离散数学试卷及答案一

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

《离散数学》试卷及答案

《离散数学》试卷及答案
解设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0,也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
14、论断:“命题变元不是命题”(A)命题。
A.是;B.不是;C.不可判定
15、设S={a,b,c},T={p,q},作f:S T,则这样的f一共有(C)个。
A.9B.10C.8D.7


二、填空题(每空2分,共20分)
1、设P:2+5=3,Q:日本在亚洲;于是, 的真值为1。
2、数理逻辑中,进行推理的常用规则有前提引入规则,结论引入规则和
A. B.
C. D.
8、设集合A={a,b,c,d},B={1,2,3,4},则从A到B的函数
f={<a,2 >,<b,1 >,<c,3 >,<d,2 >}是(D)
A. f是双射函数B. f是入射函数
C. f是满射函数D. f即不是满射又不是入射函数
9、下列蕴含式为真的是(B)
A. B.
C. D.
10、设 是A到B的映射, 是B到C的映射, 是双射,则(B)

离散数学试题与参考答案

离散数学试题与参考答案

离散数学试题与参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共20分。

把答案填在对应题号后的横线上。

6. 设集合A ={,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C) 12. (10分)构造证明:(P (Q S))∧(R ∨P)∧Q R S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

离散数学试卷及答案

离散数学试卷及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

自考离散数学试题及答案

自考离散数学试题及答案

自考离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 命题逻辑中,下列哪个表达式表示“非”操作?A. ∧B. ∨C. ¬D. →答案:C3. 在下列哪个图论的术语中,表示图中任意两个顶点都相连?A. 无向图B. 有向图C. 完全图D. 二分图答案:C4. 布尔代数中,下列哪个操作是“或”?A. ∧C. ¬D. →答案:B5. 以下哪个是等价关系的属性?A. 自反性B. 对称性C. 反对称性D. 传递性答案:A6. 有限自动机中,状态可以被分为哪两种类型?A. 初始状态和终止状态B. 接受状态和拒绝状态C. 确定状态和非确定状态D. 静态状态和动态状态答案:B7. 在关系数据库中,下列哪个操作用于删除表中的行?A. INSERTB. DELETEC. UPDATED. SELECT答案:B8. 以下哪个是谓词逻辑中的量词?B. ∃C. ∧D. ∨答案:A9. 在命题逻辑中,德摩根定律描述了哪些逻辑运算的对偶性?A. ∧ 和∨B. ¬和→C. ¬和↔D. → 和↔答案:A10. 树的深度优先搜索(DFS)算法通常使用哪种数据结构来实现?A. 队列B. 栈C. 链表D. 哈希表答案:B二、填空题(每题3分,共30分)11. 在集合{1, 2, 3, 4, 5}中,子集的总数是_________。

答案:3212. 如果命题P为真,则命题P → Q的真值表中,Q的值必须为_________。

答案:真13. 在有向图中,一个顶点的入度是指_________。

答案:指向该顶点的边的数量14. 一个关系R(A, B, C)中,如果对于任意两个元组,当它们在属性A上的值相等时,它们在属性B和C上的值也相等,则称R具有_________。

答案:候选键15. 在布尔代数中,表达式(A ∧ B) ∨ (A ∧ ¬B)的结果是_________。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

《离散数学》复习题及答案

《离散数学》复习题及答案

《离散数学》复习题及答案《离散数学》试题及答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华⼈民共和国的⾸都。

(2) 陕西师⼤是⼀座⼯⼚。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。

(5) 前进! (6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。

答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PP?P→(4)QQ→→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( )(1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学试卷及答案

离散数学试卷及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。

大学离散数学试卷一及答案

大学离散数学试卷一及答案

大学离散数学试卷一及答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是[ C ]。

A.7能被3整除.B.5是素数当且仅当太阳从西边升起.C.x加7小于0.D.华东交通大学位于南昌北区.2. 设p:王平努力学习,q:王平取得好成绩,命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为[ D ]。

A. p→qB. ⌝p→qC. ⌝q→pD. q→p3. 下面4个推理定律中,不正确的为[ D ]。

A.A=>(A∨B) (附加律)B. (A∨B)∧⌝A=>B (析取三段论)C. (A→B)∧A=>B (假言推理)D. (A→B)∧⌝B=>A (拒取式)4. 设解释I如下,个体域D={1,2},F(1,1)=(2,2)=0,F(1,2)=F(2,1)=1,在解释I下,下列公式中真值为1的是[ A ]。

