小波变换原理与应用 ppt课件
合集下载
小波变换原理与应用54页PPT
小波变换原理与应用
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。—,也可以废除 法律。 ——塞·约翰逊
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。—,也可以废除 法律。 ——塞·约翰逊
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
一看就懂的小波变换ppt
8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
小波变换课件
景
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
《小波变换》课件
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。
小波分析整理 第三章 小波变换ppt课件
这样,a 和b 联合越来确定了对x(t) 分析的 中心位置及分析的时间宽度。
.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt
.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt
小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2
小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.
小波变换课件
小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。
小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
《小波分析概述》课件
小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
小波变换及其在图像处理中的典型应用PPT课件
要点一
总结词
要点二
详细描述
通过调整小波变换后的系数,可以增强图像的某些特征, 如边缘、纹理等。
小波变换可以将图像分解为不同频率的子图像,通过调整 小波系数,可以突出或抑制某些特征。增强后的图像可以 通过小波逆变换进行重建,提高图像的可视效果。
感谢您的观看
THANKS
实现方式
通过将输入信号与一组小波基函 数进行内积运算,得到小波变换 系数,这些系数反映了信号在不 同频率和位置的特性。
特点
一维小波变换具有多尺度分析、 局部化分析和灵活性高等特点, 能够有效地处理非平稳信号,如 语音、图像等。
二维小波变换
定义
二维小波变换是一种处理图像的方法,通过将图像分解成不同频率和方向的小波分量, 以便更好地提取图像的局部特征。
实现方式
02
通过将小波变换系数进行逆变换运算,得到近似信号或图像的
原始数据。
特点
03
小波变换的逆变换具有重构性好、计算复杂度低等特点,能够
有效地恢复信号或图像的原始信息。
03
小波变换在图像处理中的 应用
图像压缩
利用小波变换对图像进行压缩,减少 存储空间和传输带宽的需求。
通过小波变换将图像分解为不同频率 的子图像,保留主要特征,去除冗余 信息,从而实现图像压缩。压缩后的 图像可以通过解压缩还原为原始图像。
图像融合
利用小波变换将多个源图像融合成一个目 标图像,实现多源信息的综合利用。
通过小波变换将多个源图像分解为不同频 率的子图像,根据一定的规则和权重对各个 子图像进行融合,再通过逆变换得到融合后 的目标图像。图像融合在遥感、医学影像、 军事侦察等领域有广泛应用,能够提高多源
信息的综合利用效率和目标识别能力。
《小波分析及应用》课件
《小波分析及应用》PPT 课件
在本PPT课件中,我们将介绍小波分析及其广泛的应用。了解小波基础和小波 应用的重要概念。
小波分析及应用
1
第一部分:小波基础
了解小波变换的基本概念和时频表示方法,以及常用的基本小波函数。
2
第二部分:小波应用
探索小波在信号去噪、信号压缩和信号分析中的实际应用。
小波变换简介
信号压缩
1 压缩感知理论
基于信号的稀疏性,通过稀疏表示和重建算法实现信号的高效压缩。
2 小波稀疏表示
