《离散数学》试题带答案(二)
《离散数学》试题及答案 2
《离散数学》试题及答案 2《离散数学》试题及答案2一、填空题1设子集a,b,其中a={1,2,3},b={1,2},则a-b=____________________;?(b)=__________________________.2.设有限集合a,|a|=n,则|?(a×a)|=__________________________.3.设子集a={a,b},b={1,2},则从a至b的所有态射就是_______________________________________,其中双射的就是__________________________.4.已知命题公式g=?(p?q)∧r,则g的主析取范式是_________________________________________________________________________________________.5.设g就是全然二叉树,g存有7个点,其中4个叶点,则g的总度数为__________,分枝点数为________________.6设a、b为两个集合,a={1,2,4},b={3,4},则从a?b=_________________________;a?b=_________________________;a-b=_____________________.7.设r就是子集a上的等价关系,则r所具备的关系的三个特性就是______________________,________________________,______________________________ _.8.设命题公式g=?(p?(q?r)),则使公式g为真的解释有__________________________,_____________________________,__________________________.9.设子集a={1,2,3,4},a上的关系r1={(1,4),(2,3),(3,2)},r1={(2,1),(3,2),(4,3)},则r1?r2=________________________,r2?r1=____________________________,r12=________________________.(a)-10.设有限集a,b,|a|=m,|b|=n,则||?(a?b)|=_____________________________.11设a,b,r是三个集合,其中r是实数集,a={x|-1≤x≤1,x?r},b={x|0≤x<2,x?r},则a-b=__________________________,b-a=__________________________,a∩b=__________________________,.13.设子集a={2,3,4,5,6},r就是a上的相乘,则r以子集形式(列出法)记作__________________________________________________________________.14.设一阶逻辑公式g=?xp(x)??xq(x),则g的前束范式是_______________________________.15.设g就是具备8个顶点的树,则g中减少_________条边就可以把g变为全然图。
离散数学期末试卷及部分答案 (2)
离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。
离散数学习题答案解析
离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。
(数理逻辑)离散数学习题参考答案2
第二次:(等值演算)P38 3,4 (主范式)7(2), 8(3) , 9(2) , 10(2) ,12,133(1) 矛盾式()(())00p q q p q q p q q p ¬∧→⇔¬¬∧∨⇔∧∧¬⇔∧⇔1)(2) 重言式 (())()()()1()p p q p r p p q p r p r →∨∨→⇔¬∨∨∨¬∨⇔∨¬∨⇔(3) ()()(()())()(p q p r p q p r p q p ∨→∧⇔¬∨∨∧⇔¬∧¬∨∧10 0 010001010 0 10 1 00 1 11 0 01 0 11 1 01 1 1p q r ()()p q p r ∨→∧r ) 可满足式 成真赋值是:000,001,101,111.真值表如右图所示. 4(3) 左式=()p q ¬↔(()())(()())()()()()()()()11()p q q p p q q p p q q p p q p p q q q p p q p q ⇔¬→∧→⇔¬¬∨∧¬∨⇔∧¬∨∧¬⇔∨∧∨¬∧¬∨∧¬∨¬⇔∨∧∧∧¬∧()(p q p ⇔∨∧¬∧q )=右式 原等值式得证。
