第30讲三角形的内心与外心-中考数学考点系统复习(讲解册)课件(共16张PPT)
人教版数学九年级上册..切线长定理、三角形的内切圆、内心 PPT精品课件
![人教版数学九年级上册..切线长定理、三角形的内切圆、内心 PPT精品课件](https://img.taocdn.com/s3/m/44f53f8469eae009591becb8.png)
B
想一想:切线和切线长是什么关系?
比一比
A
O
P
B
切线和切线长是两个不同的概念: 1、切线是一条与圆相切的直线,不能度量; 2、切线长是切线上圆外一点和切点线段的长, 可以度量。
人教版数学九年级上册24.2.2切线长 定理、 三角形 的内切 圆、内 心课件
探索发现
1、从⊙O外的一点P引两条切线PA,PB,
BD、CE的长。
解:设AE=x
(cm),3则cmAF=x
5cm
(cm)
4cm
CD=CE=AC﹣AE=13﹣x
A
BD=BF=AB﹣AF=9﹣x ∵ BD+CD=BC
x
x F9
9﹣x
E
∴(13﹣x)+(9﹣x)=14 13
O
B
解得 x = 4
因此 AE=4 cm
13﹣x
9﹣x
D14
BD=5 cm
13﹣x
24.2.2直线与圆的位置关系(3)
切线长定理
复习
1、切线的判定定理
经过半径的 外端 且
垂直于 这条半径的直线
是圆的切线.
.O
数学的符号语言:
l
∵OA是半径,OA⊥l于A.
A
∴l是⊙ O 的切线.
复习 2、切线的判定定理
圆的切线 垂直于 经过 切点的半径。
数学的符号语言: ∵L是⊙ O 的切线 切点为A ∴OA⊥l
人教版数学九年级上册24.2.2切线长 定理、 三角形 的内切 圆、内 心课件
知识点三 三角形的内切圆
从前面的知识我们可知:从圆外一点可以引圆的
两条切线。假如在其中一条切线上找一点,再向引
圆的切线,你发现了什么? A
人教版数学九年级上册切线长定理、三角形的内切圆、内心精品课件PPT
![人教版数学九年级上册切线长定理、三角形的内切圆、内心精品课件PPT](https://img.taocdn.com/s3/m/f1264ef1dd88d0d232d46a37.png)
PA = PB
∠OPA=∠OPB
人 教 版 数 学 九 年级 上册2 4.2.2: 切线长 定理、 三角形 的内切 圆、内 心 课 件
三:运用新知,解决问题;
已知⊙O切线PA、PB,A、B
为切点,AP=8cm, ∠BPA=600
E B
(1)则BP=
, ∠BPO= 。 C O
(2)你能求⊙O的半径吗?
五:课堂反思,师生小结
1.通过本节课的学习你学会了
哪些知识? 2.掌握了哪些方法? 3.还有哪些疑惑?
人 教 版 数 学 九 年级 上册2 4.2.2: 切线长 定理、 三角形 的内切 圆、内 心 课 件
人 教 版 数 学 九 年级 上册2 4.2.2: 切线长 定理、 三角形 的内切 圆、内 心 课 件
一:情境引入,激发兴趣
在一张三边分别是9cm,13cm,14cm的三角形纸 片上裁下一个圆形,使所裁得的圆尽可能大。请看动 画演示:其中哪一个圆是最符合要求的?
怎样画这个圆呢?
人 教 版 数 学 九 年级 上册2 4.2.2: 切线长 定理、 三角形 的内切 圆、内 心 课 件
人 教 版 数 学 九 年级 上册2 4.2.2: 切线长 定理、 三角形 的内切 圆、内 心 课 件
▪
5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
▪
6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
板书设计
切线长定理
定义:切线长
第30讲三角形的内心与外心- 2020中考(河北专版)数学考点系统复习(讲解册)课件(共16张PPT)
![第30讲三角形的内心与外心- 2020中考(河北专版)数学考点系统复习(讲解册)课件(共16张PPT)](https://img.taocdn.com/s3/m/caad8bec0b1c59eef9c7b415.png)
为三角形的外心
交点即为三角形的内心
作法
外接圆
内切圆
【温馨提示】 锐角三角形的外心在三角形的内部;直角三角形的外 心在斜边中点;钝角三角形的外心在三角形的外部.