利用小波变换将信号转换为稀疏系数,实现信号的高效压缩和重建。
3 小波压缩算法
使用小波变换、阈值处理和反变换等技术实现信号的无损和有损压缩。
信号分析
1
小波能量谱分析
通过小波变换将信号分解为不同频带的能量谱,分析信号的频域特性。
2
小波分析在图像处理中的应用
利用小波变换处理图像,实现图像去噪、边缘检测等图像处理任务。
3
小波变换与神经网络结合应用
将小波变换与神经网络相结合,实现信号和图像的深度学习分析与处理。
Daubechies小波是一类紧支小波 函数,适用于信号分析和压缩。
Symlet小波
Symlet小波是对称小波函数系列, 适用于信号平滑和噪声去除。
小波分解算法
1
基于滤波器组的小波分解
通过一系列滤波器和下采样将信号分解为多个频带的近似和细节系数。
2
快速小波变换(FWT)
使用基于迭代的算法,快速计算信号的小波变换。
定义
小波是一种数学函数,用于描述信号在不同时间和频率上的变化。
时频表示
小波变换将信号分解为时域和频域信息,揭示了信号的局部特征。
在本PPT课件中,我们将介绍小波分析及其广泛的应用。了解小波基础和小波 应用的重要概念。
小波分析及应用
1
第一部分:小波基础
了解小波变换的基本概念和时频表示方法,以及常用的基本小波函数。
2
第二部分:小波应用
探索小波在信号去噪、信号压缩和信号分析中的实际应用。
小波变换简介
信号压缩
1 压缩感知理论
基于信号的稀疏性,通过稀疏表示和重建算法实现信号的高效压缩。
2 小波稀疏表示
利用小波变换将信号转换为稀疏系数,实现信号的高效压缩和重建。
3 小波压缩算法
使用小波变换、阈值处理和反变换等技术实现信号的无损和有损压缩。
信号分析
1
小波能量谱分析
通过小波变换将信号分解为不同频带的能量谱,分析信号的频域特性。
2
小波分析在图像处理中的应用
利用小波变换处理图像,实现图像去噪、边缘检测等图像处理任务。
3
小波变换与神经网络结合应用
将小波变换与神经网络相结合,实现信号和图像的深度学习分析与处理。
Daubechies小波是一类紧支小波 函数,适用于信号分析和压缩。
Symlet小波
Symlet小波是对称小波函数系列, 适用于信号平滑和噪声去除。
小波分解算法
1
基于滤波器组的小波分解
通过一系列滤波器和下采样将信号分解为多个频带的近似和细节系数。
2
快速小波变换(FWT)
使用基于迭代的算法,快速计算信号的小波变换。
定义
小波是一种数学函数,用于描述信号在不同时间和频率上的变化。
时频表示
小波变换将信号分解为时域和频域信息,揭示了信号的局部特征。
详细版小波变换原理与应用复习课件.ppt
精选
如果我们有一个无限长的窗口,然后做傅里叶变换, 会得到完美的频率分辨率,但是结果中不包含时间 信息。更进一步为了获得信号的平稳性,我们需要 一个宽度足够短的窗函数,窗口越短,时间分辨率 越高,信号的稳定性越高,但是频率分辨率却越来 越低。
窄窗=高时间分辨率,低频率分辨率 宽窗=高频率分辨率,低时间分辨率
精选
2.4 塔式算法
(1) 信号在小波空间的展开为:
f t
fWj
f t, j,k t j,k t
jZ ,kZ
精选
2.2.1 连续小波变换
如果函数 x满足以下容许性条件:
2
C d
则称 x为一容许性小波,并定义如下的积分变
换:
W
f
a,b
a
1 2
f
x
x
b a
dx,
f
x
L2 R
以上积分变换为 f x以 x为母小波的积分连
续小波变换,a为尺度因子,表示与频率相关的伸缩,
b为时间平移因子。
精选
2.2.2离散小波变换
33
其中,va为构造函数Meyer的辅助函数,且有:
2 -1/2
2
1/
2
c
os
2
v
3 2
1
0
精选
2 3
2 4
3
3
4 3
(3)其他常用小波
① Daubechies(dbN)小波系 ② Biorthogonal(biorNr.Nd)小波系 ③ Symlets(symN)小波系 ④ Morlet(morl)小波 ⑤ Coiflet(CoifN)小波系
cos(2ft) j sin(2ft)
即信号是由一些不同频率的正弦项叠加起来的, 如果信号中频率为f的分量幅度较大,那么这个分量就 和正弦项重叠,他们的即就比较大,这表明信号有一 个频率为f的主要分量。 精选
如果我们有一个无限长的窗口,然后做傅里叶变换, 会得到完美的频率分辨率,但是结果中不包含时间 信息。更进一步为了获得信号的平稳性,我们需要 一个宽度足够短的窗函数,窗口越短,时间分辨率 越高,信号的稳定性越高,但是频率分辨率却越来 越低。