()()()()()(()()1()() 00 0110 11 0p q 01 1()()p q p q →→↔¬1p q p q p p p q q p q p q p q p q p q ∧¬∨¬∧⇔∨¬∧∨∧¬∨¬∧¬∨∨∧¬∧∧⇔∨∧¬∧(4)左式==右式原等值式得证q 7 (1)解:先求主析取范式,后求主和取范式如下: )7 (1)解法二:先求主和取范式,后求主析取范式如下:77 (2)解:先求主析取范式,后求主和取范式如下:)⇔∧67135135670⇔∨∨∨∨⇔∨∨∨∨⇔m m m m m m m m m m M 24()(())(()())()()()()()(()()()()()∧∨⇔∧∧¬∨∨¬∨∧¬∨∧⇔∧∧¬∨∧∧∨¬∧¬∧∨¬∧∧∨∧¬∧∨∧∧⇔∧∧¬∨∧∧∨¬∧¬∧∨¬∧∧∨∧¬∧∧∧p q r p q r r p p q q r p q r p q r p q r p q r p q r p q r p q r p q r p q r p q r p q r M M 02()()()⇔∨∨∧∨¬∨∧¬∨∨⇔∧p q r p q r p q r M M 41356()()()(())(()()()()()()∧∨⇔∨∧∨⇔∨∧¬∨∧∧¬∨∨⇔∨∨∧∨¬∨∧∨∨∧¬∨∨∧⇔∨∨∨∨p q r p r q r p q q r p p q r p q r p q r p q r p q r M m m m m m ()()()()()()()(()()0()()()()→∧→⇔¬∨∧¬∨⇔¬∧¬∨¬∧∨¬∧∨∧⇔¬∧¬∨¬∧∨∨∧⇔¬∧¬∨¬∧∨∧p q q r p q q r p q p r q q q r p q p r q r p q p r q r 0113372456()(())()()()(())()()()(())()()() ¬∧¬⇔¬∧¬∧¬∨⇔¬∧¬∧¬∨¬∧¬∧⇔∨¬∧⇔¬∧¬∨∧⇔¬∧¬∧∨¬∧∧⇔∨∧⇔¬∨∧∧⇔¬∧∧∨∧∧⇔∨0137()∴→∧→⇔∨∨∨⇔∧∧∧p q p q r r p q r p q r m m p r p q q r p q r p q r m m q r p p q r p q r p q r m m q r m m m m M M M M (主析取范式)(主合取范式)p q 8 (2)解:先求主和取范式,后求主析取范式如下: 7表可知成真赋值为01,10, 表可知,其成假赋值010,100,101,110 范式为:0612()()⇔∨∨∧¬∨¬∨⇔∧⇔∨p q r p q r M M m m 345()(()())(()())()()()()()()↔→⇔→∧→→⇔¬¬∨∧¬∨∨⇔∧¬∨∧¬∨⇔∨∨∧∨¬∨∧¬∨∨∧¬∨¬∨∨∨∨∨p q r p q q p rp q q p r p q q p r p q r p p r q q r q p r m m m m9 (2)解:由如右真值,其则主析取范式为:12m m ∨。
《离散数学》考试题库及答案(二)
《离散数学》考试题库及答案试卷五试题与答案一、填空15%(每空3分)1、设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。
2、n 阶完全图,K n 的点数X (K n ) = 。
3、有向图 中从v 1到v 2长度为2的通路有 条。
4、设[R ,+,·]是代数系统,如果①[R ,+]是交换群 ②[R ,·]是半群③ 则称[R ,+,·]为环。
5、设],,[⊕⊗L 是代数系统,则],,[⊕⊗L 满足幂等律,即对L a ∈∀有 。
二、选择15%(每小题3分)1、 下面四组数能构成无向简单图的度数列的有( )。
A 、(2,2,2,2,2); B 、(1,1,2,2,3); C 、(1,1,2,2,2); D 、(0,1,3,3,3)。
2、 下图中是哈密顿图的为( )。
3、 如果一个有向图D 是强连通图,则D 是欧拉图,这个命题的真值为( )A 、真;B 、假。
4、 下列偏序集( )能构成格。
5、 设}4,41,3,31,2,21,1{=s ,*为普通乘法,则[S ,*]是()。
A 、代数系统;B 、半群;C 、群;D 、都不是。
三、证明 48%1、(10%)在至少有2个人的人群中,至少有2 个人,他们有相同的朋友数。
2、(8%)若图G 中恰有两个奇数度顶点,则这两个顶点是连通的。
3、(8%)证明在6个结点12条边的连通平面简单图中, 每个面的面数都是3。
4、(10%)证明循环群的同态像必是循环群。
5、(12%)设]1,0,,,,[-+⨯B 是布尔代数,定义运算*为)()(*b a b a b a ⨯+⨯=,求证[B ,*]是阿贝尔群。
四、计算22%1、在二叉树中1) 求带权为2,3,5,7,8的最优二叉树T 。
(5分) 2) 求T 对应的二元前缀码。
(5分)2、 下图所示带权图中最优投递路线并求出投递路线长度(邮局在D 点)。
答案:一、填空(15%)每空3 分1、 6;2、n ;3、2;4、+对·分配且·对+分配均成立;5、a a a a a a =⊕=⊗且。
离散数学试题及解答