1.如图,⊙O是△ABC的外接圆,则点O是△ABC的(B ) A.三条高线的交点 B.三条边的垂直平分线的交点 C.三条中线的交点 D.三条内角平分线的交点
数学
第一轮 河北中考考点系统复习(讲解册)
第六单元 圆 第30讲 三角形的内心与外心
考点解读
三角形与圆 1.确定圆的条件:过一点可以作①无数个圆;过两点的圆有②无数 个,其圆心在③这两点连线的中垂线 上;④不在同一直线上的 三个点可以 确定一个圆.
2.三角形的外接圆与内切圆 外接圆
内切圆
图形
圆心是三角形的外心,三条边 圆心是三角形的内心,三个
2.(2018·河北模拟)如图,每个小三角形都是正三角形,则△ABC的
外心是(B )
A.D点
B.E点
C.F点
D.G点
3.如图为5×5的网格图,点A,B,C,D,O均在格点上,则点O是 (B)
A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心
4.如图,点F是△ABC的内心,∠A=50°,则∠BFC=( B ) A.100° B.115° C.130° D.135°
(3)证明:在图2中, ∵∠PCA=2×7.5°=15°,∠BCE=∠ACB-∠PCA=75°,∠ECA= ∠EBA=15°,∠EBC=∠EBA+∠ABC=75°, ∴∠BCE=∠EBC. ∴BE=EC.
【自主解答】
解:(1)连接OC. ∵射线CP与△ABC的外接圆相切, ∴∠OCP=90°. ∵OA=OC,∴∠ACO=∠A=30°.
三角形的内心与外心
![三角形的内心与外心](https://img.taocdn.com/s3/m/6a00cc7f700abb68a982fb83.png)
(4)与三角形外心有关的角度问题:
①外心在三角形的内部
三角形为锐角三角形
三个角都小于90°;
②外心在三角Leabharlann 的边上三角形为直角三角形有一个角为90°;
③外心在三角形的外部
三角形为钝角三角形
有一个角大于90°.
随堂练习
1. 如图,⊙O是△ABC的外接圆,则点O是△ABC的( B ) A. 三条高线的交点 B. 三条边的垂直平分线的交点 C. 三条中线的交点 D. 三条内角平分线的交点
中考专题复习
三角形的内心与外心
中考要求
理解三角形的内心和外心.
1.三角形的内心 (1)三角形的内切圆:在三角形内部且与三角形三边都相切的圆; (2)三角形的内心:三角形内切圆的圆心,实质是三角形三个内角平分线的交 点;
解题技巧
(3)见到三角形的内心就想以下两点: ①角平分线:内心与顶点的连线必然平分三角形的内角.
这个圆叫作三角形的外接圆; (2)三角形的外心:三角形外接圆的圆心,实质是三角形 三条边的垂直平分线 的 交点;
解题技巧
(3)见到三角形的外心就想以下两点: ①垂直平分线:外心到三角形三边的垂线必然平分三条边. 如图,点P为△ABC的外心,若PD⊥AC,PE⊥BC, 必有AD=CD,BE=CE. ②等距:外心到三角形三个顶点的距离必然相等. 如图,点P为△ABC的外心,连接PA、PB、PC, 必有PA=PB=PC.
