE+①D=180°①①BFE+①EFC=180°,①①EFC=①D在①EFC和①EDC中,①EFC=①D,①BCE=①DCE,CE=CE ①①EFC①①EDC(AAS),①CF=CD①BC=BF+CF,①BC=AB+CD7、四边形ABCD中,BD>AB,AD=DC,DE①BC,BD平分①ABC (1)证明:①BAD+①BCD=180°(2)DE=3,BE=6,求四边形ABCD的面积.【解析】(1)过点D作BA的垂线,得①DMA①DEC(HL)①①ABC+①MDE=180°,①ADC=①MDE①①ABC+①ADC=180°,①①BAD+①BCD=180°(2)S四边形ABCD=2S①BED=188、已知:在①ABC中,AB=CD-BD,求证:①B=2①C.【解析】在CD上取一点M使得DM=DB则CD-BD=CM=AB①①AMD=①B=2①C模型二:倍长中线法模型分析:①ABC中AD是BC边中线方式1:延长AD到E,使DE=AD,连接BE方式2:间接倍长,作CF①AD于F,作BE①AD的延长线于E,连接BE方式3:延长MD到N,使DN=MD,连接CD例题精讲:1、已知,如图①ABC中,AB=5,AC=3,则中线AD的取值范围是.【解答】1<AD<4.2、如图,①ABC 中,E ,F 分别在AB ,AC 上,DE ①DF ,D 是中点,试比较BE +CF 与EF 的大小.【解答】解:BE +CF >FP =EF .延长ED 至P ,使DP =DE ,连接FP ,CP ,①D 是BC 的中点,①BD =CD ,在①BDE 和①CDP 中,{DP =DE∠EDB =∠CDP BD =CD①①BDE ①①CDP (SAS ),①BE =CP ,①DE ①DF ,DE =DP ,①EF =FP ,(垂直平分线上的点到线段两端点距离相等)在①CFP 中,CP +CF =BE +CF >FP =EF .3、已知:在①ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .【解答】证明:如图,延长AD 到点G ,使得AD =DG ,连接BG .①AD 是BC 边上的中线(已知),①DC =DB ,在①ADC 和①GDB 中,{AD =DG∠ADC =∠GDB(对顶角相等)DC =DB,①①ADC ①①GDB (SAS ),①①CAD =①G ,BG =AC又①BE =AC ,①BE =BG ,①①BED =①G ,①①BED =①AEF ,①①AEF =①CAD ,即:①AEF =①F AE ,①AF =EF .4、已知:如图,E 是BC 的中点,点A 在DE 上,且①BAE =①CDE .求证:AB =CD .【解答】证明:延长DE 到F ,使EF =DE ,连接BF ,①E 是BC 的中点,①BE =CE ,①在①BEF 和①CED 中{BE =CE ∠BEF =∠CED EF =DE,①①BEF ①①CED .①①F =①CDE ,BF =CD .①①BAE =①CDE ,①①BAE =①F .①AB =BF ,又①BF =CD ,①AB =CD .5、如图,①ABC 中,AB =AC ,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F ,且DF =EF ,求证:BD =CE .【解答】证明:如图,过点D 作DG ①AE ,交BC 于点G ;则①DGF ①①ECF ,①DG :CE =DF :EF ,而DF =EF ,①DG =CE ;①AB =AC ,①①B =①ACB ;①DG ①AE ,①①DGB =①ACB ,①①DBG =①DGB ,①DG =BD ,①BD =CE .模型三:角平分线四大模型1、角平分线的性质2、角平分线的对称性3、角平分线+平行线,等腰现4、角平分线+垂线,等腰归例题精讲:1、如图,D是①EAF平分线上的一点,若①ACD+①ABD=180°,请说明CD=DB的理由.【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N,则①CMD=①BND=90°,①AD是①EAF的平分线,①DM=DN,①①ACD+①ABD=180°,①ACD+①MCD=180°,①①MCD=①NBD,在①CDM和①BDN中,①CMD=①BND=90°,①MCD=①NBD,DM=DN,①①CDM①①BDN,①CD=DB.2、如图,BD和CD分别平分①ABC的内角①EBA和外角①ECA,BD交AC于点F,连接AD.(1)求证:①BDC=12∠BAC;(2)若AB=AC,请判断①ABD的形状,并证明你的结论.【解答】(1)证明:①BD和CD分别平分①ABC的内角①EBA和外角①ECA,①①ABC=2①DBC,①ACE=2①DCE,①①ACE=①BAC+①ABC,①DCE=①BDC+①DBC,①2①DCE=2①BDC+2①DBC,①①BAC=2①BDC,即①BDC=12①BAC;(2)①ABD是等腰三角形,证明:①AB=AC,①①ABC=①ACB,过D作DQ①AB于Q,DR①BC于R,DW①AC于W,①BD和CD分别平分①ABC的内角①EBA和外角①ECA,①DQ=DR,DW=DR,①DQ=DW,①DQ①AB,DW①AC,①①GAC=2①GAD=2①CAD,①①GAC=①ABC+①ACB,①①GAD=①ABC,①AD①BC,①①ADB=①DBC,①①ABD=①DBC,①①ADB=①ABD,①AB=AD,即①ABD是等腰三角形.3、如图,在①ABC中,①ABC=90°,AB=7,AC=25,BC=24,三条角平分线相交于点P,求点P到AB的距离.【解答】解:过点P作PD①AB于D,PE①BC于E,PF①AC于F,①点P是①ABC三条角平分线的交点,①PD=PE=PF①S ①ABC =S ①P AB +S ①PBC +S ①P AC =12PD •AB +12PE •BC +12PF •AC =12PD •(AB +BC +AC )=12PD •(7+25+24)=28PD 又①①ABC =90°,①S ①ABC =12AB •BC =12×7×24=7×12,①7×12=28PD ,①PD =3 答:点P 到AB 的距离为3.4、如图,AD 是①ABC 中①BAC 的平分线,P 是AD 上的任意一点,且AB >AC ,求证:AB −AC >PB −PC .