窄窗=高时间分辨率,低频率分辨率 宽窗=高频率分辨率,低时间分辨率
精选
2.4 塔式算法
(1) 信号在小波空间的展开为:
f t
fWj
f t, j,k t j,k t
jZ ,kZ
精选
2.2.1 连续小波变换
如果函数 x满足以下容许性条件:
2
C d
则称 x为一容许性小波,并定义如下的积分变
换:
W
f
a,b
a
1 2
f
x
x
b a
dx,
f
x
L2 R
以上积分变换为 f x以 x为母小波的积分连
续小波变换,a为尺度因子,表示与频率相关的伸缩,
b为时间平移因子。
精选
2.2.2离散小波变换
33
其中,va为构造函数Meyer的辅助函数,且有:
2 -1/2
2
1/
2
c
os
2
v
3 2
1
0
精选
2 3
2 4
3
3
4 3
(3)其他常用小波
① Daubechies(dbN)小波系 ② Biorthogonal(biorNr.Nd)小波系 ③ Symlets(symN)小波系 ④ Morlet(morl)小波 ⑤ Coiflet(CoifN)小波系
cos(2ft) j sin(2ft)
即信号是由一些不同频率的正弦项叠加起来的, 如果信号中频率为f的分量幅度较大,那么这个分量就 和正弦项重叠,他们的即就比较大,这表明信号有一 个频率为f的主要分量。 精选
《小波分析介绍》PPT课件
二、小波变换
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h
第7章-小波变换ppt课件
.
第七章 频域处理
波和小波-波与小波之间的差异
上部两条曲线是频率不 同的余弦波,持续宽度 相同。底下的两条是沿 着轴向频率和位置都不 相同的小波。最古老又 最简单的小波 -Haar小 波 ,它的基向量都是由 一个函数通过平移和伸 缩来产生的。
.
第七章 频域处理
生动的例子:小波和音乐
乐谱可以看作描绘了一个二维的时频空间。频率(音高)从层次的底部向上 增加,而时间(以节拍来测度)则向右发展。乐章中每一个音符都对应于一 个将出现在这首歌的演出记录中的小波分量(音调猝发)。每一个小波持续 宽度都由音符(为四分之一音符、半音符等)的类型来编码。
该式表示小波变换是信号f(x)与被缩放和平移的小波函数ψ() 之积在信号存在的整个期间里求和的结果。CWT的变换结果是许 多小波系数C,这些系数是缩放因子(scale)和平移(positon) 的函数。
.
第七章 频域处理
基本小波函数ψ()的缩放和平移操作含义如下:
(1) 缩放——压缩或伸展基本小波, 缩放系数越小, 则小 波越窄,如图所示。
.
第七章 频域处理
2. 离散小波变换 ( Discrete Wavelet Transform ,DWT)
如果缩放因子和平移参数都选择为2j(j>0且为整数)的倍 数, 即只选择部分缩放因子和平移参数来进行计算,会使分析 的数据量大大减少。使用这样的缩放因子和平移参数的小波变 换称为双尺度小波变换(Dyadic Wavelet Transform),它是离 散小波变换(Discrete Wavelet Transform, DWT)的一种形式。 通常离散小波变换就是指双尺度小波变换。
.
第七章 频域处理
离散小波变换的有效方法是使用滤波器, 该方法是Mallat 于1988年提出的,称为Mallat算法。
第七章 频域处理
波和小波-波与小波之间的差异
上部两条曲线是频率不 同的余弦波,持续宽度 相同。底下的两条是沿 着轴向频率和位置都不 相同的小波。最古老又 最简单的小波 -Haar小 波 ,它的基向量都是由 一个函数通过平移和伸 缩来产生的。
.
第七章 频域处理
生动的例子:小波和音乐
乐谱可以看作描绘了一个二维的时频空间。频率(音高)从层次的底部向上 增加,而时间(以节拍来测度)则向右发展。乐章中每一个音符都对应于一 个将出现在这首歌的演出记录中的小波分量(音调猝发)。每一个小波持续 宽度都由音符(为四分之一音符、半音符等)的类型来编码。
该式表示小波变换是信号f(x)与被缩放和平移的小波函数ψ() 之积在信号存在的整个期间里求和的结果。CWT的变换结果是许 多小波系数C,这些系数是缩放因子(scale)和平移(positon) 的函数。
.