A.∀x ∃yF(x,y)B. ∃x∀yF(x,y)C. ∀x∀yF(x,y)D. ⌝∃x∃yF(x,y)5. 下列四个命题中哪一个为真?[ D ]。

A. ∅∈∅B. ∅∈{a}C. ∅∈{{∅}}D. ∅⊆∅6. 设S={a,b,c,d},R={<a,a>,<b,b>,<d,d>},则R的性质是[ B ]。

A.自反、对称、传递的B. 对称、反对称、传递的C.自反、对称、反对称的D. 只有对称性7.设A={a,b,c},则下列是集合A的划分的是[ D ]。

A.{{b,c},{c}}B.{{a,b},{a,c}}C.{{a,b},c}D.{{a},{b,c}}8. 设集合})关于普通数的乘法,不正确的有[ C ]。

ab+=aQ∈2,{)2(QbA. 结合律成立B. 有幺元C. 任意元素有逆元D. 交换律成立9.设A是非空集合,P(A)是A的幂集,∩是集合交运算,则代数系统〈P(A),∩〉的幺元是[ C ]。

A. P(A)B. φC. AD. E10.下列四组数据中,不能成为任何4阶无向简单图的度数序列的为[ C ]。

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。

A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。

A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。

A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。

2. 有一个集合A={1,2,3},则集合A的幂集为______。

3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。

三、解答题1. 请写出离散数学中常用的数学符号及其含义。

2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。

3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。

四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。

2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。

3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。

参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。

- ∩:交,表示集合的交集操作。

- ∖:差,表示减去一个集合中的元素。

- ⊆:包含,表示一个集合包含于另一个集合。

- =:相等,表示两个集合具有相同的元素。

2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。

答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。

答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。

答案:满射4. 在图论中,一个没有环的连通图被称为_________。

答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。

答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。

《离散数学》试题及答案

《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1∙R2 ={(1,3),(2,2),(3,1)} , R2∙R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

(完整word版)离散数学试卷及参考答案()

(完整word版)离散数学试卷及参考答案()

一、填空题:(每空1分,本大题共15分)1.给定命题公式A 、B ,若 ,则称A 和B 是逻辑相等的。

2.命题公式)(Q P →⌝的主析取范式为 ,主合取范式的编码表示为 。

3.设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。

4.设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有 ,A 的划分有 。

5.设S 是非空有限集,代数系统<(S ),,>中,(S)对的幺元为 ,零元为 。

(S )对的幺元为 ,零元为 .6.若>=<E V G ,为汉密尔顿图,则对于结点集V 的每个非空子集S ,均有W(G-S) S 成立,其中W (G —S)是 。

二、单项选择题:(每小题1分,本大题共10分)1.下面命题公式( )不是重言式。

A 、)(Q P Q ∨→;B 、P Q P →∧)(;C 、)()(Q P Q P ∨⌝∧⌝∧⌝;D 、)()(Q P Q P ∨⌝↔→。

2.命题“没有不犯错误的人”符号化为( )。

设x x M :)(是人,x x P :)(犯错误。

A 、))()((x P x M x ∧∀; B 、)))()(((x P x M x ⌝→∃⌝;C 、)))()(((x P x M x ∧∃⌝;D 、)))()(((x P x M x ⌝∧∃⌝。

3.设}{Φ=A ,B =((A )),下列各式中哪个是错误的( )。

A 、B ⊆Φ; B 、B ⊆Φ}{,C 、B ∈Φ}}{{;D 、⊆ΦΦ}}{,{(A )。

4.对自然数集合N ,哪种运算不是可结合的,运算定义为任N b a ∈,( ).A 、),min(b a b a =*;B 、b a b a 2+=*;C 、3++=*b a b a ;D 、)3(mod ,b a b a =*。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学试卷及答案

离散数学试卷及答案

离散数学试卷及答案离散数学试题与答案试卷一一、填空20%(每小题2分)1.设a?{x|(x?n)且(x?5)},b?{x|x?e且x?7}(n:自然数集,e+正也时数)则a?b?。