【解答】证明:如图,在AB 上截取AE ,使AE =AC ,连接PE ,①AD 是①BAC 的平分线,①①BAD =①CAD ,在①AEP 和①ACP 中,{AE =AC ∠BAD =∠CAD AP =AP,①①AEP ①①ACP (SAS ),①PE =PC ,在①PBE 中,BE >PB −PE 即AB −AC >PB −PC .5、在①ABC 中,AD 是①BAC 的外角平分线,P 是AD 上的任意一点,试比较PB +PC 与AB +AC 的大小, 并说明理由.【解答】解:PB +PC >AB +AC如图,在BA 的延长线上取一点E ,使AE =AC ,连接EP .由AD 是①BAC 的外角平分线,可知①CAP =①EAP ,又AP 是公共边,AE =AC ,故①ACP ①①AEP从而有PC =PE ,在①BPE 中,PB +PE >BE而BE =AB +AE =AB +AC ,故PB +PE >AB +AC ,所以PB +PC >AB +AC6、已知:如图,在①ABC 中,①A =2①B ,CD 平分①ACB ,且AC =6,AD =2.求BC 的长.【解答】解:如图,在BC 上截取CE =CA ,连接DE ,①CD平分①ACB,①①1=①2,在①ACD和①ECD中{CA=CE∠1=∠2CD=CD,①①ACD①①ECD(SAS),①AD=ED,①A=①CED,①①A=2①B,①①CED=2①B,①①CED=①B+①BDE,①①BDE=①B,①BE=ED,①AC=6,AD=2,①AD=BE=2,AC=CE=6,①BC=BE+CE=2+6=8.7、如图,①AOB=30°,OD平分①AOB,DC①OA于点C,DC=4cm,求OC的长.【解答】过点D作DE//OB,交OA于点E.OC=CE+OE=CE+DE=8+43.8、(1)如图①ABC中,BD、CD分别平分①ABC,①ACB,过点D作EF①BC交AB、AC于点E、F,试说明BE+CF=EF的理由.(2)如图,①ABC中,BD、CD分别平分①ABC,①ACG,过D作EF①BC交AB、AC于点E、F,则BE、CF、EF有怎样的数量关系?并说明你的理由.【解答】解:(1)①BD平分①ABC,①①ABD=①CBD,①EF①BC,①①EDB=①DBC,①①ABD=①EDB,①BE=ED,同理DF=CF,①BE+CF=EF;(2)BE−CF=EF,由(1)知BE=ED,①EF①BC,①①EDC=①DCG=①ACD,①CF=DF,又①ED−DF=EF,①BE−CF=EF.9、如图,在①ABC ,AD 平分①BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC ,求证:EF ①AB .【解答】解:过E 作AC 的平行线于AD 延长线交于G 点, ①EG ①AC在①DEG 和①DCA 中,{∠ADC =∠GDE CD =ED ∠DEG =∠DCA,①①DEG ①①DCA (ASA ), ①EG =EF ,①G =①CAD ,又EF =AC ,故EG =AC ①AD 平分①BAC ,①①BAD =①CAD ,①EG =EF ,①①G =①EFD ,①①EFD =①BAD ,①EF ①AB .10、已知等腰直角三角形ABC ,BC 是斜边.①B 的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:BD =2CE .【解答】证明:如图,分别延长CE ,BA 交于一点F . ①BE ①EC ,①①FEB =①CEB =90°, ①BE 平分①ABC ,①①FBE =①CBE , 又①BE =BE ,①①BFE ①①BCE (ASA ). ①FE =CE .①CF =2CE .①AB =AC ,①BAC =90°,①ABD +①ADB =90°,①ADB =①EDC , ①①ABD +①EDC =90°.又①①DEC =90°,①EDC +①ECD =90°,①①FCA =①DBC =①ABD . ①①ADB ①①AFC .①FC =DB ,①BD =2EC .11、如图.在①ABC 中,BE 是角平分线,AD ①BE ,垂足为D ,求证:①2=①1+①C .【解答】证明:如图,延长AD 交BC 于点F ,①BE 是角平分线,AD ①BE ,①①ABF 是等腰三角形,且①2=①AFB , 又①①AFB =①1+①C ,①①2=①1+①C .12、(1)如图(a )所示,BD 、CE 分别是①ABC 的外角平分线,过点A 作AD ①BD ,AE ①CE ,垂足分别为D 、E ,连接DE ,求证:DE ①BC ,DE =12(AB +BC +AC );(2)①如图(b )所示,BD 、CE 分别是①ABC 的内角平分线,其他条件不变;①如图(c )所示,BD 为①ABC 的内角平分线,CE 为①ABC 的外角平分线,其他条件不变;则在图(b )、图(c )两种情况下,DE 与BC 还平行吗?它与①ABC 三边又有怎样的数量关系?请写出你的猜测,并对其中一种情况进行证明.【解答】解:(1)如图1,分别延长AE 、AD 交BC 于H 、K , 在①BAD 和①BKD 中,{∠ABD =∠DBK BD =BD ∠BDA =∠BDK ,①①BAD ①①BKD (ASA ), ①AD =KD ,AB =KB ,同理可证,AE =HE ,AC =HC ,①DE =12HK ,又①HK =BK +BC +CH =AB +BC +AC ,①DE =12(AB +AC +BC ); (2)①猜在想结果:图2结论为DE =12(AB +AC −BC ). 