第七章 频域处理
基本小波函数ψ()的缩放和平移操作含义如下:
(1) 缩放——压缩或伸展基本小波, 缩放系数越小, 则小 波越窄,如图所示。
.
第七章 频域处理
2. 离散小波变换 ( Discrete Wavelet Transform ,DWT)
如果缩放因子和平移参数都选择为2j(j>0且为整数)的倍 数, 即只选择部分缩放因子和平移参数来进行计算,会使分析 的数据量大大减少。使用这样的缩放因子和平移参数的小波变 换称为双尺度小波变换(Dyadic Wavelet Transform),它是离 散小波变换(Discrete Wavelet Transform, DWT)的一种形式。 通常离散小波变换就是指双尺度小波变换。
.
第七章 频域处理
离散小波变换的有效方法是使用滤波器, 该方法是Mallat 于1988年提出的,称为Mallat算法。
小波变换及应用(图像压缩)ppt课件
小波变换及应用 (图像压缩)
小波分析因为同时具有好的空间分辨率和好的 频率分辨率,特别适于分析非稳态信号。自然 图像正具有这种非稳态特性,可以看作是能量 空间集中(图像边沿和细节)和频率集中(图 像的平缓变化部分)信号的线性组合[8]。因此, 使用小波分析进行图像压缩可以取得很好的效 果。
基于小波的图像压缩思想来源
E m b e d d e d意 即 编 码 器 可 以 在 任 一 希 望 速 率 上 停 止 编 码 。 同 样 , 解 码 器 可 在 码 流 的 任 一 点 截 断 码 流 , 停 止 解 码 。 优 点 : 不 需 要 图 像 预 先 知 识 , 不 用 存 储 其 码 表 , 和 不 用 训 练 。
2级2-D DWT的上式计算,可由下框图实现:
N
列
N N N
N
4
4
NLeabharlann H(Z)22 2 2 2
a n ,n 2( 1 2)
1 d n 2( 1,n 2)
2 d2 (n 1,n 2)
列
H(Z)
行
2 2 2 2
N 2 N
G(Z )
a n ,n 1( 1 2)
H(Z)
G(Z )
2 2
H(Z)
G(Z )
和 好 的 频 时 在 频 率 的 作 用 。
( n , n ) ( n ) ( n ) 若2-D滤波器 (n 可分解为 ,则 1,n 2) 1 2 1 1 2 2 1, n 2)为一个近似 可分的2-D DWT,将分解近似图象ai (n 图象和3个细节图象,即:
ai 1 (n1 , n2 ) h(k1 )h(k2 )ai (2n1 k1 ,2n2 k2 )
2 i 1 k1 0 k 2 0 L 1 L 1
小波分析因为同时具有好的空间分辨率和好的 频率分辨率,特别适于分析非稳态信号。自然 图像正具有这种非稳态特性,可以看作是能量 空间集中(图像边沿和细节)和频率集中(图 像的平缓变化部分)信号的线性组合[8]。因此, 使用小波分析进行图像压缩可以取得很好的效 果。
基于小波的图像压缩思想来源
E m b e d d e d意 即 编 码 器 可 以 在 任 一 希 望 速 率 上 停 止 编 码 。 同 样 , 解 码 器 可 在 码 流 的 任 一 点 截 断 码 流 , 停 止 解 码 。 优 点 : 不 需 要 图 像 预 先 知 识 , 不 用 存 储 其 码 表 , 和 不 用 训 练 。
2级2-D DWT的上式计算,可由下框图实现:
N
列
N N N
N
4
4
NLeabharlann H(Z)22 2 2 2
a n ,n 2( 1 2)
1 d n 2( 1,n 2)
2 d2 (n 1,n 2)
列
H(Z)
行
2 2 2 2
N 2 N
G(Z )
a n ,n 1( 1 2)
H(Z)
G(Z )
2 2
H(Z)
G(Z )
和 好 的 频 时 在 频 率 的 作 用 。
( n , n ) ( n ) ( n ) 若2-D滤波器 (n 可分解为 ,则 1,n 2) 1 2 1 1 2 2 1, n 2)为一个近似 可分的2-D DWT,将分解近似图象ai (n 图象和3个细节图象,即:
ai 1 (n1 , n2 ) h(k1 )h(k2 )ai (2n1 k1 ,2n2 k2 )
2 i 1 k1 0 k 2 0 L 1 L 1
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
2.2.1 连续小波变换
如果函数 x满足以下容许性条件:
2
C d
则称 x为一容许性小波,并定义如下的积分变
换:
W fa ,b a 1 2fx xa b d,fx x L 2R 以上积分变换为 f x以 x为母小波的积分连
续小波变换,a为尺度因子,表示与频率相关的伸缩,
b为时间平移因子。
2 -1/2
2
1/
2
c
os
2
v 3 2
1
0
2 3
2 4
3
3
4 3
(3)其他常用小波
① Daubechies(dbN)小波系 ② Biorthogonal(biorNr.Nd)小波系 ③ Symlets(symN)小波系 ④ Morlet(morl)小波 ⑤ Coiflet(CoifN)小波系
1 0 x 1/ 2
H 1 1/ 2 x 1
0 其他
(2)Meyer函数
Meyer小波函数 和尺度函数都是在频域中进
行定义的,是具有紧支撑的正交小波。
2
e -1/2 j/2
sin2v23
1
2 4
3
3
2-1/2ej/2
cos2v23
1
4 8
3
3
0 [2,8]
33
其中,va为构造函数Meyer的辅助函数,且有:
如果我们有一个无限长的窗口,然后做傅里叶变换, 会得到完美的频率分辨率,但是结果中不包含时间 信息。更进一步为了获得信号的平稳性,我们需要 一个宽度足够短的窗函数,窗口越短,时间分辨率 越高,信号的稳定性越高,但是频率分辨率却越来 越低。
窄窗=高时间分辨率,低频率分辨率 宽窗=高频率分辨率,低时间分辨率
13
2.2.2离散小波变换
W fa ,b f t,a ,b t
将a,b离散化,令 a2j,b2jk,j,k Z ,可以得 到离散小波变换:
D fW j ,k ft ,j,k t
其中:
j
j,kt222jtk, j,kZ
2.3 几种常用小波
(1) Haar小波 A.Haar于1990年提出一种正交函数系,定义如下:
1.2STFT
STFT: ST X ()(F t,f)T [x (t)• (t t')• ]e j2 fd t t
t
STFT只不过是对乘了一个窗函数的信号做傅里叶变换, 以此得到在某段时间内的频率信息。 根据海森堡测不准原理,在STFT中由于窗口长度有限, 它仅仅覆盖了信号的一部分,因此导致频率分辨率较 差,即我们不能确切的知道信号中那些频率分量存在, 只知道那些频段的分量存在。
co 2 fs)t(jsi2 n f)(t
即信号是由一些不同频率的正弦项叠加起来的, 如果信号中频率为f的分量幅度较大,那么这个分量就 和正弦项重叠,他们的即就比较大,这表明信号有一 个频率为f的主要分量。
信号一 cos(2*pi*10*t)+cos(2*pi*25*t)+cos(2*pi*100*t)+ cos(2*pi*50*t)
11
小波的发展历史——工程到数学
1988: Inrid Daubechies作为小波的创始人,揭示了小 波变换和滤波器组(filter banks)之间的内在关系,使离 散小波分析变成为现实 Ronald Coifman和Victor Wickerhauser等著名科学家在 把小波理论引入到工程应用方面做出了极其重要贡献 在信号处理领域中,自从Inrid Daubechies完善了小波 变换的数学理论和Stephane Mallat构造了小波分解和重 构的快速算法后,小波变换在各个工程领域中得到了 广泛的应用,典型的如语音信号处理、医学信号处理、 图像信息处理等
2.4 塔式算法
(1) 信号在小波空间的展开为:
ft fW j ft,j,k tj,k t
jห้องสมุดไป่ตู้Z ,k Z
j Z k Z
(2)小波分解算法 使用多分辨析的金字塔算法:
f t f t ,j , k t j , k t f t ,j , k t j , k t
小波变换原理与应用
专业:xxx 姓名:
2016年3月26号
1
为什么需要要对信号进行变换
原始信号有一些信息是很难获取的,为了获得更多的 信息,我们需要对原始信号进行数学变换。从而获得 更多的信息。例如生活中常见的心电图,在心电图的 时域信号中一般很难找到这些病情,所以心脏病专家 一般用记录在磁带上的时域心电图来分析心电信号, 从而确定病症是否存在。
信号二
对上面两个信号进行FT后得到的频域图 信号一
由于这个信 号的频率分 量一直保持 不变,我们 将此类信号 称之为平稳 信号
信号二
非平稳信号
由上面两个频域图可以看出傅里叶变换只能给出信 号的频谱分量,而无法给出相应的频谱分量的出现时间 ,当我们想知道频率分量出现的确切时间时,傅里叶变 换对于非平稳信号是不合适的。而且现实中几乎所有的 生物信号都是非平稳的。那么我们应该怎样将时间信息 加到频率图中去呢?这时我们可以考虑将部分非平稳信 号看成平稳信号。
加窄窗之后对应的 STFT,可见有较好 的时间分辨率,但 是频率分辨率很差。
加较宽窗之后对应 的STFT,可见有较 好的频率分辨率, 但是时间分辨率很 差。
2.1 小波的发展历史——工程到数学
1807: Joseph Fourier——FT,只有频率分辨率而没有时 间分辨率 1909: Alfred Haar——发现了Haar小波 1945: Gabor——STFT 1980:Morlet——Morlet小波,并分别与20世纪70年代 提出了小波变换的概念,20世纪80年代开发出了连续 小波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解 和重构算法)
主要内容 一、FT和STFT 二、小波变换 三、小波变换在图像处理中的应用
3
1.1 傅里叶变换(FT)
FT:S(f)s(t)ej2fd t t
IFT:s(t) S(f)ej2fd t f
通过上述FT公式可以发现,信号的频域是一些指数 项的累加和,每个指数项对应特定的频率,然后在整个 时域整合起来。其中指数项可以用以下的表达式表示:
2.2.1 连续小波变换
如果函数 x满足以下容许性条件:
2
C d
则称 x为一容许性小波,并定义如下的积分变
换:
W fa ,b a 1 2fx xa b d,fx x L 2R 以上积分变换为 f x以 x为母小波的积分连
续小波变换,a为尺度因子,表示与频率相关的伸缩,
b为时间平移因子。
2 -1/2
2
1/
2
c
os
2
v 3 2
1
0
2 3
2 4
3
3
4 3
(3)其他常用小波
① Daubechies(dbN)小波系 ② Biorthogonal(biorNr.Nd)小波系 ③ Symlets(symN)小波系 ④ Morlet(morl)小波 ⑤ Coiflet(CoifN)小波系
1 0 x 1/ 2
H 1 1/ 2 x 1
0 其他
(2)Meyer函数
Meyer小波函数 和尺度函数都是在频域中进
行定义的,是具有紧支撑的正交小波。
2
e -1/2 j/2
sin2v23
1
2 4
3
3
2-1/2ej/2
cos2v23
1
4 8
3
3
0 [2,8]
33
其中,va为构造函数Meyer的辅助函数,且有:
如果我们有一个无限长的窗口,然后做傅里叶变换, 会得到完美的频率分辨率,但是结果中不包含时间 信息。更进一步为了获得信号的平稳性,我们需要 一个宽度足够短的窗函数,窗口越短,时间分辨率 越高,信号的稳定性越高,但是频率分辨率却越来 越低。
窄窗=高时间分辨率,低频率分辨率 宽窗=高频率分辨率,低时间分辨率
13
2.2.2离散小波变换
W fa ,b f t,a ,b t
将a,b离散化,令 a2j,b2jk,j,k Z ,可以得 到离散小波变换:
D fW j ,k ft ,j,k t
其中:
j
j,kt222jtk, j,kZ
2.3 几种常用小波