2. 如图,方格纸中,点A、B、C、D、O均为格点,点O是( D ) A. △ABC的内心 B. △ABC的外心 C. △ACD的内心 D. △ACD的外心
3. 点O是△ABC的外心,点I是△ABC的内心,若∠BIC=145°,则∠BOC的度数
为( D )
(名师整理)最新数学中考专题复习《三角形的内心与外心》考点精讲精练
![(名师整理)最新数学中考专题复习《三角形的内心与外心》考点精讲精练](https://img.taocdn.com/s3/m/ee024b5af18583d049645984.png)
第六单元 圆 第30讲 三角形的内心与外心
考点解读
三角形与圆 1.确定圆的条件:过一点可以作①无数 个圆;过两点的圆有②无数 个,其圆心在③这两点连线的中垂线 上;④ 不在同一直线上的 三个点可以 确定一个圆.
2.三角形的外接圆与内切圆 外接圆
内切圆
图形
圆心是三角形的外心,三条边 圆心是三角形的内心,三个
(3)证明:在图2中, ∵∠PCA=2×7.5°=15°,∠BCE=∠ACB-∠PCA=75°,∠ECA= ∠EBA=15°,∠EBC=∠EBA+∠ABC=75°, ∴∠BCE=∠EBC. ∴BE=EC.
学习了本课后,你有哪些收获和感想? 告诉大家好吗?
在数学的天地里,重要的不是我们知 道什么,而是我们如何知道什么
-------毕达哥拉斯
【自主解答】
解:(1)连接OC. ∵射线CP与△ABC的外接圆相切, ∴∠OCP=90°. ∵OA=OC,∴∠ACO=∠A=30°.
∴射线CP旋转度数是120°.
(2)∵∠BCA=90°, ∴△ABC的外接圆就是量角器所在的圆. 当CP过△ABC外心时(即过O点),∠BCE=60°. ∴∠BOE=120°,即E处的读数为120. 当CP过△ABC的内心时(如图1),∠BCE=45°,∠EOB=90°, ∴E处的读数为90.
圆心
中垂线的交点
内角的平分线的交点
三角形的外心到三角形的三个 三角形的内心到三角形的三
性质
顶点的距离⑤相等
条边的距离⑥ 相等
外接圆
内切圆
Hale Waihona Puke ∠BOC=2∠A,∠OBC= 角度关系
⑦ ∠OCB
∠BOC=90°+12∠A
三角形的“四心讲解”-初升高数学衔接(含解析)
![三角形的“四心讲解”-初升高数学衔接(含解析)](https://img.taocdn.com/s3/m/4cae208268dc5022aaea998fcc22bcd126ff42d7.png)
三角形的“重心”、“外心”、“内心”、“垂心”讲解【知识衔接】————初中知识回顾————1、重心:三角形的三条中线交点.2、外心:是三角形三边中垂线的交点.3、内心:是三角形的三内角平分线的交点.4、垂心:是三角形三条高的交点.————高中知识链接————1、重心:它到顶点的距离等于它到对边中点的距离的2倍,重心和三顶点的连线将△ABC的面积三等分,重心一定在三角形内部.2、外心:它到各顶点的距离相等,锐角三角形的外心在三角形内,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形外.学-科网3、内心:它到三边的距离相等,内心一定在三角形内.4、垂心:垂心和三角形的三个顶点,三条高的垂足组成六组四点共圆,锐角三角形的垂心在三角形内,直角三角形的垂心为直角顶点,钝角三角形的垂心在三角形外.【经典题型】初中经典题型例1:求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.三边BC、CA、AB的中点,已知:D、E、F分别为ABC求证:AD、BE、CF交于一点,且都被该点分成2:1.证明:连结DE,设AD、BE交于点G,D 、E 分别为BC 、AE 的中点,则DE //AB ,且12DE AB , GDE ∆∴∽GAB ∆,且相似比为1:2,GE BG GD AG 2,2==∴.设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F则G 与'G 重合, ∴AD 、BE 、CF 交于一点,且都被该点分成2:1.例2:已知ABC ∆的三边长分别为,,BC a AC b AB c ,I 为ABC ∆的内心,且I 在ABC ∆的边BC AC AB 、、上的射影分别为D E F 、、,求证:2b c a AE AF . 证明:作ABC ∆的内切圆,则D E F 、、分别为内切圆在三边上的切点,例3:已知:O 为ABC ∆的重心和内心,求证:ABC ∆为等边三角形.证明:如图,连AO 并延长交BC 于D ,O 为三角形的内心,故AD 平分BAC ∠, DC BD AC AB =∴(角平分线性质定理) O 为三角形的重心,D 为BC 的中点,即BD =DC . 1=∴AC AB ,即AB AC .同理可得,A B =BC .ABC ∆∴为等边三角形.例4:已知:ABC ∆中,,于于E AC BE D BC AD ⊥⊥,AD 与BE 交于H 点.求证:AB CH ⊥.高中经典题型1、已知三角形的三边长分别为5,12,13,则其垂心到外心的距离为 ,重心到垂心的距离为 .【答案】6.5,3142、已知三角形的三边长为5,12,13,则其内切圆的半径r = .【答案】23、在△ABC 中,∠A 是钝角,O 是垂心,AO =BC ,则cos(∠OBC+∠OCB)= .【答案】22- 4、设G 为△ABC 的重心,且AG =6,BG =8,CG =10,则△ABC 的面积为 .【答案】725、若︒<<︒900α,那么以αsin 、αcos 、ααcot tan ⋅为三边的△ABC 的内切圆,外接圆的半径之和为 .A 、)cos (sin 21αα+B 、)cot (tan 21αα+ C 、ααcos sin 2D 、ααcos sin 1⋅ 【答案】A 【实战演练】————先作初中题 —— 夯实基础————A 组1.在三角形内部,到三角形三边距离相等的点是( )A . 三条中线的交点B . 三条高线交点C . 三个内角平分线交点D . 三边垂直平分线交点【答案】C【解析】试题解析:如图,∵OG ⊥AB ,OF ⊥AC ,OG =OF ,∴O 在∠A 的平分线上,同理O 在∠B 的平分线上,O 在∠C 的平分线上,即O 是三条角平分线的交点,故选C .2.已知等腰△ABC 中,AB=AC=5,BC=6,G 是△ABC 的重心,那么AG=_____.【答案】【解析】分析:如图延长AG 交BC 于H .利用等腰三角形的三线合一,可知AH 是高,利用勾股定理求出AH ,根据重心的性质AG =AH 计算即可.详解:如图延长AG 交BC 于H .∵G是重心,∴BH=CH=3.∵AB=AC=5,∴AH⊥BC,∴AH==4,∴AG=AH=.故答案为:.3.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC =6,那么线段GE的长为______.【答案】2【解析】分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.详解:∵点G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案为:2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.4.已知点G是△ABC的重心,AG=8,那么点G与边BC中点之间的距离是________.【答案】4【解析】分析:根据三角形重心的性质进行求解.详解:如图,D是BC边的中点,∵G是△ABC的重心,∴AG=2GD=8,即GD=4,故点G与边BC中点之间的距离是4.故答案为4.5.如图,等腰直角ABC的中线AE、CF相交于点G,若斜边AB的长为42,则线段AG的长为_______.45【解析】∵F为AB中点,E为BC中点,∴中线AE、CF的交点G为ACB的重心,∴:2:1CG GF=,∵42AB=ACB,∴1222AF AB==1233GF CF==,CF AB⊥于F,∴Rt AGF中,22845 89AG AF GF=+=+=点睛:本题考查的是直角三角形的性质、三角形的中心的概念和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.6..如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为:8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.7.阅读下面材料:如图,AB是半圆的直径,点C在半圆外,老师要求小明用无刻度的直尺画出△ABC的三条高.小明的作法如下:(1)连接AD,BE,它们相交于点P;(2)连接CP并延长,交AB于点F.所以,线段AD ,BE ,CF 就是所求的△ABC 的三条高.请回答,小明的作图依据是________.【答案】半圆(或直径)所对的圆周角是直角,三角形三条高线相交于一点.【解析】∵AB 是直角,∴∠AEB =90°,∠ADB =90°,∴AD ,BE 是△ABC 的高.∵三角形三条高线相较于一点,∴CF 是△ABC 的高8.如图,在ABC △中,90ACB ∠=︒,BE 平分ABC ∠,DE AB ⊥于D ,如果3cm AC =,那么AE DE +等于_________cm .【答案】3【解析】根据角平分线上的点到角的两边距离相等可得CE DE =,从而得出AE DE AE CE +=+3cm AC ==.故填3. 9.ABC ∆中,点O 是ABC ∆内一点且到ABC ∆三边的距离相等, 40A ∠=︒,则BOC ∠=_________.【答案】110°【解析】试题解析:如图,∵O 到三角形三边距离相等,∴O 是内心,∴AO ,BO ,CO 都是角平分线,∴∠CBO=∠ABO=12∠ABC ,∠BCO=∠ACO=12∠AC B , ∠ABC+∠ACB=180°-40°=140°,∠OBC+∠OCB=70°,∠BOC=180°-70°=110°.10.两个城镇A B 、与一条公路CD ,一条河流CE 的位置如图所示,某人要修建一避暑山庄,要求该山庄到A B 、的距离必须相等,到CD 和CE 的距离也必须相等,且在DCE ∠的内部,请画出该山庄的位置P .(不要求写作法,保留作图痕迹.)【答案】作图见解析.试题解析:如下图,作线段AB 的中垂线与DCE ∠的平分线交于点P ,点P 即为所求.————再战高中题 —— 能力提升————B 组1、在锐角△ABC 中,内角为A 、B 、C 三边为a 、b 、c ,则内心到三边的距离之比为 ,重心到三边的距离为 ,外心到三边的距离之比为 ,垂心到三边的距离之比为 .2、如图,锐角△ABC 的垂心为H ,三条高的垂足分别为D 、E 、F ,则H 是△DEF 的 .3、如图,D 是△ABC 的边BC 上任一点,点E 、F 分别是△ABD 和△ACD 的重心连结EF 交AD 于G 点,DG :GA = .4、设△ABC 的重心为G ,GA =32,22=GB ,2=GC ,则ABC S ∆= .5、若H 为△ABC 的重心,AH =BC ,则∠BAC 的度数是( )A 、45°B 、30°C 、30°或150°D 、45°或135°6、已知平行四边形ABCD 中,E 是AB 的中点,AB =10,AC =9,DE =12,求平行四边形ABCD 的面积. B 组参考答案1、1:1:1;c b a 1:1:1; C B A cos :cos :cos ; C B A cos 1:cos 1:cos 1 2、内心3、21 4、265、D6、分析:设AC 交DE 于G ,可推出G 为△ABD 的重心,∠EGA =90°,故可求出EGA S ∆及S □ABCD 。
高考复习三角形的四心重心内心外心垂心PPT课件
![高考复习三角形的四心重心内心外心垂心PPT课件](https://img.taocdn.com/s3/m/394b77e9eff9aef8951e066e.png)
OE
C
OD与OE共线且2|OD || OE |, SCOE 2SCOD ,
SAOC
2SCOE
2
2 3
SCDE
2
2 3
1 4
SABC
1 3
SABC
第22页/共25页
思考: 如图,设点O在 ABC 内部,且有OA 2OB 3OC 0,
则 ABC 的面积与 AOC 的面积的比为_____3______.
例2.证明:三角形重心与顶点的距离等于它到对边中点距离的两倍.
另证: 连结EF,则EF为ABC的中位线,EF//BC, 且EF:BC=1:2,由平行线分线段成比例
得 FG:GC=1:2,同样可得 EG:GB=1:2, DG:GA=1:2. A
F E
G
B
D
C
第13页/共25页
重心
四、内心
三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心。
| AB | cos B | AC | cosC
则P的轨迹一定通过△ABC的 _______
解: ∵ BC ( AB AC ) BC AB BC AC
| AB | cos B | AC | cosC | AB | cos B | AC | cosC
| BC | | AB | cos( B) | BC | | AC | cosC | BC | | BC | 0
垂心
同理可得O在CB边的高线上.
5. P是△ABC所在平面上一点,若
PA PB PB PC PC PA, 则P是△ABC的( D )
A.外心 B.内心 第C8.页/重共2心5页 D.垂心
三、重心
三角形三边中线交于一点,这一点叫三角形的重心。
中考重点三角形的外心与内心
![中考重点三角形的外心与内心](https://img.taocdn.com/s3/m/1ddac4ae6394dd88d0d233d4b14e852458fb391f.png)
中考重点三角形的外心与内心中考重点:三角形的外心与内心三角形是中考数学中的重点考点之一,三角形的特殊点外心与内心更是需要我们熟练掌握的知识。
本文将详细介绍三角形的外心与内心的定义、性质,以及相应的计算方法。
一、外心的定义与性质1. 外心的定义外心是指三角形三条边的垂直平分线的交点,记作O。
2. 外心的性质(1)外心到三角形三个顶点的距离相等。
(2)外心到三角形的每条边上的点的距离相等。
(3)外心是三角形内角的平分线的垂直平分线。
(4)外心到三角形三个顶点的连线上的点,构成的三角形是等边三角形。
(5)三角形的外接圆的半径等于外心到三个顶点的距离。
二、内心的定义与性质1. 内心的定义内心是指三角形三边的角平分线的交点,记作I。
2. 内心的性质(1)内心到三角形三个顶点的距离相等。
(2)内心到三角形的每条边的距离相等,等于三角形的内切圆的半径。
(3)内心是三角形外接圆的垂直平分线的交点。
(4)内心到三角形三个顶点的连线上的点,构成的三角形是等腰直角三角形。
(5)三角形的内切圆的半径等于三角形三边的和的一半除以半周长。
三、计算外心与内心的方法1. 外心的计算方法(1)已知三角形的三个顶点坐标,可以使用坐标几何的方法计算外心的坐标。
(2)利用外心的性质:外心到三角形三个顶点的距离相等,可以通过求解方程组来计算外心的坐标。
2. 内心的计算方法(1)已知三角形的三个顶点坐标,可以使用坐标几何的方法计算内心的坐标。
(2)利用内心的性质:内心到三条边的距离相等,可以通过求解方程组来计算内心的坐标。
四、外心与内心的应用1. 判断三角形的类型通过计算三角形的外心与内心,可以判断三角形的类型,如等边三角形、等腰三角形、直角三角形等。
2. 计算三角形的性质外心与内心与三角形的边长、角度之间有着密切的关系,在计算三角形的性质时,外心与内心的坐标和距离等信息经常被用到。
3. 解决几何问题通过利用外心与内心的性质和计算方法,可以解决许多几何问题,如构造等腰三角形、证明几何题目等。
三角形的“四心”课件-2025届高三数学一轮复习
![三角形的“四心”课件-2025届高三数学一轮复习](https://img.taocdn.com/s3/m/bbc91ec5dbef5ef7ba0d4a7302768e9951e76ec1.png)
同理,由 ⋅ = + ⋅ ⇒ = − + , ②
联立①②以及 = = 即可解得
+ = = ×
故答案为
−
.
−
=
−
(2) OA
2
+ BC
2
= OB
(3)若动点P满足AP = λ
2
+ CA
2
AB
AB cos B
2
2
= OC + AB ;
+
AC
AC cos C
λ ∈ 0, +∞ ,则动点P经过三角形的垂心.
或OP = OA + λ
AB
AB cos B
+
AC
AC cos C
,
3.设P是△ ABC的内心,则有以下结论:
(1) AB PC + BC PA + CA PB = (或aPA + bPB + cPC = ),其中a,b,c分别
是△ ABC的三边BC,AC,AB的长;
(2)若动点P满足AP = λ
AB
AB
+
AC
AC
或OP = OA + λ
AB
AB
+
AC
AC
,λ ∈ 0, +∞ ,则动
点P经过三角形的内心.
故选B.
题型四 垂心问题
例4(1) 已知△ ABC的外接圆的圆心是M,若PA + PB + PC = 2PM,则P是△ ABC
的( D )
A.内心
从三角形的“心”说起 课件(原创直播课件)
![从三角形的“心”说起 课件(原创直播课件)](https://img.taocdn.com/s3/m/1fdd1c480b4c2e3f56276344.png)
角形等知识,请同学们多留意。 有兴趣的同学可以自己课后证明。
垂心:三角形三条高线的交点
说明: 它的性质比较多、复杂,有兴
趣的同学可以自己证明或查阅。
三角形四“心”
内心 外心 重心 垂心
三条角平分线的交点 三条垂直平分线的交点 三条中线的交点 三条高的交点
交点到三边距离相等 交点到三顶点距离相等
郴州市十八中 曹展途
我们学过三角形哪些“心”呢?
内心 外心 重心 垂心
三条角平分线的交点 三条垂直平分线的交点 三条中线的交点 三条高的交点
内心 重心
外心 垂心
问题1:为什么三条线(角平分线、垂直 平分线、中线、高)会交于一点呢?
问题2:这四”心“分别有什么性质呢?
证明思路: 1、两条线相交于一点。 2、连接这个交点与第三点(顶点或中点) 3、证明第三条线是同类型的线
已知:在△ABC中,BD、CE分别是AC、AB上的 中线,且相交于点O,连接AO,延长线交BC与点F.
求证:AF是BC上的中线.
提示: 1、我们学过中线有什么性质?
面积法
证明: ∵ BD是AC上的中线,CE 是AB上的中线
∴ S1= S2 , S2 + S3 +S4 = S1 + S5 +S6 (中线性质) ∴ S3= S4 , S1 + S2 +S3= S4 + S5 +S6
证明: 作OG⊥AC、 OH⊥AB、 OM⊥BC
∵ ∠ABC、∠ACB的平分线分
别是BD、CE
∴ OH=OM,OM=OG(角平分线的性质)
∴ OH=OG(等量代换)
∴点O在∠BAC的平分线上(角平分线的判定)
人教版数学九年级上册切线长定理、三角形的内切圆、内心精品课件PPT1
![人教版数学九年级上册切线长定理、三角形的内切圆、内心精品课件PPT1](https://img.taocdn.com/s3/m/1dcd28c5b52acfc789ebc9d5.png)
与三角形各边都相切的圆叫 做三角形的内切圆.
三角形的内切圆的圆心叫做
A
这个三角形的内心.
三角形的内心是三角形三条内
I
角平分线的交点.这个三角形 ●
叫做这个圆的外切三角形.
B
C
人教版数学九年级 上册24.2.2切线长定理、三角形的内 切圆、 内心课 件
人教版数学九年级 上册24.2.2切线长定理、三角形的内 切圆、 内心课 件
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
•
1、在困境中时刻把握好的机遇的才能 。我在 想,假 如这个 打算是 我往履 行那结 果必定 失败, 由于我 在作决 策以前 会把患 上失的 因素斟 酌患上 太多。
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
如图:PA、PB是⊙O的两条切线,A、B
为切点。
B
思考:由切线长定
O。 C
P
理可以得出哪些结
论?
A
(1)写出图中所有的垂直关系; (2)写出图中所有的全等三角形; (3)写出图中所有的等腰三角形.
人教版数学九年级 上册24.2.2切线长定理、三角形的内 切圆、 内心课 件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为三角形的外心
交点即为三角形的内心
作法
外接圆
内切圆
【温馨提示】 锐角三角形的外心在三角形的内部;直角三角形的外 心在斜边中点;钝角三角形的外心在三角形的外部.
1.如图,⊙O是△ABC的外接圆,则点O是△ABC的(B ) A.三条高线的交点 B.三条边的垂直平分线的交点 C.三条中线的交点 D.三条内角平分线的交点
(3)证明:在图2中, ∵∠PCA=2×7.5°=15°,∠BCE=∠ACB-∠PCA=75°,∠ECA= ∠EBA=15°,∠EBC=∠EBA+∠ABC=75°, ∴∠BCE=∠EBC. ∴BE=EC.
圆心
中垂线的交点
内角的平分线的交点
三角形的外心到三角形的三个 三角形的内心到三角形的三
性质顶点的距ຫໍສະໝຸດ ⑤相等条边的距离⑥ 相等外接圆
内切圆
∠BOC=2∠A,∠OBC= 角度关系
⑦ ∠OCB
∠BOC=90°+12∠A
判断 方法
从三角形中任意选两条边,分 从三角形中任意选两个角,
别作它们的中垂线,其交点即 分别作它们的角平分线,其
【自主解答】
解:(1)连接OC. ∵射线CP与△ABC的外接圆相切, ∴∠OCP=90°. ∵OA=OC,∴∠ACO=∠A=30°.
∴射线CP旋转度数是120°.
(2)∵∠BCA=90°, ∴△ABC的外接圆就是量角器所在的圆. 当CP过△ABC外心时(即过O点),∠BCE=60°. ∴∠BOE=120°,即E处的读数为120. 当CP过△ABC的内心时(如图1),∠BCE=45°,∠EOB=90°, ∴E处的读数为90.
和一个量角器拼在一起,三角板斜边AB与量角器所在圆的直径MN重合, 其量角器最外缘的读数是从N点开始(即N点的读数为0),现有射线CP绕着 点C从CA顺时针以每秒2度的速度旋转到与△ACB外接圆相切为止.在旋 转过程中,射线CP与量角器的半圆弧交于点E.
(1)当射线CP与△ABC的外接圆相切时,求射线CP旋转度数是多少? (2)当射线CP分别经过△ABC的外心、内心时,点E处的读数分别是多 少? (3)当旋转7.5秒时,连接BE,求证:BE=CE.
【方法指导】 (1)在图1中,∠BOC=2∠A;
(2)在图2中,∠BOC=90°+12∠A;
(3)直角三角形的外接圆半径与内切圆半径的求法:如图3,Rt△ABC
的外接圆半径O1A=
c 2
;Rt△ABC的内切圆半径O2D=
a+b-c 2
或O2D=
ab a+b+c.
重难点选讲
重难点 三角形的内心与外心 (2019·河北模拟)如图是一块含30°(即∠CAB=30°)角的三角板
数学
第一轮 中考考点系统复习(讲解册)
第六单元 圆 第30讲 三角形的内心与外心
考点解读
三角形与圆 1.确定圆的条件:过一点可以作①无数个圆;过两点的圆有②无数 个,其圆心在③这两点连线的中垂线 上;④不在同一直线上的 三个点可以 确定一个圆.
2.三角形的外接圆与内切圆 外接圆
内切圆
图形
圆心是三角形的外心,三条边 圆心是三角形的内心,三个
2.(2018·河北模拟)如图,每个小三角形都是正三角形,则△ABC的
外心是(B )
A.D点
B.E点
C.F点
D.G点
3.如图为5×5的网格图,点A,B,C,D,O均在格点上,则点O是 (B)
A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心
4.如图,点F是△ABC的内心,∠A=50°,则∠BFC=( B ) A.100° B.115° C.130° D.135°