证明:分别延长AE 、AD 交BC 于H 、K , 在①BAD 和①BKD 中,{∠ABD =∠DBK BD =BD ∠BDA =∠BDK,①①BAD ①①BKD (ASA ),①AD =KD ,AB =KB , 同理可证,AE =HE ,AC =HC ,①DE =12HK ,又①HK =BK -BH =AB +AC -BC ,①DE =12(AB +AC −BC ); ①图3的结论为DE =12(BC +AC −AB ).证明:分别延长AE 、AD 交BC 或延长线于H 、K , 在①BAD 和①BKD 中,{∠ABD =∠DBK BD =BD ∠BDA =∠BDK,①①BAD ①①BKD (ASA ),①AD =KD ,AB =KB 同理可证,AE =HE ,AC =HC ,①DE =12KH又①KH =BC -BK +HC =BC +AC -AB .①DE =12(BC +AC −AB ).模型四:手拉手模型模型:如图,①ABC 是等腰三角形、①ADE 是等腰三角形,AB =AC ,AD =AE , ①BAC =①DAE = 。
中考数学模型归纳
初中数学最实用的模型归纳模型:心连心模型模型:折叠中的“小红旗”模型模型:角平分线+平行线=等腰三角形模型:一线三等角模型模型:探照灯模型模型:双角平分线碰撞模型模型:高与角平分线摩擦模型模型:等面积模型模型:小李飞镖模型模型:半角旋转模型模型:搬新家模型模型:角平分线模型模型:双勾股模型模型:0+0+0=0模型模型:将军饮马模型模型:过桥模型模型:三角形周长最小模型模型:四边形周长最小模型模型:蚂蚁爬行模型模型:两条线段差值最大模型模型:直角三角形斜中模型模型:费马点模型模型:车轮模型模型:单中点变双中点模型模型:对角互补模型模型:大铅锤模型模型:铅笔头模型模型:8字模型模型:相似中的模型模型:十字架模型模型:弦图模型模型:四点共圆模型模型:射影定理模型模型:截长补短模型模型:胡不归模型模型:反比例+三角形任意面积模型模型:12345模型模型:交点个数模型模型:三角函数经典模型模型:燕尾模型模型:对角互补模型模型;2、3倍线的模型模型;数形结合解不等式模型模型:心连心模型模型:折叠中的“小红旗”模型总长xx 有模型:角平分线+平行线=等腰三角形有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
模型:一线三等角模型图3BCAED图2BCAED1图ABDCE模型:探照灯模型图1E DH OBAC【总结】:1.定角定高三角形面积最小值时,该三角形为等腰三角形,其定高是所对底边的垂直平分线,或者说定高过该三角形外接圆圆心。
2.定角可以看做是圆周角,因此它所对圆心角不变,往往要通过圆心角所在等腰三角形中解三角形。
3.定角定高作用,求这类三角形高所对底的最小值,以及这类三角形最小面积例2:已知等边△ABC ,点P 是其内部一个动点,且AP =10,M 、N 分别是AB 、AC 边上的两个动点,求△PMN 周长最小时,四边形AMPN 面积的最大值.【分析】将军饮马+定角夹定高【证明】Ⅰ.分别作P 关于AB 、AC 的对称点1P 、2P ,连12PP 与AB 、AC 分别交于M 、N (如图例2-1)12121PMNCM MN P N PP P PM MN P PN P ++=++≥====∴△PMN 周长最小即12P M N P 、、、共线时。
初中数学中考常见几何模型
初中数学中考常见几何模型一、手拉手模型----旋转型全等 (1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ;③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB ,将△OCD 旋转至右图的位置OC DE图 1OABCD E图 2OABC DE图 1OACDE图 2OABC DEOCD E图 1图 2OB COCDE【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中几何常考模型汇总(完整版)
第Ol讲8字模型与飞镖模型模型1角的“8”字模型如图所示,AB、CD相交于点O,连接AD、BC O 结论:ZA+ZD=ZB+ZCo模型分析8字模型往往在几何综合题目中推导角度时用到O模型实例观察下列图形,计算角度:(1)如图①,ZA+ZB+ZC+ZD+ZE= ________________ :(2)如图②,ZA+ZB+ZC+ZD+ZE+ZF= _________________热搜梢练1.(1)如图①,求ZCAD+ZB+ZC+ZD+ZE= _________________ :(2)如图②,求Z C A D+ Z B + Z AC E+ Z D+ Z E= ___2. ________________________________________________ 如图,求ZA+ZB+ZC+ZD+ZE+ZF+ZG+ZH= _______________________________图②模型2角的飞镖模型如图所示,有结论:ZD=ZA+ZB+ZCo模型分析飞镖模型往往在几何综合题目中推导角度时用到a模型实例如图,在四边形ABCD中,AM、CM分别平分ZDAB和ZDCB, AM与CM交于W 探究ZAMC与ZB、ZD间的数量关系。
热搜精练1._________________________________________如图,ΛRZA+ZB+ZC+ZD+ZE+ZF=2.__________________________________ 如图,求ZA+ZB+ZC+ZD=C F模型3边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC O 结论:AC+BD>AD+BCoD模型实例如图,四边形ABCD的对角线AC、BD相交于点0。
求证:(1) AB+BC+CD+AD>AC+BD:(2) AB+BC+CD+AD<2AC+2BD.模型4边的飞镖模型如图所示有结论:AB+AC>BD+CD.模型实例如图,点O为三角形内部一点。
2024年中考数学总复习初中数学常考10个几何模型汇总
2024年中考数学总复习初中数学常考10个几何模
型汇总