(1) Haar小波 A.Haar于1990年提出一种正交函数系,定义如下:
1.2STFT
STFT: ST X ()(F t,f)T [x (t)• (t t')• ]e j2 fd t t
t
STFT只不过是对乘了一个窗函数的信号做傅里叶变换, 以此得到在某段时间内的频率信息。 根据海森堡测不准原理,在STFT中由于窗口长度有限, 它仅仅覆盖了信号的一部分,因此导致频率分辨率较 差,即我们不能确切的知道信号中那些频率分量存在, 只知道那些频段的分量存在。
co 2 fs)t(jsi2 n f)(t
即信号是由一些不同频率的正弦项叠加起来的, 如果信号中频率为f的分量幅度较大,那么这个分量就 和正弦项重叠,他们的即就比较大,这表明信号有一 个频率为f的主要分量。
信号一 cos(2*pi*10*t)+cos(2*pi*25*t)+cos(2*pi*100*t)+ cos(2*pi*50*t)
11
小波的发展历史——工程到数学
1988: Inrid Daubechies作为小波的创始人,揭示了小 波变换和滤波器组(filter banks)之间的内在关系,使离 散小波分析变成为现实 Ronald Coifman和Victor Wickerhauser等著名科学家在 把小波理论引入到工程应用方面做出了极其重要贡献 在信号处理领域中,自从Inrid Daubechies完善了小波 变换的数学理论和Stephane Mallat构造了小波分解和重 构的快速算法后,小波变换在各个工程领域中得到了 广泛的应用,典型的如语音信号处理、医学信号处理、 图像信息处理等
2.4 塔式算法
(1) 信号在小波空间的展开为:
ft fW j ft,j,k tj,k t
jห้องสมุดไป่ตู้Z ,k Z
j Z k Z
(2)小波分解算法 使用多分辨析的金字塔算法:
f t f t ,j , k t j , k t f t ,j , k t j , k t
小波变换原理与应用
专业:xxx 姓名:
2016年3月26号
1
为什么需要要对信号进行变换
原始信号有一些信息是很难获取的,为了获得更多的 信息,我们需要对原始信号进行数学变换。从而获得 更多的信息。例如生活中常见的心电图,在心电图的 时域信号中一般很难找到这些病情,所以心脏病专家 一般用记录在磁带上的时域心电图来分析心电信号, 从而确定病症是否存在。
信号二
对上面两个信号进行FT后得到的频域图 信号一
由于这个信 号的频率分 量一直保持 不变,我们 将此类信号 称之为平稳 信号
信号二
非平稳信号
由上面两个频域图可以看出傅里叶变换只能给出信 号的频谱分量,而无法给出相应的频谱分量的出现时间 ,当我们想知道频率分量出现的确切时间时,傅里叶变 换对于非平稳信号是不合适的。而且现实中几乎所有的 生物信号都是非平稳的。那么我们应该怎样将时间信息 加到频率图中去呢?这时我们可以考虑将部分非平稳信 号看成平稳信号。
加窄窗之后对应的 STFT,可见有较好 的时间分辨率,但 是频率分辨率很差。
加较宽窗之后对应 的STFT,可见有较 好的频率分辨率, 但是时间分辨率很 差。
2.1 小波的发展历史——工程到数学
1807: Joseph Fourier——FT,只有频率分辨率而没有时 间分辨率 1909: Alfred Haar——发现了Haar小波 1945: Gabor——STFT 1980:Morlet——Morlet小波,并分别与20世纪70年代 提出了小波变换的概念,20世纪80年代开发出了连续 小波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解 和重构算法)
主要内容 一、FT和STFT 二、小波变换 三、小波变换在图像处理中的应用
3
1.1 傅里叶变换(FT)
FT:S(f)s(t)ej2fd t t
IFT:s(t) S(f)ej2fd t f
通过上述FT公式可以发现,信号的频域是一些指数 项的累加和,每个指数项对应特定的频率,然后在整个 时域整合起来。其中指数项可以用以下的表达式表示: