水声学原理
水声学原理:第1章 与声学相关的海洋特性
1.1 声学介质—海洋
• 声速剖面
– 表面声信道 • 表面声道可以看作声道轴上移到水面,通常出现在 热带和温和区域(tropical and moderate zones)。
水声学原理
22
1.1 声学介质—海洋
• 声速剖面
– 表面声信道 • 在南极和北极地区、热带海区的地中海、秋季和冬 季的浅海,声速持续增大并非常靠近海底。 • 北冰洋典型声速剖面如下图所示。表面层较薄、声 速最低,声速梯度大,为
水声学原理
15
1.1 声学介质—海洋
• 声速剖面
– 深海声信道 • 黑海与波罗的海,有时声道轴之下声速的增加是由 于深层暖流所引起的温度随深度的升高。 • 如果声道轴以下介质的声速只受静压力控制,则该 声信道称为hydrostatical。 • 如果声道轴以下由于高盐度暖水团的出现导致声速 升高,则称该声信道为thermal。 • 典型的thermal水下声信道发生在波罗的海和黑海。
水声学原理
a (4 5) 10 5 m1
23
1.1 声学介质—海洋
• 声速剖面
– 双轴声信道 • 表面声道和深海声道同时存在时出现这种声道。 • 声线1保持在表面声道中传播;声线2主要在深海声 道中传播;
水声学原理
24
1.1 声学介质—海洋
• 声速剖面
– 双轴声信道 • 双轴声道可在葡萄牙半岛沿岸的北大西洋中观测到。 上面的声轴深度在450-500m,底下的声轴深度在 2000m。此声速分布的形成是由于地中海高盐暖水 团入侵至大西洋1200m深水层的缘故。
k~
c~
c
(1 ix)
kr
iki
水声学原理
x ki / kr
水声学原理 (2)
水声学underwater acoustics简史水声换能器和参量阵水声换能器水声换能器的进展水声参量阵声波在海洋中的传播和声场数值预报传播损失水下声道理论方法深海中的声传播浅海中的声传播声场数值预报水声场的背景干扰噪声海洋中的混响信号场的起伏和散射海面波浪引起的声起伏湍流引起的声起伏内波引起的声起伏目标反射和舰船辐射噪声水下目标反射舰船辐射噪声水声信号处理-声学的一个分支学科。
它主要研究声波在水下的产生、传播和接收,用以解决与水下目标探测和信息传输过程有关的声学问题。
声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。
简史1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。
1912年“巨人”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。
美国的R.A.费森登设计制造了电动式水声换能器(500~1000Hz),1914年就能探测到2海里远的冰山。
1918年,P.朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。
随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。
第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。
同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷,主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅海底地层剖面仪,水声释放器以及水声遥测、控制器等。
水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。
水声学
用于辨别水下地形以及处在明处的水面舰艇或敌方潜 艇,相当于潜艇的耳朵,工作原理是利用灵敏的接收 系统来收集环境中的声音,分辨出声音的出处和具体 声源。
主动声纳例子:
被动声纳:
换能器(声能-----电能)
2. 水声的产生
3. 水下声音的传播(1来自. 扩散定律(2)吸收
(3)扩散和吸收的损失
4. 声速随水深的变化
1、声速(soundspeed):是温、盐和压的函数 2、声速与温、盐、压关系 1)与温度关系:随温度升高而增大,温度升高1摄氏度
声速的变化是原来的35%,设C=1450m/s,则声速将增 大5m/s。 2)与盐度关系:随盐度增加而增大,盐度增加1,声速 值增加1.14m/s。 3)与压力关系:静压力增加,声速值增加。海水深度 变化100m,声速增量为1.75m/s。 由上可见,声波在水下传播随温、盐、压的增大而增 大其中温度影响最显著,其次是压力,通常盐度的变 化多忽略,除非极特殊海区