模型一:“12345”模型
模型二:“半角”模型
对称半角模型
旋转半角模型
模型三:“角平分线”模型
角平分线定理角平分线+垂线=等腰三角形角分线+平行线=等腰三角必呈现
角平分线+垂线=等腰三角形
模型四:“手拉手”模型
条件:1、两个等腰三角形;2、顶角相等;3、顶点重合。
结论:1、手相等;2、三角形全等;3、手的夹角相等;
4、顶点连手的交点得平分。
模型五:“将军饮马”模型
模型六:“中点”模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1.直接连接中点;
2.连对角线取中点再相连
模型七:“邻边相等的对角互补”模型
【模型1】
【条件】如图,四边形ABCD中,AB=AD,∠BAD+∠BCD=∠ABC+∠ADC=180°
【结论】AC平分∠BCD
【模型2】
【条件】如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°【结论】①∠ACB=∠ACD=45°②BC+CD=V2AC
模型八:“一线三角”模型
【条件】∠EDF=∠B=∠C,且DE=DF
【结论】△BDE=△CFD
模型九:“弦图”模型
【条件】正方形内或外互相垂直的四条线段【结论】新构成了同心的正方形
模型十:费马点。
史上最全初中几何模型汇总
史上最全初中几何模型全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型角分线模型说明:以角平分线为轴在角两边逬行截长补短或者作边的垂线■形成对称全等。
两边进行边或者角的等呈代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45= 30。
、22.5\ 15。
及有一个角是30。
直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过"8"字模型可以证明。
模型变形。
旺唳s z t如H IP当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明「两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明列外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
中点模型连中点鮭中位贱fStL血肉造中碎梅谕三歸一几何最值模型对称最值(两点间线段最短)轴对称模型对称最值(点到直线垂线段最短)说明:通过对称逬行等呈代换,转换成两点间距离及点到直线距离。
初中数学几何模型大汇总
初中数学几何模型大汇总几何模型是数学中的重要内容之一,对于初中数学学习来说,掌握并熟练运用各种几何模型是非常重要的。
下面是几何模型的大汇总,供初中学生学习参考。
一、平面图形的模型:1.直角三角形模型:直角三角形由两个直角边和一个斜边构成,可以利用直角三角形模型解决与直角三角形有关的问题。
2.等腰三角形模型:等腰三角形的底边两侧边相等,可以利用等腰三角形模型解决与等腰三角形有关的问题。
3.等边三角形模型:等边三角形的三边相等,可以利用等边三角形模型解决与等边三角形有关的问题。
4.平行四边形模型:平行四边形的对边平行且相等,可以利用平行四边形模型解决与平行四边形有关的问题。
5.矩形模型:矩形的四个角都是直角,可以利用矩形模型解决与矩形有关的问题。
6.正方形模型:正方形的四个边相等且都是直角,可以利用正方形模型解决与正方形有关的问题。
7.菱形模型:菱形的两对对边相等,可以利用菱形模型解决与菱形有关的问题。
8.圆形模型:圆形由中心点和半径构成,可以利用圆形模型解决与圆有关的问题。
二、立体图形的模型:1.正方体模型:正方体的六个面都是正方形,可以利用正方体模型解决与正方体有关的问题。
2.长方体模型:长方体的六个面有两个相等的长方形,可以利用长方体模型解决与长方体有关的问题。
3.球体模型:球体是由无数个半径相等的圆构成,可以利用球体模型解决与球体有关的问题。
4.圆柱模型:圆柱的底面是圆,可以利用圆柱模型解决与圆柱有关的问题。
5.圆锥模型:圆锥的底面是圆,可以利用圆锥模型解决与圆锥有关的问题。
6.圆台模型:圆台的底面是圆,可以利用圆台模型解决与圆台有关的问题。
7.正棱柱模型:正棱柱的底面是正多边形,可以利用正棱柱模型解决与正棱柱有关的问题。
8.正棱锥模型:正棱锥的底面是正多边形,可以利用正棱锥模型解决与正棱锥有关的问题。
9.正多面体模型:正多面体的面都是相等的正多边形,可以利用正多面体模型解决与正多面体有关的问题。
7.中考数学必会几何模型31个模型轻松搞定所有中考几何题
中考必会几何模型——31个模型轻松搞定所有中考几何题目录第一章8字模型与飞镖模型 (2)第二章角平分线四大模型 (5)第三章截长补短 (10)第四章手拉手模型 (13)第五章三垂直全等模型 (15)第六章将军饮马 (18)第七章蚂蚁行程 (24)第八章中点四大模型 (27)第九章半角模型 (33)第十章相似模型 (37)第十一章圆中的辅助线 (47)第十二章辅助圆 (54)第一章 8字模型与飞镖模型模型1 角的“8”字模型如图所示,AB 、CD 相交于点O ,连接AD 、BC 。
结论:∠A +∠D =∠B +∠C 。
模型分析8字模型往往在几何综合题目中推导角度时用到。
模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E = ;(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F = 。
热搜精练 1.(1)如图①,求∠CAD +∠B +∠C +∠D +∠E = ; (2)如图②,求∠CAD +∠B +∠ACE +∠D +∠E = 。
2.如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = 。
OD CBA图12图EABCDEFD CBAOO图12图EABC DEDCBA模型2 角的飞镖模型 如图所示,有结论: ∠D =∠A +∠B +∠C 。
模型分析飞镖模型往往在几何综合题目中推导角度时用到。
模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。
探究∠AMC 与∠B 、∠D 间的数量关系。
热搜精练1.如图,求∠A +∠B +∠C +∠D +∠E +∠F = ;2.如图,求∠A +∠B +∠C +∠D = 。
HG EF DCBADCBAMDCBAO135EFDC BA模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC 。
结论:AC +BD >AD +BC 。
初中数学几何模型大全(精心整理)
三线八角同位角找F型内错角找Z型同旁内角找U型拐角模型1.锯齿形∠2=∠1+∠3 ∠1+∠2=∠3+∠42.鹰嘴型鹰嘴+小=大∠2=∠1+∠3 ∠2=∠1+∠33.铅笔头型∠1+∠2+∠3=360° ∠1+∠2+∠3+∠4=540°180×(n-1)等积变换模型S△ACD=S△BCD 八字模型∠A+∠B=∠C+∠DAD+BC>AB+CD飞镖模型∠D=∠B+∠C+∠AAB+AC>BD+CD内内角平分线模型∠A∠D=90°+12内外角平分线模型∠D=1∠A2外外角平分线模型∠D=90°-1∠A2平行平分出等腰模型HG=HM等面积模型 D是BC的中点S△ABD= S△ACD 倍长中线模型:D是BC的中点S△FBD= S△ECD角平分线构造全等模型角平分线垂直两边角平分线垂直中间角平分线构造轴对称以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,垂直也可以做为轴进行对称全等。
三垂模型拉手模型大小等边三角形虚线相等且夹角为60°大小等腰三角形顶角为a,虚线相等,且夹角为a大小等腰直角三角形虚线相等且夹角为90°大小正方形虚线相等,且夹角为90°半角模型正方形ABCD ∠EDF=45°得:EF=AE+CFCD=AD,∠ADC=90°,∠EDF=45°,∠A+∠C=180°得:EF=AE+CF∠BADAB=AD,∠B+∠D=180°,∠EAF=12得:EF=BE+DFAB=AC,∠BAC=90°,∠DAE=45°得:DE2=BD2+CE2△CEF为直角三角形上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
初中数学几何经典模型精编版
初中数学几何经典模型精编版几何经典模型在初中数学中占有重要的地位,通过这些模型的学习,可以帮助学生更好地理解几何图形的性质及其变化规律,提高几何思维能力。
下面是初中数学几何经典模型精编版。
一、相似三角形模型1、比例模型:在一个园中,如何取一个点,使得从这个点出发,分别向圆上和圆外伸出两条射线,使得这两条射线的长度之比最大?求出这个比例。
说明:这是相似三角形模型中比例模型的典型问题。
解答:设这个点为P,圆心为O,射线与圆相交于A、B两点,如图所示。
设OP=r,则PA=x,PB=y,由于PA、OP、OB与PB、OP、OA相似,因此有:PA:OP=OP:OB即:x:r=r:y化简得:x:y=r²:(OE²-r²)当x+y最大时,OE=√(r²+xy),代入得x∶y=r²∶(r²+xy),即:x+y=√(r²+xy)=r√(1+(x∶r)·(y∶r)),因此,此时x∶y=r²∶2r²=1∶2。
(注:该问题也可通过悬臂悬链线模型求解)2、面积模型1:已知ABC内接于⊙O,求AO∶OC。
解答:利用相似性质得:AB∶BC=AO∶CO,AB∶AC=AO∶OA即:AB²=AO·OC,AB²=AO²+OC²-2AO·OCcos∠AOC化简得:AO(OC-2r)=(r+AO)(r-AO)因为r>AO,所以有AO∶CO=r-AO∶r+AO3、面积模型2:已知三角形ABC中∠A=60°, AC=2,AB=a,BC=b,则COSB=log[(a²+b²-4)/6],计算 COSB。
解答:应用余弦定理和海龙公式,得:①cosB=(4-b²-a²)/(4a)②S(ABC)=[a²√3]/4③S(ABC)=bhA/2|hA=√(a²-1)∵S(ABC)=S(A′B′C′)∴a′b′/A′B′=(√3a/4)/(a/2)=√3/2设h′是A′B′上的高,由相似关系得:=[S(ABC)/2+√3S(ABC)/2]/2=3S(ABC)/4∵A′B′=a/2,设A′O=x∴B′O^2+AO^2=(a/2)^2;AO+x=b;Hence,x=(b²-a²+1)/2b∴cosB′=2x/a=(b²-a²-1)/ab,∴cosB=log[(a²+b²-4)/6]二、圆1、切线定理:如图,⊙O的两条切线AP、BP(AP>BP),AB的中点为C,OC与BP交于K,求证:AK=KC。
中考数学几何模型大全精编版
中考数学几何模型汇总a 手拉手转型全等和〉弄边三角翻>曲;“砂“心均対尊边三觴a 時论,OAfZK L・\OBl) t②乙砒启•同.j③f疋苹分匚"7\(2)柚应、* Wh 励轟■“三痢骸> gift:® Af/K • XOHD l© LAEB - <M1* ;»①DE平分厶M仇>SMh M個⑴7◎躺眷REIMS>第论:① AOMC* MfiD t<p LAEB ■ S , A(JOE宰分厶松f打A模显二:手拉手模睜■稣型相似<D- «HB3i* frft;cn AS f至右>络逡辛» 甘團中①涉”山札、⑷盼、a ®HRXC交他千点£,艷有"氏• £⑴ ftKKRa茶件=CD ^B t WB・90",曙山罐“龍转至右固tiH” (g曲t 音图中① AfM - AOK hOBD t②起妖比交恥于点E,电韦皿「-山°心ffO Ol> 06—■ —• — * Etui ZfX D®/IC <K OA J @iJ/> 丄彳C]施!ea・Bc t师加IM■曲*31 e s-**5xrMW>(松ssffioe®酬)A 模型三:对角互补幔塑> 粘:(D"倔■如也XI 两’加* 6<7DY£jA 第逡:@HK 甲分厶"购* ®O/> + fJA ■ 2fM *cc^<i $” / ・ j a + 几<(-(K ' • sma* “KE 的一边玄初颐井终干点Qrj C 佛上固八惊蜡论交Ft * ® _______________________________________ F② _________________________________________________ 「®_ ________ _ _ . _________ . ____ I可挨育上适幕②眸万应i®亍溯.请思考扔如MtftWUrtffl 的!因b» Mft5»H»JS£:侏见翻踽爭件丁四边辭対■互补・注JI 歸小 国电斗?8©輒爾三轴彤14边中如 ②I 咬濡住“笑平分铢推与”两ia 椰r‘的区粥■ 国谢怖见的HU 礎腓面 ◎1竜伙和 乙申甲时,LCl>E - MED - LCOA • 相爭扣何推身?条件:①乙仙册垂■如團,证明MY 川■ M I②过甫丄如上图龙右八誠明QDC ・吐EJ >穹£仅工的一边交加饱卅安于蔬0灯』虬t 三个翦论=©co=C£ <TJE> Jr时堆-Q —迥QC 、③2此!SiW 明方进与sm 况谶,可怖割“⑴ 1«9"> 衆件』①厶“M ・2ZZKT-IKTj » Q0C 平分乙加片* 第逡,a )m (?Fj ©(;/>+(>£-tx ,也同以这样工»彌;①正方彫愀»②防-DF + BE a (g论二LEAF - 45* (i) •«¥*■■ «r^* 荼件,①正方臥3<巾②乙总尸・舶5 » 第论:EF H RE >weuarHff^:M--M>■憑fh ® ^TMHC,②丄“忌7爲> 鈕:BD' >C£: - DE2若"M£制削结论酣八CT:■处:仍然咸N 木注n JI £c n * / 1⑷BO* «W>曇件:①正方粥肿门打②LEA^・4脅( >馳:W 圧力尊矗直粛三角松jiwh 比**.«(*i*r-t->V am ■巫甘•胛.A “K/八曲用V ^U¥/-^K2 -45 •齐:、™- - e J /, Xlill 'AJ/K AH At:.A模那四;角含半角模那”華件1①正万的血m②辽暦■刃J*结险①汁-也*吐,©ACPF酌禺董打正方解肋C7J瞅叶半,tt n r r A /) r <*—*A «££:倍长中埃卿連>条特=①^解A琥%②叫脏,①OF • AT ( »希胪丄"Kt型ra:蚀平岸3°.丿艇,◎平行块屈职有取b ” • E几朝隔科萨字全野扎和屮■ MfEf *” 乗件z 亍四边椭磁D I @J?C* 1AB、③ AM • !>M : ^<£1JZ),a 猪论二LEMD^^LMEA««f\: <T+ft AH仃》・rt,*. JV-/M/U K E讨.治谟YHfl WM・1U < W榊$4 V Iff . Ui't V,t 电単$芒严辛*V*壮jt味鼻畫此仏%力左屮甘见最新资料推荐十A W33A:朋三角形360*±22:H K 时曼心,屹A<>- /rf . .I 为等腰晝角三角影* ©£F-CF>菇论;①阿'■冊* F② M丄时H < O itti W it 昭WX3 勺第■ JI *iAft . © AfJJfl^AO/X' ,②“W ■ “DC ■灯©130 ・ <HE YE*>喀论土①rU -”心②*)d < b4 m rt WAV-^A+HW, J t > A U*1亠用汀■丄M屮” 彌:①MDE、M此均为等|»电舅三弟物②甜・存1 > 络豪①DF• 8F g DFLMM踏他匸曲准箱It晁楷. ZKH^*v*n] +1 m % hi•* tt IJ t <r 轄ijf SA 祐;©SOAa^OlK冷②£CU〃• LOIX -9«\ ⑧昶.g * 葩=(DXE 存”百1 ②—EfUWD 竺生JlH At XAG・・局"・烈鼻<7> *1 * // a W-<J* * VM^A■<MK ^1110*11?. HflL a liZM h< t;h HI/ .(3)i wa轉腐IV |<K /V t tf . K Itf -/¥・聊M«A:」*1亠盘材2」(心A卿七:最爾程険塑>和方知①(输±取口£叫粳泗£加「・三I ®a甘恠加L交片肝戌.脑肾求,** * U*-4. tV~: KU1«r •(i A * 4^ w*1峠境umt ci. ■ ;m审■中«・・H 4 “ •讦*i^l * * It.■,闻却遵練*嘴■亠审h峙1丄4 h ? * M ■1.- t-*~• D *H »f ** . * > II ・卄-・串I 4 1 «1 »t <tfF« ?,T・」A"勺■”, iiff , *此* * U fl Itl*/b<^Jt****A<K^* C> t»l 八W i * Pl H 1 t U 4 !O . *. r* -fh< M Kid ! il I *f ** - i« r< ■i'll i d4i «i・h t ■ 4"户沁* ■*. t irrVffM, 「*.g|2 iff• :,3 ^i*t4 & F 气申L4 *|< S^i t i v^k 悼九卄《(・丹土’ f* I < <'j rt! * riO- i・;Ji£垃:理丄口殆为書屯轉*峠株g II甘站红吗理."舛険瞌呦i ivt員烂/解犠*tA:①塢人尘A_m上:^'4iA, *t Aifijt承買12姫询O n \t # r<-Mt**/v*(»fxa*n)> *ft:①iK ^LAOB.②M^OB上一龙魁③尸为g上T1 盏I④«为加上71知 >事■星小时"代仑的位卅0» 杀件r川0』人科・2(n.r(a町> 越向何啊,5屡小D广ttSMb 二侶角極塑HMfV; *J tit 4^* *Aj,r H 4M xr . c :r*1 fti © 7协 *: ■卡*iv «x d —cr 」j_ij_i2£±L「 I —",傀呼亠屯一.