离散数学2^m*n一、选择题(2*10)1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。
(A)P→⌝Q (B)P∨⌝Q(C)P∧Q (D)P∧⌝Q2.下列命题公式为永真蕴含式的是()。
(A)Q→(P∧Q)(B)P→(P∧Q)(C)(P∧Q)→P (D)(P∨Q)→Q3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定是()。
(A)所有人都不是大学生,有些人不会死(B)所有人不都是大学生,所有人都不会死(C)存在一些人不是大学生,有些人不会死(D)所有人都不是大学生,所有人都不会死4、永真式的否定是()。
(A)永真式(B)永假式(C)可满足式(D)以上均有可能5、以下选项中正确的是()。
(A)0= Ø(B)0 ⊆Ø(C)0∈Ø(D)0∉Ø6、以下哪个不是集合A上的等价关系的性质?()(A)自反性(B)有限性(C)对称性(D)传递性7、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y∈A},则R的性质为()。
(A)自反的(B)对称的(C)传递的,对称的(D)传递的8.设D=<V, E>为有向图,V={a, b, c, d, e, f}, E={<a, b>, <b, c>, <a, d>, <d, e>, <f, e>}是()。
(A)强连通图(B)单向连通图(C)弱连通图(D)不连通图9、具有6个顶点,12条边的连通简单平面图中,每个面都是由()条边围成?(A)2(B)4 (C)3(D)5 10.连通图G是一棵树,当且仅当G中()。
(A)有些边不是割边(B)每条边都是割边(C)无割边集(D)每条边都不是割边二、填空题(2*10)1、命题“2是偶数或-3是负数”的否定是________。
离散数学练习题(含答案2)
离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是(C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( D )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是(C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是(A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)1 / 72 / 7D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射CDACCDAADADB第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
(图论)离散数学习题参考答案2
解此不等式可得 n ≥ 7 , 即 G 中至少有 7 个顶点, 当为 7 个顶点时, 其度数列为 2, 2, 2, 3, 3, 4, 4 , Δ = 4, δ = 2 8. 设有 n 个顶点,由握手定理可得: ∑ d (vi ) = 2m ,即
i =1 n
1 × (3 + 5) + (n − 2) × 2 = 2 × 6
d − (v1 ) = 3, d + (v1 ) = 0; d − (v2 ) = 1, d + (v2 ) = 2; d − (v3 ) = 1, d + (v3 ) = 3; d − (v4 ) = 2, d + (v4 ) = 2
第十一次: (欧拉图与哈密顿图)P305 1.2.11.21 (无向树及其性质)P318 2.24(a), 25(b) 1. (a),(c) 是欧拉图,因为它们均连通且都无奇度顶点; (b),(d)都不是欧拉图;因为(b) 不连通,(d) 既不连通又有奇度顶点;要使(b),(d)变为欧拉图 均至少加两条边,使其连通并且无奇度顶点。如下图所示。
(1) v2 到 v5 长度为 1,2,3,4 的通路数分别为 0, 2, 0,0 条; (2) v5 到 v5 长度为 1,2,3,4 的通路数分别为 0,0,4,0 条; (3) D 中长度为 4 的通路(含回路)为 32 条; (4) D 中长度为小于或等于 4 的回路数为 12 条; (5) 因为 D 是强连通图,所以可达矩阵为 4 阶全 1 方阵,如上图所示。 46. 各点的出度和入度分别如下:
(v2,12)** (v5, 7)*
根据上表的最后一行,从 v1 到其余各点的最短路径和距离如下: v1v2, d(v1,v2)=6 v1v2v6, d(v1,v6)=12 v1v3, d(v1,v3)=3 v1v3v4v5v7, d(v1,v7)=7 v1v3v4, d(v1,v4)=5 v1v3v4v5v7v8, d(v1,v8)=10 v1v3v4v5, d(v1,v5)=6
离散数学第二部分测试题-有答案2
离散数学第二部分测试题一、 填空题1.D=}{φ,则幂集}}.{,{)(φφρ=D2. B={1,{2,3}},则幂集=)(B ρ}}}3,2{,1{}},3,2{{},1{,{φ3. 若集合A ,B 的元素个数分别为n B m A ==,,则A 到B 有 nm ⨯2种不同的二元关系。
4. A={φ,a ,{b}},B=}{φ,则{}><><><=⨯φφφφ},{,,,,b a B A5. 设A={1,2,3},则在A 上有 5 个不同的划分。
6.设P ={<1, 2>, <1, 4>, <2, 3>, <4, 4>}和Q ={ <1, 2>, <2, 3>,<4, 2>} 则dom(P ∪Q )= {1,2,4} ,ran(P ∪Q ) = { 2,3,4}7. A I 是集合A 上的恒等关系,A 上的关系R 具有 反对称 性当且仅当1A R R I -⋂⊆8. A I 是集合A 上的恒等关系,A 上的关系R 具有 反自反 性当且仅当Φ=⋂R I A9. 设R 为A 上的关系,R 在A 上具有 传递 当且仅当R R R ⊆ 。
10.设R 为A 上的关系,R 在A 上自反的当且仅当 A I R ⊆ 11.设R 为A 上的关系,R 在A 上对称的当且仅当1R R -=二、 选择题1.集合A={全班同学}上的同龄关系R 为( B )A .对称关系B .等价关系C .偏序关系D .三个都不是 2.在由3个元素组成的集合上,可以有( D )种不同的关系。
A . 3; B .8; C .9 ; D .5123.设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( D )性质A .传递性B .反对称性C .对称性D .自反性三、 计算题1.设集合A={1,2,3},A 上的关系R={<1,1>,<1,2>,<2,2>,<3,2>,<3,3>}(1) 画出R 的关系图; (2) 写出R 的关系矩阵问R 具有关系的哪几些特殊性质(自反、对称、传递等)解 (1)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110010011M 该关系是自反的但不是反自反的,因为每个顶点都有个环;它是反对称的但不是对称的,因为图中只有单向边;它也是传递的,因为不存在顶点x,y,z ,使得x 到y 有边,y 到z 有边,但x 到z 没边,其中}3,2,1{,,∈z y x 。
离散数学2及答案
离散数学2一、填空题(每小题2分,共30分)1 设():M x x 偶数, ():F x x 素数。
将命题“存在偶素数”符号化为: ))()((x F x M x ∧∃ 。
2 集合A={2,2,2,3}的幂集合P(A)={}3,2{},3{},2{,φ }。
3 设A={1,2,3},B={a,b},则=⨯B A 6 。
4 已知命题公式A 含有2个命题变项,其成真赋值为00、10、11,则其主合取范式为 1M 。
5 设p :北京比大连人口多,q :2+2=4,r :乌鸦是白色的。
则命题公式)()(r p r p ⌝∧↔∨⌝的真值为 0 。
6 无向图G 具有欧拉通路,当且仅当G 是 连通 图且无奇度顶点或有两个奇度顶点。
7 6阶无向树的总度数为 10 。
8设A={1,2,3},B={a, b},A 1={2},f={<1,a>,<2,a>,<3,b>},则=-))((11A f f { 1,2 }。
9 设B A f →:,若ran B f )(=,则称B A f →:是满射的。
10 设群>⊕=<}),.({b a P G ,其中⊕为对称差。
群方程φ=⊕}{b Y 的解=Y {b} 。
11 设p:我去自习,q:我去看电影,r:我有课。
则命题“如果我去自习或看电影,我就没有课”的符号化形式为r qp⌝→∨)(。
12 画出3阶有向完全图的2条边的2个非同构的生成子图。
13 下面运算表中的=-1a c 。
14 写出模4乘法<Z4,⊗ >的运算表⊗0 1 2 31230 0 0 00 1 2 30 2 0 20 3 2 115 设A(x)是任意的含自由出现个体变项x的公式,则⇔⌝∀)(xxA )(xAx⌝∃。
二、试解下列各题(每小题5分,共25分)1. 设A = {a , b , c , d }, R = {<a ,b >,<b ,a >,<b ,c >,<c ,d >}, 求3R 的的矩阵表示和关系图表示。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
成人教育《离散数学》期末考试复习题及参考答案
离散数学复习题二一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。
2.请给出公式蕴涵的定义。
举一个例子。
3.请给出命题∀xG(x)的真值规定。
4.什么是谓词逻辑公式的解释?5.叙述谓词逻辑公式G与它的Skolem范式之间的区别与联系。
6.什么是图的关联矩阵?7.什么是简单路?举一例。
8.什么是有向树?举一例9.设G为整数加群,H为5的所有倍数组成的加法群,给出H的所有陪集。
二、判断下列公式是恒真?恒假?可满足?a) (P→(Q∧R))∧(⌝P→(⌝Q∧⌝R));b) P→(P∧(Q→P));c) (Q→P)∧(⌝P∧Q);d) (⌝P∨⌝Q)→(P↔⌝Q)。
三、指出下列公式哪些是恒真的哪些是恒假的:(1)P∧(P→ Q)→Q(2)(P→ Q)→(⌝P∨Q)(3)(P→ Q)∧(Q→R)→(P→ R )(4)(P↔ Q)↔(P∧ Q∨⌝P∧⌝ Q)四、给P和Q指派真值1,给R和S指派真值0,求出下面命题的真值:a) (P∧(Q∧R))∨⌝((P∨Q)∧(R∨S))b) (⌝(P∧Q)∨⌝R)∨(((⌝P∧Q)∨⌝R)∧S)c) (⌝(P∧Q)∨⌝R)∨((Q↔⌝P)→(R∨⌝S))d) (P∨(Q→(R∧⌝P)))↔(Q∨⌝S)五、证明:连通图中任意两条最长的简单路必有公共点。
离散数学复习题二答案一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。
P Q ⌝P P∧Q P∨Q0 1 1 0 11 0 0 0 11 1 0 1 10 0 1 0 02.请给出公式蕴涵的定义。
举一个例子。
答:设G,H是两个公式,如果解释I满足G,I也满足S,称G蕴涵H。
例如:P∧Q蕴涵P。
3.请给出命题∀xG(x)的真值规定。
答:∀xG(x)取1值⇔对任意x∈D,G(x)都取1值;∀xG(x)取0值⇔有一个x0∈D,使G(x0)取0值。
4.什么是谓词逻辑公式的解释?答:词逻辑中公式G的一个解释I,是由非空区域D和对G中常量符号,函数符号,谓词符号以下列规则进行的一组指定组成:1. 对每个常量符号,指定D中一个元素;2. 对每个n元函数符号,指定一个函数,即指定D n到D的一个映射;3. 对每个n元谓词符号,指定一个谓词,即指定D n到{0,1}的一个映射。
离散数学试题带答案(二)
离散数学试题带答案一、选择题1、G 是一棵根树,则( )。
A 、G 一定是连通的B 、G 一定是强连通的C 、G 只有一个顶点的出度为0D 、G 只有一个顶点的入度为12、下面哪个语句不是命题( )。
A 、中国将成功举办2008年奥运会B 、一亿年前地球发生了大灾难C 、我说的不是真话D 、哈密顿图是连通的3、设R 是实数集合,在上定义二元运算*:a ,b ∈R ,a*b=a+b-ab ,则下面的论断中正确的是( )。
A 、0是*的零元B 、1是*的幺元C 、0是*的幺元D 、*没有等幂元4、下面说法中正确的是( )。
A 、所有可数集合都是等势的B 、任何集合都有与其等势的真子集C 、有些无限集合没有可数子集D 、有理数集合是不可数集合5、无向完全图K 3的不同构的生成子图有( )个。
A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A 、无回路的连通图B 、有n 个顶点n-1条边的连通图C 、每对顶点间都有通路的图D 、连通但删去一条边则不连通的图7、设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。
A 、必惟一B 、不惟一C 、不一定惟一D 、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )A 、 x*y=max{x,y}B 、 x*y=min{x,y}C 、 x*y=GCD(x,y),即x,y 的最大公约数D 、 x*y=LCM(x,y),即x,y 的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。
A 、R 是对称的B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。
离散数学试卷二试题与答案
试卷二试题与答案一、填空1、 设P :你努力,Q :你失败。
2、 “除非你努力,否则你将失败”的符号化为 ;3、 “虽然你努力了,但还是失败了”的符号化为 。
2、论域D={1,2},指定谓词P则公式),(x y yP x ∃∀真值为 。
3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法)。
R 的关系矩阵M R =。
4、 设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。
5、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是 ;是否有幂等 性 ;是否有对称性 。
6、4阶群必是 群或群。
7、下面偏序格是分配格的是 。
8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。
二、选择1、在下述公式中是重言式为( )A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→。
2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。
A .0;B .1;C .2;D .3 。
3、设}}2,1{},1{,{Φ=S ,则 S2 有( )个元素。
A .3;B .6;C .7;D .8 。
4、设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R 产 生的S S ⨯上一个划分共有( )个分块。
A .4;B .5;C .6;D .9 。
5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为则R 具有( )性质。
A .自反性、对称性、传递性;B .反自反性、反对称性;C .反自反性、反对称性、传递性;D .自反性 。
离散数学期末复习试题及答案(二)
第二章 二元关系1. 设A={1,2,3,4},A 上二元关系 R={(a,b)|a=b+2}, S={(x,y)|y=x+1 or y=2x }求R ⋅S,S ⋅R,S ⋅R ⋅S,S 2,S 3,S ⋅R c 。
R ⋅S={(3,2),(4,3),(4,1)} S ⋅R={(2,1),(3,2)} S ⋅R ⋅S={(2,2),(3,3),(3,1)} S2={(1,1),(1,3),(2,2),(2,4),(3,2),(4,1),(4,3)} S3={(1,2),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4,2),(4,4)} S ⋅R c ={(1,4),(2,3),(4,4)}2.A={a,b,c,d,e,f,g,h},给定A 上关系R 的 关系图如下:图3-14求最小正整数m,n,m<n,使Rm =Rn 。
R1=R16这是因为R 15是8个顶点以及8个自回路,相 当于左图的点各走了5圈,左图的点各走了3圈, R 16就成了原来的R .3.证明:.I )b ,b (,A b ,I )b ,b (,I )a ,a (,...,I )a ,a (,A a ,I )a ,a (I )I )(1(A nA nA 2A A AnA ∈∈∈∀∈∈∈∈∀=.R I R ,;R R I ,,R I )b ,a (,R )b ,a (,R I )b ,a (;I R R ,R I R ,I R )b ,a (,R I )b ,a (,I )b ,b (,I )a ,a (,A b ,a ,R )b ,a (RI R R I )2(A A A A A A A A A A A A ⊆⋅⊆⋅⋅∉∉⋅∈∀⋅⊆⋅⊆⋅∈⋅∈∴∈∈∈∈∀=⋅=⋅同理得矛盾则若即事实上,当|A|有限时,R 与I A 复合,相当于矩阵与 单位矩阵相乘,不会变化。
1k k2A k2A 1k 2A k2A 1k A k 2A kA A A n2A nA R R ...R R I )R ...R R I ()R...R R ()I R )(R ...R R I ()I R (R ...R R I )I R (;R I )I R (1n R ...R R I )I R )(3(+++======= 设4.判断下列等式是否成立(R,R1,R2均是A到B的 二元关系)c2c1c2c12121c21c2c1c21R R )b ,a (R )b ,a (or R )b ,a (R )a ,b (or R )a ,b (R R )a ,b ()R R ()b ,a (,R R )R R )(1( ∈⇔∈∈⇔∈∈⇔∈⇔∈=对c2c1c2c12121c21c2c 1c 21R R )b ,a (R )b ,a (and R )b ,a (R )a ,b (and R )a ,b (R R )a ,b ()R R ()b ,a (R R )R R )(2( ∈⇔∈∈⇔∈∈⇔∈⇔∈=对c2c 1c2c1c2c12121c21c21c2c 1c 21R R R R )b ,a (R )b ,a (,R )b ,a (R )a ,b (,R )a ,b (R R )a ,b ()R R ()R R ()b ,a (R R )R R )(3(-=∈⇔∉∈⇔∉∈⇔∈⇔=-∈-=- 对)}2,4(),1,4(),2,3(),1,3{()B A ()}4,2(),4,1(),3,2(),3,1{(B A },4,3{B },2,1{A :,B A )B A )(4(cc=⨯=⨯==⨯=⨯例否.,,)5(cc值域对换了一下的定义域与否φφφ=φcccccR )b ,a (R )b ,a (R )a ,b (R )a ,b ()R ()b ,a (,)R ()R )(6(∈⇔∉⇔∉⇔∈⇔∈=对.R R ,R R )R R )(7(12c1c 2c 21的值域相同的定义域不一定与否⋅=⋅.R )b ,a (,R R )a ,b (,R )b ,a (,R R ,R R )8(c221c1c2c121∈⊆∈∈∀⊆⊆对则如果.R )c ,d (,R )c ,d (,R )d ,c (,R )d ,c (,R R ,R )b ,a (,R R )a ,b (,R )b ,a (,R R ,R R )9(c1c21221c221c1c2c121∉∈∉∈∃⊂∈⊂∈∈∀⊂⊂而对则如果.R R ,R R R R )10(121221的值域相同的定义域不一定与否⋅=⋅5. 设R 1,R 2是集合A 上的二元关系,如果12R R ⊆,其中r ,s,t 分别是自反闭包,对称闭包,传递闭包的 记号。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《离散数学》试题带答案试卷九试题与答案一、 填空 30% (每空 3分)1、 选择合适的论域和谓词表达集合A=“直角坐标系中,单位元(不包括单位圆周)的点集”则A= 。
2、 集合A={Φ,{Φ}}的幂集P (A) = 。
3、 设A={1,2,3,4},A 上二元关系R={<1,2>,<2,1>,<2,3>,<3,4>}画出R的关系图。
4、 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= 。
B A = 。
5、 设|A|=3,则A 上有 个二元关系。
6、 A={1,2,3}上关系R= 时,R 既是对称的又是反对称的。
7、 偏序集><≤R A ,的哈斯图为,则≤R = 。
8、 设|X|=n ,|Y|=m 则(1)从X 到Y 有 个不同的函数。
(2)当n , m 满足 时,存在双射有 个不同的双射。
9、 2是有理数的真值为 。
10、Q :我将去上海,R :我有时间,公式)()(Q R R Q →∧→的自然语言为 。
11、公式)()(Q P P Q ∧⌝∧→的 主合取范式是 。
12、 若} ,, , {21m S S S S =是集合A 的一个分划,则它应满足 。
二、 选择 20% (每小题 2分)1、 设全集为I ,下列相等的集合是( )。
A 、} |{是偶数或奇数x x A =;B 、)}2( |{y x I y y x B =∧∈∃=;C 、)}12( |{+=∧∈∃=y x I y y x C ;D 、},4,4,3,3,2,2,1,1,0|{ ----=x D 。
2、 设S={N ,Q ,R},下列命题正确的是( )。
A 、S S N N ∈∈∈2 ,2则; B 、S N S Q Q N ⊂∈⊂则 ,; C 、R N R Q Q N ⊂⊂⊂则 ,; D 、S N S N ⋂⊂Φ⊂Φ⊂Φ则 ,。
3、 设C={{a},{b},{a,b}},则S S CS CS ⋂⋃∈∈与分别为( )。
A 、C 和{a,b};B 、{a,b}与Φ;C 、{a,b}与{a,b};D 、C 与C 4、 下列语句不是命题的有( )。
A 、 x=13;B 、离散数学是计算机系的一门必修课;C 、鸡有三只脚;D 、太阳系以外的星球上有生物;E 、你打算考硕士研究生吗? 5、 R Q P →→)(的合取范式为( )。
A 、R Q P ∨⌝∧)( ;B 、)()(R Q R P ∨⌝∧∨ ;C 、)()()()()()(R Q P R Q P R Q P R Q P R Q P R Q P ∧⌝∧⌝∨∧∧⌝∨∧⌝∧∨∧∧∨⌝∧⌝∧∨∧⌝∧ D 、)()()()(R Q P R Q P R Q P R Q P ∨⌝∨⌝∧∨⌝∨∧∨⌝∨∧∨∨。
6、 设|A|=n ,则A 上有()二元关系。
A 、2n ;B 、n 2 ;C 、22n ;D 、n n; E 、nn 2。
7、 设r 为集合A 上的相容关系,其简化关系图(如图),则 [I] r 产生的最大相容类为( );A 、},{21x x ;B 、},,{321x x x ;C 、},{54x x ;D 、},,{542x x x [II] A 的完全覆盖为( )。
A 、},,,,{54321x x x x x ; B 、}},{},,,{},,{{5432121x x x x x x x ;C 、}},,{},,,{{542321x x x x x x ;D 、}},{},{},,{{54321x x x x x 。
8、 集合A={1,2,3,4}上的偏序关系图为则它的哈斯图为( )。
9、 下列关系中能构成函数的是( )。
A 、)}10(),(|,{<+∧∈><y x N y x y x ;B 、)}(),(|,{2x y R y x y x =∧∈><; C 、)}(),(|,{2x y R y x y x =∧∈><; D 、)}3mod (),(|,{y x I y x y x ≡∧∈><。
10、N 是自然数集,定义3mod )()( ,:x x f N N f =→(即x 除以3的余数),则f 是( )。
A 、满射不是单射;B 、单射不是满射;C 、双射;D 、不是单射也不是满射。
三、 简答题 15%1、(10分)设S={1 , 2 , 3 , 4, 6 , 8 , 12 , 24},“≤”为S 上整除关系,问:(1)偏序集≤><,S 的Hass 图如何?(2)偏序集},{≤S 的极小元、最小元、极大元、最大元是什么? 2、(5分)设解释R 如下:D R 是实数集,D R 中特定元素a=0,D R 中特定函数yx y x f -=),(,特定谓词yx y x F <:),(,问公式))),(),,((),((z y f z x f F y x F z y x A →∀∀∀=的涵义如何?真值如何?四、 逻辑推理 10%或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学。
因此,如果许多学生喜欢逻辑,那么数学并不难学。
五、10%设X={1,2,3,4,5},X 上的关系R={<1,1> , < 1 , 2 > , <2 , 4 > , < 3 , 5 > , < 4 , 2 > },用Warshall 方法,求R 的传递闭包t (R)。
六、证明 15%1、 每一有限全序集必是良序集。
(7分)2、 设f g 是复合函数,如果f g 满射,则g 也是满射。
(8分) 答案一、填空 20%(每小题2分)1、;2、;3、见右图;4、{< 1 , 2 > , < 2 , 4 > , <3 , 3 > , < 1,3 >,<2,4> ,<4,2>}、{< 1 , 4 > , < 2 ,2 > };5、29;6、{< 1 , 1 > , < 2 , 2 > , <3 , 3 > ;7、{<a,b>,<a,d>,<a,e>,<b,d>,<b,e>,<a,c>,<a,f>,<a,g>,<c,f>,<c,g>};8、m n 、n=m 、n!;9、假;10、我将去上海当且仅当我有空; 11、;12、。
二、 选择 20%(每小题 2分)三、 简答题 15% 1、(10分)(1)≤={<1,2>,<1,3>,<1,4>,<1,6>,<1,8>,<1,12>,<1,24>,<2,4>,<2,6>,<2,8>,<2,12>,<2,24>,<3,6>,<3,12>,<3,24>,<4,8>,<4,12>,<4,24>,<6,12>,<6,24>,<8,24>,<12,24>}covS={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,8>,<4,12>,<6,12> ,<8,24>,<12,24>}Hass图为(2)极小元、最小元是1,极大元、最大元是24。
2、(5分)解:公式A涵义为:对任意的实数x,y,z,如果x<y 则(x-z) < (y-z) A的真值为:真(T)。
四、逻辑推理10%解:设P:逻辑难学;Q:有少数学生不喜欢逻辑学;R:数学容易学符号化:证:①P②T①E③P④T②③I⑤T④E五、(10分)解:1时,[1,1]=1, A =2时,A[1,2]=A[4,2]=1A=3时,A的第三列全为0,故A不变4时A[1,4]=A[2,4]=A[4,4]=1A=5时,A的第五行全为0,故A不变。
所以t (R)={<1,1>, <1,2>,<1,4>,<2,2>,<2,4>,<3,5>,<4,2>,<4,4>}。
六、证明 15%1、(7分)证明:设,全序集。
若不是良序集,那么必有一子集,在B中不存在最小元素,由于B是一有限集合,故一定可找出两元素x ,y是无关的,由于是全序集。
所以x ,y必有关系,矛盾。
故必是良序集。
2、(8分)证明:设,由于满射,故必有使得,由复合函数定义知,存在使得,又因为g是函数,必对任,必使,任每个z在g作用下都是Y 中元素的一个映象,由Z的任意性,所以g是满射。
试卷十试题与答案一、 填空 10% (每小题 2分)1、 若P ,Q 为二命题,Q P ↔真值为1,当且仅当 。
2、 对公式),()),(),((y x xR z x zQ y x yP ∀∨∃∧∀中自由变元进行代入的 公式为 。
3、 ))(()(x xG x xF ∃⌝∧∀的前束范式为 。
4、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A (x )关于y 的自由的,则被称为全称量词消去规则,记为US 。
5、 与非门的逻辑网络为。
二、 选择 30% (每小题 3分)1、 下列各符号串,不是合式公式的有( )。
A 、R Q P ⌝∧∧)(; B 、)()((S R Q P ∧→→; C 、R Q P ∧∨∨; D 、S R Q P ∨∧∨⌝))((。
2、 下列语句是命题的有( )。
A 、2是素数;B 、x+5 > 6;C 、地球外的星球上也有人;D 、这朵花多好看呀!。
3、 下列公式是重言式的有( )。
A 、)(Q P ↔⌝;B 、Q Q P →∧)(;C 、P P Q ∧→⌝)(;D 、P Q P ↔→)( 4、 下列问题成立的有( )。
A 、 若CBC A ∨⇔∨,则B A ⇔; B 、若C B C A ∧⇔∧,则B A ⇔; C 、若B A ⌝⇔⌝,则B A ⇔;D 、若B A ⇔,则B A ⌝⇔⌝。
5、 命题逻辑演绎的CP 规则为( )。