5. 水声学应用
(1)水下地震探测
(2)海底石油及地形
1. 水声学基础
平面波的声压与粒子速度关系:
1. 声纳方程
主动声呐:与被动声纳相反,利用声纳系统发出超声
波,类似于蝙蝠和海豚,声波遇到海水以外的物体会 反射,被接收器接收后分析,搜索范围与灵敏度远高 于被动声呐,可用于搜索探测远距离的船只、海底底 地形、甚至是处在停车状态下的潜艇,但发出的探索 声波很容易被敌方反侦系统发现而暴露自己,一般是 在围剿敌方潜艇或探索海底地形时使用。
水声学原理第一章2
College of Underwater Acoustic Engineering
15
海面混响
海面混响的理论处理 类似体积混响的理论处理,对混响有贡献的散射 声强:
I scat I 0SV
1 b( , )b( , )dV 4 r
提示:只有工作在近海面的声纳才可能受到海面混响 的严重干扰,因此可假设 R h , r h , cos 0 , r H 在上述假设条件下,收发换能器垂直指向性不起 作用,只有水平指向性才起作用,这样散射面近似在 平面内,所以有:
College of Underwater Acoustic Engineering
18
海面混响
海面混响的理论处理 海面混响等效平面波混响级 1)若散射层内 SV 是均匀的,则 SV 10 lg H 恰好 就是界面散射强度 S s ;则海面混响的等效平面 波混响级表达式: c RL SL Ss 40 lg r 10 lg r
tan 4 5 A 2 ( ) Ss 10 lg 2 32 g
60
提示:不涉及风速、声波频率,不符合海面散射 的实际物理过程。
College of Underwater Acoustic Engineering
24
海面混响
关于海面散射的理论 用粗糙度、波长和角度描述
10
海水中气泡的声学特性
单个气泡的散射截面、吸收截面和消声截面 以上两式表明:声波频率与散射功率、散射截面 有关; 当 f f 0 时,气泡处于共振状态,散射功率、 散射截面达到最大,分别为:
(Ws ) max
水声学原理
e
jk
r r
dS
2
r r
S
College of Underwater Acoustic Engineering
10
轴线上声压变化
注意:轴线声压随距离起伏变化,呈现很强的相干效应。
远场声压
pr
,
, t
j
k0cu a a 2
2r
2
J1 ka sin
kasin
e
j
t
kr
注意:活塞远场声压与球面 波一样与距离成反比,声场 具有方向性。
12
方向性因子和方向性指数
R
k
2a2
1
2 J1 2k
2k a
a
1
DI T
20 lgka
20
lg
2a
College of Underwater Acoustic Engineering
13
4、声波的接收方向特性
接收方向性函数
定义:设离接收系统参考中心的远场处球面上有一点源, 接收系统的输出电压V与接收中心的方位有关,则接收 系统方向性函数为:
L
3dB
2 arcsin 0.42
L
College of Underwater Acoustic Engineering
8
注意:连续直线阵永远不会出现栅瓣。
方向性因子:
R
2
D 2 cosd
2
kL 2sin kL 4 cos kL
0
kL kL
kL3
R 2L
和方向性函数: DI T
10 lg 2L
-3dB束宽:由主极大的幅值下降0.707倍处两边的夹角 或半功率辐射点之间的夹角。
(完整版)水声学原理(第一章)
参考值
10
1.6.2声压级等于声强级:
L I
10 log
I I
0
10
log
p2
c
p2 0
c
20 log
p p
0
L
p
注意参考值不同产生的声级差别:
1971年以前曾用: =20μPa=2×10-4达因/厘米2,换算到现在标准要加26分贝。 =1 达因/厘米2=1μb(微巴)=10-5μPa,换算到现在的标准 要加100分贝。
水声技术的成果突出反映在两个方面 1、声呐性能的不断提高:探测距离原来越远、对目标的定位、跟踪能力越来越强 2、应用声自导或声引信的水中兵器(鱼雷、水雷、深水炸弹等)的作战能力不断 提高。
因此,现代舰艇在水下面临的威胁与水声技术的水平有直接的关系。声隐身 性能是潜艇水下隐蔽性的核心。
4
1.4、水声技术的发展历史
声学中采用分贝计量的原因: ❖声学量的变化大到六、七个数量级以上