悄峯即ar-艸丄★叮上:mm:A ;■TR K'fv• ** i料务•务•罟ft J - .1;、\K»<-J ■ L4 A ut ~m if+ Mt“;Htt ;M W Pt - /7I» 7 m a M ” w -根,八+ m : /u ; -/*f • Fitm :»榛規九:栩妊角形樓I)* *f*-直衙巧卜阳i ”八r 一 M 河■,釘\ d t t 4必占幻■ f+: AflS :,Li/H r ” M f ■・ t W -Mr★碎:审IB, rt 令殆們的代 上心■上■ Z< 7V : - Wi J -/W 7f (. < /- /JJ - i/最新资料推荐-FK. * 4 *1 f ri T <1 t 4 t K/ A.AK 屯以丄馆点旳节M唱I M幻三覇小L* tt ]£ *JD中考数学压轴题常考的9 种出题形式1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行线延长相交ABCD E ABC DEFEDCBA【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连GABCDEFABCD E【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明.图3图2图1ACDEFGDEFGCDEGABBFCBA【解答】(1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE =注意G 的两端点D 、E 所在的直线DC ∥FEFA(2)延长CG 交AB 于点I ,易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC ,且GE ⊥GCA F(3)EJ【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG .GFE DCB A【解答】(1)证明△ABE ≌△ADF 即可;(2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可 为什么是证明△BCE ≌△FIE 你理解吗?你能写出解题思路和过程吗?类似的为什么要延长CG 呢,可以延长EG吗?E【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE .H GF EDCBA【解答】取BD 中点可证,如图所示:JA BCDE F GH为什么为什么为什么?可以取AC 中点吗?角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构等腰三角形___________________________________________________________________ ___________________________________________________________________【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交边CD 于F 点,交AD 边于H ,延长BA 到G 点,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为_______.HGFEDCBA【解答】延长FE 、AB 交于点I ,易得CE =CF ,BA =BE ,设CE =x ,则BA =CD =3+x ,BE =7-x , 3+x =7-x ,x =2,AB =BE =5,AE =,作AJ ⊥BC ,连接AC ,求得GF =AC =3JIAB CDEFGH手拉手模型【条件】OA =OB ,OC =OD ,∠AOB =∠COD【结论】△OAC ≌△OBD ,∠AEB =∠AOB =∠COD (即都是旋转角);OE 平分∠AEDDC EBAOOABEC D 导角核心图形:八字形CBAO【例5】(2014重庆市A 卷)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为________.FABCOE DDE CBA【例6】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连接BE ,AG ⊥BE于F ,交BC 于点G ,求∠DFG .GFE DCBA【答案】45°ABC【例7】(2014重庆B 卷)如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE 、BH .若BH =8,则FG=_____________.HGDE CBAF【答案】ABE G邻边相等对角互补模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180° 【结论】AC 平分∠BCDEB【模型2】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90° 【结论】① ∠ACB =∠ACD =45°; ② BC +CDABCECB______________________________________________________________________________________________________________________________________________________________________________________ 【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为_____.F ABCEDGG DE【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连结ON ,则ON 的长为__________.OMN DCBA【例10】如图,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为___________.GFEABCD【答案】4EC半角模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180°,∠EAF =12∠BAD , 点E 在直线BC 上,点F 在直线CD 上 【结论】BE 、DF 、EF 满足截长补短关系FEDCBA【模型2】【条件】如图,在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N .【结论】①BE +DF =EF ; ② ABE ADF AEF S S S ∆∆∆+=;③AH =AB ;④2ECF C AB ∆=;⑤BM 2+DN 2=MN 2;⑥△ANM ∽△DNF ∽△BEM ∽△AEF ∽△BNA ∽△DAM (由AO :AH =AO :AB =1可得到△ANM 和△AEF 相似比为1⑦AMN MNFE S S ∆=四边形;⑧△AOM ∽△ADF ;△AON ∽△ABE ;⑨△AEN 为等腰直角三角形,∠AEN =45°,△AFM 为等腰直角三角形,∠AFM =45°;⑩A 、M 、F 、D 四点共圆,A 、B 、E 、N 四点共圆,M 、N 、F 、C 、E 五点共圆.H NM FEDCBA【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是CB 、DC 延长线上的点,且满足∠EAF =45° 【结论】BE +EF =DFFEDCB A【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是BC 、CD 延长线上的点,且满足∠EAF =45° 【结论】DF +EF =BEAB C DEF【例11】如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =__________.Q PGD FECBA【解答】连接AE ,题目中有一线三等角模型和半角模型 设AC =x ,由△BPC ∽△CEQ 得BP CE =BE CQ , 3/(22x )=22x /(x +12),解得x =12 设PG =y ,由AG 2+BP 2=PG 2得32+(12-3-x )2=x 2,解得x =5【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则S 四边形BCDQ =__________.HGFED CB A【解答】34一线三等角模型【条件】∠EDF =∠B =∠C ,且DE =DF 【结论】△BDE ≌△CFDFEDCBA【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边为__________.GA B CDEF【解答】如图,构造一线三等角模型,△EFH ≌△FGI 则BC =BF +CF =HF -BH +FI -CI =GI -BH +HE -CI =733IH F ED C B A G弦图模型【条件】正方形内或外互相垂直的四条线段 【结论】新构成了同心的正方形LK JIHGFECDB AHG FEDCBA【例14】如图,点E 为正方形ABCD 边AB 上一点,点F 在DE 的延长线上,AF =AB ,AC 与FD 交于点G ,∠F AB 的平分线交FG 于点H ,过点D 作HA 的垂线交HA 的延长线于点I .若AH =3AI ,FH =22,则DG =__________.I H AGFEDCB【解答】1742I【例15】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 是AC 中点,连接BE ,作AG ⊥BE 于F ,交BC 于点G ,连接EG ,求证:AG +EG =BE .FE CGDBA【解答】过点C 作CH ⊥AC 交AG 的延长线于点H ,易证BC最短路径模型【两点之间线段最短】 1、将军饮马2、费马点【垂线段最短】【两边之差小于第三边】【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.QbA P【解答】3500600+,点线为最短.【例17】如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF ,连接CF 交BD 于G ,连接BE 交AG 于H ,若正方形的边长为2,则线段DH 长度的最小值为______________________.D【解答】如图,取AB 中点P ,连接PH 、PD ,易证PH ≥PD -PH 即DH ≥15-.【例18】如图所示,在矩形ABCD 中,AB =4,AD =24,E 是线段AB 的中点,F 是线段BC 上的动点,△BEF 沿直线EF 翻折到△EF B ',连接B D ',B D '最短为________________.E【解答】4【例19】如图1,□ABCD 中,AE ⊥BC 于E ,AE =AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF . (1)若BE =2EC ,AB =13,求AD 的长; (2)求证:EG =BG +FC ;(3)如图2,若AF =25,EF =2,点M 是线段AG 上一动点,连接ME ,将△GME 沿ME 翻折到△ME G ',连接G D ',试求当G D '取得最小值时GM 的长.图1 图2 备用图【解答】 (1)3(2)如图所示(3)当DG ′最小时D 、E 、G '三点共线H解得43173-=+'=MN N G GM 课后练习题【练习1】如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,∠AEB =90°,AC 、BD 交于O .已知AE 、BE 的长分别为3、5,求三角形OBE 的面积.【解答】25【练习2】问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,∠MBN21∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 延长线,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎么样的关量关系?写出你的猜想, 并给予证明。