2.a,b,c表示三个集合,文图中阴影部分的集合表达式为。

3.设p,q的真值为0,r,s的真值为1,则abc??(p?(q?(r??p)))?(r??s)的真值=。

4.公式(p?r)?(s?r)??p的主合取范式为。

5.若解释i的论域d仅包含一个元素,则?xp(x)??xp(x)在i下真值为。

6.设a={1,2,3,4},a上关系图为则r2=。

7.设a={a,b,c,d},其上时偏序关系r的哈斯图为则r=。

8.图的欧佩什县为。

9.设a={a,b,c,d},a上二元运算如下:*abcdabcdabcdbcdacdabdabc那么代数系统的幺元就是,存有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、挑选20%(每小题2分后)1、下列是真命题的有()a.{a}?{{a}};b.{{?}}?{?,{?}};c.??{{?},?};d.{?}?{{?}}。

2、下列集合中相等的有()a.{4,3}??;b.{?,3,4};c.{4,?,3,3};d.{3,4}。

3、设a={1,2,3},则a上的二元关系存有()个。

a.23;b.32;c.23?3;d.32?2。

4、设r,s是集合a上的关系,则下列说法正确的是()a.若r,s是自反的,则r?s是自反的;b.若r,s是反自反的,则r?s是反自反的;c.若r,s是对称的,则r?s是对称的;d.若r,s是传递的,则r?s是传递的。

5、设a={1,2,3,4},p(a)(a的幂集)上规定二元系则如下r?{?s,t?|s,t?p(a)?(|s|?|t|}则p(a)/r=()a.a;b.p(a);c.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};d.{{?},{2},{2,3},{{2,3,4}},{a}}6、设a={?,{1},{1,3},{1,2,3}}则a上包含关系“?”的哈斯图为()7、以下函数就是双射的为()a.f:i?e,f(x)=2x;b.f:n?n?n,f(n)=;c.f:r?i,f(x)=[x];d.f:i?n,f(x)=|x|。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

离散数学试题及答案1

离散数学试题及答案1

离散数学总分:100 考试时间:100分钟一、单项选择题1、一个无向图G是一个二元组〈V,E〉,V代表(正确答案:B,答题答案:)A、边集B、顶点集C、环D、路径2、最佳前缀码可由()算法求出(正确答案:A,答题答案:)A、HuffmanB、PERTC、DijkstraD、Kruskal3、带权为2、3、5、7、8、9的最优树T,权W(T)=()(正确答案:B,答题答案:)A、82B、83C、84D、854、设n阶无向连通图G有m条边,则()(正确答案:A,答题答案:)A、m≥n-1B、m≤n-1C、m=n-1D、m≥n5、经过图中每条边一次且仅一次并且行遍图中每个顶点的通路(回路),称为()(正确答案:A,答题答案:)A、欧拉通路B、简单通路C、初级通路D、哈密尔顿通路6、入度为0的顶点称为()(正确答案:B,答题答案:)A、树根B、树叶C、边D、顶点7、按中序行遍法,其行遍结果为((dce)bf)a(gih),则按后序行遍法其结果为()(正确答案:A,答题答案:)A、a(b(cde) )(igh)fB、a(b(cde) f)(igh)C、((dec)fb)(ghi) aD、(b(cde) f)(igh)a8、设T=〈V,E〉是n阶非平凡树,则T中至少有()片树叶.(正确答案:C,答题答案:)A、1B、2C、3D、49、设有向简单图D的度数列为2,2,3,3,入度列为0,0,2,3,D的出度列为().(正确答案:B,答题答案:)A、2,2,1,0B、2,2,3,3C、0,0,2,3D、2,2,5,610、设G=〈V,E〉是n阶无向简单图,若G中任何顶点都与其余的n-1个顶点相邻,则称G为n阶()(正确答案:A,答题答案:)A、无向图B、无向完全图C、完全图D、有向简单图二、多项选择题1、简单图为()(正确答案:AB,答题答案:)A、不含平行边B、不含环C、不含顶点D、不含单边2、下面给出的符号串集合中,哪些是前缀码?(正确答案:ABD,答题答案:)A、B1={0,10,110,1111}B、B2={1,01,001,000}C、B3={1,11,101,001,0011}D、B4={b,c,aa,ac,aba,abb,abc }3、树的行遍法有()(正确答案:ABC,答题答案:)A、中序B、前序C、后序D、顺序4、无向图G为欧拉图,则()(正确答案:ABC,答题答案:)A、G是连通的B、G中无奇度顶点C、所有顶点的入度等于出度D、奇数个顶点5、无向图G具有欧拉通路,当且仅当G是()(正确答案:AB,答题答案:)A、连通图B、有零个或两个奇度顶点C、回路D、奇数个顶点6、根据边是否有方向,图可分为()(正确答案:CD,答题答案:)A、连通图B、树C、有向图D、无向图7、两图同构,则()(正确答案:ABC,答题答案:)A、顶点个数相同B、边的条数相同C、每个顶点的度相同D、有多重边8、特殊的图有()(正确答案:ABCD,答题答案:)A、二部图B、欧拉图C、哈密尔顿图D、平面图9、下列各组数中,哪些能够成无向图的度数列?(正确答案:ABC,答题答案:)A、1,1,1,2,3B、2,2,2,2,2C、3,3,3,3D、1,2,3,4,510、若图G中任意两个结点u和v,都有从u到v和从v到u的通路,则称G是()(正确答案:A,答题答案:)A、强连通图B、弱连通图C、单向连通图D、连通图三、判断题1、强连通图一定是单向连通图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为__0____,称为树根,其余结点的入度均为__1____。

17.A={1,2,3,4}上二元关系R={〈2,4〉,〈3,3〉,〈4,2〉},R的关系矩阵M R中m24=___1___,m34=___0___。

18.设〈s,*〉是群,则那么s中除__幺元____外,不可能有别的幂等元;若〈s,*〉有零元,则|s|=___1___。

19.设A为集合,P(A)为A的幂集,则〈P(A),⊆〉是格,若x,y∈P(A),则x,y最大下界是______,最小上界是______。

20.设函数f:X→Y,如果对X中的任意两个不同的x1和x2,它们的象y1和y2也不同,我们说f是___入射___函数,如果ranf=Y,则称f是___满射___函数。

21.设R为非空集合A上的等价关系,其等价类记为〔x〕R。

∀x,y∈A,若〈x,y〉∈R,则〔x〕R与〔y〕R的关系是______,而若〈x,y〉∉R,则〔x〕R∩〔y〕R=______。

22.使公式(∃x)( ∃y)(A(x)∧B(y))⇔(∃x)A(x)∧(∃y)B(y)成立的条件是______不含有y,______不含有x。

23.设M(x):x是人,D(s):x是要死的,则命题“所有的人都是要死的”可符号化为(∀x)______,其中量词(∀x)的辖域是______。

24.若H1∧H2∧…∧H n是______,则称H1,H2,…Hn是相容的,若H1∧H2∧…∧H n是______,则称H1,H2,…H n是不相容的。

25.判断一个语句是否为命题,首先要看它是否为,然后再看它是否具有唯一的。

三、计算题(共30分)26.(4分)设有向图G=(V,E)如下图所示,试用邻接矩阵方法求长度为2的路的总数和回路总数。

27.(5)设A={a,b},P(A)是A的幂集,⊕是对称差运算,可以验证<P(A),⊕>是群。

设n是正整数,求({a}-1{b}{a})n⊕{a}-n{b}n{a}n28.(6分)设A={1,2,3,4,5},A上偏序关系R={〈1,2〉,〈3,2〉,〈4,1〉,〈4,2〉,〈4,3〉,〈3,5〉,〈4,5〉}∪I A;(1)作出偏序关系R的哈斯图(2)令B={1,2,3,5},求B的最大,最小元,极大、极小元,上界,下确界,下界,下确界。

29.(6分)求┐(P→Q)⇔(P→┐Q)的主合取范式并给出所有使命题为真的赋值。

30.(5分)设带权无向图G如下,求G的最小生成树T及T的权总和,要求写出解的过程。

31.(4分)求公式┐((∀x)F(x,y)→(∃y)G(x,y))∨(∃x)H(x)的前束范式。

四、证明题(共20分)32.(6分)设T是非平凡的无向树,T中度数最大的顶点有2个,它们的度数为k(k≥2),证明T中至少有2k-2片树叶。

33.(8分)设A是非空集合,F是所有从A到A的双射函数的集合, 是函数复合运算。

证明:〈F, 〉是群。

34.(6分)在个体域D={a1,a2,…,a n}中证明等价式:(∃x)(A(x)→B(x))⇔(∀x)A(x)→(∃x)B(x)五、应用题(共15分)35.(9分)如果他是计算机系本科生或者是计算机系研究生,那么他一定学过DELPHI语言而且学过C++语言。

只要他学过DELPHI语言或者C++语言,那么他就会编程序。

因此如果他是计算机系本科生,那么他就会编程序。

请用命题逻辑推理方法,证明该推理的有效结论。

36.(6分)一次学术会议的理事会共有20个人参加,他们之间有的相互认识但有的相互不认识。

但对任意两个人,他们各自认识的人的数目之和不小于20。

问能否把这20个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?参考答案一、单项选择题(本大题共15小题,每小题1分,共15分)1.B2.D3.A4.A5.D6.D7.D8.C9.D 10.B11.A 12.A 13.C 14.B 15.C二、填空题16.0 117.1 018.单位元 119.x ∩y x ∪y20.入射 满射21.[x ]R =[y ]R22.A(x) B(y)23.(M(x)→D(x)) M(x)→D(x)24.可满足式 永假式(或矛盾式)25.陈述句 真值三、计算题26. M=1100101010110011⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪ M 2=2110211121211011⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪ M ij j i 2141418==∑∑=,M ij i 2146=∑= G 中长度为2的路总数为18,长度为2的回路总数为6。

27.当n 是偶数时,∀x ∈P(A),x n =∅当n 是奇数时,∀x ∈P(A),x n =x于是:当n 是偶数,({a }-1{b }{a })n ⊕{a }-n {b }n {a }n=∅⊕({a }-1)n {b }n {a }n =∅⊕∅=∅当n 是奇数时,({a }-1{b }{a })n ⊕{a }-n {b }n {a }n={a }-1{b }{a }⊕({a }-1)n {b }n {a }n={a }-1{b }{a }⊕{a }-1{b }{a }=∅28.(1)偏序关系R 的哈斯图为(2)B 的最大元:无,最小元:无;极大元:2,5,极小元:1,3下界:4, 下确界4;上界:无,上确界:无 29.原式⇔(┐(P →Q)→(P →┐Q))∧((P →┐Q)→┐(P →Q))((P →Q)∨(P →┐Q))∧(┐(P →┐Q)∨┐(P →Q))(┐P ∨Q ∨┐P ∨┐Q)∧(┐(┐P ∨┐Q)∨(P ∧┐Q))(┐(P ∧┐Q)∨(P ∧┐Q))(P ∧Q)∨(P ∧┐Q)P ∧(Q ∨┐Q)P ∨(Q ∧┐Q)(P ∨Q)∧(P ∨┐Q)命题为真的赋值是P=1,Q=0和P=1,Q=130.令e 1=(v 1,v 3), e 2=(v 4,v 6)e 3=(v 2,v 5), e 4=(v 3,v 6)e 5=(v 2,v 3), e 6=(v 1,v 2)e 7=(v 1,v 4), e 8=(v 4,v 3)e 9=(v 3,v 5), e 10=(v 5,v 6)令a i 为e i 上的权,则a 1<a 2<a 3<a 4<a 5=a 6=a 7=a 8<a 9=a 10取a 1的e 1∈T,a 2的e 2∈T,a 3的e 3∈T,a 4的e 4∈T,a 5的e 5∈T,即,T 的总权和=1+2+3+4+5=1531.原式⇔┐(∀x 1F(x 1,y)→∃y 1G(x,y 1))∨∃x 2H(x 2) (换名)⇔┐∃x 1∃y 1(F(x 1,y)→G(x,y 1))∨∃x 2H(x 2)⇔∀x 1∀y 1┐(F(x 1,y 1)→G(x,y 1))∨∃x 2H(x 2)⇔∀x 1∀y 1∃x 2(┐(F(x 1,y 1)→G(x,y 1))∨H(x 2)四、证明题32.设T 中有x 片树叶,y 个分支点。

于是T 中有x+y 个顶点,有x+y-1 条边,由握手定理知T 中所有顶点的度数之的d v i i x y()=+∑1=2(x+y-1)。

相关文档
最新文档