▪ 从窃窃私语到大型喷气式飞机起飞的声功率差十个数量级; ▪ 人耳的听阈在频率1kHz时是20μPa(微帕),痛阈是20Pa, 相差六个数量级; ▪ 在水中,一艘老式潜艇的辐射总声功率达到数瓦,而新型的 低噪声潜艇不到1微瓦,相差六、七个数量级。 ❖人耳(仪器)的响应近似与声压或声强的对数成比例。
5
1.5 声呐简介
声呐(声纳)-SONAR(Sound Navigation and Ranging)
凡是利用水下声信息进行探测、识别、定位、导航和通讯的系统,都通称为声呐系 统。声呐的主要应用是军用声呐。按工作方式可以分为:主动声呐和被动声呐。 按安装平台分可以分为: ❖潜艇声呐:潜艇上的电子设备是声呐。一般核潜艇装有10~15部声呐。主要有: 艏部主、被动综合声呐;被动测距声呐;舷侧阵声呐;拖曳线列阵声呐。 ❖水面舰声呐:舰艏声呐;变深拖曳声呐;拖曳线列阵声呐。 ❖机载声呐和浮标:吊放声呐;声呐浮标。 ❖海洋水声监视系统:岸站(岸边海底固定式声呐);预警系统 ❖水声对抗器材:鱼雷报警声呐;声诱饵;干扰器;气幕弹 ❖水中兵器自导:鱼雷声自导;水雷声引信; ❖其它:通讯仪、鱼探仪、多普勒测速仪、浅地层剖面仪等。
水声学原理ppt 第一章
n 1 jk cQ j t k r jk s di in p r , , t 0 0 e e 4 r i 0
e
jkdi sin
当 0 (垂直 OX轴方向)时,各点源同相叠加,合成声压最大:
jk cnQ t k r 0 0 j p r ,0 ,t e 4 r
sin i 当 d 时, 声压振幅出现极大值1, 对应极大值的方向: i arcsin
d
d i i 0 , 1 ,
2019/2/16 第一章 声学基础 9
2、等间距均匀点源离散直线阵的声辐射
其中,i 0 对应的方向为主极大值方向(主瓣); i 1 对应的方向为第一副极大值方向(栅瓣), 依此类推。 注意:不出现副极大值的条件 d 当 大值(旁瓣),对应次极大值的方向:
22 k a ka F c 2 2S j c 2 2S u r a 1 k a 1 k a
k r c k r i k r 0 Z c i c e Rj X 0 0 2 2 2 1 k r 1 k r 1 k r
第一章 声学基础
第二讲 主要内容
1. 均匀脉动球源的声辐射(了解) 2. 等间距均匀点源离散直线阵的声辐射 (重点) 3. 均匀连续直线阵的声辐射(了解)
4. 无限大障板上平面辐射器的声辐射 (了解) 5. 声波的接收方向特性(重点)
2019/2/16 第一章 声学基础 1
1、均匀脉动球源的声辐射
1 ka
j( exp a ka )
令
Q4 au a 0
2
1、均匀脉动球源的声辐射
水声学原理
水声学原理
水声学原理是研究声波在水中传播和声学现象的学科。
在水中,声波的传播速度较大气中要快约1500米/秒。
这是因为水的密
度和弹性模量高于空气,因此声波在水中的传播速度更快。
另外,水声学研究还探究音频信号在水中反射、折射、散射和吸收等现象。
声波在水中的传播遵循一些基本的原理。
当声源产生声波时,波源会向外释放能量,并使水质点发生膨胀和压缩,形成一个声压波。
这个声压波以固定的速度传播,并遵循波动方程。
根据波长和频率的关系,可以得出声波在水中的传播速度。
声波在水中传播时,会遇到不同的介质界面,如水面、海底和不同密度的水层。
当声波遇到界面时,会发生反射、折射和散射等现象。
反射是指波向原来的方向反弹回去,折射是指波在入射介质和出射介质之间发生偏折,散射是指波在遇到界面或障碍物时发生的辐射改变方向的现象。
这些现象对声波的传播方向和强度会产生影响。
在水声学中,还研究声波在水中的吸收现象。
水分子对声波会吸收部分能量,并将其转化为热能。
声波的频率越高,吸收现象越明显。
这种吸收现象是水中声能衰减的主要原因之一。
水声学原理的研究对于海洋声学、声纳技术、水下通信等领域都具有重要的应用价值。
通过深入理解和探索水声学原理,可以改进和优化水下声波传播系统,提高其性能和效率。
海洋声学基础——水声学原理-吴立新
海洋声学基础——水声学原理绪论各种能量形式中,声传播性能最好。
在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。
声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。
§0-1节水声学简史01490年,意大利达芬奇利用插入水中长管而听到航船声记载。
11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。
21840年焦耳发现磁致伸缩效应1880年居里发现压电效应31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。
4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。
(200米外装甲板,1500米远潜艇)5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。
(二战中被击沉潜艇,60%靠的是声呐设备)6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。
对海中声传播机理的认识是二次大战间取得的最大成就。
7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。
81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质影响声传播的介质模型。
2、1946年,Bergman提出声场求解的射线理论。
3、1948年,Perkeris应用简正波理论解声波导传播问题。
4、50-60年代,完善了上述模型(利用计算技术)。
5、1966年,Tolstor 和Clay 提出声场计算中在确定性背景结构中应计入随机海洋介质的必要性。
§0-2 节 水声学的研究对象及任务1、 水声学:它是声学的一个重要分支,它基于四十年代反潜战争的需要,在经典声学的基础上吸收雷达技术及其它科学成就而发展起来的综合性尖端科学技术。
水声学原理(第一章)(课件)
0
0
应当指出的是,虽然结构噪声级与振动级的定义相同, 但实际测量和评价方法有区别的。因为结构噪声要反映 连续弹性体的振动特性,所以用一个点的振动级是无法 描述的。通常要用结构的整个辐射面上大量测点的统计 平均来描述。
英国、法国联合研制的 舷侧阵声呐TSM2253
美国Lockheed Martin 公司研制的被动测距声 呐PUFFS
英国、法国联合研制的 投吊声呐
德国ATLAS公司研制 的拖曳线列阵 8
1.6 声学量的度量、分贝和级
声学中采用分贝计量的原因:
声学量的变化大到六、七个数量级以上 从窃窃私语到大型喷气式飞机起飞的声功率差十个数量级; 人耳的听阈在频率1kHz时是20μ Pa(微帕),痛阈是20Pa, 相差六个数量级; 在水中,一艘老式潜艇的辐射总声功率达到数瓦,而新型的 低噪声潜艇不到1微瓦,相差六、七个数量级。 人耳(仪器)的响应近似与声压或声强的对数成比例。
其它物理场:磁场、水压场、尾流场、温度场,也是可以检测,但可检测距离大
致与源本身尺度同一量级,不能在水中远距离传递信息。
2
1.2、声呐与雷达的异同
声呐与雷达的工作原理相似。但由于信息载体-声波与电磁波的差异决定了 声呐和雷达有重要差别。
a.电磁波速度30万公里/秒,声波在水中1.5公里/秒。决定: •工作频率差别大。雷达频率约GHz( 1 0 •分辨率差。声图象模糊。
统。声呐的主要应用是军用声呐。按工作方式可以分为:主动声呐和被动声呐。 按安装平台分可以分为:
潜艇声呐:潜艇上的电子设备是声呐。一般核潜艇装有10~15部声呐。主要有: 艏部主、被动综合声呐;被动测距声呐;舷侧阵声呐;拖曳线列阵声呐。
水面舰声呐:舰艏声呐;变深拖曳声呐;拖曳线列阵声呐。
水声学原理:第2章 海洋中声场的基本理论
哈尔滨工程大学
水声学原理
14
硕士学位课程
2.1 海洋中声场的射线理论
• 三维折射
– 当介质的折射率是三维坐标的函数时,声线将不能保 持在同一个平面内。
– 在海洋声学中,当分析内波对声场的影响时将会遇到 三维折射的情形。
– 在研究距离有关(Range-dependent)海洋中声波远 距离传播时也会遇到相同情况。
哈尔滨工程大学
水声学原理
26
硕士学位课程
2.1 海洋中声场的射线理论
• 海洋声层析(Ocean Acoustic Tomography)
– 海洋的变化特性对海洋气候、地球的天气都有显著的 影响,显著改变了声场的层状结构、导致了声信号的 起伏、扰动了声线路径。
– 从调查船和卫星获取的水团特征信息也是非常丰富的, 但尽管如此,这对实际生产来说还不够充分,因为目 前所获取的信息仍然只是海面和海面表层的信息。
(2A • W
A 2W
)
k
2 0
A[n 2
(W )2 ]
0
– 当声波频率足够高时,由上式可得程函方程和输运方 程(transport equation)
(W )2 n2
2A • W A2W 0
哈尔滨工程大学
水声学原理
16
硕士学位课程
2.1 海洋中声场的射线理论
• 三维折射
– 程函方程:
• 定义了声线几何坐标,声线垂直于等相位面
– 从某个距离开始,c 将超过海底的声速,在这种情况下,
声线将在海底发生反射。在远距离声传播中,由于这
种声线在海底的多次反射导致了较大的总声功率损失
哈尔滨工程或大者学 高吸收海底情况1 海洋中声场的射线理论
水声学原理第四章ppt课件
声速分布分类
深海声道典型声速分布 表面声道声速分布 反声道声速分布 常见浅海声速分布
声波传播强度衰减的原因
几何扩展 吸收 散射
College of Underwater Acoustic Engineering
1
扩展损失的一般形式
均匀介质的声吸收类型
切变粘滞吸收 热传导吸收 弛豫吸收
液态海底或同一种介质内部密度或声速发生突变
p p
s0
s0
1
p n
s0
1
p n
s0
关于连续的解释:
若压力不连续,质量加速度趋于无穷的不合理现象;
若法向振速不连续,边界上出现介质“真空”或“聚集”
不合理现象。
注意:上述边界条件只限制波动方程一般解(通解)在边 界上的取值
College of Underwater Acoustic Engineering
2 p k 2x , y , zp 0
介质中有外力 F 作用
1)密度不等于常数 2 K 2x , y , z F /
2)密度等于常数
2 k2x , y , z F /
2 p k 2 x , y , zp F
说明:上述赫姆霍茨方程是变系数的偏微分
方程——泛定方程
College of Underwater Acoustic Engineering
17
根据正交归一化条件 :
H
0
Zm
z
Zn
z
dz
1
An 2 H
硬底均匀浅海本征函数 :Zn z
方程②的解:
2 H
sin kznz
Rn
r
jZ
n
水声学原理第一章 ppt课件
2
水声学原理第一章
声呐与雷达的工作原理相似。但由于信息载体-声波与电磁波的差异决定了 声呐和雷达有重要差别。
a.电磁波速度30万公里/秒,声波在水中1.5公里/秒。决定:
•工作频率差别大。雷达频率约GHz( 1 0 9 Hz) 声呐频率约kHz( 1 0 3 Hz)
1490年 达芬奇就提出声纳的原始概念 泰坦尼克号的沉没,开始最初的声纳设计 第一次世界ቤተ መጻሕፍቲ ባይዱ战的爆发促进了一系列军用声纳的发展(值得一提的 是郎之万在换能器上的贡献,并测得了水中1500米外潜艇回波) 一战和二战之间水声工程一直缓慢而稳步发展,最大的成就是对海 洋声传播机理的认识。(如“下午效应”现象的解释) 二战期间为了探测德国潜艇,水声工程有了很大发展,出现了大量 新的理论和技术 战后水声工程随着计算机和电子计算发展,水声工程的应用在军用 、民用领域更为广泛。
1012米。
应当指出的是,虽然结构噪声级与振动级的定义相同, 但实际测量和评价方法有区别的。因为结构噪声要反映 连续弹性体的振动特性,所以用一个点的振动级是无法 描述的。通常要用结构的整个辐射面上大量测点的统计 平均来描述。
12
水声学原理第一章
物理量的乘除运算变成加减运算。
例如在声学测量中,用灵敏度等于S 伏/μPa的水听器接收,经 过放大倍数等于K的放大器放大后得到电压V伏。水听器输入端的声压
注意参考值不同产生的声级差别:
1971年以前曾用: =20μPa=2×10-4达因/厘米2,换算到现在标准要加26分贝。 =1 达因/厘米2=1μb(微巴)=10-5μPa,换算到现在的标准 要加100分贝。
俄罗斯标准=20μPa 由于空气声和水声参考值的不同,舱室内声级为L分贝的噪声若 无损耗地传到水下将变成L+26分贝的水噪声。
水声学原理第一章
1.8 组合声纳参数
回 声 余 量 : SL-2TL+TS- ( NLDI+DT)——主动声纳回声级超过噪声 掩蔽级的数量; 优质因数:SL-(NL-DI+DT)——对 于被动声纳,该量规定最大允许单程传 播损失;对于主动声纳,当TS=0时,该 量规定了最大允许双程传播损失; 品质因数:SL-(NL-DI)——声纳接收 换能器测得的声源级与噪声级之差
sin(L / sin ) L / sin
2
20
7、检测阈DT (Detection Threshold)
声纳设备接收器接收声纳信号和背景噪声,两部分的 比值即接收带宽内的信号功率或均方电压与1Hz带宽 内(或接收带宽)的噪声功率或均方电压的比,它影 响设备的工作质量,比值越高,设备就能正常工作, “判决”就越可信。 检测阈DT是设备刚好能正常工作所需的处理器输入端 的信噪比值 定义: DT 10 lg
主动声纳方程(混响背景): SL-2TL+TS-RL=DT Caution:适用于收发合置型声纳,对于收发 分置声纳,往返传播损失不能简单用2TL表示; 适用于背景干扰为混响的情况。
25
3、被动声纳方程
与主动声纳相比,被动声纳特点:
噪声源发出的噪声直接由噪声源传播至接收换能器; 噪声源发出的噪声不经目标反射,即无TS; 背景干扰为环境噪声。
RN DI 10 lg 10 lg RD
4 b , d 4
18
Caution:
•参数DI只对各向同性噪声场中的平面波信 号(是完全相关信号)有意义; •具有其它方向特性的信号和噪声场,需用 参数阵增益来代替DI。
水声学原理:第3章 水下目标的回波特性
Pi (t) exp[ ik(D ct)]dt
引入变量 x ka ,回声脉冲为:
Pe (T )
P0 c (2 )1/ 2
ar0
g(x) f (x, x0 , x1, x2 ) exp( ixT )dx
x0 kr0 xR x1 k1a
x2 k2a T ct / a
哈尔滨工程大学
水声学原理
第3章 水下目标的回波特性
3 水下目标的回波特性
• 主要内容
– 目标回波特性概述 – 目标反射问题 – 目标回波的亮点模型 – 标准潜艇的回波特性
哈尔滨工程大学
水声学原理
2
硕士学位课程
3.1 目标回波特性概述
• 无源或安静目标,回波探测方式是唯一有效的 • 入射声波激励下产生的一种物理过程 • 19世纪,Rayleigh在《The theory of sound》中讨
(2 n0 ) fn
n0
i(原点主值 )
dv e iv csin v
f (v)
收敛很快的散射场表示:
Ps Pg Pc
Pg 、Pc :几何反射波、蠕波
Pc
(8
/
k1r)1/ 2 ei(k1r
/ 4)
J 1
1
sin vJ
B(vJ D(vJ
) )
c c
os os
(v (v
J J
) )(
:入射波与散射波的夹角
哈尔滨工程大学
水声学原理
6
硕士学位课程
3.2 目标反射问题
• 刚性小球的瑞利散射
– 固定不动的硬球 e 1 g 1
T I s a 2 (ka)4 1 1 cos 2
I i r1
3 2
水声学原理第一章2
水声学原理第一章2
水声学概述 水声传播原理 水下声场 声呐原理及应用 总结与展望
contents
目 录
01
水声学概述
水声学是一门研究水下声波的产生、传播、接收和利用的学科,其研究对象包括声波在水下的传播规律、声呐技术以及水下声学现象等。
总结词
水声学是声学的一个分支,专门研究声波在水下介质中的传播规律。它涉及到声波在水下环境中的产生、传播、散射、吸收和反射等物理过程,以及水下声学现象的机制和特性。水声学的研究对象包括声波在水下的传播规律、声呐技术以及各种水下声学现象等。
声呐的基本原理和组成
声呐信号的发射和接收
声呐信号的发射
声呐发射机产生一定频率和强度的声波,通过换能器将电信号转换为声波向水中发射。
声呐信号的接收
声呐接收机接收到反射回来的声波后,通过换能器将声波转换为电信号,然后进行处理和分析。
VS
声呐的探测性能受到多种因素的影响,如水深、水温、盐度、水中的悬浮物等。不同的声呐型号和应用场景需要选择合适的参数和配置。
详细描述
水声学的定义和研究对象
总结词
水声学的发展历程可以追溯到20世纪初期,随着科技的不断进步,水声学在探测、通信、海洋生物学和地球物理学等领域得到了广泛的应用和发展。
详细描述
水声学的发展历程可以追溯到20世纪初期,当时人们开始系统地研究声波在水下的传播规律。随着科技的不断进步,水声学在探测、通信、海洋生物学和地球物理学等领域得到了广泛的应用和发展。如今,水声学已经成为一门高度发达的学科,为人类在海洋领域的探索和发展提供了重要的技术支持。
应用领域
声呐广泛应用于水下探测、海洋科学研究、水下考古、海底地形测量等领域。在军事上,声呐也被用于潜艇探测、水下目标识别和反潜作战等方面。
水声学
三一文库()/初中三年级〔水声学[1]〕水声学是声学的一个分支学科,它主要研究声波在水下的产生、传播和接收过程,用以解决与水下目标探测和信息传输过程有关的声学问题。
声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。
1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。
1912年“泰坦尼克”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。
美国的费森登设计制造了电动式水声换能器,1914年就能探测到两海里远的冰山。
1918年,朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。
随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。
第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。
同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅诲底地层剖面仪,水声释放器以及水声遥测、控制器等。
水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。
随着海洋的开发,水声学在海洋资源的调查开发、对海洋动力学过程和环境监测、增进人类对海洋环境的认识等方面的应用还将不断地扩展。
现代水声学的研究课题涉及面很广,主要有:新型水声换能器;水中非线性声学;水声场的时空结构;水声信号处理技术;海洋中的噪声和混响、散射和起伏,目标反射和舰船辐射噪声;海洋媒质的声学特性等。
工程水声学原理
1.1海洋中为什么使用声?答:在人们迄今所熟知的各种能量形式中,在水中以声波的传播性能最好。
无论是光波还是电磁波,他们在水中的传播衰减都非常大,因而在海水中的传播距离十分有限,远不能满足人类海洋活动的需要。
1.2声波在水中得以应用的根本? 答:R=ct ,它能将距离与时间进行互换。
1.3海洋中声传播的特点、规律、研究方法。
答:突出特点:由于海洋环境非常复杂,海洋中的声传播非常复杂。
规律:短距离,三维传播,球面扩展,海洋环境的影响较小,采用确定性研究方法;长距离上,二维传播,柱面扩展,海洋环境影响很大应优先考虑,用统计方法研究。
1.4水声学主要研究课题?答:主要研究携有某种信息的声波在水中的产生、传播和接收。
水声物理研究声波在海水中的传播规律,水声工程研究声波的产生和接收,包括水声系统设计和水声技术两部分。
2.1一维线性波动方程及其一般形式与含义答:一维线性波动方程2222210p p xc t∂∂∂∂-=,一般形式为222210p c tp ∂∂∇-=,其含义是将声波随空间的变化与声波随时间的变化联系起来。
2.2何为简谐波,谐波解?答:随时间t 作正弦或余弦规律的运动,一般称为简谐振动,产生的波是简谐波。
谐波解为()(,)j t kx p t x e ω-=。
2.3 Helmholtz 方程:22()()0p x k p x ∇+=。
2.4自由空间中的声:()(,)j t kx a p t x p e ω-= 质点振速:()(,)j t kx a u t x u e ω-= , 00ap a c u ρ=;声阻抗率:p uZ =,特征阻抗:00c ρ声强:200111220a Tp a a Tc I pudt p u ρ===⎰;声功率:2004ap c W IdS πρ==⎰2.5声压与声强的对数表示 声压级:20lg refp p SPL = dB re p ref =1μP a声强级:10lgrefI I SIL = dB re I ref =6.76×10-19W/m 2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
德国ATLAS公司研制的ASA92 -25主动拖曳线声呐
美国DTI公司研制的合 成孔径声呐
英国、法国联合研制的 舷侧阵声呐TSM2253
美国Lockheed Martin 公司研制的被动测距声 呐PUFFS
英国、法国联合研制的 投吊声呐
德国ATLAS公司研制的 拖曳线列阵8
声学中采用分贝计量的原因: 声学量的变化大到六、七个数量级以上
9
声压、声强和声功率用级和分贝(dB)来量度。他们是:
声压级: 声强级: 声功率级:
L p 20 log( p p0 ) dB LI 10 log(I I0 ) dB LW 10 log(W W0 ) dB
参考值
10
1.6.2声压级等于声强级:
L I
10
log
I I
0
10
log
p2
c
p2 0
c
20 log
p p
0
L
p
注意参考值不同产生的声级差别:
1971年以前曾用: =20μPa=2×10-4达因/厘米2,换算到现在标准要加26分贝。 =1 达因/厘米2=1μb(微巴)=10-5μPa,换算到现在的标准 要加100分贝。
•工作速率差别大。雷达搜速快,声呐搜索慢 •分辨率差。声图象模糊。
b.声呐受海洋信道影响大。声呐环境比雷达环境复杂得多。
c.声呐的作用距离近。
3
水声技术呐是研究声波在水中的发射、传输、接收、处理的专门技术。包括: a.水声换能器和基阵-水声传感器系统; b.水声物理-海洋信道的传播、混响、散射、噪声特性和各种水声目标特性; c.水声设备-水声信号处理、水声电子技术。
水声学原理
2019/10/17
范军
上海交通大学振动、冲击、噪声国家重点实验室
第一章 导论
1.1 海洋与水声技术
1、为什么用水声技术
海洋占据地球表面约70%的面积;
海洋是人类开展交通运输、军事斗争和获取资源的场所。这就必须有观测、通 讯、导航、定位的工具。水声技术在其中扮演了重要的角色。
声波是迄今为止在水中唯一能有效地远距离传递信息地物理场。
v
0
L 20 log(d / d )
d
0
加速度、速度和位移参考值是:
a 106 0
米。
v 米/1秒029, 0
d 1012 0
米/秒,
应当指出的是,虽然结构噪声级与振动级的定义相同,
但实际测量和评价方法有区别的。因为结构噪声要反映
连续弹性体的振动特性,所以用一个点的振动级是无法
描述的。通常要用结构的整个辐射面上大量测点的统计
电磁波在水中的衰减1:.42103 f 1/2 ( f k Hz)分贝/ 公里
不能在水中远距离传播
0.011 f 2分贝/ 公里
声波由于介质吸收引起的衰减:
能远距离传播
7.7 106 f 3/ 2
声波与电磁波衰减之比:
10kHz声波水中衰减仅约 1分贝/公里 电磁波为4500分贝/公里
俄罗斯标准=20μPa 由于空气声和水声参考值的不同,舱室内声级为L分贝的噪声若 无损耗地传到水下将变成L+26分贝的水噪声。
11
固体介质中的结构噪声用振动来描述,它的分贝定义实际上就是振 动量的分贝定义。
加速度级
L 20 log(a / a )
a
0
速度级 位移级
L 20log(v / v )
平均来描述。
12
物理量的乘除运算变成加减运算。
例如在声学测量中,用灵敏度等于S 伏/μPa的水听器接收,经 过放大倍数等于K的放大器放大后得到电压V伏。水听器输入端的声压
是:
p V SK
(μPa)
声压级:
从窃窃私语到大型喷气式飞机起飞的声功率差十个数量级; 人耳的听阈在频率1kHz时是20μPa(微帕),痛阈是20Pa, 相差六个数量级; 在水中,一艘老式潜艇的辐射总声功率达到数瓦,而新型的 低噪声潜艇不到1微瓦,相差六、七个数量级。 人耳(仪器)的响应近似与声压或声强的对数成比例。
因此声学中定义一个以对数为基础的分贝单位,水声也一直沿用。
水声技术的成果突出反映在两个方面 1、声呐性能的不断提高:探测距离原来越远、对目标的定位、跟踪能力越来越强 2、应用声自导或声引信的水中兵器(鱼雷、水雷、深水炸弹等)的作战能力不断 提高。
因此,现代舰艇在水下面临的威胁与水声技术的水平有直接的关系。声隐身 性能是潜艇水下隐蔽性的核心。
4
1490年 达芬奇就提出声纳的原始概念 泰坦尼克号的沉没,开始最初的声纳设计 第一次世界大战的爆发促进了一系列军用声纳的发展(值得一提的 是郎之万在换能器上的贡献,并测得了水中1500米外潜艇回波) 一战和二战之间水声工程一直缓慢而稳步发展,最大的成就是对海 洋声传播机理的认识。(如“下午效应”现象的解释) 二战期间为了探测德国潜艇,水声工程有了很大发展,出现了大量 新的理论和技术 战后水声工程随着计算机和电子计算发展,水声工程的应用在军用 、民用领域更为广泛。
其它物理场:磁场、水压场、尾流场、温度场,也是可以检测,但可检测距2离 大
1.2、声呐与雷达的异同
声呐与雷达的工作原理相似。但由于信息载体-声波与电磁波的差异决定了 声呐和雷达有重要差别。
a.电磁波速度30万公里/秒,声波在水中1.5公里/秒。决定:
•工作频率差别大。雷达频率约GHz( 109 Hz) 声呐ound Navigation and Ranging)
凡是利用水下声信息进行探测、识别、定位、导航和通讯的系统,都通称为声呐系 统。声呐的主要应用是军用声呐。按工作方式可以分为:主动声呐和被动声呐。 按安装平台分可以分为: 潜艇声呐:潜艇上的电子设备是声呐。一般核潜艇装有10~15部声呐。主要有:艏 部主、被动综合声呐;被动测距声呐;舷侧阵声呐;拖曳线列阵声呐。 水面舰声呐:舰艏声呐;变深拖曳声呐;拖曳线列阵声呐。 机载声呐和浮标:吊放声呐;声呐浮标。 海洋水声监视系统:岸站(岸边海底固定式声呐);预警系统 水声对抗器材:鱼雷报警声呐;声诱饵;干扰器;气幕弹 水中兵器自导:鱼雷声自导;水雷声引信; 其它:通讯仪、鱼探仪、多普勒测速仪、浅地层剖面仪等。